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Abstract. In this work, we aim at studying the applicability of the recently

discovered multipartite permutationally invariant three-outcome Bell inequality

involving at most second order correlation functions (3-outcome PIBI) presented in

[1] to systems of physical interest. In particular, we display a class of unitary

equivalent states for which it is possible to detect nonlocality only with individual spin-

1 measurements, and therefore physically realizable. Conversely, we have identified

nonlinear interactions, beyond su(2), to be key in the nonlocalization mechanism.

Finally, we reveal nonlocality for the ground state of the three-level Lipkin-Meshkov-

Glick model, not only for infinite-range, but also power-law interactions. This breaks

ground to use 3-outcome PIBIs as a certification tool in long-range quantum simulators.

Keywords: Bell inequality, nonlinear, nonlocality, quantum correlations, three-

level systems

1. Introduction

The principles of locality and realism are successful assumptions in the description

of classical phenomena. In 1935, Einstein, Podolsky and Rosen (EPR) suggested a

thought experiment about measuring individually a space-like separated entangled pair.

According to them, within the local-realistic frame, a set of local deterministic hidden

variables (LHVs) were necessary to explain the correlations between both measurements

outcomes [2].

It took nearly thirty years to obtain an operational test to verify whether a set

of correlations could be reproduced by a local-realistic model. In particular, the

seminal work by J.S. Bell provided bounds on the correlations accessible within a

LHV theory in the form of the so-called Bell inequalities (BIs). We shall call classical

a deterministic LHV theory on a local-realistic model. Remarkably, some quantum-

originated correlations violate BIs [3]. In such cases, the correlations cannot be explained
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by a LHV theory and we call them conventionally nonlocal 1. Bell’s result allows for

many experimental implementations, for instance, in photonic platforms by means of

polarization [4].

In multipartite scenarios, the derivation of BIs is in general not possible due to

the combinatorial complexity of the involved full-body correlations which makes the

problem intractable both theoretically and numerically. Remarkably, J. Tura et. al.

proposed a set of scalable permutation invariant BIs involving only one-body and two-

body correlation functions (PIBIs) [5]. More recently, A. Aloy et. al, extends the

previous work from two outcomes to three, tailoring the study of nonlocality in many-

body three-level systems [1].

In this project, we focus on a particular family of three-level PIBI, studying the

type of correlations necessary for violation. We expect to find correlation mechanisms

beyond spin-1 and su(2) due to the device independence (DI) [6] of the derivation of the

PIBI, not relying upon representations. Furthermore, we aim at testing the inequality

with physical particles 2 by considering individual spin-1 measurements along some

direction.

Finally, we want to identify models of interest whose ground state (GS) exhibit

nonlocality detectable with 3-outcome PIBI. This supposes a first step towards

considering its implementation on the novel long-range quantum simulators being

developed, offering a tool to explore strongly correlated phenomena. In this context,

the certification of non-classicality would impact at the fundamental level, for example

to characterize new phase transitions, as well as practically, providing a resource for

quantum information tasks [7].

The report is organized as follows. In Section 2, we settle the starting point, define

BIs, explain its power to detect nonlocality and describe the particular PIBI addressed

throughout the project. In Section 3, we present a set of maximally violating symmetric

states whose nonlocality can be detected by the analogue spin-1 su(3) local observables.

Finally, in Section 4, we reveal nonlocality for the ground state of the three-level Lipkin-

Meshkov-Glick model with power-law interactions.

