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Abstract We present a stable high-order hybridizable discontinuous Galerkin
(HDG) formulation coupled with high-order diagonal implicit Runge-Kuta
(DIRK) schemes to simulate slightly compressible one-phase flow through
porous media. The HDG stability depends on the selection of a single pa-
rameter and its definition is crucial to ensure the stability and to achieve the
high-order properties of the method. Thus, we extend the work of Nguyen
et al. in J. Comput. Phys. 228:8841–8855, 2009 to deduce an analytical ex-
pression for the stabilization parameter using the material parameters of the
problem and the Engquist-Osher monotone flux scheme. The formulation is
high-order accurate for the pressure, the flux and the velocity with the same
convergence rate of P+1, being P the polynomial degree of the approximation.
This is important because high-order methods have the potential to reduce the
computational cost while obtaining more accurate solutions with less dissipa-
tion and dispersion errors than low order methods. The formulation can use
unstructured meshes to capture the heterogeneous properties of the reservoir.
In addition, it is conservative at the element level, which is important when
solving PDE’s in conservative form. Moreover, a hybridization procedure can
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be applied to reduce the size of the global linear system. To keep these advan-
tages, we use DIRK schemes to perform the time integration. DIRK schemes
are high-order accurate and have a low memory footprint. We show numerical
evidence of the optimal convergence rates obtained with the proposed formu-
lation. Finally, we present several examples to illustrate the capabilities of the
formulation.

Keywords One-phase porous media flow · slightly compressible · hybridizable
discontinuous Galerkin · high-order · diagonally implicit Runge-Kutta

1 Introduction

One-phase flow through porous media formulation is used to model several
engineering problems. In particular, one of the most important aspects in the
management, planning and analysis of the environmental impact of oilfields
exploitation is the reliable prediction of its behavior under different operating
conditions. For instance, using accurate numerical simulations, engineers can
evaluate the hydrocarbon flow and pressure drop in order to optimize the
hydrocarbon production while minimizing the environmental impact, see [9,
8].

In this paper, we focus on the primary oil recovery stage, which begins when
the first well is drilled, and corresponds to 10% of the total oil production [8].
During this stage, the pressure difference between the surface and the reservoir
is high enough to move the hydrocarbon upward [46]. The governing equation
for this scenario is a non-linear transient partial differential equation (PDE),
which is obtained from the combination of the mass conservation with Darcy’s
law and equations of state for the fluid and the rock [8].

To obtain accurate approximations of the pressure and the Darcy veloc-
ity, several requirements have to be fulfilled. The formulation should deal with
unstructured meshes to capture heterogeneous and complex subsurface config-
urations. Moreover, it should provide high-accurate solutions without hamper-
ing the computational cost. Therefore, unstructured high-order formulations
are well-suited for these applications. In addition, the formulation has to be
stable and the mass should be conserved, at least, at the element level. Nowa-
days, several methods such as the finite differences (FD), finite volumes (FV),
continuous finite elements (CG), mixed finite elements (Mixed CG), and dis-
continuous Galerkin methods (DG), have been applied.

Recently, many efforts have been focused on applying high-order methods
to these kind of problems because of their advantages [12,28,14,15]. If the
analytical solution is smooth enough, then the numerical solution obtained
with a method of order k converges to the analytical one as hke in L2−norm,
being he the element size of the mesh [4,29,49]. Hence, it has been shown that
high-order spatial discretization methods can be more accurate than low-order
ones for the same mesh resolution, that is, for the same number of degrees of
freedom [49]. Moreover, it is also reported that high-order methods introduce
less diffusion and dispersion errors in the solutions [4,29,49]. In addition, for
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the same accuracy threshold, high-order spatial discretization methods require
less computational cost than low-order methods since coarser meshes can be
used [29,49,30,20,18].

Nevertheless, to obtain these advantages in unsteady problems, the tem-
poral integration error has to be low enough. In general, there are two ways
of controlling the temporal error. The first one is to use low-order temporal
schemes with small time steps, and the second one is to use high-order tem-
poral schemes with large time steps. However, if high temporal accuracy is
required, low-order time integration schemes may require prohibitively small
time steps. Thus, the computational cost of the simulation can be severely
hampered because, at each time step, a non-linear problem has to be solved.
In these cases, high-order temporal schemes with large time steps may alleviate
the computational cost [11,38].

The first contribution of this paper is to develop a hybridizable discontin-
uous Galerkin (HDG) formulation for the slightly compressible one-phase flow
problem. HDG provides built-in stabilization for arbitrary polynomial degrees
that depends on a single parameter, τ . The selection of a correct value of τ
leads to a stable method that is also consistent and convergent, see [35,36].
HDG has element-wise mass conservation and can handle the heterogeneous
reservoir properties and its geometric complexities, since unstructured meshes
can be used. The method obtains a convergence rate for the pressure and the
flux of order P + 1 in L2−norm, when element-wise polynomials of degree
P ≥ 0 are used and the error of the temporal discretization is low enough, [25,
35,36,47]. Consequently, the Darcy velocity also converges with order P + 1,
since it depends on the pressure and its flux. Moreover, an element-wise post-
processing can be applied at chosen time steps to obtain a P + 2 convergence
rate for the pressure [35,36,47]. Furthermore, the computational cost of solving
the linear system is also reduced since a hybridization procedure is applied. In
addition, we couple the high-order spatial HDG discretization with high-order
DIRK schemes to obtain highly-accurate solutions in space and time. Thus,
we obtain a non-linear system at each stage of the DIRK scheme that we solve
sequentially, stage-by-stage, using the Newton-Raphson method.

The second contribution of this paper is the specific choice for the stabiliza-
tion parameter, τ . This is one of the key aspects of the HDG since it ensures
the existence and uniqueness of the obtained approximation, as well as the sta-
bility of the formulation, see details in [25]. According to [35,36], we split the
stabilization parameter into diffusive and convective parts. The diffusive part
has to be positive [35,36,25], and we select it according to the physical param-
eters of the problem. The convective part is selected using a monotone scheme
flux [27,35,36]. Specifically, we use the Engquist-Osher monotone scheme flux,
and we deduce an analytical expression of the convective part. Thus, the pre-
sented formulation provides a stable method for arbitrary polynomial degrees.
Moreover, since we have an analytical expression of the stabilization parame-
ter, we can introduce its derivatives in the Newton-Raphson solver.

Therefore, in this work we propose a stable, convergent and high-order ac-
curate method for both pressure and Darcy’s velocity. We highlight that the
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selection of the τ stabilization parameter is crucial to obtain these properties
of the method. Specifically, the stability of the method ensures the continu-
ity of the obtained solution respect to the problem data (initial condition,
boundary condition, source term, porous media parameters,etc). That is, the
stability of the method ensures that small perturbations of the problem data
because of numerical errors do not lead to unbounded oscillations in the ob-
tained solution. Moreover, the proposed selection of the τ parameter leads to
an optimally accurate high-order method. Both the pressure and the Darcy’s
velocity converge with an optimal convergence rate of P + 1. The higher ac-
curacy of the Darcy’s velocity is of special importance, since other methods
achieve a convergence rate of P .

In this paper we extend the formulation presented in [36] to one-phase
flow through porous media. Specifically, in our work, we deal with temporal,
diffusion and convective non-linear terms, whereas in [36] only the convective
term is non-linear.

In our approach, we apply the following methodology. First, we convert the
second order PDE into a system of two first-order PDE’s by introducing a new
variable, q, which is related to the pressure gradient, ∇p. Second, we obtain
the weak form, in which we introduce the new variable p̂, which is the trace of
the pressure and is defined on the mesh skeleton. After spatial discretization,
we convert the PDE’s into a system of differential algebraic equations (DAE).
Third, we perform the temporal discretization by using a diagonal implicit
Runge-Kutta scheme (DIRK). Thus, we obtain a non-linear system at each
stage of the DIRK scheme that we solve using Newton-Raphson method.

