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Summary

We present a memory-efficient high-order hybridizable discontinuous Galerkin
(HDG) formulation coupled with high-order fully implicit Runge-Kutta schemes for
immiscible and incompressible two-phase flow through porous media. To obtain the
same high-order accuracy in space and time, we propose using high-order temporal
schemes that allow using large time steps. Therefore, we require unconditionally sta-
ble temporal schemes for any combination of element size, polynomial degree and
time step. Specifically, we use the Radau IIA and Gauss-Legendre schemes, which
are unconditionally stable, achieve high-order accuracy with few stages, and do not
suffer order reduction in this problem. To reduce the memory footprint of coupling
these spatial and temporal high-order schemes, we rewrite the non-linear system. In
this way, we achieve a better sparsity pattern of the Jacobian matrix and less cou-
pling between stages. Furthermore, we propose a fix-point iterative method to further
reduce the memory consumption. The saturation solution may present sharp fronts.
Thus, the high-order approximation may contain spurious oscillations. To reduce
them, we introduce artificial viscosity. We detect the elements with high-oscillations
using a computationally efficient shock sensor obtained from the saturation solution
and the post-processed saturation of HDG. Finally, we present several examples to
assess the capabilities of our formulation.
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1 INTRODUCTION

Nowadays, several numerical methods are used to simulate multiphase flow through porous media in enhanced oil recovery. In
this work, we focus on the secondary oil recovery process, in which a wetting fluid is injected in the reservoir to mobilize the
oil to the producer well to maintain the oil production rate1. To simulate this scenario, the immiscible two-phase flow through
porous media model is widely used2. There are different formulations for this model depending on the selection of the main
unknowns2. In particular, we select the oil saturation and the water pressure as the main scalar unknowns. This leads to a coupled
system of two non-linear partial differential equations, one for the saturation and other for the pressure.
Severalmethods have been used to simulate two-phase flow, such as the finite elementmethod2, the finite volumemethod2,3,4,5,

mixed finite element methods2,6,7, and discontinuous Galerkin methods8,9,2,10,11,12,13,14,15,16,17. Recently, many efforts have been
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2 ALBERT COSTA-SOLÉ ET AL

focused on applying high-order methods to these kind of problems due to their advantages11,15,18,19,20. If the analytical solution
is smooth enough, then the numerical solution obtained with a method of order k converges to the analytical one as ℎke in
L2−norm, being ℎe the element size of the mesh21,22,23. Hence, it has been shown that high-order spatial discretization methods
can be more accurate than low-order ones for the same mesh resolution23. Moreover, it is also reported that high-order methods
introduce less diffusion and dispersion errors in the solutions21,22,23. In addition, for the same accuracy threshold, high-order
spatial discretizationmethods require less computational cost than low-order methods since coarser meshes can be used22,23,24,25.
Nevertheless, to obtain these advantages in unsteady problems, the temporal error has to be low enough. In general, there are

two ways of controlling the temporal error. The first one is to use low-order temporal schemes with small time steps. The second
one is to use high-order temporal schemes with larger time steps. However, if high temporal accuracy is required, low-order time
integration schemes may require prohibitively small time steps. Thus, the computational cost of the simulation can be severely
hampered because, at each time step, a non-linear problem has to be solved. In these cases, high-order temporal schemes with
larger time steps may alleviate the computational cost while reducing the temporal dissipation and dispersion errors26,27.
To fully exploit the advantage of using arbitrary large time steps, high-order temporal schemes have to be unconditionally

stable for any combination of element size, polynomial degree and time step. For instance, Diagonally implicit Runge-Kutta
methods (DIRK) and implicit multi-step backward differentiation formula (BDF) have been coupled with high-order spatial dis-
cretizations since both have low-order memory footprint28,29,30. However, DIRK schemes need to severely increase the number
of stages to achieve convergence rates above fourth-order, and only BDF schemes up to second-order are unconditionally stable,
known as second Dahlquist barrier27. Thus, if high accuracy is required, BDF methods still need small time steps and DIRK
schemes need a high number of stages. In these cases, fully implicit RK schemes may be considered27. They are unconditionally
stable and achieve high-order accuracy with few stages.
Combining high-order spatial discretization with fully-implicit high-order temporal schemes increases the memory require-

ments. On the one hand, spatial high-order methods couple more unknowns than low-order ones for the same resolution. Thus,
the Jacobian matrix involved in the non-linear system becomes denser. On the other hand, fully implicit RK schemes increases
the number of unknowns and therefore, the Jacobian matrix becomes larger. Moreover, the unknowns of all the stages are cou-
pled, which further increases the memory footprint of storing the Jacobian matrix. Therefore, specific algorithms should be
devised to reduce the memory footprint for these applications.
For non-smooth solutions (discontinuities or sharp fronts) spatial high-order methods will introduce oscillations at the vicinity

of the discontinuity31,32,33. For unsteady problems, these oscillations may not be dissipated because of the low dissipation error
of high-order temporal schemes. Thus, the accuracy of the numerical solution may be compromised as the front moves and the
oscillations evolve. Moreover, the spurious oscillations may lead to a non-physical numerical solution, like negative saturation
values, which hampers the robustness of the formulation. In these cases, the numerical model cannot be evaluated and the
simulation has to be stopped.
In this paper, we propose a memory-efficient high-order hybridizable discontinuous Galerkin (HDG) formulation coupled

with high-order fully implicit Runge-Kutta (RK) schemes for immiscible and incompressible two-phase flow through porous
media. High-order HDG exhibits several advantages that make it suitable for these type of simulations. First, HDG is high-order
accurate. That is, it obtains a convergence rate for the oil saturation and water pressure variables and their corresponding fluxes
of order P + 1 in L2−norm, being P the polynomial degree when the temporal discretization error is low enough34,35,36,37,38.
Moreover, element-wise post-processing can be applied at chosen time steps to obtain a P + 2 convergence rate for the oil
saturation and water pressure34,35,38. Second, mass is conserved at the element level. This is an important feature when solving
PDE’s in conservative form. Third, the method can be hybridized in terms of the oil saturation and the water pressure traces,
reducing the size of the system that has to be solved. For these reasons, high-order HDG formulation has been recently applied
in porous media flow problems17,18,19,20.
To exploit the advantages of the high-order HDG formulation, we propose to perform a high-order fully implicit RKmethod to

control the temporal error. These RK schemes are unconditionally stable for any combination of element size, polynomial degree
and time-step39. In particular, we use the Gauss-Legendre (GL) and the Radau IIA schemes, which are unconditionally stable,
achieve high-order temporal accuracy with few stages, and do not suffer order-reduction for two-phase flow through porous
media problems. To reduce the memory consumption of coupling high-order spatial and temporal discretizations, we rewrite the
non-linear system. In this way, we obtain a better sparsity pattern in the Jacobian matrix and less coupling between the stages27.
To further reduce the memory consumption, we propose a memory-efficient non-linear solver. Specifically, we perform a fix-
point iterative method that alternatively solves the saturation and the pressure unknowns. That is, this method decouples the
saturation and pressure systems. Therefore, we do not need to solve a non-linear system composed of both unknowns. Moreover,
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ALBERT COSTA-SOLÉ ET AL 3

since the pressure system does not contain temporal derivatives terms, it is solved sequentially at each Runge-Kutta stage given
a saturation approximation.
If the saturation solution presents discontinuities, the high-order approximation may contain spurious oscillations31,32,33. To

reduce these oscillations, we introduce local artificial viscosity in the saturation equation. The oscillations are detected using
the shock sensor introduced in31. The main difference with31 is that we compute the shock sensor from the saturation solution
and the post-processed saturation of HDG. The proposed shock sensor is computationally efficient since the post-processed
saturation is computed in an element-wise manner.
The outline of this paper is as follows. In Section 2, we describe the related work. In Section 3, we introduce the numerical

model for the immiscible and incompressible two-phase flow through porous media problem. In Section 4, we deduce the cor-
responding HDG formulation. In Section 5, we couple the high-order HDG formulation with high-order fully implicit temporal
discretization schemes. In Section 6, we detail the proposed non-linear solver. In Section 7, we state the local post-processing
procedure. In Section 8, we specify the proposed shock-capturing method. In Section 9, we present several examples to asses
the capabilities of the proposed formulation. Finally, in Section 10, we summarize the main contributions of this paper and we
describe the issues that will be addressed in the future.

