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Abstract

Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic

targets for pharmacological intervention and, accordingly, guide drug repositioning and dis-

covery. In essence, the topology of a network can reveal the impact a drug candidate may

have on a given biological state, leading the way for enhanced disease characterization and

the design of advanced therapies. Network-based approaches, in particular, are highly

suited for these purposes as they hold the capacity to identify the molecular mechanisms

underlying disease. Here, we present drug2ways, a novel methodology that leverages multi-

modal causal networks for predicting drug candidates. Drug2ways implements an efficient

algorithm which reasons over causal paths in large-scale biological networks to propose

drug candidates for a given disease. We validate our approach using clinical trial information

and demonstrate how drug2ways can be used for multiple applications to identify: i) single-

target drug candidates, ii) candidates with polypharmacological properties that can optimize

multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways

available to the scientific community as a Python package that enables conducting these

applications on multiple standard network formats.

Author summary

At any given time, a large set of biomolecules are interacting in ways that give rise to the

normal functioning of a cell. By representing biological interactions as networks, we can

reconstruct the complex molecular mechanisms that govern the physiology of a cell.

These networks can then be analyzed to understand where the system fails and how that

can give rise to disease. Similarly, using computational methods, we can also enrich these

networks with drugs, diseases and disease phenotypes to estimate how a drug, or a combi-

nation of drugs, would behave in a system and whether it can be used to treat or alleviate

the symptoms of a disease. In this paper, we present drug2ways, a novel methodology

designed for drug discovery applications, that exploits the information contained in a bio-

logical network comprising causal relations between drugs, proteins, and diseases.
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Employing these networks and an efficient algorithm, drugways2 traverses over the

ensemble of paths between a drug and a disease to propose the drugs that are most likely

to cure the disease based on the information contained in the network. We hypothesize

that this ensemble of paths could be used to simulate the mechanism of action of a drug

and the directionality inferred through these paths could be used as a proxy to identify

drug candidates. Through several experiments, we demonstrate how drug2ways can be

used to find novel ways of using existing drugs, identify drug candidates, optimize treat-

ments by targeting multiple disease phenotypes, and propose combination therapies.

Owing to the generalizability of the algorithm and the accompanying software, we ambi-

tion that drug2ways could be applied to a variety of biological networks to generate new

hypotheses for drug discovery and a better understanding of their mechanisms of action.

This is a PLOS Computational Biology Methods paper.

Introduction

Biological processes principally arise from interactions linking discrete biological entities. Far

more rare, however, are processes that can be attributed to entities functioning in isolation.

Hence, elucidating sets of interactions between biological entities is essential in understanding

the mechanisms governing health and disease. Given the vast number of interactions that can

occur in a particular biological system, these interactions are often abstracted and organized

into large and highly interconnected computational networks. Many of the basic principles

and methods from graph theory tend to be well-suited for network biology and applicable to

various network types, such as protein-protein interaction (PPI), gene regulatory, and signal-

ling networks [1]). Several discrete models, such as logical models [2] and Boolean networks

[3,4] are common choices for their qualitative representation.

In a generic biological network representation, nodes denote entities, while edges denote

their interactions. Multimodal networks can capture a wide range of biological scales, includ-

ing physical entities (e.g., genes, proteins, and metabolites) or higher order concepts (e.g., bio-

logical processes, phenotypes, and diseases). Causal edges are those that possess directionality

through direct interactions or through intermediaries [5]. These connections frequently occur

in gene regulatory and metabolic/biochemical networks, while undirected edges are com-

monly present in chemical similarity or PPI networks to, for instance, represent symmetric

binding relationships. For the latter group of edges, several methods [6,7] have emerged to

assign directionality to interaction pairs (e.g., characterizing regulatory relationships as activa-

tion or inhibition relations) in order to assert causality which can be useful for various pur-

poses. An example lies in discerning whether causal interactions between a drug target and

intermediary proteins will inhibit a certain phenotype, a drug’s intended effect, or activate it

instead. Taken together, these networks enable a wide range of applications such as identifying

disease mechanisms [8], making predictions on network perturbations [9], facilitating pathway

analyses [10], establishing novel therapeutic drugs [11], and drug repurposing to detect poten-

tial therapeutic candidates [12].