2. Preliminaries

The starting point of this work is a DI Bell scenario, which is described by n parties

K = {k1, k2, .., kn} with m {x1, x2, .., xm} d-outcome {a1, a2, .., ad} measurements each on

a shared resource ρ (e.g a quantum state). After several rounds of collecting statistics,

a set of correlations p(ai1ai2 ... ain ∣x
k1
j1
xk2j2 ... x

kn
jn

)i∈{1,..,d} j∈{1,..,m} can be build. To ease the

notation, in the next paragraph we will set n = 2. The generalization to the multipartite

1 To avoid confusion this notion of nonlocality in quantum information is different from the usual

definition in quantum mechanics/quantum field theory regarding commutation of space-like separated

observables.
2 By physical particle we understand a unitary representation of the Lorentz-Poincaré algebra so(3+1),

i.e an irreducible representation of su(2) localized at a point of our 3+1 space-time.
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case is straightforward.

If the two outcomes are correlated, the correlations will not factorize

p(ai1ai2 ∣x
k1
j1
xk2j2 ) ≠ p(ai1 ∣x

k1
j1
)p(ai2 ∣x

k2
j2
). If they can be reproduced with a LHV theory

p(ai1ai2 ∣x
k1
j1
xk2j2 ) = ∑λ p(ai1ai2 ∣x

k1
j1
xk2j2 , λ), namely if they factorize as p(ai1ai2 ∣x

k1
j1
xk2j2 , λ) =

p(ai1 ∣x
k1
j1
, λ)p(ai2 ∣x

k2
j2
, λ) where λ labels the LHVs, then the correlations are within the

so-called local polytope L; i.e., L is a convex set with finite number of vertices containing

all possible local-realist correlations [8]. The problem that we want to address is, given

the set of correlations, do they belong to L?

A natural way to solve it is by characterizing the facets of L, which can be written

as a linear combination of correlations,

B(n,m, d) =
n

∑
o=0 s.t. k∈S(o,n)

∑
i∈C(o,d)

∑
j∈C(o,m)

α
(o)

i1i2...io∣j1j2...jo
(k1, k2, .., ko) p(ai1ai2 ... aio ∣x

k1
j1
xk2j2 ... x

ko
jo
) ,

(1)

where S(o, n) is the set with all subsets of o elements of K ,C(o, b) is the set of o-

tuples over {0,1, .., b−1} and α ∈ R, such that for a given locally reproducible probability

distribution p, B(n,m, d) ≥ 0, which is the so-called BI. The independent term α(0) is

the classical bound.

In reference [5], a family of BIs valid for any n was derived for the scenario

d = 2,m = 2, by considering up to second order correlations α(o>2) = 0 and permutation

invariance (PI), α ≠ α(k). The latter, allows us to factorize α and define the collective

distributions P (ai∣xj) = ∑k1 p(ai∣x
k1
j ), P (ai1ai2 ∣xi1xi2) = ∑k1≠k2 p(ai1ai2 ∣x

k1
j1
xk2j2 ). We shall

label the outcomes ai and measurements xi with natural numbers {1,2, ..., d} or the

traceless combination {−s,−s + 1, ..., s − 1, s} with s = (d − 1)/2 when we introduce

operators. Likewise, in the present thesis, we will label the parties or particles with

i = k1, j = k2 ∈ {1,2, ...n}.

2.1. Three-outcome many-body permutationally invariant Bell inequality (PIBI)

In reference [1], the following 3-outcome PIBI was obtained valid for any n under the

above restrictions for two measurements and three outcomes, (i.e m = 2 and d = 3),

B = P̃0 + P̃00 − 2P̃01 ≥ 0 , (2)

where P̃0 = P (0∣0) + P (0∣1) + P (1∣0) + P (1∣1) is the symmetrized unipartite term

and P̃00 = P (00∣00)+P (00∣11)+P (11∣00)+P (11∣11), P̃01 = P (01∣01)+P (01∣10) are the

symmetrized bipartite terms.