2 RELATEDWORK

Several spatial discretization methods have been successfully applied in reservoir simulation2. For instance, high-order continu-
ous Galerkin methods can deal with unstructured meshes to capture the complexity of the subsurface configurations. Moreover,
a static condensation procedure can be applied to reduce the number of unknowns of the linear systems and reduce the com-
putational cost. In addition, it is an accurate method for the scalar variable that converges with a rate of P + 1 in L2−norm.
Nevertheless, the gradient of the scalar variable loses one order of convergence in L2−norm40,41. Mixed finite element methods
introduce the flux in the formulation, which is related to the gradient of the scalar variable. Both variables, the scalar and the flux
have convergence rates in L2−norm of P + 12,6,7. However, it is necessary to apply different stabilization techniques for each
selection of approximation spaces6. Since they introduce a new unknown, mixed methods have more degrees of freedom than
finite element methods, although a hybridization technique can also be applied to reduce the number of unknowns of the linear
system. Discontinuous Galerkin (DG) methods are a type of mixed finite element in which the scalar and the flux are discontinu-
ous element-by-element. Both variables also converge as P +1 inL2−norm8,9,2,10,11,13,12,14,16,15,17. The stability, consistency and
accuracy of these methods depend on a suitable choice of a numerical flux that depends on several parameters42. Also, the mass
conservation is verified at the element level, which is an advantage when solving PDE’s in conservative form. These methods
can use polynomials of arbitrary degree, and therefore are high-order accurate. Moreover, there are DG formulations that allow
solving only for the main unknown to increase the computational efficiency, which is known as primal formulation11. Recently,
the hybridizable discontinuous Galerkin (HDG) method has been applied in two-phase flow through porous media18,19,20. It has
all the advantages of the discontinuous Galerkin formulations. This method introduces the trace of the scalar variable as a new
unknown. The stability is imposed through the continuity in the normal direction of a numerical flux that depends on a single
stabilization parameter. Moreover, elemental post-processing can be applied to obtain a convergence rate for the scalar vari-
ables of P +2 in L2-norm34,35,36,37,38. Therefore, the accuracy of the obtained solutions can be increased without hampering the
computational cost. Finally, this method is also hybridizable in terms of the traces, reducing the size of the global linear system.
For unsteady problems, time-marching integration schemes can be used, such as RKmethods39,43,44,28,29,27,30. Given a solution

at a time step, RK methods compute the solution at the next time step as a linear combination of the solution obtained at
intermediate times. Those intermediate times are known as the stages of the RK method. Explicit RK schemes approximate the
solution at a stage as a linear combination of the solution at previous stages. While these methods have low computational cost,
they are conditionally stable, and therefore they cannot be applied with arbitrary large time steps. To use arbitrary time steps,
we can use the implicit RK schemes43. For instance, in diagonally implicit Runge-Kutta (DIRK) schemes, the unknowns at the
stages depend on the unknowns at the current stage and at the previous ones. Thus, the solution at the stages can be solved
sequentially. However, above fourth-order, the number of stages of DIRK schemes increases faster than the integration order27. If
high-order temporal accuracy is required, the fully implicit RK schemes may be considered. These schemes are unconditionally
stable and can achieve high-order temporal accuracy with few stages39,27. However, the stage unknowns are all coupled, and
therefore, they involve solving a non-linear system of equations that couples all the stages. Thus, fully implicit RK schemes have
a higher memory footprint than explicit RK and DIRK methods.
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4 ALBERT COSTA-SOLÉ ET AL

For non-smooth solutions, high-order approximations may contain oscillations at the sharp fronts. The idea of the shock-
capturing methods is to introduce additional dissipation near the sharp fronts to reduce these oscillations31,32,33. In this paper,
we use the artificial viscosity method, which consists to introduce an elemental viscosity term into the governing equation45.
This method requires a sensor to precisely detect the location of the sharp fronts. In the work of31, the sensor is computed by
a comparison of two solutions of the problem computed with a different polynomial degree, P and P − 1. Moreover, the same
authors relate the amount of artificial viscosity with the resolution of the mesh and two empirical parameters.

3 NUMERICAL MODEL

The governing equations for two-phase flow through porous media are provided by the mass conservation and the Darcy law for
each phase2,46:

⎧

⎪

⎨

⎪

⎩

)(���S�)
)t

+ ( ⋅
(

��v�
)

=��f� ,

v� = − ��K(p� ,
for � = w, o

where w stands for the wetting phase (water), o stands for the non-wetting phase (oil), � is the porosity of the media, �� , f� , v�
S� and p� are the density, the source term, the velocity, the saturation and the pressure of phase �, and �� = kr�∕�� is the phase
mobility, being kr� and �� the relative permeability and the viscosity of phase �, respectively.
We assume that both phases completely fill the voids of the soil, thus

Sw + So = 1.

There is a discontinuity in the pressure field due to the interface tension between phases called capillary pressure, pc 2,46. That is

pc = po − pw.

The capillary pressure, pc , and the relative permeabilities of each phase, kr� , are related to the water or oil saturations by a
physical model. In this work we use the Brooks-Corey model47:

pc = pe(1 − Seo)
−1∕�

krw = (1 − Seo)
(2+3�)∕�

kro = S2eo
(

1 − (1 − Seo)
(2+�)∕�)

(1)

where pe is the entry pressure, � is the pore size distribution, and

Seo =
So − Sro

1 − Srw − Sro
is the effective oil saturation, being Sro and Srw the residual oil and water saturation, respectively.
There are several formulations to solve the two-phase flow problem depending on the selection of the main variables2. We

use the oil saturation, So, and the water pressure, pw, as main unknowns. According to2,46, the total phase mobility, �t, and the
total velocity, vt, are defined as

�t = �o + �w, vt = vo + vw.
Let Ω be a domain and T = (0, tend) a time interval. We consider that the boundary of Ω is divided in three disjointed parts

such that )Ω = Γin ∪ Γout ∪ Γnf , where Γin is the inflow boundary (water is injected), Γout is the outflow boundary (water
and oil are extracted) and Γnf is the no-flow boundary. Considering appropriate boundary conditions and assuming immiscible
and incompressible fluids and incompressible rock, a system of two coupled non-linear partial differential equations (PDEs) is
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ALBERT COSTA-SOLÉ ET AL 5

obtained10. For the oil saturation:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�
)So
)t

− ( ⋅
(

�oK((pc + (pw)
)

= fo ∀(x, t) ∈ (Ω, T ),

SΓino = ginDs ∀(x, t) ∈ (Γin, T ),
(

�o�w
�t

K(pc
)

⋅ n = goutNs ∀(x, t) ∈ (Γout, T ),

vo ⋅ n = 0 ∀(x, t) ∈ (Γnf , T ),
So(⋅, 0) = Si ∀x ∈ Ω,

(2)

where ginDs is the prescribed value of the saturation on the inflow boundary, and goutNs is the prescribed value on the output boundary.
For the water pressure:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−( ⋅
(

�tK(pw + �oK(pc
)

= fo + fw ∀(x, t) ∈ (Ω, T ),
pΓinw = ginDp ∀(x, t) ∈ (Γin, T ),

pΓoutw = goutDp ∀(x, t) ∈ (Γout, T ),

vt ⋅ n = 0 ∀(x, t) ∈ (Γnf , T ),

(3)

where ginDp , g
out
Dp are the prescribed values of the pressure on the inflow and outflow boundaries, respectively.We rewrite equations

(2) and (3) as a system of first order PDEs by introducing the diffusive fluxes34,35,37:

qs = −�oK(pc , qp = −�tK(pw,

Thus, the saturation system is
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�
)So
)t

+ ( ⋅
(

qs +
�o
�t
qp
)

= fo ∀(x, t) ∈ (Ω, T ),

qs + �oK(pc = 0 ∀(x, t) ∈ (Ω, T ),
SΓino = ginDs ∀(x, t) ∈ (Γin, T ),

(

�o�w
�t

K(pc
)

⋅ n = goutNs ∀(x, t) ∈ (Γout, T ),

vo ⋅ n = 0 ∀(x, t) ∈ (Γnf , T ),
So(⋅, 0) = Si ∀x ∈ Ω,

(4)

and the pressure system is
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

( ⋅
(

qp + qs
)

= fo + fw ∀(x, t) ∈ (Ω, T ),
qp + �tK(pw = 0 ∀(x, t) ∈ (Ω, T ),

pΓinw = ginDp ∀(x, t) ∈ (Γin, T ),

pΓoutw = goutDp ∀(x, t) ∈ (Γout, T ),

vt ⋅ n = 0 ∀(x, t) ∈ (Γnf , T ).

(5)

4 WEAK FORM

We discretize the domain, Ω, with a tessellation, Tℎ, composed of a set of elements, e, of polynomial degree P . Afterwards, we
introduce the discontinuous finite element spaces associated with the tessellation, Tℎ:

V Pℎ =
{

v ∈ L2
(

Ωd
)

∣ v
|e ∈

(

SP (e)
)

∀e ∈ Tℎ
}

,

WP
ℎ =

{

w ∈
(

L2
(

Ωd
) )d ∣ w

|e ∈
(

SP (e)
)d ∀e ∈ Tℎ

}

,

MP
ℎ =

{

 ∈ L2
(

Σℎ
)

∣  
|f ∈

(

SP (f )
)

∀f ∈ Σℎ
}

.

where SP is the space of the polynomials of degree at most P for triangles and tetrahedra (usually denoted by ℙP ), or the
tensor products of polynomials of degree at most P in each coordinate direction for tensor product elements (usually denoted by
ℚP ), d is the space dimension and Σℎ is the skeleton of the mesh composed of all the element faces, f . We define MP

ℎ

(

gD
)

=
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6 ALBERT COSTA-SOLÉ ET AL

{

 ∈ MP
ℎ ∣  = Π(gD) on ΓD

}

, whereΠ(⋅) is a projection operator to the space
{

 |ΓD ∀ ∈ MP
ℎ

}

. In this work, we use a fixed
polynomial degree for all the elements. We define the scalar products on the finite element spaces:

(u, v)e = ∫
e

u v dΩ ∀u, v ∈ V Pℎ ,

(q,w)e = ∫
e

q ⋅ w dΩ ∀q,w ∈WP
ℎ ,

⟨�,  ⟩)e = ∫
)e

�  dΓ ∀�,  ∈ MP
ℎ .