Drug discovery is a major application that particularly benefits from network-based meth-

ods [11]. Typically, the traditional approach to drug discovery is characterized as follows: a

drug target is selected based on an expressed phenotype, an assay is prepared for the target,

high throughput screening (HTS) is performed, and hit or lead compounds are identified [13].
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Though it may be the more conventional approach, the process tends to be laborious and is

associated with both high costs and attrition rates. The latter can be attributed to several fac-

tors; firstly, experiments demonstrating the efficacy of drugs through their specific binding to

a target may not be reproducible in vivo given the compartmentalization of the cell and/or the

potential for other binding partners [14]. Secondly, in failing to investigate the cause of dys-

function that leads to disease within an appropriate biological context (e.g., molecular, cellular,

or disease), the design of drugs is arbitrary [15]. These issues represent some of the prototypic

problems that network-based approaches are ideally suited to address.

Beyond the utility of network-based methods for single target drug discovery and repurpos-

ing, these methods are also increasingly being used for the identification of pharmacological

interventions that reverse multiple pathological states and in the design of drug combinations

[16]. Although certain aspects of a pathology may be corrected by a single target drug, a multi-

target drug or drug combination approach can have greater efficacy in reversing a disease or

an expressed phenotype [17]. By taking into account causal mechanisms, network-based

approaches can identify multiple targets within a network which, when modulated, can elicit

synergistic effects[18]. Notably, combination therapies have successfully been used for several

disease conditions including cancers [19,20] and the symptomatic management of Alzheimer’s

disease [21].

Various attributes of biological networks can serve as viable measures for network-based

drug discovery. For instance, proximity measures such as the shortest path between a drug

profile and a disease module have been used to identify potential drug repurposing candidates

[22,23]. Additionally, centrality measures such as closeness and betweenness centrality also

consider the shortest paths between pairs of nodes in order to pinpoint initial drug candidates

[24,25]. However, potentially therapeutic targets may be connected to disease-relevant genes

through paths not accounted for when solely considering shortest paths. Nevertheless,

approaches which use non-shortest paths along a network are not without their limitations; as

the size and complexity of networks increase, so too do the number of possible paths that can

be traversed through the network, requiring greater computational power. Similarly, with an

increasing number of nodes and edges, identifying multiple drugs for combination therapies

that simultaneously target multiple disease-relevant genes and/or mitigate side-effects, can suf-

fer from combinatorial explosions. Furthermore, not all paths in a network may be biologically

plausible; erroneous interactions and those which are not biologically-relevant may also be

present. Thus, making predictions for single and combination drug therapies can become

highly challenging.

Here, we present drug2ways, a novel methodology applied to multimodal causal networks

for the prediction of new drugs and the repurposing of existing ones. Our methodology con-

sists of two main steps which jointly aim to address the high computational demands required

to traverse large-scale, biological networks and to apply a reasoned approach to propose drug

candidates for new indications by inferring causal paths. Firstly, drug2ways leverages a sophis-

ticated and efficient algorithm to calculate all paths up to a given length between a drug and a

disease or a set of phenotypes. Secondly, drug2ways traverses these paths to propose the set of

drugs that are most likely to generate a desired phenotypic change. We demonstrate the utility

of drug2ways for three different applications in order to identify: i) potential drug candidates,

ii) potential candidates that optimize multiple target nodes of interest (i.e., indications and

phenotypes) and iii) candidates for combination therapy. Finally, we make drug2ways avail-

able to the bioinformatics community as a Python package (https://github.com/drug2ways)

that enables conducting the aforementioned applications on multiple standard network

formats.
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Results

We ambition multiple applications for drug2ways (Fig 1) which we present in three case scenar-

ios and validate in two independent networks, the OpenBioLink knowledge graph (KG) and an

In-House network. In the Subsection Identifying drug candidates, we first validate our method-

ology by showing how it can be used to identify potential drug candidates for various indica-

tions, while in the Subsection Identifying drug candidates with multiple phenotypic targets, we

demonstrate how drug2ways can identify drugs that target sets of phenotypes present in specific

indications. Finally, in the Subsection Proposing combination therapies, we show its utility in

finding potentially efficacious drug combinations for combination therapy. In each of the three

applications, the problem can be generalized to finding the relative effect of all paths between

nodes representing chemicals and nodes representing phenotypes or clinical manifestations.