The outline of this paper is as follows. In Section 2, we describe the related
work. In Section 3, we introduce the HDG formulation for the one-phase flow
problem. In Section 4, we show several examples to illustrate the advantages
of the proposed formulation. Finally in Section 5, we summarize the main
contributions of this paper and we describe the issues that will be addressed
in the near future.

2 Related work

Several spatial discretization methods have been used in reservoir simulation.
For instance, the finite difference method solves the differential equations by
approximating the derivatives with incremental ratios. The mass is locally
conserved at the discretization points [8,3,43]. Although this technique is fast,
it requires complex implementation to deal with the reservoir geometric com-
plexity and to obtain high-order discretizations.

The finite volume method obtains an element-wise approximation of the
solution. It can be applied to unstructured polygonal and polyhedral meshes,
and therefore it has geometric flexibility. Moreover, the method is locally con-
servative at the element level, see [48]. It has been successfully applied as a
first-order method in reservoir simulations in references [8,39,45,44].
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The continuous Galerkin method approximates the solution using contin-
uous element-wise polynomials of arbitrary degree. The method can deal with
the reservoir complexity since the mesh can be adapted to the geometry, see
[51,43,8]. The number of unknowns of the linear system can be reduced by
applying an hybridization procedure, and therefore the computational cost is
reduced. This method is conservative at the domain level. The convergence
rate in L2−norm for the pressure is of order P + 1, whereas for the flux is of
order P . Therefore, the Darcy velocity converges with order P , being that the
main drawback of the method for these type of simulations.

The mixed finite element method introduces a new unknown, q, which is
related to the pressure gradient, see [8,1]. It is not possible to use arbitrary
spaces to approximate p and q in order to obtain a stable, consistent and
convergent method. Nevertheless, references [32,6,21,31] present different sta-
bilization techniques for specific selection of approximation spaces. Since we
introduce a new unknown, mixed methods have more unknowns than standard
finite element methods, although a hybridization technique can also be applied
to reduce the number of unknowns of the linear system.

Discontinuous Galerkin methods have been shown as competitive discretiza-
tion methods in these type of problems [26,12,28,40,22,19,34,5,2,13]. These
methods approximate the pressure using element-wise discontinuous polyno-
mials. They introduce a new discontinuous variable called the flux, q, which is
also related to the pressure gradient. Several advantages arise from using DG
methods. For instance, mass conservation is verified at the element level, and
they can use polynomials of arbitrary degree, which improve the accuracy of
the computed approximations, see [25]. Moreover, there are DG formulations
that allow solving only for the main unknown, p, to increase the computation
efficiency, which is known as primal formulation, see [12].

The hybridizable discontinuous Galerkin method approximates the pres-
sure and the flux, q, using element-wise discontinuous polynomials as DG
methods do, see [25,35,36,37]. To relate the unknowns of adjacent elements,
this formulation imposes the continuity of the normal component of a numer-
ical flux between adjacent elements. To perform this, the trace of p, usually
denoted as p̂, is introduced on the mesh skeleton as a new variable. The HDG
method provides built-in stabilization for arbitrary polynomial degree and
ensures element-wise mass balance. In addition, HDG uses polynomials of ar-
bitrary degree, and it obtains a convergence rate of P +1 in the L2-norm for p
and q, when element-wise polynomials of degree P ≥ 0 provided that the tem-
poral error is low enough, see [25,35,36,47]. Therefore, the Darcy velocity also
converges with order P + 1. Moreover, doing an element-wise post-processing,
an improved pressure approximation is computed that converges with a rate of
P + 2 in the L2-norm. Finally, the method can be always hybridized in terms
of p̂, reducing the size of the linear system that has to be solved. For these
reasons, HDG methodology has been applied in porous media flow problems
[14,15,10].
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3 Numerical model

3.1 Problem statement

We consider a single Newtonian fluid flow under isothermal conditions that
occupies the total soil porosity. We assume that the fluid mass cannot cross
the solid interface and mass fluxes can be neglected because dispersion and
diffusion are small [8]. Under these assumptions, the governing equations are
provided by the mass conservation and the Darcy’s law

∂(φρ)
∂t

+∇ · (ρv) = f, (1a)

v = − 1
µ

K (∇p − ρg) , (1b)

where φ is the soil porosity, ρ is the hydrocarbon density, t is the time, v is the
Darcy velocity, f is the source term, K = diag(κ11, κ22, κ33) is the soil absolute
permeability tensor, g is the gravity, and µ is the hydrocarbon viscosity.

Following [8], we consider that the fluid and rock compressibility, (cf , cr,
respectively) are constant in the pressure ranges of the simulation. Moreover,
we also assume slightly compressible fluid and rock. Thus, the density and the
porosity are approximated as

ρ ≈ ρref (1 + cf (p − pref )) ,
φ ≈ φref (1 + cr(p − pref )) ,

where ρref and φref are the reference density and the reference porosity at a
reference pressure pref . Then, the governing equation becomes

φρct
∂p

∂t
−∇ ·

(
ρ

µ
K(∇p − ρg)

)
= f, (3)

where ct = cf + cr is the total compressibility, see details in [8].
We define Ω ⊂ Rd as a porous medium with boundary Γ such that

Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, where ΓD is the Dirichlet boundary and ΓN
is the Neumann boundary. We also consider the time interval T = [0, tend].
Therefore, our numerical model for a slightly compressible one-phase flow
through porous media is composed of Equation (3) and the corresponding
boundary and initial conditions

s(p)∂p
∂t

+∇ · (−A(p)∇p + F(p)) = f(x, t) ∀x ∈ Ω, ∀t ∈ T,

p(x, t) = gD(x, t) ∀x ∈ ΓD, ∀t ∈ T,
(−A(p)∇p + F(p)) · n = gN (x, t) ∀x ∈ ΓN , ∀t ∈ T,

p(x, 0) = p0(x) ∀x ∈ Ω,

(4)
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where gD(x, t) and gN (x, t) are the Dirichlet and Neumann prescribed val-
ues respectively, n is the outward normal, p0(x) is the initial pressure of the
reservoir, and

s(p) = φ(p)ρ(p)ct,

A(p) = ρ(p)
µ

K,

F(p) = ρ(p)2

µ
Kg.

(5)

In order to introduce the HDG formulation, we rewrite Equation (4) as a
system of first-order equations by identifying q = −A(p)∇p as the diffusive
flux and F(p) as the convective flux



q + A(p)∇p = 0 ∀x ∈ Ω, ∀t ∈ T,

s(p)∂p
∂t

+∇ · (q + F(p)) = f(x, t) ∀x ∈ Ω, ∀t ∈ T,

p(x, t) = gD(x, t) ∀x ∈ ΓD, ∀t ∈ T,
(q + F(p)) · n = gN (x, t) ∀x ∈ ΓN , ∀t ∈ T,

p(x, 0) = p0(x) ∀x ∈ Ω.

(6)

3.2 Spatial discretization

We discretize the domain, Ω, with a tessellation, Th, composed of a set of con-
formal elements of polynomial degree P . We define the following discontinuous
finite element spaces associated to the tessellation Th

WP
h =

{
wh ∈ L2 (Ωd) | wh|e ∈

(
SP (e)

)d ∀e ∈ Th
}
,

VPh =
{
vh ∈ L2 (Ωd) | vh|e ∈ (SP (e)

)
∀e ∈ Th

}
,

MP
h =

{
λh ∈ L2 (Σh) | λh|f ∈

(
SP (f)

)
∀f ∈ Σh

}
,

where e is an element of Th, f is a face of the mesh skeleton, Σh, and SP is
the space of the polynomials of degree at most P for triangles and tetrahedra
(usually denoted by PP ), or the tensor products of polynomials of degree
at most P in each coordinate direction for tensor product elements (usually
denoted by QP ). In this work, we use a fixed polynomial degree for all the
elements.