Using (pc = p′c(So, where p
′
c is the derivative of the capillary pressure respect to the oil saturation, the HDG formulation

for the oil saturation corresponding to Equation (4) seeks an approximation (Soℎ ,qsℎ , Ŝoℎ) ∈ V Pℎ ×WP
ℎ ×MP

ℎ (gD) such that:

∑

e∈Tℎ

(

(

�
)Soℎ
)t

, v
)

e
−
(

qsℎ +
�o
�t
qpℎ ,(v

)

e
+
⟨(

q̂sℎ +
�̂o
�̂t
q̂pℎ

)

⋅ n, v
⟩

)Tℎ

)

=
∑

e∈Tℎ

(

fo, v
)

e , (6a)

∑

e∈Tℎ

(

(A−1sℎ qsℎ ,w)e − (Soℎ ,( ⋅ w)e + ⟨Ŝoℎ ,w ⋅ n⟩)e
)

= 0, (6b)

∑

e∈Tℎ

∑

f∈)e
f∉Γout,Γin

⟨(

q̂sℎ +
�̂o
�̂t
q̂pℎ

)

⋅ n,  
⟩

f

= 0, (6c)

⟨

�o�w
�t

p′cK(So ⋅ n,  
⟩

Γout

= ⟨goutNs,  ⟩Γout (6d)

for all (v,w,  ) ∈ V Pℎ ×WP
ℎ ×MP

ℎ (0), where �̂o and �̂t are the oil phase mobility and the total phase mobility computed with
the trace of the oil saturation, Ŝoℎ , respectively, and As = �op′cK.
The HDG formulation for the water pressure corresponding to Equation (5) seeks an approximation (pwℎ

,qpℎ , p̂wℎ
) ∈ V Pℎ ×

WP
ℎ ×MP

ℎ (gD) such that:
∑

e∈Tℎ

(

−(qpℎ + qsℎ ,(v)e + ⟨(q̂pℎ + q̂sℎ) ⋅ n, v⟩)e
)

=
∑

e∈Tℎ

(

(fo + fw), v
)

e , (7a)

∑

e∈Tℎ

(

(A−1pℎ qpℎ ,w)e − (pwℎ
,( ⋅ w)

e
+ ⟨p̂wℎ

,w ⋅ n⟩
)e

)

= 0, (7b)

∑

e∈Tℎ

∑

f∈)e
f∉Γout,Γin

⟨(q̂pℎ + q̂sℎ) ⋅ n,  ⟩f = 0, (7c)

for all (v,w,  ) ∈ WP
ℎ × V Pℎ ×MP

ℎ (0), where Ap = �tK, and p̂wℎ
is the trace of the water pressure.

Equations (6c) and (7c) are the transmissivity equations, in which we impose the continuity of the total numerical flux in the
normal direction between adjacent elements for each equation. Therefore, these equations relate the unknowns between adjacent
elements. We define the numerical flux for the oil saturation and the water pressure as

q̂sℎ = qsℎ + �s(Soℎ − Ŝoℎ) ⋅ n, (8a)
q̂pℎ = qpℎ + �p(pwℎ

− p̂wℎ
) ⋅ n, (8b)

respectively, where �s a stabilization function for the oil saturation, and �p a stabilization function for the water pressure.
According to34,35, we set the stabilization parameter, �s and �p, of Equations(8a) and (8b) respectively as

�s =
�̂op′c
ls

K, �p =
�̂t
lp
K, (9)

where K is the maximum eigenvalue of the permeability matrix,K, ls is the characteristic length for the saturation and lp is the
characteristic length for the pressure.
We highlight that the Dirichlet boundary conditions are applied as follows:

Ŝoℎ = Π(gDs) ∀x ∈ )TsℎΓD , p̂wℎ
= Π(gDp) ∀x ∈ )TpℎΓD ,
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ALBERT COSTA-SOLÉ ET AL 7

where )TsℎΓD and )T
p
ℎΓD

are the set of mesh faces on the Dirichlet boundary for the oil saturation and water pressure, respectively.
Let {Ni}i=1,...,N be a Lagrangian basis of shape functions of SP , where N is the total number of element nodes, and let

{Nf
i }i=1,...,Nf

be a Lagrangian basis on the element faces, where Nf is the total number of nodes on a single face. Thus, Soℎ ,
qsℎ , Ŝoℎ , pwℎ

, qpℎ and p̂wℎ
are defined as

Soℎ(x, t) =
N
∑

i=1
Si(t)Ni(x), pwℎ

(x, t) =
N
∑

i=1
pi(t)Ni(x),

qsℎ(x, t) =
N
∑

i=1

Nsd
∑

j=1
qsi,j(t)Niej(x), qpℎ(x, t) =

N
∑

i=1

Nsd
∑

j=1
qpi,j(t)Niej(x),

Ŝoℎ(x, t) =
Nf
∑

i=1
Ŝl(t)N

f
l (x), p̂wℎ

(x, t) =
Nf
∑

i=1
p̂l(t)N

f
l (x).

(10)

Similarly, the temporal derivative of the oil saturation, Ṡoℎ = )Soℎ∕)t, is defined as

Ṡoℎ(x, t) =
N
∑

i=1
Ṡi(t)Ni(x), (11)

where Ṡi(t) = dṠi(t)∕dt. By inserting Equations (10) and (11) into Equations (6) and (7), we obtain a coupled system of first
order differential algebraic equations (DAE).
The discrete problem consists of finding the coefficients Si(t), Ṡi(t), qsi,j(t), pi(t), qpi,j(t), for i = 1…N , j = 1…Nsd and

Ŝl(t), p̂l(t) for l = 1…Nf such that
[

RSo
]

i
≡

∑

e∈Tℎ

(

(

�Ṡoℎ , Ni

)

e
−
(

qsℎ +
�o
�t
qpℎ ,(Ni

)

e

)

+
∑

e∈Tℎ

(⟨

qsℎ ⋅ n + �s(Soℎ − Ŝoℎ), Ni

⟩

)e

)

+
∑

e∈Tℎ

(

⟨ �̂o
�̂t

(

qpℎ ⋅ n + �p(pwℎ
− p̂wℎ

)
)

, Ni

⟩

)e

)

−
∑

e∈Tℎ

(

fo, Ni
)

e = 0

[

Rqs
]

i,j
≡

∑

e∈Tℎ

(

(A−1sℎ qsℎ , Niej)e − (Soℎ ,( ⋅ (Niej))e + ⟨Ŝoℎ , Niej ⋅ n⟩)e
)

= 0

[

RŜo
]

l
≡

∑

e∈Tℎ

∑

f∈)e
f∉Γout,Γin

(

⟨(

q̂sℎ +
�̂o
�̂t
q̂pℎ

)

⋅ n, Nf
l

⟩

f

)

+
⟨

�o�w
�t

p′cK(So ⋅ n, N
f
l

⟩

Γout

− ⟨goutNs, N
f
l ⟩Γout

= 0

[

Rpw
]

i
≡

∑

e∈Tℎ

(

−(qpℎ + qsℎ ,(Ni)e + ⟨qpℎ ⋅ n + �p(pwℎ
− p̂wℎ

), Ni⟩)e

)

= 0

+
∑

e∈Tℎ

(

⟨qsℎ ⋅ n + �s(Soℎ − Ŝoℎ), Ni⟩)e

)

−
∑

e∈Tℎ

(

fo + fw, Ni
)

e = 0

[

Rqp
]

i,j
≡

∑

e∈Tℎ

(

(A−1pℎ qpℎ , Niej)e − (pwℎ
,( ⋅ (Niej))e + ⟨p̂wℎ

, Niej ⋅ n⟩)e
)

= 0

[

Rp̂w
]

l
≡

∑

e∈Tℎ

∑

f∈)e
f∉Γout,Γin

(

⟨qpℎ ⋅ n + �p(pwℎ
− p̂wℎ

) + qsℎ ⋅ n + �s(Soℎ − Ŝoℎ), N
f
l ⟩)e

)

= 0

(12)

forNi, Niej andN
f
l , with i = 1…N , j = 1…Nsd , l = 1…Nf .
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8 ALBERT COSTA-SOLÉ ET AL

5 TIME DISCRETIZATION

We write the first order DAE system of Equation (12) in a compact form as

R
(

t,So, Ṡo,qs, Ŝo,pw,qp, p̂w
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

RSo
(

t,So, Ṡo,qs, Ŝo,pw,qp, p̂w
)

Rqs

(

t,So, Ṡo,qs, Ŝo,pw,qp, p̂w
)

RŜo
(

t,So, Ṡo,qs, Ŝo,pw,qp, p̂w
)