Each application consists of reasoning over all possible paths of a predetermined length to eval-

uate the efficacy of either one or more chemicals in reverting the target node of interest (i.e., a

manifestation and/or a set of associated phenotypes). This task can be conceived of as a brute-

force search for all drugs and indications/phenotypes in a network for a given range of path

lengths in order to prioritize drug candidates for each of the target nodes of interest.

The drug2ways algorithm incorporates two variants, namely all paths (i.e., a path in which

repetition of vertices occurs) and simple paths (i.e., a path in which all vertices are distinct

(and therefore, all edges)), enabling users to account for or ignore feedback loops (i.e., cycles),

respectively (Fig 1D). Each of these three applications is associated with a high computational

cost, especially the latter two which require calculations of a higher degree of complexity to

identify potential candidates with multiple phenotypic/disease targets. However, because of

the efficient implementation of the algorithm, each of these applications is attainable, which

we demonstrate in the Subsection Performance comparison and scalability of the algorithm
where we finally explore the scalability of drug2ways and compare it with standard path-find-

ing implementations.

Identifying drug candidates

In Table 1, we summarize the results of drug2ways in recovering clinically-investigated drug-

disease pairs for the top-ranked candidates in each of the validation experiments. Firstly, for

both the original networks, drug2ways was able to retrieve a large proportion of drug-disease

pairs that have been tested in clinical trials by calculating all paths up to a given length between

a drug and an indication (i.e., lmax), although both networks exhibited differences based on

the prioritization criteria described in the Subsection Validation experiments. For instance, the

most restrictive prioritization criteria (i.e., 7/7 lmax inhibited the disease) yielded the best

results for the In-House network, recovering nearly 40% of true positives from all prioritized

pairs in the top-ranked list for all paths and simple paths respectively, while OpenBioLink

yielded no prioritized pairs altogether. However, after a minimum relaxation of the prioritiza-

tion criteria (i.e., 6/7 lmax inhibited the disease), OpenBioLink showed good results (i.e.,

~50% and ~10% recovery rate for all paths and simple paths, respectively) while the recovery

rate decreased for the In-House network to approximately 12%. In comparison, the proportion

of true positives with respect to all possible combinations of drug-disease pairs from Clinical-

Trials.gov is 3.19% for OpenBioLink (5.151/161.040) and 3.76% (9.537/253.638) for the In-

House network, highlighting the significance of our results. These proportions are equivalent

to the probability of randomly picking a true positive, which is comparatively much lower

than the results yielded by drug2ways. In contrast, drug2ways failed to recover any true posi-

tives from the permuted versions of the original networks, further highlighting the validity of

the results from the original networks.
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Fig 1. Schematic illustration of causal reasoning by drug2ways over simplified networks. a) Prototypic network used by drug2ways for drug discovery. The

network contains causal relations between three modalities (i.e., drugs, proteins, and indications/phenotypes). Here, singular paths from three drugs to an

indication as well as associated phenotypes are shown, though a single drug may contain multiple paths to a given indication/phenotype. Drug2ways reasons

over all possible paths in a network between a drug and an indication/phenotype to predict the relative effect of each drug. In the example, we want to investigate

whether one of the three drugs depicted inhibits an indication and its two phenotypes. While all three drugs target the disease, two of the three (i.e., drug A and

C) fail to produce the desired effects (i.e., inhibition of the indication of interest and its two associated phenotypes). By reasoning over all the paths between the

drug and the three target nodes of interest (i.e., indication and its phenotypes), drug2ways predicts that drug B could be a promising candidate as the majority of

the paths would result in their inhibition, and thus produce a therapeutic effect. Similarly, drug2ways can also be used to evaluate the effect of a drug on a single

indication/phenotype or to assess the effect of drug combinations. b) Example network containing all paths between a given drug and an indication. c) All

possible paths between the drug and indication in (b). The drug2ways algorithm incorporates two variants, namely all paths and simple paths, enabling users to

account for or ignore feedback loops (i.e., cycles), respectively. We distinguish between different paths based on the maximum number of allowable edges from a
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Given the small-world property of most biological networks, the predominant approaches

in network-based drug discovery tend to investigate the shortest path between a drug and a

disease. We thus compared our method to the shortest-path approach. While the results

obtained using the shortest path are better than random, the shortest path tends to return a rel-

atively high number of candidate pairs (>5.000) and a significantly lower recovery rate (~8%)