In order to study which mechanisms lead to nonlocal correlations that violate

inequality (2), we determine frustration on the classical theory that describes our 3-

outcome PIBI. We start by associating a classical variable σ
(i)
0,1 ∈ {−1,0,1} to the

outcomes of the local measurements {0,1}. Then, the ground energy of the two-

component nonlinear Ising model
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K = 2∑
i

(σ2
0
(i) + σ2

1
(i)) +∑

i≠j

((σ2
0 − σ

2
1)
(i)(σ2

0 − σ
2
1)
(j) + (σ0 + σ1)

(i)(σ0 + σ1)
(j)) , (3)

which follows (2) such that K = B for any local state with a thermal average, is

the classical bound c.f. [9]. From K ≥ 0, if any distribution B < 0, then the system

it describes is nonlocal or Bell correlated. Using single update Metropolis algorithm

we verified that the GS is in general achieved non-trivially due to the degeneration

provided by the infinite range interactions giving raise to antiferromagnetic (AFM)

correlations Cab = ∑i≠j σ
(i)
a σ

(j)
b < 0, and thus frustrated. Furthermore, we observe

M = ∑i(σ0 + σ1)
(i) = 0 ⇐⇒ ∑i σ

(i)
0 = −∑i σ

(i)
1 ≡ m for the GS because of measurement

exchange and global spin flip invariance.

From the quantum side, violations of Bell inequalities are possible due to observable

incompatibility. In particular, for spin-1/2 systems, spin squeezing, i.e, the variance

shrink below the standard quantum limit in the plane perpendicular to the finite mean

spin, has been proposed as a sufficient condition for Bell correlation [10]. In order to find

out whether spin-squeezing plays a role in the violation of inequality (2), we consider

spin-1 individual measurements in the next section.

3. Class of nonlocal symmetric states detectable with inequality (2)

Firstly, we consider only the distributions that are attainable within the quantum theory

with local Hilbert space H of dimension three (hence C3 ∼ H), with the corresponding

Von-Neumann measurements {M̂0 = −1×P̂00+1×P̂10+0×P̂20, M̂1 = −1×P̂01+1×P̂11+0×P̂21},

where P̂ax are projectors.

In the next step, we assume that the local measurements are spin-1 operators

{M̂0 = Ŝ0, M̂1 = Ŝ1}, whose generators are Ŝ = (Ŝx, Ŝy, Ŝz) ∈ su3(2). The elements of the

group are labeled with the Pauli vector vµ ∈ R3 as vµ ⋅ S ≡ Ŝµ. We shall see that spin-1

operators are not sufficient to obtain the expectation values and correlations involved

in inequality (2). Indeed, by defining Ŝ± = (Ŝ0 ± Ŝ1)/∣v0 ±v1∣, where ∣v0∣
2 = ∣v1∣

2 = 1, the

3-outcome PIBI (2) is rewritten as

∑
i

(∣v+∣
2⟨N̂

(i)
++ ⟩+∣v−∣

2⟨N̂
(i)
−− ⟩)+

1

2
∑
i≠j

(2∣v+∣
2⟨Ŝ

(i)
+ ⊗ Ŝ

(j)
+ ⟩ + ∣v+∣

2∣v−∣
2⟨N̂

(i)
+− ⊗ N̂

(j)
+− ⟩) ≥ 0 , (4)

where v± = v0±v1 and the nematic tensor N̂µν = (ŜµŜν + ŜνŜµ)/2 appear naturally

accounting for the spin nonlinearities beyond su(2). Since the expression (4) is not

linearly closed within su(2), we conclude a full characterization of the measurements as

su(3) elements is needed.

3.1. Structure of the SU(3) group

Having started with spin-1 operators, it is natural to extend this Lie basis by introducing

some linearly independent nematic components to obtain the generators of SU(3) [11],

{Ŝx, Ŝy, Ŝz, Q̂xy, Q̂yz, Q̂zx, D̂xy, Ŷ } , (5)
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where Q̂µν = 2N̂µν for µ ≠ ν, D̂xy = N̂xx − N̂yy and Ŷ = (2N̂zz − N̂xx − N̂yy)/
√

3.