Rpw
(

t,So, Ṡo,qs, Ŝo,pw,qp, p̂w
)

Rqp

(

t,So, Ṡo,qs, Ŝo,pw,qp, p̂w
)

Rp̂w
(

t,So, Ṡo,qs, Ŝo,pw,qp, p̂w
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0, (13)

where So, Ṡo,qs, Ŝo,pw,qp, and p̂w are the time dependent nodal values of the unknowns.
To solve the DAE in Equation (13), we use a fully implicit RK method. From now on, we denote by (⋅)n the value of any

variable at time tn and by (⋅)n,i the value of any variable at time tn,i = tn + ciΔt, being n the time step and i the RK stage. Thus,
we compute the oil saturation at time tn+1 = tn + Δt as

Sn+1o = Sno + Δt
s
∑

i=1
biṠn,io , (14)

where Ṡn,io is the approximation of Ṡo at time tn,i, and s is the total number of stages. We compute Ṡn,io as the solution of the
non-linear algebraic equations:

R
(

tn,i,Sn,io , Ṡ
n,i
o ,q

n,i
s , Ŝ

n,i
o ,p

n,i
w ,q

n,i
p , p̂

n,i
w

)

= 0, for i = 1,… , s, (15)

where the oil saturation at each stage of the RK scheme, Sn,io , is approximated using Ṡn,jo as

Sn,io = Sno + Δt
s
∑

j=1
aij Ṡn,jo , (16)

The parameters aij , bi, ci define the RK method, and are given by the Butcher’s tables39,43,28,29:

c A
b ≡

c1 a11 a12 … a1s

c2 a21 a22 … a2s

⋮ ⋮ ⋱ ⋮
cs as1 … ass

b1 b2 … bs

(17)

Instead of solving Equation (15) for Ṡn,io , we propose to solve for Sn,io . In this way, we obtain a better sparsity pattern in the
Jacobian matrix and less coupling between stages, see details in27. To this end, we first rewrite Equation (16) as

Ṡn,io = 1
Δt

s
∑

j=1
ãij

(

Sn,jo − Sno
)

, (18)

where ãij = (A−1)ij . Afterwards, we rewrite Equation (18) as

Ṡn,io = 1
Δt

s
∑

j=1
ãijSn,jo − c̃i

Δt
Sno , (19)

where c̃i =
∑s
j=1 ã

ij . Thus, inserting Equation (19) into Equation (15) we obtain the following non-linear algebraic equation:

R
(

tn,i,Sn,io ,
1
Δt

s
∑

j=1
ãijSn,jo − c̃i

Δt
Sno ,q

n,i
s , Ŝ

n,i
o ,p

n,i
w ,q

n,i
p , p̂

n,i
w

)

= 0, for i = 1,… , s. (20)

Once the oil saturation is computed at all stages, we compute the oil saturation at next time step by inserting Equation (18) into
Equation (14):

Sn+1o = d̃Sno +
s
∑

j=1
b̃jSn,jo (21)
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ALBERT COSTA-SOLÉ ET AL 9

Algorithm 1 Fix point iteration method for two-phase flow.
1: Input: Sno
2: Sn,0o = Sn−1o , pn,0w = pn−1w .
3: l = 0
4: convergence = False
5: While (not convergence):
6: Compute: Sn,i,l+1o , qn,i,l+1s and Ŝn,i,l+1o from Sno , p

n,l
w , qn,i,lp and p̂n,i,lw using Eq.(22).

7: Compute: pn,i,l+1w , qn,i,l+1p and p̂n,i,l+1w from Sn,l+1o , qn,i,l+1s and Ŝn,i,l+1o using Eq.(23).
8: l = l + 1
9: check convergence using Eq.(24).

10: Sn,io = Sn,i,lo , pn,iw = pn,i,lw , qn,ip = qn,i,lp , qn,is = qn,i,ls , p̂n,iw = p̂n,i,lw Ŝn,io = Ŝn,i,lo , .
11: end

where d̃ = 1 −
∑s
j=1 b̃

j and b̃ = bA−1.

6 NON-LINEAR SOLVER

To solve Equation (20) we use a fix-point iterative method. The main idea is to iteratively solve the saturation and the pressure
unknowns until convergence is achieved, see Algorithm 1. Let l be the l-th iteration of the fix-point iterative method. Thus, we
first solve Equation (20) for the oil saturation unknowns (Sn,i,l+1o ,qn,i,l+1s , Ŝn,i,l+1o ) given the pressure unknowns (pn,i,lw ,qn,i,lp , p̂n,i,lw ),
Line 6 of Algorithm 1. That is,

R
(

tn,i
⏟⏟⏟
Data

,Sn,i,l+1o , 1
Δt

s
∑

j=1
ãijSn,j,l+1o

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Unknowns

− c̃i

Δt
Sno

⏟⏟⏟
Data

,qn,i,l+1s , Ŝn,i,l+1o
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Unknowns

,pn,i,lw ,qn,i,lp , p̂n,i,lw
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Data

)

= 0, for i = 1,… , s. (22)

Once the saturation unknowns at all stages are computed, we solve Equation (20) for the water pressure unknowns
(pn,i,l+1w ,qn,i,l+1p , p̂n,i,l+1w ), Line 7 of Algorithm 1, by imposing:

R
(

tn,i,Sn,i,l+1o , 1
Δt

s
∑

j=1
ãijSn,j,l+1o − c̃i

Δt
Sno ,q

n,i,l+1
s , Ŝn,i,l+1o

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Data

,pn,i,l+1w ,qn,i,l+1p , p̂n,i,l+1w
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Unknowns

)

= 0, for i = 1,… , s. (23)

We repeat this procedure until convergence is achieved for all Runge-Kutta stages, i = 1,… , s, Line 9 of Algorithm 1. We
define the stopping criteria of the non-linear solver using appropriate tolerances as

‖Sn,i,loℎ
− Sn,i,l+1oℎ

‖

L2(Ω)

‖Sn,i,l+1oℎ ‖L2(Ω)

< "So ,
‖pn,i,lwℎ

− pn,i,l+1wℎ
‖

L2(Ω)

‖pn,i,l+1wℎ
‖L2(Ω)

< "pw ,

‖qn,i,lsℎ
− qn,i,l+1sℎ

‖

L2(Ω)

‖qn,i,l+1sℎ ‖L2(Ω)

< "qs ,
‖qn,i,lpℎ

− qn,i,l+1pℎ
‖

L2(Ω)

‖qn,i,l+1pℎ ‖

L2(Ω)

< "qp ,

‖Ŝn,i,loℎ
− Ŝn,i,l+1oℎ

‖

L2(Ω)

‖Ŝn,i,l+1oℎ ‖L2(Ω)

< "Ŝo ,
‖p̂n,i,lwℎ

− p̂n,i,l+1wℎ
‖

L2(Ω)

‖p̂n,i,l+1wℎ
‖L2(Ω)

< "p̂w ,

‖RSo‖2 < "RSo , ‖Rpw‖2 < "Rpw ,

‖Rqs‖2 < "Rqs
, ‖Rqp‖2

< "Rqp
,

‖RŜo‖2 < "RŜo , ‖Rp̂w‖2 < "Rp̂w ,

(24)

where ‖ ⋅ ‖L2(Ω) is the norm of the L2(Ω) space of functions and ‖ ⋅ ‖2 is the Euclidean norm of vectors.
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10 ALBERT COSTA-SOLÉ ET AL

We highlight that for each iteration of the fix-point method, we solve a non-linear system for the saturation, Equation (22),
since the �o, �t and p′c depend on S

n,i,l+1
o . We solve the saturation system using the Newton-Raphson method. Since all the stages

are coupled, this non-linear system has s × (nSo + nqs + nŜo) unknowns, being s the number of RK stages and nS , nqs and nŜo
the number of unknowns for the oil saturation, the saturation flux and the oil saturation traces, respectively.
Once we obtain an approximation for the oil saturation unknowns at all the stages, we compute the water pressure unknowns

by solving s uncoupled linear systems of size npw + nqp + np̂w , where npw , nqp and np̂w are the number of unknowns for the water
pressure, the pressure flux and the water pressure traces, respectively.
Furthermore, the global linear system for the saturation unknowns and the linear systems for the pressure unknowns are

hybridized in terms of Ŝn,i,l+1o and p̂n,i,l+1w respectively34,35,37,38. The other unknowns Sn,i,l+1o , qn,i,l+1s pn,i,l+1w and qn,i,l+1p are
recovered using an element-wise process.
This non-linear solver is memory-efficient since the saturation and the pressure equations are decoupled. Therefore, there is

no need to solve for both unknowns at the same time. Furthermore, the pressure equation is solved sequentially stage by stage,
because the pressure is not coupled at different stages.