than drug2ways (Table 1). Furthermore, we studied the lengths of the paths of candidate pairs

prioritized by the shortest-path approach and, as expected, found that the vast majority of the

paths are of lengths less than 4 (S1 Fig). In fact, the majority of the paths are lmax = 2, which

corresponds to a direct drug-target-disease path. This indicates that the shortest-path approach

can overlook diseases that are distant from drug targets, potentially explaining the difference

in recovery rate between shortest-paths and drug2ways. Furthermore, while the shortest path

only accounts for a single path between a drug and a disease, as an additional experiment, we

investigated the total number of paths between all drug-disease pairs calculated from drug2-

ways using lmax = 8 to verify that predictions were not driven by the existence of a single path

but by the directionality inferred through the ensemble of all paths (S2 Fig). We found that a

large number of paths were present between most of the drug disease pairs, which when taken

into account, could also explain the difference in the recovery rate.

The criteria selected for validation focused on prioritizing pairs exhibiting consistent scores

(i.e., activation/inhibition ratio) through a wide range of lmax. In selecting this criteria, we

intended to prevent any influence of path length (i.e., lmax) on the results. As expected, the results

also indicate that the lmax parameter and the prioritization criteria should be adapted for each

new network. Thus, we recommend that users that intend to apply our methodology on their own

networks follow a similar approach by using a broad range of lmax. Beyond the configuration of

the lmax parameter, we also recommend tuning a threshold value representing the relative effect

of the drug on the indication, gradually decreasing this value to include additional, potential drug

candidates. In this way, the Python implementation of drug2ways enables users to configure their

experiments contingent upon the particular characteristics of the network (e.g., content and size).

Due to a lack of information on the directionality of protein-disease relations from high-

quality resources, while generating both networks, we inferred association edges from DisGe-

Net [26] as activation edges (see Methods). Such a strong assumption implies that all proteins

have an activation effect on the disease and ignores the possible inhibitory effects some of

these proteins may have. Accordingly, due to this arbitrary inference, we hypothesized that

drug X to an indication Y (i.e., lmax parameter). For instance, the shortest path between the drug and the indication has an lmax of 3 while an lmax of 6 will

capture this and four additional simple paths, two of length 4 and a further two of length 6. Using the all paths version of the algorithm, an additional cyclic path

of length 6 is also captured.

https://doi.org/10.1371/journal.pcbi.1008464.g001

Table 1. Results of the validation experiments. The table presents the validation experiments for each of the four networks (i..e, OpenBioLink, permuted OpenBioLink,

In-House, and permuted In-House) using two variants of the algorithm (i.e., all paths and simple paths) based on two different prioritization criteria (see Methods) as well

as the results yielded when only considering the shortest path between a drug-disease pair. For each experiment, we report the relative number of true positives in the list

of drug-disease pairs prioritized by drug2ways. The proportion of true positives recovered by both variants of drug2ways in the two original networks are significantly

higher than chance level (i.e., 3.19% for OpenBioLink and 3.76% for the In-House network).

Network All Paths Simple Paths Shortest Path

- 7/7 Inhibit 6/7 Inhibit 7/7 Inhibit 6/7 Inhibit -

OpenBioLink 0/0 (%) 2/4 (50%) 0/0 (%) 1/11 (9.09%) 381/5.130 (7.43%)

Permuted OpenBioLink 0/0 (%) 0/0 (0%) 0/0 (0%) 0/0 (0%) 40/5.130 (0.78%)

In-House 20/53 (37.74%) 105/919 (11.43%) 22/54 (40.74%) 106/872 (12.16%) 807/9.537 (8.46%)

Permuted In-House 0/0 (0%) 0/6 (0%) 0/0 (0%) 0/7 (0%) 274/9.537 (2.87%)

https://doi.org/10.1371/journal.pcbi.1008464.t001
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some of the drug-disease pairs predicted as activating may indeed represent the opposite sign

and also represent potential drug candidates. Thus, besides investigating drug-disease pairs

that were consistently inhibited, we were also prompted to investigate pairs that were consis-

tently activated. Confirming our hypothesis, we found that although based on our criteria, rel-

atively few pairs were prioritized, clinically-investigated drug-disease pairs were also highly

represented among the top-ranked active pairs (S3 Table).