We define MP
h (gD) =

{
λh ∈MP

h |λh = Π(gD) on ΓD
}
, where Π(·) is a

projection operator to the space
{
λh|ΓD

∀λh ∈MP
h

}
. We also consider the
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scalar products

(a,b)e =
∫
e

a · b dΩ ∀a,b ∈WP
h ,

(a, b)e =
∫
e

a b dΩ ∀a, b ∈ VPh ,

〈a, b〉∂e =
∫
∂e

a b dΓ ∀a, b ∈MP
h .

From Equation (6), the HDG formulation ends up with finding an approx-
imation (qh, ph, p̂h) ∈WP

h × VPh ×MP
h (gD) such that∑

e

(
(A−1 (ph) qh,wh)e − (ph,∇ ·wh)e + 〈p̂h,wh · n〉∂e

)
= 0, (7a)

∑
e

(
(s (ph) ∂ph

∂t
, vh)

e
− (qh + F (ph) ,∇vh)e

)
+∑

e

(
〈(q̂h + F̂h) · n, vh〉∂e − (f, vh)e

)
= 0,

(7b)

∑
e

(
〈(q̂h + F̂h) · n, λh〉∂e

)
− 〈gN , λh〉ΓN

= 0, (7c)

for all (wh, vh, λh) ∈ WP
h ×VPh ×MP

h (0), where p̂h is the trace of the pressure
defined on the mesh skeleton, Σh, and q̂h + F̂h is the total numerical flux.
Equation (7c) is the transmissivity equation, in which we impose the continuity
of the total numerical flux in the normal direction between adjacent elements.
Therefore, this equation relates the unknowns between adjacent elements.

According to [35,36], we define the total numerical flux as

q̂h + F̂h = qh + F (p̂h) + τ(ph, p̂h)(ph − p̂h)n, on Σh,

where τ is the stabilization parameter that depends on ph and p̂h. Neverthe-
less, to facilitate the notation, from now on, we will not write explicitly this
dependency.

Following [35,36], we split the τ parameter into the diffusive and convective
terms as

τ = τdiff + τconv,

and we set the diffusive and convective numerical fluxes as:

q̂h = qh + τdiff(ph − p̂h)n, on Σh, (8a)
F̂h = F (p̂h) + τconv(ph − p̂h)n, on Σh, (8b)

respectively. We define the diffusive stabilization parameter, τdiff as

τdiff = A

lc
, (9)
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where lc is a characteristic length of the problem, and

A = ρ(ph)
µ

γK,

being γK the maximum eigenvalue of the permeability tensor, K.
To select the τconv we use a monotone scheme flux, which ensures the

stability of the numerical method [35,36]. Specifically, we define τconv as

τconv = 1
(ph − p̂h)2

∫ ph

p̂h

(
F̂ · n

EO
(s, p̂h)− F(p̂h) · n
ph − p̂h

)
ds, (10)

where F̂ · n
EO

(·, ·) is the Engquist-Osher monotone scheme flux

F̂ · n
EO

(a, b) = 1
2 (F(a) + F(b)) · n− 1

2

∫ b

a

|F′(s) · n|ds, (11)

see details in [35,36]. It is straightforward to prove that the derivative of the
convective flux is

F′(p) = 2ρ(p)ρrefcf
µ

Kg.

Therefore, the sign of the integral in Equation (11) only depends on the prod-
uct (Kg) ·n. Thus, inserting the third equality of Equation (5), and Equations
(10) and (11) into Equation (8b), we obtain the normal component of the
convective numerical flux, F̂h · n, as

F̂h · n =


(Kg) · n
3cfρrefµ

(
ρ(ph)3 − ρ(p̂h)3

ph − p̂h

)
if (Kg) · n ≥ 0,

ρ(p̂h)2 (Kg) · n
µ

if (Kg) · n < 0.

(12)

Note that for ph = p̂h, and applying the Hôpital rule to the first equation
of (12), we verify the required property of the monotone scheme flux: F̂h ·
n(p, p) = F(p) · n.

Afterwards, substituting the diffusive numerical flux, Equation (8a), into
Equation (7) and using Equation (12) as the convective numerical flux, leads
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to find (qh, ph, p̂h) ∈WP
h × VPh ×MP

h (gD) such that∑
e

(
(A−1qh,wh)e − (ph,∇ ·wh)e + 〈p̂h,wh · n〉∂e

)
= 0,

(13a)∑
e

(
(s∂ph

∂t
, vh)

e
− (qh + Fh,∇vh)e + 〈F̂h · n, vh〉∂e

)
+
∑
e

(〈qh · n + τdiff(ph − p̂h), vh〉∂e − (f, vh)e) = 0,

(13b)∑
e

(
〈F̂h · n, λh〉∂e + 〈qh · n + τdiff(ph − p̂h), λh〉∂e

)
− 〈gN , λh〉∂ΩN

= 0.

(13c)

for all (wh, vh, λh) ∈ WP
h × VPh ×MP

h (0).

Remark 1 The HDG method is conservative at the elemental level. This is de-
duced from the second equation in Equation (13), by setting the test function,
vh = 1, in a single element and 0 in the rest

(s∂ph
∂t

, 1)e︸ ︷︷ ︸
temporal variation

+ 〈(q̂h + F̂h) · n, 1〉∂e︸ ︷︷ ︸
boundary inflow/outflow

= (f, 1)e︸ ︷︷ ︸
source term

, (14)

that represents the mass conservation, Equation (1a) in integral form.

Let {Ni}i=1,...,N be a Lagrangian basis of shape functions of SP (e), where
N is the total number of element nodes, and let {Nf

l }l=1,...,Nf
be a Lagrangian

basis of shape functions of SP (f), where Nf is the total number of nodes on
the element faces. We define the approximations qh, ph and p̂h as

qh(x, t) =
∑
e∈Th

N∑
i=1

Nsd∑
j=1

qi,j(t)Ni(x)ej , (15)

ph(x, t) =
∑
e∈Th

N∑
i=1

pi(t)Ni(x), (16)

p̂h(x, t) =
∑
f∈Σh

Nf∑
l=1

p̂l(t)Nf
l (x), (17)

where Nsd is the physical dimension of the problem. Similarly, the approxima-
tion of partial derivative respect time of the pressure, ṗh, is defined as

ṗh(x, t) = ∂ph(x, t)
∂t

=
∑
e∈Th

N∑
i=1

ṗi(t)Ni(x). (18)
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Inserting Equations (15), (16), (17) and (18) into Equation (13), we obtain a
non-linear coupled system of first order DAE. Specifically, the problem consists
of finding the coefficients qi,j(t), pi(t), ṗi(t) for i = 1 . . . Ni, j = 1 . . . Nsd and
p̂l(t) for l = 1 . . . Nf∑

e

(
(A−1qh, Niej)e − (ph,∇ · (Niej))e + 〈p̂h, Niej · n〉∂e

)
= 0 (19a)∑

e

(
(sṗh, Ni)e − (qh + Fh,∇Ni)e + 〈F̂h · n, Ni〉∂e

)
+
∑
e

(〈qh · n + τdiff(ph − p̂h), Ni〉∂e − (f,Ni)e) = 0
(19b)

∑
e

(
〈F̂h · n, Nf

l
〉∂e + 〈qh · n + τdiff(ph − p̂h), Nf

l
〉∂e
)
− 〈gN , Nf

l
〉
∂ΩN

= 0 (19c)

for Niej , Ni and Nf
l , with i = 1 . . . Ni, j = 1 . . . Nsd, l = 1 . . . Nf .