6.1 Saturation solver
We use the Newton-Raphson method to solve the saturation system, Equation (22). From now on, to ease the notation, we drop
the super-index l corresponding to the fix-point iteration. We concatenate all the oil saturation unknowns of all stages in a vector
of unknowns un as

un =
⎡

⎢

⎢

⎣

un,1
⋮
un,s

⎤

⎥

⎥

⎦

, where un,i =
⎡

⎢

⎢

⎣

Sn,io
qn,is
Ŝn,io

⎤

⎥

⎥

⎦

, for i = 1… s. (25)

Thus, the non-linear residual of the saturation is

F (un) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

RS
(

t,Sn,1o , Ṡ
n,1
o ,q

n,1
s , Ŝ

n,1
o ,p

n,1
w ,q

n,1
p , p̂

n,1
w

)

Rqs

(

t,Sn,1o , Ṡ
n,1
o ,q

n,1
s , Ŝ

n,1
o ,p

n,1
w ,q

n,1
p , p̂

n,1
w

)

RŜ
(

t,Sn,1o , Ṡ
n,1
o ,q

n,1
s , Ŝ

n,1
o ,p

n,1
w ,q

n,1
p , p̂

n,1
w

)

⋮

RS
(

t,Sn,so , Ṡ
n,s
o ,q

n,s
s , Ŝ

n,s
o ,p

n,s
w ,q

n,s
p , p̂

n,s
w

)

Rqs

(

t,Sn,so , Ṡ
n,s
o ,q

n,s
s , Ŝ

n,s
o ,p

n,s
w ,q

n,s
p , p̂

n,s
w

)

RŜ
(

t,Sn,so , Ṡ
n,s
o ,q

n,s
s , Ŝ

n,s
o ,p

n,s
w ,q

n,s
p , p̂

n,s
w

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

The Newton-Raphson method involves successive approximations of the solution un. The k + 1 approximation is obtained as

unk+1 = u
n
k + �u

n
k,

where the sub-index k denotes the Newton-Raphson iteration and �unk is the solution of the linear system

J
(

unk
)

�unk = −F
(

unk
)

, (27)

being J
(

unk
)

the Jacobian matrix of F evaluated at unk. The Jacobian matrix is a block sparse matrix, in which each block
corresponds to a RK stage. We decompose J as the summation of two matrices:

J =

⎡

⎢

⎢

⎢

⎢

⎣

M11 M12 … M1s

M21 M22 … M2s

⋮ ⋮ ⋱ ⋮
Ms1 Ms2 … Mss

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

J11 0 … 0
0 J22 … 0
⋮ ⋮ ⋱ ⋮
0 0 … Jss

⎤

⎥

⎥

⎥

⎥

⎦

. (28)

The first matrix in Equation (28) comes from the term containing the time derivative of the oil saturation. Since it couples all the
unknowns Sn,io for all the stages, it has contribution in all the blocks. Each blockMij for i, j = 1… s is also a block matrix that
couples all the variables at stage i with all the variables at stage j of the temporal part. Note that, eachMij has only one block
that is not zero, which corresponds to the coupling of the saturation at stage i with the saturation of the stage j. As consequence,
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ALBERT COSTA-SOLÉ ET AL 11

all the remaining blocks ofMij are zero. Therefore,Mij for i, j = 1… s is

Mij =

⎡

⎢

⎢

⎢

⎣

M ãij

Δt
0 0

0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

, (29)

where [M]k,l = (�Nk, Nl). The matrices M are constant in all the stages, since the porosity, �, does not depend on time.
Therefore, the matricesM are computed only once and are reused in all the stages.
The second matrix of Equation (28) is a block-diagonal matrix. This matrix does not couple the unknowns of different stages.

The block diagonal matrices are not constant in the stages since they depend on the saturation. Nevertheless, there are some
elemental contributions that are constant and can be reused in the different stages. The matrices Jii for i = 1… s are equivalent
to the matrices obtained when solving a two-phase flow stationary problem.
Note that it is not necessary to converge the Newton-Raphson method for the saturation unknowns because the pressure

unknowns are not converged yet. Therefore, to reduce the computational cost, we perform only one iteration of the Newton-
Raphson method.

6.2 Pressure solver
The pressure unknowns of the different stages are not coupled because the pressure equation does not contain a temporal part,
see Equation (23) . Thus, we solve s uncoupled linear systems and we reduce the memory footprint and the computational cost
of solving the pressure equation. Moreover, since we are using the fix-point iterative method described in Algorithm 1, the
pressure equation is linear because the unknowns related to the saturation are considered as parameters in the pressure equation.

7 LOCAL POST-PROCESSING

One of the main advantages of using the HDG formulation is that the scalar variables (water pressure and oil saturation), and
their fluxes have a rate of convergence of P + 1 in the L2-norm. Moreover, a local post-processing can be applied to obtain
a new approximation for the saturation, S∗oℎ , and for the pressure, p∗wℎ

, both in V P+1ℎ with convergence rate of P + 2 in the
L2-norm34,35,37.
We apply the local post-processing at the stages of the RK scheme. The local problems of the elements at each stage are

independent and can be solved separately. In our formulation, we have two local problems, one for the oil saturation, S∗oℎ , and
other for the water pressure, p∗wℎ

.
The first local problem consist on finding the post-processed saturation, S∗oℎ ∈ V P+1ℎ on each element, e, and at all the stages

of the RK scheme, such that:
(�oKp′c(S

∗
oℎ
,(v)e = − (qsℎ ,(v)e

(S∗oℎ , 1)e = (Soℎ , 1)e.
(30)

Equation (30) is non-linear since �o and p′c depend on S∗oℎ . To solve Equation (30), we apply the Newton-Raphson method.
Once we find the post-processed saturation, S∗oℎ , we solve the second local problem to find the post-processed water pressure,
p∗wℎ

∈ V P+1ℎ on each element, e, and at all the stages of the RK scheme. Specifically, we solve

(�tK(p∗wℎ
,(v)e = − (qpℎ ,(v)e

(p∗wℎ
, 1)e = (pwℎ

, 1)e,
(31)

for all v ∈ V P+1ℎ . Note that this is a linear problem in each element and stage because the saturation at all stages is known.

8 SHOCK CAPTURING

High-order methods, such HDGmethod, are high-accurate if the solution is smooth enough. Nevertheless, if there is a sharp front
(or discontinuity) in the solution, oscillations may appear at the vicinity of the front45,31,32,33. These oscillations may introduce
spurious artifacts that hamper the accuracy of the obtained solution and the robustness of the solver.
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12 ALBERT COSTA-SOLÉ ET AL

To reduce these spurious oscillations we introduce artificial viscosity45,31,32,33. We identify the elements containing the sharp
front using the shock sensor introduced in31. The main difference with31 is that we compute the shock sensor from the saturation
solution and the post-processed saturation of HDG, S∗oℎ , obtained in Equation (30). Therefore, the shock sensor is computed in
an efficient manner as

Se =
(Soℎ − S

∗
oℎ
, Soℎ − S

∗
oℎ
)e

(S∗oℎ , S
∗
oℎ
)e

, (32)

The main advantage of using the post-processed saturation S∗oℎ to compute the shock sensor is the reduction of the computational
cost, sinceS∗oℎ is obtained with an element-wise post-processing. Thus, we do not need to solve again the problemwith a different
polynomial degree. We compute the saturation and the post-processed saturation are computed at the RK stages, and therefore,
we obtain the shock sensor at the RK stages. Since the shock sensor is different at each RK stage, it allows tracking the sharp
fronts at the different RK stages.
According to31, we define the artificial viscosity factor, ", which is related to the resolution of the spatial discretization, as

" =

⎧

⎪

⎨

⎪

⎩

0 if se < s0 − �,
�0
2

(

1 + sin
(

�(se − s0
2�

))

if s0 − � ≤ se ≤ so + �,

�0 if se > s0 + �,

(33)

where se = log10 Se, �0 ≃
ℎe
P
, and so and � are chosen empirically. Note that, as the polynomial degree increases, the artificial

viscosity factor, ", decreases, and as the element size increases the artificial viscosity factor, ", increases. Note that, the artificial
viscosity is also different at each RK stage, because the sharp fronts position evolves in time.
We add an artificial viscosity term to reduce the oscillations of those elements detected by the sensor. In this work, we only

introduce the artificial viscosity term in the saturation equation because the pressure solution is smooth:

�
)So
)t

+ ( ⋅
(

−�oKp′c(So − "�oKp
′
c(So −

�o
�t
�tK(pw

)

= fo ∀(x, t) ∈ (Ω, T ).

In terms of the fist-order PDE’s the system to be solved for the oil saturation is
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�
)So
)t

+ ( ⋅
(

qs," +
�o
�t
qp
)

= fo ∀(x, t) ∈ (Ω, T ),

qs," + �oK"p
′
c(So = 0 ∀(x, t) ∈ (Ω, T ),
So

Γin = ginDs ∀(x, t) ∈ (Γin, T ),
(

�o�w
�t

K(pc
)

⋅ n = goutNs ∀(x, t) ∈ (Γout, T ),

vo ⋅ n = 0 ∀(x, t) ∈ (Γnf , T ),
So(⋅, 0) = Si ∀x ∈ Ω,

(34)

and for the water pressure is
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

( ⋅
(

qp +
qs,"
1 + "

)

= fo + fw ∀(x, t) ∈ (Ω, T ),

qp + �tK(pw = 0 ∀(x, t) ∈ (Ω, T ),
pw

Γin = ginDp ∀(x, t) ∈ (Γin, T ),

pw
Γout = goutDp ∀(x, t) ∈ (Γout, T ),

vt ⋅ n = 0 ∀(x, t) ∈ (Γnf , T ).