With this extension, not only {Ŝx, Ŝy, Ŝz} is an su(2) subalgebra, there are more

triads {Ĝµ, Ĝν , Ĝη} ∈ su(3) that follow an analogue algebra [Ĝµ, Ĝν] = ic∑η ε
η
µνĜη,

where ε is the Levi-Civita symbol. They can be classified completely in type-1 or type-2

unitary disjoint equivalent classes depending on the value of the structure’s constant

norm c.

In the one hand, type-1 triads are the ones unitary equivalent to spin-1 {Ŝx, Ŝy, Ŝz},

for example {Q̂zx, Q̂yz, Ŝz}. In the other hand type-2 triads are the ones unitary

equivalent to two mode operators. For instance, {D̂xy, Q̂xy, Ŝz} for modes {−1,1}.

Similar triads can be found for modes {−1,0} and {0,1}.

In each triad, spin squeezing can be defined the same way as in spin-1/2 and for

type-2, finite spin polarization is no longer necessary to generate squeezing.

3.2. Class of nonlocal three-level symmetric states

In this subsection, a class of symmetric states that exhibit nonlocality with the 3-

outcome PIBI (2) is found by minimizing the Bell functional B = B(Ŝ0, Ŝ1, ρ) to obtain

the optimal Bell expectation value in the n-body symmetric subspace ρS ∈ Sym{H⊗n}

with fixed measurements. The space Sym{H⊗n} is spanned by qutrit Dicke states

∣{n = (n0, n1, n2) ∈ T3
n}⟩ ∝ ∑π∈Pn

π(∣0⟩
⊗n0 ∣1⟩

⊗n1 ∣2⟩
⊗n2), where Pn is the permutation

group of n = n0 + n1 + n2 elements and T3
n is the partition of n in 3 elements. By

definition, the two-body reduced density matrices (2-RDMs) of ρS are pairwise equal

and we will denote them by ρ
(2)
S .

We perform the optimization based on a solution of the quantum marginal problem

for symmetric states posed as an efficient semidefinite programming (SDP) [12]. In the

Dicke basis, the SDP reads

min
ρ
(2)
S

B(Ŝ0, Ŝ1, ρS) = tr{B̂n(Ŝ0, Ŝ1)ρ
(2)
S } s.t. tr{Aα

βρS} = ρ
(2)
S

α
β ∀α,b ∈ T3

n , ρS ⪰ 0 , (6)

where B̂n is the two-body reduced Bell operator and A encodes the compatibility

constrains of ρ
(2)
S to have an n-body symmetric extension ρS. The minimum found

is not necessarily the optimal of inequality (2) since this could be realized in a

higher dimensional space with positive-operator valued measures (POVMs), nor we

have guarantee that it is the maximal violation of its restriction in H, as it could

be accomplished by an irreducible representation of Pn with mixed symmetry or a

degenerate state.

With the extension to su(3), apart from spin-1 operators, we can consider other

triads belonging to type-1 or type-2 subspaces as local measurements since they follow

the same algebra. Concretely, without loss of generality, we can parametrize the

measurements with θ ∈ (0, π] as {Ŝ0 = Ŝz , Ŝ1 = cos θŜz + sin θŜx} for type-1 and

{Ŝ0 = Ŝz , Ŝ1 = cos θŜz + sin θD̂xy} for type-2. For type-2 measurements, the results are

trivial with an optimum state ∣ψ⟩ = ∣0⟩
⊗n

and no violation because type-2 measurements
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are two-mode reducible and consequently nonlinearities vanish, i.e N̂µν = δµνI, where

δ is the Kronecker’s delta and I is the identity 3 × 3 matrix. Figure (1) shows the

symmetric optimized Bell expectation value and an example of an optimum state for

type-1 measurements.