3.3 Temporal discretization

Equation (19) is a DAE and we rewrite it as

R (t,q,p, ṗ , p̂) =

Rq (t,q,p, ṗ , p̂)
Rp (t,q,p, ṗ , p̂)
Rp̂ (t,q,p, ṗ , p̂)

 = 0, (20)

where q,p, ṗ , p̂ are vectors composed of all the nodal values for the pressure,
pi(t), the numerical flux, qi,j(t), the trace of the pressure, p̂l(t) and the pressure
derivative, ṗi(t) at time t.

Thus, given an approximation of (qh, ph, ṗh, p̂h) ∈ WP
h × VPh × VPh ×

MP
h (gD), Rq, Rp and Rp̂ are defined as follows

[Rq ]i,j =
∑
e

(
(A−1qh, Niej)e − (ph,∇ · (Niej))e + 〈p̂h, Niej · n〉∂e

)
,

[Rṗ ]i =
∑
e

(
(sṗh, Ni)e − (qh + Fh,∇Ni)e + 〈F̂h · n, Ni〉∂e

)
+
∑
e

(〈qh · n + τdiff(ph − p̂h), Ni〉∂e − (f,Ni)e) ,

[Rp̂ ]l =
∑
e

(
〈F̂h · n, Nf

l
〉∂e + 〈qh · n + τdiff(ph − p̂h), Nf

l
〉∂e
)
− 〈gN , Nf

l
〉
∂ΩN

.

To solve the DAE in Equation (20), we use a diagonally implicit Runge-
Kutta method (DIRK). From now on, we denote by (·)n the value of any
variable at time tn, and by (·)n,i the value of any variable at time tn,i =
tn + ci∆t, being n the time step and i the DIRK stage. According t theses
schemes, we compute the pressure at time tn+1 = tn +∆t as

pn+1 = pn +∆t

s∑
i=1

biṗn,i, (21)
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Table 1: Butcher’s table for a diagonal implicit Runge-Kutta scheme.

c1 a11
c2 a21 a22
...

...
. . .

cs as1 . . . ass
b1 b2 . . . bs

where s is the number of stages, and ṗn,i is the approximation of ṗ at time
tn,i. Similarly, the pressure at each stage of the DIRK scheme is computed as

pn,i = pn +∆t

i∑
j=1

aijṗn,j . (22)

Therefore, the pressure at tn+1 and the pressure at all the stages, ṗn,i for
i = 1, . . . , s, can be computed once the approximation to the derivatives of the
pressures, ṗn,i, is known at all the stages i = 1, . . . , s.

To compute these approximations, we insert Equation (22) into the DAE
(20) and obtain

R

tn,i,qn,i,pn +∆t

i∑
j=1

aijṗn,j , ṗn,i, p̂n,i
 = 0 for i = 1, . . . , s. (23)

Equation (23) can be rewritten as

R

tn,i,qn,i,pn +∆t

i−1∑
j=1

aijṗn,j +∆taiiṗn,i, ṗn,i, p̂n,i
 = 0 for i = 1, . . . , s

(24)
to highlight that the unknowns at the i-th stage are the approximation to the
derivative, ṗn,i, the fluxes, qn,i, and the traces p̂n,i. Note that the pressure
at the stages, pn,i for i = 1, . . . , s, is not an unknown because we have used
Equation (22) to write the pressure in terms of its temporal derivative. In
addition, the time derivative of the pressure at the previous stages pn,j for
j = 1, . . . , i − 1, is not an unknown since they have been already computed.
Finally, once the approximations to the derivatives ṗn,i, for i = 1, . . . , s, are
computed, the pressure at next time step is computed according to Equation
(21).

The parameters bi, ci, aij , with i = 1 . . . s and j = 1 . . . i, define the DIRK
method, and are given by Butcher’s tables, see Table 1, [7,33,23].

3.4 Non-linear solver

Equation (24) defines a non-linear system of equations that we solve using
the Newton-Raphson method. From now on and without loss of generality, we
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reorder the unknowns of the non-linear system of Equation (24) such as

u =

qi
ṗi
p̂i

 .
The Newton-Raphson method involves successive approximations of the

solution ui,k at i-th Runge-Kutta stage

ui,k+1 = ui,k + δui,k,

where δui,k is the solution of the linear system

J
(
ui,k

)
δui,k = −R

(
ui,k

)
, (25)

being J
(
ui,k

)
the Jacobian matrix of R evaluated at ui,k. The Jacobian matrix

coefficients are detailed in Appendix A.
The process stops when an approximation is found that satisfies the pre-

scribed tolerances
‖qn,i,kh − qn,i,k+1

h ‖L2(Th)

‖qn,i,k+1
h ‖L2(Th)

< εq, ‖Rq‖2 ≤ εFq ,

‖ṗn,i,kh − ṗn,i,k+1
h ‖L2(Th)

‖ṗn,i,k+1
h ‖L2(Th)

< εṗ, ‖Rṗ‖2 ≤ εFṗ
,

‖p̂n,i,kh − p̂n,i,k+1
h ‖L2(Σh)

‖p̂n,i,k+1
h ‖L2(Σh)

< εp̂ , ‖Rp̂‖2 ≤ εFp̂
,

where ‖ · ‖L2(Th) is the norm of the L2(Th) space of functions, ‖ · ‖L2(Σh) is
the norm of the L2(Σh) space of functions, and ‖ · ‖2 is the Euclidean norm
of vectors.

3.5 Hybridization procedure

To reduce the computational cost, we hybridize the linear system in Equation
(25) using the static condensation procedure that allows solving only for the
unknowns, δp̂i,k. Then, δqi,k and δṗi,k are obtained using an element-by-
element post-process. To this end, we rewrite the linear system in Equation
(25) as Ji,kqq Ji,kqṗ Ji,kqp̂

Ji,kṗq Ji,kṗṗ Ji,kṗp̂
Ji,kp̂q Ji,kp̂ṗ Ji,kp̂p̂

[δqi,kδṗi,k
δp̂i,k

]
= −

Ri,k
q

Ri,k
ṗ

Ri,k
p̂

. (26)

Afterwards, we split Equation (26) as[
Ji,kqq Ji,kqṗ
Ji,kṗq Ji,kṗṗ

] [
δqi,k
δṗi,k

]
+
[

Ji,kqp̂
Ji,kṗp̂

]
δp̂i,k = −

[
Ri,k
q

Ri,k
ṗ

]
(27a)

[
Ji,kp̂q Ji,kp̂ṗ

] [δqi,k
δṗi,k

]
+ Ji,kp̂p̂ δp̂

i,k = −Ri,k
p̂ , (27b)
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From Equation (27a), we obtain[
δqi,k
δṗi,k

]
=
[

Ji,kqq Ji,kqṗ
Ji,kṗq Ji,kṗṗ

]−1(
−

[
Ri,k
q

Ri,k
ṗ

]
−

[
Ji,kqp̂
Ji,kṗp̂

]
δp̂i,k

)
. (28)

Then, we substitute Equation (28) into Equation (27b), and we obtain δp̂i,k
as the solution of the hybridized linear system(

−
[
Ji,kp̂q Ji,kp̂ṗ

] [Ji,kqq Ji,kqṗ
Ji,kṗq Ji,kṗṗ

]−1 [
Ji,kqp̂
Ji,kṗp̂

]
+ Ji,kp̂p̂

)
δp̂i,k =

−Ri,k
p̂ +

[
Ji,kp̂q Ji,kp̂ṗ

] [Ji,kqq Ji,kqṗ
Ji,kṗq Ji,kṗṗ

]−1 [
Ri,k
q

Ri,k
p

]
,

(29)

Finally, using δp̂i,k, we compute δqi,k and δṗi,k by solving the linear system
in Equation (28). It is important to highlight that Equation (28) is solved
element by element, since we can reorder the terms of the matrix[

Ji,kqq Ji,kqṗ
Ji,kṗq Ji,kṗṗ

]
to convert it into a block diagonal matrix, where each block involves only un-
knowns of a single element. Thus, the computational cost of solving Equation
(28) is low and this process can be easily parallelized.