In summary, our findings demonstrate the ability of drug2ways to recover a high propor-

tion of clinically-tested drug-disease pairs. Due to our network design, candidate pairs consis-

tently aggregate at both extremes of the distribution regardless of the relative directionality

given by the ensemble of paths. Finally, among the novel drug-disease pairs that have not yet

been tested in clinical trials, we have found multiple combinations reported in the literature,

thus alluding to the potential for many other promising candidates for drug discovery that

could be worth further exploring.

Identifying drug candidates with multiple phenotypic targets

The identification of drugs with several target nodes of interest (i.e., indications/phenotypes)

can lead to more efficacious treatments, albeit their discovery is far more complex and thus

represents a greater challenge than single-target drugs. In practice, this application is highly

relevant as disease conditions can often manifest as sets of phenotypes. While the previous sub-

section demonstrated how our methodology is capable of identifying interesting single target

drug candidates, in this subsection, we demonstrate how a network-based method can identify

drug candidates that optimize multiple disease and phenotypic targets.

Here, we manually selected an indication and associated phenotypes present in both the In-

House and OpenBioLink networks (S4 Table). Fig 2A illustrates the results of running the all

Fig 2. Identification of drugs targeting an indication and several associated phenotypes. The heatmaps summarize the results of running the

all paths version of the drug2ways algorithm over the In-House network for variable path lengths. While the algorithm outputs scores between 0

and 1, where 0 denotes no activation or inhibition and 1 denotes a full activation or inhibition, scores were normalized between the range of -1 to

1. Here, normalized scores of the relative effects of drugs on cystic fibrosis and several of its associated phenotypes are displayed where values

below and above 0 denote the inhibition (blue) and activation (red) of all paths between a drug and target indication/phenotype at a specific lmax,

respectively, whilst 0 denotes a cancelling effect (gray). In a fourth case, no paths exist between the drug and indication/phenotype (white). a)

Hierarchical clustering of normalized scores of the relative effects of all drugs in the In-House network on cystic fibrosis and related phenotypes at

lmax 8. b) Heatmap illustrating a subset of drugs at lmax 4 which distinctly optimize therapeutic effects through inhibition of several disease/

phenotypic targets (e.g., Amiloride, D-methorphan, Losartan), activate the disease and/or its phenotypes (e.g., Dienogest), result in both the

inhibition of some diseases/phenotypes and the activation of others (e.g., Desonide, Ziprasidone, Nimodipine), or do not possess paths to

particular targets (e.g., Testolactone).

https://doi.org/10.1371/journal.pcbi.1008464.g002
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paths version of the drug2ways algorithm over the In-House network at an lmax of 8 for cystic

fibrosis (CF) and seven related phenotypes. The heatmap shows that in selecting larger values

of lmax, the vast majority of drugs (i.e., 626/671 drugs in the In-House network also in Clini-

calTrials.gov) possess paths to each of the targets. We also note that most drugs in the network

affect the indication and the phenotypes in a given direction (e.g., inhibition), while only a

small minority will result in the activation of some phenotypes and/or indication and in the

inhibition of others.

Once again, we altered the value of lmax between 2 and 8 to investigate the relative effects

of drugs yielded with varying path lengths. While beyond lmax 4, we found little variation in

the number of drugs containing paths to at least one target indication/phenotype (ranging

from 602 drugs at lmax 5 to 626 drugs at lmax 8), we found fewer drugs at and below lmax 4
(i.e., 55 at lmax 2, 234 at lmax 3, and 539 at lmax 4). Fig 2B illustrates a subset of drugs at lmax
4 that reverse, increase, cause no effect or have no paths to the indication and/or phenotypes.

Among these drugs, we further investigated losartan, a drug under investigation in clinical tri-

als for CF and studied the proteins implicated in paths of maximum length 4 between this

drug and the disease. These proteins included AGTR1, whose reduced activity by pharmaco-

logical intervention has resulted in improved pulmonary functioning in mice with CF [27],

and TGFB1, reduction of which by losartan has been shown to reverse mucociliary dysfunction

related to inflammation and CF in animal models [28].