(35)

For both systems, " is the artificial viscosity factor, qs," = (1 + ")qs is the new diffusive flux for the saturation equation, and
K" = (1 + ")K is the new permeability of the porous media for the saturation equation. Therefore, for " = 0, we get qs," = qs
and K" = K, and we recover the original problem. Note that the water pressure system uses qs,", but we recover the same
formulation as in Equation (5) since the pressure solution is smooth and does not require adding local artificial viscosity.
Adding artificial viscosity can be interpreted as increasing the permeability of the porous media in the detected elements.

Therefore, we have to balance the amount of artificial viscosity to reduce the spurious oscillations without changing the
underlying physics.
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ALBERT COSTA-SOLÉ ET AL 13

To introduce artificial viscosity, we need to compute the shock sensor that depends on the saturation and the post-processed
saturation, see Equation (32). Therefore, we need to ensure that the temporal error is low enough to compute the post-processed
saturation with enough accuracy. For this reason, we propose to use temporal integration schemes with, at least, the same
convergence rate as the expected convergence rate of the post-processed saturation.
To compute the solution for a give time step, we perform a two-step method. First, we compute the solution without adding

artificial viscosity. Second, we compute the amount of required artificial viscosity at each stage, and we compute the solution
again. We highlight that the artificial viscosity is different at each RK stage since it depends on the shock sensor. Thus, the
proposed methodology allows tracking the sharp front as it moves at different stages and introducing appropriate amount of
artificial viscosity at each stage.

9 EXAMPLES

In this section, we present seven examples to assess the capabilities of the proposed formulation. Specifically, example 9.1 shows
the convergence rates for the obtained solutions of the proposed formulation. Example 9.2 analyses the effect of introducing
artificial viscosity. Examples 9.3 to 9.5 focus on the accuracy of high-order spatial and temporal discretization methods of the
proposed formulation. Finally, examples 9.6 and 9.7 present two cases of waterflooding simulation. The first one considers het-
erogeneous material properties and the second one analyses the nine-spot pattern. The Butcher tables of the used time integration
schemes are detailed in39,43,28,29.

9.1 Convergence rate analysis
In this example, we analyze the convergence error in space and time of an analytical solution. To this end, we define the space-
time L2−norm of a function as

‖u‖2L2(Ω,T ) =

tend

∫
0

∫
Ω

‖u (x, t) ‖2dΩ dt

We approximate the space-time integration as
tend

∫
0

∫
Ω

‖u (x, t) ‖2dΩ dt =
tend

∫
0

∑

e∈Tℎ
∫
e

‖u (x, t) ‖2dΩ dt =
tend

∫
0

∑

e∈Tℎ
∫
eM

‖u
(

�g , t
)

‖

2
|Jg|d� dt

≃

tend

∫
0

∑

e∈Tℎ

Ng
∑

g=1
‖u

(

�g , t
)

‖

2
|Jg|!gd�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f (t)

dt =

tend

∫
0

f (t) dt,
(36)

where Ng is the number of integration points. To perfom the time integral we use the time integration schemes of the Runge-
Kutta methods. That is, bi are the temporal integration weights, and ci are the temporal integration points for a time interval
[0, 1]. Thus,

tend

∫
0

f (t) dt =
Ns
∑

n

tn+1

∫
tn

f (t) dt ≃ Δt
Ns
∑

n=1

s
∑

i=1
f
(

tn + ciΔt
)

bi, (37)

whereNs is the number of time steps. Afterwards, substituting Equation (37) into Equation (36) we obtain that the approximation
of the space-time L2−norm of a function is:

‖u‖2L2(Ω,T ) ≃

tend

∫
0

∑

e∈Tℎ

Ng
∑

g=1
‖u

(

�g , t
)

‖

2
|Jg|!gd� dt

≃
Ns
∑

n=1

s
∑

i=1

∑

e∈Tℎ

Ng
∑

g=1
‖u

(

�g , t
n,i)

‖

2
|Jg|!gb

iΔt

(38)

where tn,i = tn + ciΔt.
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14 ALBERT COSTA-SOLÉ ET AL

We show numerical evidence of the convergence rates of the space-time error in L2−norm for different polynomial degrees
and time integration schemes for the oil saturation, Soℎ , the saturation flux, qsℎ , the post-processed saturation, S∗oℎ , the water
pressure, pwℎ

, the pressure flux, qpℎ , and the post-processed pressure, p
∗
wℎ
. We define the error of each variable as

ESo = ‖Soℎ − So‖L2(Ω,T ), Epw = ‖pwℎ
− pw‖L2(Ω,T ),

EqS = ‖qSℎ − qS‖L2(Ω,T ), Eqp = ‖qpℎ − qp‖L2(Ω,T ),
ES∗o = ‖S∗oℎ − S

∗
o ‖L2(Ω,T ), Ep∗w = ‖p∗wℎ

− p∗w‖L2(Ω,T ).
(39)

To this end, we define the analytical saturation and pressure solutions
So = sin(�x) sin(�y) sin(t),
pw =cos(�x) cos(�y) cos(t),

(40)

where (x, y) ∈ Ω = (0, 2) × (0, 2) and t ∈ [0, 1].
We set the soil permeability as K = I m2, the porosity as � = 0.1, the oil viscosity as �o = 1 Pa ⋅ s and the water viscosity

as �w = 0.1 Pa ⋅ s. Specifically for this example, we use the Brooks-Corey model in Equation (1) with pe = 0.5 Pa and � = 1.
We select �p = 10 and �s = 10, see Equation (9). We prescribe Dirichlet boundary conditions on the whole boundary and we
set the source terms in order to obtain the analytical solutions defined in Equation (40). We do not introduce artificial viscosity
since the analytical solution is smooth.
We generate a series of meshes composed of quadrilateral elements of polynomial degrees between one and five. All these

meshes are combined with high-order GL schemes that converge with the same rate or higher than the post-processed variables.
For each polynomial degree, we keep constant the ratio ℎe∕Δt.
Figure 1 shows the convergence rates of the space-time error for the oil saturation and the pressure, their fluxes, and the post-

processed solutions. We obtain the expected convergence rate of P + 1 in L2-norm for the oil saturation, water pressure and for
the fluxes qs and qp. The local post-process, detailed in Equations (30) and (31), is applied to obtain a super convergence rate
of P + 2 in L2-norm of the post-processed saturation, S∗oℎ , and the post-processed pressure, p

∗
wℎ
.

9.2 Artificial viscosity analysis
In this example, we analyze the behaviour of the artificial viscosity term.We consider a rectangular domain,Ω = (0, 84)×(0, 2ℎe)
meters, where ℎe is the element size of the different spatial discretizations. Water is injected from the right side of the domain,
Γin, and extracted for the left side, Γout. Furthermore, we assume that both fluids cannot cross the upper and lower boundaries,
Γnf , see Figure 2. Therefore, water will mobilize the oil from left to right and the flux will be parallel to the no-flow boundaries,
Γnf .
The prescribed boundary conditions are:

pΓinw = 3 ⋅ 106 Pa, SΓino = 0.3, on Γin,

pΓoutw = 106 Pa,
(

�o�w
�t

K(pc
)

⋅ n = 0, on Γout,

vt ⋅ n = 0, vo ⋅ n = 0, on Γnf ,
fw = 0, fo = 0, in Ω.

(41)

The parameters of the Brooks-Corey model are pe = 103 Pa and � = 2, and the residuals saturations for the water and oil are
Srw = 0, Sro = 0, respectively. The soil permeability is KA = 10−12I m2, the porosity is � = 0.2 and the viscosity for the water
and oil phases are �w = 0.001 Pa ⋅ s and �o = 0.012 Pa ⋅ s, respectively.
We discretize the domain with quadrilateral elements of polynomial degree P = 6 with size ℎe = 10.5 meters, and we use

the GL8 scheme with a time step Δt = 2 days. We compute the amount of artificial viscosity using � = 6, s0 = −10 and
�0 = 0.0, 2.5, 5.0, 7.5 and 10.0 in Equation (33).
Figure 3 shows the plot over the line y = 0 for the water saturation and water pressure for the selected �0 values at time 22

days. As expected, only the saturation approximation presents a sharp front, whereas the pressure approximation is smooth. As
we increase the amount of artificial viscosity the oscillations and the discontinuities between elements are reduced. However the
sharp front is dissipated and becomes less vertical, see Figures 3(a) and 3(b). This effect can be interpreted as a local increase
of the intrinsic permeability in the saturation equation, K, as it is shown in Equation (34) and (35). As a consequence of this
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FIGURE 1 Convergence rates for: a) oil saturation, b) oil saturation flux, c) post-processed oil saturation, d) water pressure; e)
water pressure flux, and f) post-processed water pressure.