To solve the global system, Equation (29) at each stage of the Runge-Kutta
method, i = 1, . . . , s, and at each Newton-Raphson iteration, k, we use LU
factorization.

3.6 Local post-processing

One of the main advantages of using the HDG formulation is that the pres-
sure, ph, and its flux, qh, in VPh and WP

h spaces, respectively, have a rate of
convergence of P + 1 in the L2-norm, when the temporal error is low enough.
Moreover, a local post-processing can be applied to obtain a new approxima-
tion for the pressure, p∗h, in V

P+1
h with a rate of convergence of P + 2 in the

L2-norm for diffusion dominated problems, see [25,36].
The local problem consists on finding the post-processed pressure, p∗h ∈

VP+1
h on each element, e, such that

(A(ph)∇p∗h,∇vh)e = − (qh,∇vh)e, (30a)
(p∗h, 1)e = (ph, 1)e, (30b)

for all vh ∈ VP+1
h

In order to obtain a well-posed and invertible system, Equation (30b) is
added, which imposes that the averages of the post-processed pressure, p∗h,
and the approximated pressure, ph, are equal element by element. According
to [25,36] it is important to highlight that this procedure can be applied at
selected time steps, and it is not necessary to apply it to all the time steps.
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4 Examples

This section presents several examples that illustrate the capabilities of the
proposed high-order HDG formulation coupled with DIRK schemes. The first
example shows numerical evidence of the optimal convergence rates of P +1 in
L2-norm for the pressure, the flux and the Darcy velocity, and also the conver-
gence rate of P +2 in L2-norm for the post-processed pressure. In addition, we
check the elemental mass balance. The second example is devoted to validate
our formulation and its implementation by comparing the obtained solution
against an analytical approximation. Moreover, we compare the accuracy of
the obtained approximations using different temporal integration schemes and
different time steps for each scheme. The third example shows the flow through
a highly heterogeneous porous medium. We also compare the accuracy of the
pressure, flux and velocity using different polynomial degrees. The last exam-
ple is a three dimensional case with three permeability regions, in which we
consider isotropic and anisotropic diagonal permeability tensors.

For all the examples, we set pref = p(x, 0) := p0. All the high-order
meshes are generated using the algorithms presented in [17,42,16] that are
implemented in the EZ4U environment [41]. We set the number of integration
points as 2P + 1 per direction. To perform the temporal integration, we use
the DIRK schemes defined in Appendix B. In addition, the stopping tolerances
for the non-linear system are

εq = εṗ = εp̂ = 10−7,

εFq = εFṗ
= εFp̂

= 10−5.

4.1 Convergence rate analysis

In this example, we show numerical evidence of the convergence rates for the
pressure, ph, the flux, qh, the velocity vh, and the post-processed pressure,
p∗h. We define an analytical pressure solution

p = (1 + sin(2πx) sin(2πy) sin(0.25πt)), (31)

where x = (x, y) ∈ (0, 1) × (0, 1)m and t ∈ [0, 1]s. We prescribe a Dirichlet
boundary condition on the whole boundary and a source term in order to
obtain the analytical pressure defined in Equation (31). The material and
fluid parameters used in this example are detailed in Table 2.

We generate a series of meshes of quadrilateral elements of polynomial de-
gree between two to five. We perform the temporal integration using a DIRK3-
s3 scheme with an appropriated ∆t to balance the temporal and spatial errors.
Then, we measure the error in L2-norm of the obtained approximations against
the analytical solution at time 1s.

Figures 1(a) and 1(b) show the convergence rate of the pressure and the
flux in L2-norm, respectively. We obtain the theoretically expected conver-
gence rate of P+1 in L2-norm for all the cases. Figure 1(c) shows the obtained



16 Albert Costa-Solé et al.

Table 2: Material and fluid parameters for Example 4.1.

Parameter Value Parameter Value
K 1 m2 µ 1 Pa · s

φref 0.1 cr 0.01 Pa−1

ρref 1 cf 0.01 Pa−1

P2 P3 P4 P5

−1.5 −1.0 −0.5
log10(h)

10−6

10−5

10−4

10−3

10−2

||p
h
−
p||

L
2 (

Ω
)

2.98

3.98
4.95

5.95

(a)

−1.5 −1.0 −0.5
log10(h)

10−4

10−3

10−2

10−1

100

||q
h
−

q
|| L

2 (
Ω

)

2.97

3.95 4.95

5.9

(b)

−1.5 −1.0 −0.5
log10(h)

10−7

10−6

10−5

10−4

10−3

10−2

||p
∗ h
−
p||

L
2 (

Ω
)

3.97

4.97 5.94

6.93

(c)

−1.5 −1.0 −0.5
log10(h)

10−4

10−3

10−2

10−1

100

||v
h
−

v
|| L

2 (
Ω

)

2.97

3.95 4.95

5.89

(d)

Fig. 1: Convergence rate for: a) the pressure; b) the flux, c) the post-processed
pressure and d) the Darcy velocity.

L2-error for the post-processed pressure, p∗h, and also shows the expected con-
vergence rates of P+2 for all the cases. Moreover, we also obtain a convergence
rate of P + 1 in L2-norm for the velocity, because it is defined in terms of the
pressure and its flux, see Figure 1(d).

For all the meshes, we have checked the elemental mass balance, see Equa-
tion (14). We obtain values in the range 6 · 10−10 to 6 · 10−14. For instance,
Figure 2 shows the elemental mass balance for the mesh with 16 elements and
polynomial degree five.
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Fig. 2: Elemental mass balance for the mesh with 16 elements and polynomial
degree five.

This example validates our formulation and the selection of the numerical
convective flux. That is, the proposed formulation is stable, and achieves the
optimal convergence rate of P+1 in L2-norm for the pressure, the flux and the
velocity, and the convergence rate of P + 2 in L2-norm of the post-processed
pressure. Furthermore, we have numerically shown the theoretical result of the
elemental mass balance.

4.2 Comparison with an analytical approximation

In this example, we compare the solution provided by our formulation with
an analytical approximation for a one dimensional radial flow, see [8]. To this
end, and according to [8], we assume an infinite horizontal and homogeneous
reservoir with constant material properties and a punctual and isolated well.
Neglecting the gravity effects and using cylindrical coordinates, Equation (3)
is expressed as

1
χ

∂p

∂t
= ∂2p

∂r2 + 1
r

∂p

∂r
, (32)

where r is the distance to the punctual well and χ = k/φµct. The PDE in
Equation (32) is completed with the following boundary and initial conditions

p (r, t) = p0 as r �∞, t ≥ 0,

r
∂p

∂r
= Qµ

2πkH as r � 0, t > 0,

p (r, 0) = p0 0 ≤ r <∞,
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Table 3: Material and fluid parameters for Example 4.2.