Figure 1: a) Symmetric optimum Bell expectation value of inequality (4) for type-1

measurements {Ŝz , cos θŜz +sin θŜx}, BS(θ), for different number of parties obtained by

solving (6). Nonlocality can be certified for n > 7. By increasing n, the violation becomes

larger specially in the vicinity of θ = π/2. b) example of maximally violating symmetric

state ∣ψ⟩ in the Dicke representation, ∣ ⟨{n}∣ψ⟩ ∣2, for θ = π/2 and 15 parties achieving a

violation of BS = −1.611.

The state presented in Figure (1) exhibits AFM correlations in accordance with

the relevant correlations identified previously with the classical model (3) and are

unpolarized, m = ⟨m⟩ = 0.

From an experimental point of view, given the technological impossibility to

measure the particles individually Ê(i), one may consider the so-called Bell correlation

certification [13]. In this case, the analogue spin and nematic components (or

alternatively spin and second moments) are measured collectively E(Ê) ≡ ∑i Ê
(i)/n 3.

With the previous definition, we define its expected value ⟨E(Ê)⟩ = ∑i⟨Ê
(i)⟩/n, the mean

individual fluctuations E((∆Ê)2) = ∑i(⟨Ê
2(i)⟩ − ⟨Ê(i)⟩2)/n2 = ⟨E(Ê2)⟩ − ⟨E(Ê)⟩2 ≥ 0

and the collective fluctuations (∆E(Ê))2 = ∑i,j(⟨Ê
(i) ⊗ Ê(j)⟩ − ⟨Ê(i)⟩⟨Ê(j)⟩)/n2 =

∑i≠j⟨Ê
(i) ⊗ Ê(j)⟩/n2 +E((∆Ê)2) ≥ 0 [14], the inequality (4) becomes

2∣v+∣2(∆E(Ŝ+))2 + 2∣v−∣2E((∆Ŝ−)2) + ∣v+∣2∣v−∣2(∆E(N̂+−))
2

2∣v+∣2⟨E(Ŝ+)⟩2 + 2∣v−∣2⟨E(Ŝ−)⟩2 + ∣v+∣2∣v−∣2E((∆N̂+−)
2)

≥ 1 . (7)

The comparison of equation (7) with the form of well-known spin-squeezing

inequalities for entanglement detection [15], motivates the conjecture that interplay

between spin and nematic components or higher moments are crucial to correlate

nonlocaly detectable with (4). The fact that no spin-squeezing was obtained in the

analysis of the states of Figure (1) supports this idea.

3 We consider a pairwise permutation symmetric ensemble of particles, consequently the averages are

taken on a uniform probability distribution.
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4. Three-level Lipkin-Meshkov-Glick model with power-law interactions

In this section, we study the model described by the transverse-interaction quantum

Ising Hamiltonian

Ĥ = B∑
i

Ŝ
(i)
z +

1

2
∑
i≠j

J

∣ri − rj ∣α
(Ŝ
(i)
x ⊗ Ŝ

(j)
x + D̂

(i)
xy ⊗ D̂

(j)
xy + Q̂

(i)
zx ⊗ Q̂

(j)
zx ) , (8)

where ri ∈ R3 is the position of particle i. This Hamiltonian is equivalent to the

su(3) shell model presented in [16] with power-law interactions α and the three-level

Lipkin-Meshkov-Glick (LMG) model, with important applications in nuclear physics

[17]. Hereinafter, we will consider AFM interactions, J = 1, and B > 0.

Firstly, we will solve the Hamiltonian by density matrix renormalization group

(DMRG) technique. Then, from the GS, we are going to extract the averaged 1-RDM

and 2-RDM which are used to compute the expected value of the Bell operator B̂ with

the measurements to be optimized.

4.1. Density matrix renormalization group with long-range interactions and

optimization over measurements

Provided the GS has full symmetric support, in the infinite-range interactions limit α = 0,

the Hamiltonian can be exactly diagonalized efficiently in the symmetric subspace. This

is not true for α ≠ 0, due to separable local state exchange invariance breaking. In this

case, we employ DMRG with a unidimensional chain geometry of the model with open

boundary conditions.