FIGURE 2 Rectangular domain and associated boundary conditions.

permeability increment, we obtain a more diffused front. Note that for all the selected �0 values the water pressure does not have
significant variations.

9.3 Time integration schemes analysis
In this example, we compare different time integration schemes for the same spatial discretization. We consider the same rect-
angular domain, boundary conditions and material parameters of Example 9.2. We use a mesh with quadrilateral elements of
polynomial degree P = 4 with size ℎe = 7 meters combined with the following time integration schemes: backward Euler,
midpoint, DIRK3s3, GL4, Radau II5 and GL6. These are time integration schemes of orders from one to six. For all of them,
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FIGURE 3 Plot over the line y = 0 at 22 days using a mesh composed of quadrilateral elements of polynomial degree P = 6
with ℎe = 10.5 meters, and using GL8 scheme with Δt = 2 days for different values of �0: a) water saturation, b) zoom around
the sharp front of the water saturation, and c) water pressure.

we use the same time step of Δt = 2 days. We compute the amount of artificial viscosity using � = 6, s0 = −10 and �0 = 4, see
Equation (33).
Figure 4 shows the water saturation profile over the line y = 0 for the different time integration schemes at time 30 days. The

smoothest saturation profile is obtained with the backward Euler since it introduces the highest amount of dissipation error, see
Figure 4(a). As we use more accurate time integration schemes, the dissipation error is reduced and the waterfront becomes
more vertical. Note that the spatial discretization is the same for all the time integration schemes. Therefore, as we increase
the order of the temporal scheme, we obtain more discontinuities between elements and higher oscillations since high-order
temporal schemes do not dissipate the errors introduced by the spatial discretization.
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FIGURE 4 Plot over the line y = 0 at 30 days using a mesh composed of quadrilateral elements of polynomial degree P = 4
with size ℎe = 7 meters, and using several time integration schemes with Δt = 2 days: a) water saturation profile, and b) zoom
around the sharp front.

9.4 High-order spatial and temporal discretizations analysis
In this example, we analyze the advantages of combining high-order discretizations for space and time. We consider the same
rectangular domain, boundary conditions and material parameters of Example 9.2.
We perform a waterflooding simulation with different element sizes, polynomial degrees and time integration schemes while

keeping the same space-time resolution. That is, the total number of spatial and temporal unknowns is the same in all cases. To
this end, we use three different spatial and temporal discretizations. In the first one, we use quadrilateral elements of polynomial
degree P = 6with size ℎ1 = 5.25meters, and GL8 scheme withΔt = 1 day. In the second one, we use quadrilateral elements of
polynomial degree P = 4with size ℎ2 = 3.5meters, and GL6 scheme withΔt = 0.75 days. In the third one, we use quadrilateral
elements of polynomial degree P = 2with size ℎ3 = 1.75meters, and GL4 scheme withΔt = 0.5 days. We compute the amount
of artificial viscosity using � = 6, s0 = −10 and �0 = 2 in Equation (33). The amount of artificial viscosity is the same in all
the cases since the resolution of the spatial discretization is the same.
Figure 5 shows the plot over the line y = 0 at time 30 days of the water saturation obtained with the selected spatial and time

discretizations. We observe that the sharp front is more vertical when high-order spatial and temporal discretizations are used.
Moreover, as we increase the order of the spatial and temporal discretizations, the discontinuities between elements are reduced.
We highlight that the result of this example shows that high-order spatial and temporal discretizations obtain more accurate

results than low-order discretizations with the same resolution.

9.5 Accuracy of the time integration
In this example, we compare the accuracy and the computational cost of the midpoint and GL8 schemes. We consider the same
rectangular domain, boundary conditions and material parameters of Example 9.2. First, we discretize the domain using a mesh
composed of quadrilateral elements of polynomial degree P = 6 with size ℎe = 16.8 meters. Using this mesh, we perform two
simulations using the GL8 and the midpoint schemes with the same time step, Δt = 4 days. For both cases, we compute the
amount of artificial viscosity using � = 6, s0 = −10 and �0 = 6.4, see Equation (33).
Figure 6 compares the water saturation approximation over the line y = 0 at time 32 days using the GL8 andmidpoint schemes.

The waterfront is more vertical when we use the GL8 scheme than when we use the midpoint scheme with the same time step.
This illustrates that the midpoint scheme introduces more dissipation error than the GL8 scheme with the same time step. If we
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FIGURE 5 Plot over the line y = 0 at 30 days using three different spatial and temporal discretizations with the same resolution:
a) water saturation profile and b) zoom around the sharp front of the water saturation profile.

Midpoint ∆t = 4 day Midpoint ∆t = 0.8 days GL8 ∆t = 4 day

0 20 40 60 80
Distance (m)

0.3

0.4

0.5

0.6

0.7

S
w

(a)

49 51 53 55 57 59 61 63 65
Distance (m)

0.30

0.35

0.40

0.45

0.50

S
w

(b)

FIGURE 6 Plot over the line y = 0 at 32 days using a mesh composed of quadrilateral elements of polynomial degree P = 6
with ℎe = 16.8 meters, and using the midpoint scheme with Δt = 4 and Δt = 0.8 days and GL8 scheme with Δt = 4: a) water
saturation profile, and b) zoom around the sharp front.

keep the solution obtained with the GL8 scheme as reference, we need to reduce five times the time step of the midpoint scheme
(Δt = 4∕5 = 0.8 days) to obtain a saturation profile with similar dissipation error. This leads to 8 number of time steps for the
GL8 scheme and 40 number of time steps for the midpoint scheme.
Second, we reduce by half the element size, using a mesh composed of quadrilateral elements of polynomial degree P = 6

with size ℎe = 8.4 meters. Therefore, we also divide by two the time step of the GL8 and the modified one for the midpoint.
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Midpoint ∆t = 0.4 days Midpoint ∆t = 0.05 days GL8 ∆t = 2 days
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FIGURE 7 Plot over the line y = 0 at 32 days using a mesh composed of quadrilateral elements of polynomial degreee P = 6
with ℎe = 8.4 meters, and using the midpoint scheme with Δt = 0.4 and Δt = 0.05 days and GL8 scheme with Δt = 2 days: a)
water saturation profile, and b) zoom around the sharp front.

That is, we use Δt = 2 days for the GL8 scheme and Δt = 0.8∕2 = 0.4 days for the midpoint. Since we have increased the
resolution by a factor of two we reduce by a half the value of �0 parameter. Thus, we compute the amount of artificial viscosity
using � = 6, s0 = −10 and �0 = 3.2 in Equation (33).
Figure 7 compares the saturation solution over the line y = 0 at time 32 days computed with the GL8 and midpoint schemes.

The waterfront is more vertical when we use the GL8 scheme. The midpoint scheme introduces more dissipation error in the
solution than the GL8 scheme because the time step for the midpoint is too large for this mesh. To obtain a similar dissipation
error with both time integration schemes, we need to reduce the modified time step of the midpoint scheme sixteen times. That
is Δt = 0.8∕16 = 0.05 days. In this particular case, there is a factor of 40 between the number of time steps of the GL8 scheme
(Δt = 2 days) and the midpoint scheme (Δt = 0.05 days). This leads to 16 number of time steps for the GL8 scheme and 640
number of time steps for the midpoint scheme.
It is important to highlight that once both methods obtain similar temporal accuracy, each time the GL8 time step is reduced

by a factor �, the midpoint time step has to be reduced by a factor of �z with z = 8∕2 = 4. Therefore, to achieve the same
temporal error between both schemes, the ratio between the number of time steps increases exponentially. Thus, high-order
temporal schemes may reduce the computational cost because exponentially larger time steps can be used and exponentially less
non-linear problems have to be solved.

9.6 Waterflooding in an heterogeneous material with obstacles
In this example, we simulate a case of waterflooding technique through a domain with two different material, see Figure 8. We
consider a square domain Ω = (0, 100) × (0, 100) with five circular obstacles of radius of 5 meters, located at (25, 25), (25, 50),
(25, 75), (75, 37.5), (75, 67.5) meters. The left side of the square is the injector well, Γin, and the right side is the extractor well,
Γout. The rest of the boundary is defined as no-flow, Γnf . We prescribe the same boundary conditions and the Brooks-Corey
parameters as in Example 9.2.
The domain is composed of two materials with different permeability and porosity values. The upper half region is charac-

terized by KA = 5 ⋅ 10−12I m2 and �A = 0.4, and the lower half region by KB = 10−12I m2 and �B = 0.2. The viscosity for the
water and oil phases are �w = 0.001 Pa ⋅ s and �o = 0.012 Pa ⋅ s, respectively.
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FIGURE 8 Materials, mesh and boundary conditions for the simulation of waterflooding through heterogeneous domain with
obstacles.