Parameter Value Parameter Value
K 0.3 · 10−13 m2 p0 244.966 atm

φref 0.2 Q 0.00057742 m3/s
cr 5.8 · 10−10 Pa−1 µ 0.00106 Pa · s
cf 0 Pa−1 ρref 897.5 kg/m3

(a) (b)

Fig. 3: Unstructured mesh for the considered reservoir; a) global view and b)
detailed view near the well.

where Q is the oil production well rate and H is the reservoir thickness. Under
these conditions, the analytical approximation of Equation (3) is

p (r, t) = p0 − Qµ

2πkH ln

(
2.25tχ
r2

)
, t > 0, (34)

see [8] for more details. This analytical approximation is valid when r2/4tχ <
0.001.

We consider a reservoir thickness of H = 30.48 m and an isolated well with
radius rw = 5.715 cm. We use the material and fluid parameters detailed in
Table 3, see [8] for more details.

For the numerical simulation, we define a square domain Ω = (0, 8000) ×
(0, 8000) m, with a circular hole at the center with radius rw = 5.715 cm. We
prescribe the pressure on the square boundary, ΓD, and a fixed oil rate at the
circular boundary, ΓW .

The problem to be solved numerically is modeled by Equation (3) with a
null source term, neglecting the gravitational effects, and the following bound-
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ary and initial conditions

φct
∂p

∂t
= ∇ ·

(
1
µ

K∇p
)

∀x ∈ Ω, ∀t ∈ T

p (x, t) = 244.966 atm ∀x ∈ ∂ΓD,∀t ∈ T,(
1
µ

K∇p
)
· n = Qµ

2πrkH = 0.0527 Kg
m3s

∀x ∈ ∂ΓW ,∀t ∈ T,

p (x, 0) = 244.966 atm ∀x ∈ Ω,

note that the reservoir thickness, H, is introduced in our 2D model through
the Neumann boundary condition.

We discretize the domain using an unstructured mesh of 4652 unstructured
quadrilateral elements of polynomial degree three, see Figures 3(a) and 3(b).
The total number of nodes is 41991 and the total unknowns of the linear system
is 260676. However, after applying the hybridization procedure described in
Section 3.5, the size of the linear system to be solved is reduced to 37380.

We simulate a total of four days of oil extraction using the backward Euler,
the DIRK2-s2 and the DIRK4-s6 schemes with time steps ∆t = 0.8, 0.4, 0.2
and 0.1 days. Specifically, we compare the relative error of the obtained approx-
imations respect to the analytical solution at a point located on the boundary
of the well, xp = (4000.0715, 4000)m, as:

Ep(t) = |ph(xp, t)− p(xp, t)|
|p(xp, t)|

Figure 4 shows the obtained relative errors using the different tempo-
ral schemes with the selected time steps for all the temporal discretizations
schemes. In all cases, the relative error decreases when using smaller time
steps. Furthermore, using higher-order temporal schemes with the same time
step, the relative error is smaller and decreases faster as time advances than
using lower-order schemes. Note that for all the temporal integration schemes
and time steps, the major difference between the analytical approximation
and the numerical approximation appears at the first time step. This happens
because the initial condition is not compatible with the boundary condition,
in which the hydrocarbon is totally still and the well starts to pump at the
prescribed flux rate. Afterwards, the numerical approximation tends to the
analytical approximation as time advances.

The minimum relative error is 4.16 · 10−7 that corresponds to the error
introduced by the spatial discretization, see Figure 4. This example shows that
to balance the temporal and spatial errors using low-order temporal schemes,
small time steps are necessary. Even in the case of the backward Euler with
the smallest time step, the obtained error at the last time step is around one
order of magnitude larger than the spatial error. On the contrary, when using
the DIRK4s6 scheme we can use a large time step to obtain similar spatial
and temporal errors.

We obtain a similar relative error using the DIRK2s2 scheme with ∆t = 0.1
days and the DIRK4s6 scheme with∆t = 0.8 days at time four days, see Figure
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Backward ∆t= 0.1

Backward ∆t= 0.2

Backward ∆t= 0.4

Backward ∆t= 0.8

DIRK2s2 ∆t= 0.1

DIRK2s2 ∆t= 0.2

DIRK2s2 ∆t= 0.4

DIRK2s2 ∆t= 0.8

DIRK4s6 ∆t= 0.1

DIRK4s6 ∆t= 0.2

DIRK4s6 ∆t= 0.4

DIRK4s6 ∆t= 0.8
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Time (days)

10−6

10−5

10−4
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p
(x

p
,t

)

Fig. 4: Relatives errors against an analytical solution.

4. Nevertheless, the DIRK2s2 scheme with ∆t = 0.1 days requires 40 steps,
which leads to a total of 80 RK stages at four days. Whereas, the DIRK4s6
with ∆t = 0.8 days only requires 5 steps, which leads to a total of 30 RK
stages at the same four days. Thus, since the number of iterations of the
Newton-Raphson method using both schemes is similar, the DIRK4s6 scheme
is 80/30 = 2.6 times faster than the DIRK2s2 even though it has four stages
more per time step.

In this example, we have shown that we obtain similar accuracy with less
computational cost using higher-order temporal schemes with larger time steps
than using low-order temporal schemes with smaller time steps.

4.3 Flow through a highly heterogeneous medium

In this example, we perfom a simulation through a highly heterogeneous porous
medium, see Figure 5(a). The permeability ranges between 5·10−16 and 10−14,
and the other material parameters are detailed in Table 4.
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(a) (b)

Fig. 5: a) Highly heterogeneous domain and permeability field, well location
(green circle) and b) high-order unstructured mesh.

Table 4: Material and fluid parameters for the highly heterogeneous porous
medium

Parameter Value Parameter Value
Kmin 5 · 10−16 m2 Kmax 10−14 m2

p0 244.966 atm φref 0.2
cr 5.8 · 10−10 Pa−1 µ 0.00106 Pa · s
cf 1.45 · 10−9 Pa−1 ρref 897.5 kg/m3

The physical domain is Ω = (0, 100) × (0, 100)m, in which we impose no-
flux condition on all the boundaries. In addition, we consider a source term
defined as

f2D =


f

πrw2 if
√

(xw − x)2 + (zw − z)2 < rw,

0 elsewhere,

being f = −0.015 kg/s, located at xw = (21.0, 52.0) m and rw = 0.45m, see
Figure 5(a).

We discretize the domain with 59111 unstructured quadrilateral elements
with polynomial degree from two to five. We adapt the element size to the
Hessian of the permeability. That is, we have used smaller elements in the re-
gions with higher curvature of the permeability field and larger elements in the
regions with lower curvature, see Figure 5(b). To perform the temporal inte-
gration, we use DIRK3-s3 scheme with ∆t = 0.2 days and the total simulation
time is 4 days.
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(a) (b)

Fig. 6: Numerical solution at t=4 days. a) pressure and b) modulus of the
velocity.

Figures 6(a) and 6(b) show the pressure and the modulus of the velocity at
t = 4 days approximated with polynomials of degree five, respectively. The low-
est pressure and the highest velocity values are around the well. Furthermore,
the fluid is moving faster through the most permeable regions, see Figure 6(b).
This effect can be also observed in Figure 7(a), which plots the velocity vectors
and the permeability field. The velocity vectors are larger in the most perme-
able regions (red regions) than in the lowest ones (blue regions). Moreover,
the fluid tends to move towards the most permeable regions, see Figures 7(b)
and 7(c). Afterwards, the fluid moves through the most permeable regions.