The first step is to introduce a bond space of dimension χ indexed by

γ to arrange the Hamiltonian as a matrix product operator (MPO), M̂PO =

∑s,s′∈{0,1,2}∑γ/γ∗ A
s1s

′

1

γ∗0γ1
A

s2s
′

2
γ1γ2 ...A

sns′n
γn−1γn∗ ∣s1s2..sn⟩ ⟨s

′

1s
′

2...s
′

n∣, where A
sis

′

i
γi−1γi = ⌈A

sis
′

i
i ⌉i∈{1,2,..,n}

are matrices once (γi−1, γi) are fixed. We fit the polynomial decay of the interaction by

exponentials r−α ≈ ∑
κ
k akb

r−1
k . In this case, it exists a set of ’automata’ rules (l, r)↦ ⌈A⌉lr

independent of the lattice site i, with only nontrivial action when 1 ≡ γ∗0 ≤ γi−1 ≤ γi,

which can reproduce not only the two-body part but also the single particle term as an

MPO [18]. Since γi ≤ 3κ + 2 = χ ≡ γ∗n, it can be implemented efficiently. A typical value

for α = 0.5 and n = 30 is κ = 6.

Next, we initialize the DMRG with a random matrix product state (MPS),

∣MPS⟩ = ∑s tr{⌊As11 ⌋⌊As22 ⌋...⌊Asnn ⌋} ∣s1s2..sn⟩, where ⌊Asii ⌋ = Asiγi−1γi are matrices once

fixed si and the lattice site i. The MPO Hamiltonian is split into three blocks L,C and

R of sizes l, 2 and n − l − 2 respectively. The ansatz’s corresponding RDM is used to

renormalize L and R to a rank-4 tensor and then all the inner indices are contracted

within C. The resulting tensor is factorized using single value decomposition (SVD)

to the right back to the MPS form. This procedure is repeated l + 1 ←[ l for several

sweeps l = 1←[ l = n − 2. Normally, 20 sweeps is enough for 10−7 precision in the ground

state. Once the algorithm has converged, we compute the 1-RDMs and 2-RDMs of

the obtained ground state MPS contracting over the corresponding indices.
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Figure 2: Optimized Bell expectation value of inequality (2) on the DMRG resulting

ground MPS of the 3-LMG as a function of the interaction polynomial decay α and

the local energy B following Section 4.1 for 32 particles. In green, the data-points

with vanishing violation within the measurement subspace generated by {Ŝx, Q̂zx, D̂xy}.

The line is intended to ease visualization and delimit violation for smaller α. The

corresponding dominant correlations Czz are marked, AFM for B < 1/2 and FM for

B > 1/2.

Regarding the optimization over measurements, we use the unitary continuous

parametrization Ûk∈{0,1} = Û(θk) elements of the defining representation of the Weyl-

Heisenberg group proposed in [1]. Given the roots of unity, ω = e2πi/3, the projectors

can be constructed {P̂0k = (Û3
k + Û

2
k + Ûk)/3 , P̂1k = (Û3

k + ωÛ
2
k + ω

2Ûk)/3 , P̂2k =

(Û3
k + ω

2Û2
k + ωÛk)/3}}. Finally, the parameters θ0,θ1 ∈ R8+1 are updated following

the conjugated gradient of B to be minimized 4.

4.2. Nonlocality detection in the ground state of three-level Lipkin-Meshkov-Glick

Hamiltonian

In order to delimit which local measurements are able to detect nonlocality with the

Bell inequality (4) on the ground state of 3-LMG, we study which phases this system

presents with the order parameter magnetization Mz = ∑i⟨Ŝ
(i)
z ⟩/n and its fluctuations

depending on Czz = ∑i≠j⟨Ŝ
(i)
z ⊗ Ŝ

(j)
z ⟩/(n(n − 1)). The results suggest for B ≳ 1/2, the

correlations Czz are ferromagnetic (FM) and the magnetization is proportional to −B,

while for B ≲ 1/2, Czz is weakly AF in the disordered phase 5.