We discretize the domain using 283 unstructured quadrilateral elements of polynomial degree four (4692 nodes), see Figure
8. To perform the time integration, we use the GL6 scheme with a time step Δt = 12 hours. We compute the amount of artificial
viscosity using � = 6, s0 = −10 and �0 = 4.8 of Equation (33).
Figure 9 presents the water saturation field at times t = 11, 15, 21 and 35 days. Initially, the oil saturates homogeneously the

porousmedia. Afterwards, water is injected along the inflow boundary andmobilizes the oil towards the outflow boundary.Water
moves faster within the upper region, where the permeability is higher than in the bottom region. Furthermore, the water leaks
from the upper half region to the lower half region. Note that, the added artificial viscosity allows performing the simulation
since non-physical saturation values are not obtained, and allows obtaining a solution without oscillations.
Figure 10 shows the computed water pressure at times t = 11, 15, 21 and 35 days. We observe that the highest water pressure

values are on the inflow boundary and the lowest on the outflow boundary. Moreover, at the left of the circular obstacles, the
water pressure is higher than at the right. The pressure solution is smooth even when the domain contains obstacles.
Figure 11 plots the magnitude of Darcy’s water and oil velocities at times t = 15 days and t = 35 days. Note that Darcy’s

velocities are higher in the upper half region than in the lower half because the soil is more permeable. Also, the water phase
moves faster than the oil phase, since it is less viscous. We also observe that as the fluid overcome the obstacles the magnitude
of Darcy’s water and oil velocities are higher above and below the obstacles than in front and behind. The artificial viscosity
term also allows obtaining smooth approximations of the velocities, since they depend on the saturation.
This example illustrates that the proposed methodology allows performing high-order accurate simulations in space and time

of a waterflooding problem with heterogeneous materials using unstructured high-order curved meshes and sharp fronts not
aligned with the mesh.

9.7 Nine-spot pattern
In this example, we perform a waterflooding simulation for a nine spot pattern. We consider a square domain, Ω = (0, 140) ×
(0, 140)meters. This pattern has eight injection wells located at the vertices and the midpoint of the boundary edges, Γin, and one
producer well located at the center of the domain, Γout. The rest of the boundary is considered as no-flow, Γnf , see Figure 12. The
radius of the wells is rw = 5 m. We prescribe the same boundary conditions and Brooks-Corey parameters as in Example 9.2.
The soil permeability is K = 5 ⋅ 10−12I m2, the porosity is � = 0.2, and the viscosity for the water and oil phases are

�w = 0.001 Pa ⋅ s and �o = 0.012 Pa ⋅ s, respectively.
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(a) (b)

(c) (d)

FIGURE 9Water saturation approximation at time: a) 11 days, b) 15 days, c) 21 days, and d) 35 days.

We discretize the domain with 1114 non-constant size unstructured quadrilateral elements of polynomial degree four (18200
nodes), see Figure 12. To perform the time integration, we use the GL6 scheme with a time step Δt = 6 hours. We compute the
amount of artificial viscosity using � = 6, s0 = −10 and �0 = 0.78ℎe of Equation (33), being ℎe =

√

∫e 1dΩ
Figure 13 presents the water saturation approximations at times t = 5, 7.5, 12.5 and 17.25 days. We inject water from the

injectors wells, moving the oil to the pumping well at the centre, and occupying the space left by the oil phase. Thus, the water
saturation increases from the injectors wells to the producer well.
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(a) (b)

(c) (d)

FIGURE 10Water pressure approximation at time: a) 11 days, b) 15 days, c) 21 days, and d) 35 days.

Figure 14 shows the water pressure field at times t = 5, 7.5, 12.5 and 17.25 days. As expected, the water pressure is higher at
the injector wells and lower at the extractor well.
Figure 15 plots the magnitude of Darcy’s water and oil velocities at times 7.5 and 17.25 days. We observe that the water

velocity is higher around the injector wells, whereas the oil velocity is higher around the extractor well. When the waterfront
reaches the extractor well, both phases, oil and water, are extracted. From now on, the water velocity increases while the oil
velocity decreases around the extractor well.
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(a) (b)

(c) (d)

FIGURE 11 Magnitude of the Darcy’s velocities for the: a) water phase at time 15 days, b) oil phase at time 15 days, c) water
phase at time 35 days and d) oil phase at time 35 days.

Note that the proposed high-order formulation and shock capturing technique can simulate several waterfronts (discontinu-
ities) that interact between them. Moreover, we can deal with high-order curved unstructured meshes of non-constant element
size.

10 CONCLUSIONS AND FUTUREWORK

In this work, we present a memory-efficient high-order hybridizable discontinuous Galerkin formulation combined with high-
order fully implicit time integration schemes for two-phase flow through porous media problem. We assume that the fluids are
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FIGURE 12Mesh and boundary conditions distributions for the nine-spot pattern example

immiscible and the fluids and the porous media are incompressible. We set the water pressure and oil saturation as the main
unknowns. We propose a fix-point iterative method that alternatively solves the oil saturation and the water pressure implicitly
until convergence is achieved. At each iteration of the fix-point, we solve the oil saturation equation using the Newton-Raphson
method. The proposed fix-point iterative method is memory-efficient in the sense that the saturation and pressure are not solved
at the same time. Furthermore, the pressure system is solved at each stage separately, since the pressure at different stages is not
coupled. We also propose a temporal integration scheme in terms of the oil saturation instead of its temporal derivative. In this
way, we obtain a better sparsity pattern of the Jacobian with less coupling between the stages27. Finally, to deal with the sharp
fronts that can appear in the saturation profile, we introduce an artificial viscosity term in the saturation equation. To detect
the location of the sharp fronts, we use the shock sensor introduced in31, but computed from the saturation solution and the
post-processed saturation of HDG. The proposed shock sensor is computationally efficient since the post-processed saturation
is computed in an element-wise manner. We propose to compute the shock sensor at each RK stage and therefore, we introduce
a different amount of artificial viscosity at each RK stage. This allows tracking the waterfront as it moves along the different RK
stages.
We present several examples to assess the capabilities of the proposed formulation and methodology. First, we have shown

that the proposed formulation is high-accurate in both space and time by studying the convergence rates for all the variables in
space-time. Second, we have analyzed the proposed artificial viscosity term. We have observed that it is necessary to accurately
determine the amount of artificial viscosity to reduce the spurious oscillations at the vicinity of the shock without changing
the underlying physics. We have shown that high-order methods can be competitive in terms of accuracy. That is, for the same
time and spatial resolution we have obtained more vertical waterfronts and fewer discontinuities between elements when high-
order methods are used. Moreover, we have analyzed the temporal error introduced by the temporal integration schemes. Low-
order temporal schemes introduce more dissipation error into the solution. This leads to a diffused waterfront that does not
correspond to the physics of the problem. We have also shown that if high-accuracy is required, high-order methods have lower
computational cost than low-order ones. Specifically, low-order temporal schemes may need exponentially smaller time steps
to obtain solutions with similar errors than high-order temporal schemes. Finally, we have tested the robustness of the proposed
shock sensor with two examples of the waterflooding technique. These examples deal with several waterfronts that also interacts
between them, heterogeneous material properties and unstructured high-order curved meshes.
In the proposedmethod, we use a Lagrangian basis of shape functions to define the elemental polynomial spaces and therefore,

the unknowns of the problem are the nodal values. Other bases of the polynomial space could be used, such as orthonormal
polynomials. Thus, the unknowns of the problem would be the coefficients of the polynomial expansion of the solution in
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(a) (b)

(c) (d)

FIGURE 13Water saturation approximation at time: a) 5 days, b) 7.5 days, c) 12.5 days and d) 17.25 days.

the used basis. Nevertheless, in our work, we selected the Lagrangian basis, since we use a non-uniform nodal distribution
that approximately minimizes the Lebesgue constant48. The used basis is well-suited for high-order Lagrange interpolation.
Moreover, the solution to the problem is the nodal values, which is convenient for practical purposes.
Several aspects can be implemented and analyzed in the future. First, we are interested in increasing the computational effi-

ciency of the formulation. To this end, we will use the Newton-Raphson method to solve the saturation and pressure unknowns
at all the stages. While this can reduce the number of iterations of the non-linear solver, it will increase the memory footprint.
For that reason, to store the system matrix we will require to parallelize the code. Moreover, we will need to use iterative linear
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(a) (b)

(c) (d)

FIGURE 14Water pressure approximation at time: a) 5 days,b) 7.5 days, c) 12.5 days and d) 17.25 days.

solvers. Thus, we need to investigate efficient iterative linear solvers for fully implicit time integration schemes and appropri-
ated pre-conditioners. Second, we propose to use ℎ-p adaptivity to increase the accuracy while reducing the oscillations and
computational cost. That is, we will be able to use small low-order elements near the front and large high-order elements for the
rest of the domain. Third, we will analyze the possible relationship between the amount of artificial viscosity and the time inte-
gration scheme. That is, low-order integration schemes introduce temporal dissipation and therefore, we may need to introduce
less artificial viscosity. Fourth, we will further investigate the stability of the HDG formulation for two-phase flow and select
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(a) (b)

(c) (d)

FIGURE 15 Magnitude of Darcy’s velocities for the: a) water phase at time 7.5 days,b) oil phase at time 7.5 days, c) water
phase at time 17.25 days and d) oil phase at time 17.25 days.

appropriate values of the stability parameter, �. Finally, we will extend the formulation to other models, such as the black oil
model and the compositional flow. Therefore, we will be able to simulate more realistic and complex scenarios.
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