We compute a reference solution for the pressure, the flux and the veloc-
ity using polynomials of degree five. Next, we compute the relative errors of
the solutions obtained with polynomials of degree two to four respect to the
reference solutions as:

Ep(t) =
||ph(x, t)− pP5

h (x, t)||L2(Ω)

||pP5
h (x, t)||L2(Ω)

Eq(t) =
||qh(x, t)− qP5

h (x, t)||L2(Ω)

||qP5
h (x, t)||L2(Ω)

Ev(t) =
||vh(x, t)− vP5

h (x, t)||L2(Ω)

||vP5
h (x, t)||L2(Ω)

Figure 8 plots these relative errors for the three meshes. Note that as we
increase the interpolation degree not only the scalar variable, but also the
fluxes and velocities monotonically converge to the reference solution.
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(a)

(b) (c)

Fig. 7: Permeability field and velocity vectors at t=4 days. a) General view,
b) detail of the lower-left region A, c) detail of the lower-right region B.
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Fig. 8: Relative errors for: a) the pressure; b) the flux, and c) the velocity.

4.4 Three-dimensional flow through a heterogeneous anisotropic material

The last example corresponds to a fully three dimensional case with three
different permeability regions, and for one of them we consider isotropic and
anisotropic diagonal permeability tensors, see Figure 9(a). The most permeable
region is located at the middle, KB . At the bottom is the region with the lowest
permeability, KC . The upper region has an intermediate permeability value,
KA. Specifically, we compare the pressure drop because of the hydrocarbon
recovery considering isotropic and anisotropic diagonally permeability tensor
in the middle region, KB . The permeability values for each region are:

KA : kxx = kyy = kzz = 10−14m2,

KB : kxx = kzz = 10−13m2, kyy = αkzz,

KC : kxx = kyy = kzz = 10−17m2,

where α = 1 for the isotropic case and α = 5 for the anisotropic case. The
other material parameters are detailed in Table 5
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(a) (b)

Fig. 9: a) Permeability distribution. b) Hexahedral elements of polynomial
degree four and with an element size of 12.5 m.

Table 5: Material and fluid parameters for Example 4.4.

Parameter Value Parameter Value
p0 244.966 + 0.96z atm φref 0.2
cr 5.8 · 10−10 Pa−1 µ 0.00106 Pa · s
cf 1.45 · 10−9 Pa−1 ρref 897.5 kg/m3

The physical domain is Ω = (0, 50) × (0, 50) × (0, 50)m, and we impose
no-flow condition on all the boundaries. The extraction well is located in the
middle region and is modeled using a source term as:

f3D =


f

4
3πrw

3
if
√

(xw − x)2 + (yw − y)2 + (zw − z)2 < rw,

0 elsewhere,

where xw = (25, 25, 25)m, rw = 4.0m and f = −2kg/s.
We discretize the domain with a structured hexahedral mesh of 64 elements

of polynomial degree three (2197 nodes), see Figure 9(b). This is a coarse mesh
with four high-order elements at each edge of the cube. The total number of
unknowns of the linear system is 20224. However, after applying the hybridiza-
tion procedure, the size of the linear system to be solved is reduced to 3840.
The time step for this simulation is ∆t = 0.1 days.

Note that we do not know a priori an initial condition compatible with the
boundary condition in which the hydrocarbon is totally still. To this end, we
evolve the problem with a null source term until∫

Ω

‖pn+1 − pn‖2dΩ∫
Ω

1dΩ
< εabs, (35)
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where εabs = 10−11 for that problem. To perform this, we apply the backward
Euler scheme with a variable time step, ∆tn = ∆t0 · 1.105n, being ∆t0 = 1.0
seconds and n the step. Since we are only interested in the steady state solu-
tion, we use the backward Euler scheme because is unconditionally stable and
large time steps can be used. Once the steady state is obtained, we perform the
time integration using a DIRK3-s3, because we are interested in an accurate
tracking of the hydrocarbon extraction process.

Figure 10 shows the pressure field at time t = 1 day in two sections of the
domain for the isotropic and the anisotropic permeability tensors. For both
cases, the pressure increases with the depth because of the gravity effects,
and it is lower near the source term, because of the hydrocarbon recovery.
In addition, the pressure field in the impermeable zone remains higher than
in the other two regions because of the low permeability value. In the other
two regions the effect of the pumping well is negligible. Moreover, we plot
the velocity vectors for both cases. Again, the different permeability of the
regions affect the fluid velocity. In the middle region, which has the highest
permeability, KB , the fluid is moving faster than in the upper region, where the
permeability is lower, KA, while the velocity is almost zero in the impermeable
region, KC .

In Figure 10, we also observe the differences between the isotropic and
anisotropic permeability of the middle region, KB . For the anisotropic case,
the fluid tends to move faster in the y-direction, which is five times more
permeable than the the other directions. For that reason, the pressure drop
in z-direction is higher if the permeability is isotropic, Figure 10(a), than the
anisotropic one, Figure 10(c). Moreover, in the plane XY (perpendicular to the
depth) the isobars have circular symmetry centered at the well for the isotropic
permeability case, Figure 10(b), whereas the isobars for the anisotropic per-
meability has an ellipsoid shape, Figure 10(d). Finally, the velocity vectors are
larger in the y-direction for the anisotropic permeability case since the fluid is
moving faster in this direction, Figure 10(d).

5 Conclusions

In this work, we have presented two contributions. In the first contribution,
we have developed a high-order HDG formulation combined with high-order
DIRK schemes for the one-phase flow problem through porous media. To this
end, we have rewritten the initial second-order PDE as a set of first-order
PDE’s, and the weak form of the problem has been deduced. In the second
contribution, we have extended the work in [36] to deduce an analytical ex-
pression for the stabilization parameter of the proposed HDG formulation. We
have split the stabilization parameter into diffusive and convective parts. The
diffusive part is selected according to the physical values of the problem, and
we have used the Engquist-Osher monotone scheme flux for the convective
part. These choices ensure the existence and uniqueness of the obtained ap-
proximation while providing a stable and convergent method. We have shown



High-order HDG formulation for one-phase flow through porous media 27

(a) (b)

(c) (d)

Fig. 10: Pressure field and Darcy velocity in two sections of the computational
domain. For the isotropic permeability: a) YZ cross section, and b) XY cross
section. For the anisotropic permeability: c) YZ cross section, and d) XY cross
section.
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that the Engquist-Osher monotone scheme flux is well-suited for the one-phase
flow problem. This selection allows deducing an analytical expression of the
numerical convective flux. Moreover, we can introduce the numerical convec-
tive term in Newton’s solver since we can analytically compute its derivatives.

Note that other monotone scheme fluxes could be used for the convective
term to ensure the stability of the formulation, such as the Godunov or the Lax-
Friedrichs fluxes. However, these fluxes contain non-differentiable expressions
such as minima, maxima or suprema. Therefore, it is not straightforward to
incorporate these fluxes in Newton’s method.

The computational cost of the HDG method is usually larger than other
non-mixed methods. The main reason is that the HDG method introduces the
diffusive flux and the solution trace as new unknowns. Thus, the elemental
contributions of the linear system are larger and their calculation lead to a
higher computational cost. Nevertheless, one advantage of the HDG method
is that the linear system can be hybridized to obtain a smaller one. The number
of unknowns of the hybridized system is of the same order as the number of
unknowns of a high-order hybridized CG method [20]. Moreover, the Darcy’s
velocity is obtained with higher accuracy than non-mixed methods by solving
a slightly larger linear system.

In the proposed method, we use a Lagrangian basis of shape functions to
generate the elemental polynomial spaces and therefore, the unknowns of the
problem are the nodal values. Other bases of the polynomial space could be
used, such as orthonormal polynomials. Thus, the unknowns of the problem
would be the coefficients of the polynomial expansion of the solution in the
used basis. Nevertheless, in our work, we have selected a Lagrangian basis,
since we use a non-uniform nodal distribution that approximately minimizes
the Lebesgue constant, see [50]. Therefore, the used basis is well-suited for
high-order Lagrange interpolation. Moreover, the solution of the problem are
the nodal values, which is convenient for practical purposes.