The Figure (2) we display the Bell expectation value obtained applying Section

4.1 as well as with the subspace generated by {Ŝx, Q̂zx, D̂xy} transverse to Ŝz and with

no spin analogy. The latter restriction was motivated from the negligible imaginary

part of the output MPS and the previous result about unpolarized optimal states. The

4 Due to the high non-convexity of the landscape, we can not assert that the minimum found is the

absolute.
5 In the sense that when B → 0, Mz → 0 due to the nonexistent strong correlations.
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measurements can be well norm-preserving parametrized with the Gell-Mann matrices

(Λ̂6 = (Ŝx − Q̂zx)/
√

2 , Λ̂1 = (Ŝx + Q̂zx)/
√

2 , Λ̂4 = D̂xy) in the unit sphere given the

normalization tr{Λ̂µΛ̂ν} = 2δµν .

In Figure (2), in the FM phase we perceive that the violation decays for increasing

B as the GS approach the separable ∣−1z⟩
⊗n

. Similar behaviour is observed for α, as

the interaction range is decreased, the antisymmetric content of the GS grows with the

contribution of distanced pairs whose 2-RDM tend to I/3⊗ I/3 as they decorrelate.

Remarkably, the violation achieved is maximal just before the finite size precursor

of a phase transition at B ≈ 1/2. Conversely, no nonlocality is detected on the AFM

phase. In this case, for α = 0, the DMRG results seem indicate that the GS belongs

to a mixed symmetry representation, in contrast with the FM phase which DMRG

and symmetric diagonalization values coincide. This is in agreement with the fact that

the DI derived PIBIs are likely to fail in antisymmetric states, as conjectured in the

literature and noticed in past experiences [10, 19].

Noteworthy, the violation obtained at first place fits the violation detectable with

the transverse observables. Contrary to the state from Figure (1), the present GS

exhibits m ≠ 0 originated mainly from the contribution of ∣0z⟩.

5. Conclusions and outlook

To recapitulate, in this project we studied the features of the quantum nonlocality

detectable with the 3-outcome PIBI (2) using su(3) observables. We expected new

types of correlations not present in spin-1/2 systems to be decisive to violate inequality

(2) and consequently certify nonlocality.

Indeed, this is the case as we have identified; a) nonlinear correlations at a classical

level (3), b) quantum 3-outcome PIBI functional (4) not closed to any analogue SU(2)

subspace and c) two-level reducible measurements give zero Bell violation. This results

pose nonlinear interactions in many-body spin-1 systems as a key ingredient to achieve

Bell correlation of inequality (4), going beyond the celebrated spin squeezing mechanism

involving only first moments of collective observables. This phenomena is genuine to

3-level systems without any lower dimension equivalence.

Notwithstanding, a class of balanced m = 0 symmetric states with nonlocality

detectable only with the information encoded in the local spin degree of freedom is

introduced, proving the use of inequality (2) on physical systems. With the extension

to su(3), the class encompasses analogue spin operators. Furthermore, in the context of

the 3-LMG Hamiltonian we show that for m ≠ 0 it is still possible to certify nonlocality by

measuring transversely to the mean spin. In future work, we plan to use this knowledge

on other quartic three-level models [20].

Precisely in the last section, we show quantum nonlocality detectability for the

3-LMG GS not only on the infinite range interaction regime, but also with power-

law interactions for a decay parameter α ≲ 0.5. The results confirm that permutation

invariant BI are less effective in antisymmetric/disordered states and become useful
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near quantum critical points. In order to elucidate the preference of symmetric states

to violate PIBIs, for future work we propose working them in the second quantization

where symmetry in operators and indistinguishability in particles is assumed, towards

its application on long-range quantum simulators.
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