We have shown in the examples the features and advantages of the pro-
posed HDG formulation. Specifically, we have presented numerical evidence of
the optimal convergence rates of P + 1 in L2-norm, for the pressure, the flux
and the Darcy velocity, and also the convergence rate of P + 2 in L2-norm
for the post-processed pressure. Therefore, the analytical expression for the
stabilization parameter ensures the existence and uniqueness of the obtained
approximation and the stability and the convergence of formulation. Moreover,
we have numerically shown that the mass is conserved at the element level.
We have illustrated the capability of the proposed HDG formulation by using
structured and unstructured meshes, and heterogeneous anisotropic materials
of the reservoir. We have simulated the flow through highly heterogeneous
medium using a high-order unstructured mesh adapted to the material prop-
erties. Furthermore, we have compared the obtained approximation with an
analytical approximation to illustrate the accuracy of the proposed method
and to validate our formulation. We also have shown that using high-order
methods for both space and time, we achieve high-order accuracy not only for
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the scalar variables, but also for the fluxes and velocities with the same rate
of convergence even though we use coarse meshes and large time steps.

For the examples presented in this paper, the number of iterations in
the Newton-Raphson nonlinear solver is around four if we consider homo-
geneous materials and two or three more for non-homogeneous materials. The
hybridization procedure described in Section 3.5 represents less than 1% of
the total time of solving the hybridized system. This is because we use a di-
rect linear solver to solve the linear systems that we obtain with the high-order
meshes. Using high-order approximations, the local matrices are larger than for
linear approximations. This leads to larger and denser global matrices. There-
fore, the computational cost of the global system is higher if direct solvers are
used because of the higher number of non-zero entries in the system matrix.
For this reason, the cost of the hybridization process is negligible compared
to the cost of solving the linear system, even when solving 2D problems. This
behavior is in agreement with other authors [25,35,36], where it is stated the
low cost of the hybridization procedure.

Several aspects of this work will be analyzed and improved in the near
future. First, we will couple the proposed HDG formulation with fully implicit
temporal schemes to obtain temporal convergence rates of the same order as
the spatial ones, especially for high polynomial degrees. In this way, arbitrary
large time steps can be used achieving a high-order accuracy with few stages.
Second, to simulate larger 3D domains and more complex models such as
black oil and compositional flow models, we will analyze efficient iterative
linear solvers and appropriate pre-conditioners. Moreover, we will investigate
the cost of the hybridization when compared to an iterative linear solver.
Third, we will improve the computational efficiency of our implementation,
which is currently programmed in Python, in order to apply our formulation
to larger hydrocarbon reservoirs discretized with finer meshes. To this end,
we will implement the proposed formulation using a compiled language like
Fortran or C++. Moreover, we also consider to parallellize the code to further
reduce the wall time. Fourth, we will compare the computational cost and
solution accuracy of the HDG method with other state-of-the-art methods.

The datasets generated during and/or analyzed during the current study
are not publicly available but are available from the corresponding author on
reasonable request.
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A Jacobian terms

In this Appendix, we write the Jacobian terms required to solve Equation (25) of the Newton-
Raphson method. First, we deduce the partial derivatives of the numerical convective flux,
F̂h · n, Equation (12), respect to the pressure, ph, and its trace, p̂h

∂F̂h · n
∂pj

=


(

F(ph) · n− F̂h · n
(ph − p̂h)

)
Nj if (Kg) · n ≥ 0,

0 if (Kg) · n < 0,

(36)

∂F̂h · n
∂p̂j

=


(
−F(p̂h) · n + F̂h · n

(ph − p̂h)

)
Nf
j if (Kg) · n ≥ 0,

F′(p̂h)Nf
j if (Kg) · n < 0,

(37)

where ph and p̂h are defined in Equations (16) and (17), respectively. Note that, for ph = p̂h
the first equations of Equation (36) and (37) becomes

lim
ph→p̂h

∂F̂h · n
∂pj

= lim
ph→p̂h

∂F̂h · n
∂p̂j

=
1
2

F′(p̂h).

The partial derivatives of Equations (16) to (18) are

∂qh
∂qij

= Niej ,
∂ph
∂pi

= Ni,
∂p

∂ṗj
= Nj∆taii,

∂p̂h
∂pj

= Nf
j .

Finally, we obtain the partial derivative of F̂h · n respect to ṗj as

∂F̂h · n
∂ṗj

=
∂F̂h · n
∂pj

·
∂ph
∂ṗi

= ∆taii
∂F̂h · n
∂pj

.
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Thus, the elemental Jacobian coefficients are

(Jeqq )ij,kl =
∂

∂qkl

(
A−1qh, Niej

)
e

= (A−1Nkel, Niej)e

(Jeqṗ )ij,k =
∂

∂ṗk

(
(pi,∇ ·Niej)e + (A−1qh, Niej)e

)
= ∆taii

((
− qhµK−1 ρref cfNk

ρ(pi)
2 , Niej

)
e

−
(
Nk,

∂Ni

∂xj

)
e

)
(Je,fqp̂ )ij,k =

∂

∂p̂k
〈p̂h, Niej · n〉∂e = 〈Nf

k
, Ninj〉∂e

(Jeṗq )i,jk =
∂

∂qjk
(−(qh,∇Ni)e + 〈qh · n, Ni〉∂e) = −(Njek,∇Ni)e + 〈Njnk, Ni〉∂e

(Jeṗṗ )i,j =
∂

∂ṗj

(
(sṗh, Ni)e − (Fh,∇Ni)e + 〈F̂h · n, Ni〉∂e + 〈τdiff pi, Ni〉∂e − 〈τdiff p̂h, Ni〉∂e

)
=
((
ct∆taii(crφrefρ + φcfρref )Nj , Ni

)
e

+
(
φρ(pi)ct

∂ṗ

∂pj
, Ni

)
e

)
−
(
∆taii

K∇zg
µ

2ρcfρrefNj ,∇Ni
)
e

+ 〈
∂

∂ṗj
F̂h · n, Ni〉∂e

+
〈
∆taii

(K
µl
cfρrefpi + τdiff

)
Nj , Ni

〉
∂e

+
〈
∆taii

K
µl
cfρref p̂h, Ni

〉
∂e

(Je,fṗp̂ )i,j =
∂

∂p̂j

(
〈F̂h · n, Ni〉∂e − 〈τdiff p̂h, Ni〉∂e

)
= 〈

∂

∂p̂j
F̂h · n, Ni〉∂e − 〈τdiffNf

j , Ni〉∂e

(Je,fp̂q )i,jk =
∂

∂qjk
〈qh · n, N

f
i 〉∂e = 〈Njnk, Nf

i 〉∂e

(Je,fp̂ṗ )i,j =
∂

∂ṗj

(
〈F̂h · n, Nf

i 〉∂e + 〈τdiff pi, N
f
i 〉∂e − 〈τdiff p̂h, N

f
i 〉∂e

)
= 〈

∂

∂ṗj
F̂h · n, Nf

i 〉∂e +
〈
∆taii

(K
µl
cfρrefpi + τdiff

)
Nj , Ni

〉
∂e

−
〈
∆taii

K
µl
cfρrefNj p̂h, N

f
i

〉
∂e

(Je,fp̂p̂ )i,j =
∂

∂p̂j

(
〈F̂h · n, Nf

i 〉∂e − 〈τdiff p̂h, N
f
i 〉∂e

)
= 〈

∂

∂p̂j
F̂h · n, Nf

i 〉∂e − 〈τdiff N
f
j , N

f
i 〉∂e
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