Proposing combination therapies

Combination therapies have been gaining major consideration for the treatment of disease and

management of symptoms through the modulation of several targets by multiple drugs. However,

with each additional drug for combination therapy, the task of identifying efficacious combina-

tions by a network-based approach can result in a substantial increase in computational complex-

ity, thus requiring efficient algorithms. Therefore, we were prompted to utilize drug2ways in a

further application to explore the predicted effects of a combination of drugs on a given indica-

tion. We identified drug combinations consisting of pairs of drugs, though would like to note that

our method could be used to identify combinations involving any number of drugs.

We manually selected several cancer types (i.e., breast cancer, colorectal cancer, lung cancer

and melanoma) present in our In-House network to demonstrate an additional application of

drug2ways to predict potential drugs for combination therapy. Similar to the previous two

applications, as an input, we only considered drugs in the In-House network that were also

present in ClinicalTrials.gov and used drug2ways to propose drug combinations at lmax 4. For

each of the four cancer subtypes, we then investigated existing drugs for their management

and identified those that were also present in our network. We then focused on drug combina-

tions that contained these drugs and caused inhibition of the cancer subtype. Table 2 lists a

Table 2. Examples of predicted combination therapies supported by literature evidence on four cancer types. The table reports drug combinations identified by

drug2ways that inhibit each of the various cancer types and supporting literature evidence. These results were obtained by running the all paths version of the algorithm

over the In-House network for lmax 4.

Cancer type Drug 1 Drug 2 Evidence

Breast cancer Palbociclib HCQ [29]

Breast cancer Palbociclib Tamoxifen [30]

Colorectal cancer Palbociclib Trametinib [31]

Lung cancer Dabrafenib Trametinib [32]

Lung cancer Palbociclib Trametinib [33]

Melanoma Mebendazole Trametinib [34]

https://doi.org/10.1371/journal.pcbi.1008464.t002
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subset of drug combinations proposed by our methodology to inhibit specific cancer types and

literature evidence on their potential therapeutic effects.

While, here we have only discussed drug combinations already in clinical trials or with cor-

respondence to the literature, a multitude of combinations identified by our methodology that

could potentially inhibit a disease but have not been reported thus far, represent potentially

efficacious, novel combination therapies. Additionally, while in showcasing this functionality

of our method, we have used all possible combinations of drugs that are both in our network

and in clinical trials, this application can also be performed with a smaller set of drugs to evalu-

ate the effect of particular drug combinations on a given set of diseases and/or phenotypes.

Finally, each of the paths between a drug-disease pair can be defined as a sub-network repre-

senting biological processes and using pathway enrichment methods implemented in drug2-

ways, the mechanism of action of the drug can be elucidated.

Performance comparison and scalability of the algorithm

The applications described above have been conducted on large-scale networks comprising

tens of thousands of nodes and edges, yet the size of biological networks can increase to incor-

porate millions. Therefore, the implementation of the algorithm has been designed to maxi-

mize its performance. Here, we compared drug2ways to the Python NetworkX library [35]

(https://networkx.github.io/" https://networkx.github.io/) and the C++/Python NetworKit

library [36] (https://networkit.github.io/). We compare drug2ways against these two libraries,

as both are widely used and already implement optimized methods for graph traversal and

path retrieval. Both libraries implement a method to obtain all simple paths in a graph with a

maximum path length. Fig 3 illustrates the runtime of each network-method pair in logarith-

mic scale on the y-axis, (i.e. for each network-method pair, the figure shows the time to count

activation and inhibitory paths for each drug-disease pair in the network). As expected, the

runtime is heavily dependent on the maximum path length lmax that we want to analyze. We

added a timecap of 1.000 seconds (i.e. around 16 minutes) to the experiments, which is enough

to show the method’s scalability trendline and its exponential growth, while beyond this

Fig 3. Average time required to calculate the effect of simple paths for all drug-disease pairs used in the validation

on two heterogeneous networks using different lmax. The analysis was also conducted to take paths with repetitions

of vertices between drug-disease pairs into account using the all_paths variant of drug2ways, but not for the NetworkX

and NetworKit libraries which lack equivalent implementations. Nevertheless, the implementations of both libraries

could be easily adapted to return paths with repetitions of vertices. However, without the proper optimizations

described in the Subsection Theoretical background, these would have a higher complexity than their all_simple_paths
counterpart as nodes would be revisited. Therefore, for both libraries we use simple paths as the baseline for the

analysis.

https://doi.org/10.1371/journal.pcbi.1008464.g003
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timeframe, the runtime becomes unreasonably high. All three methods to count simple paths

show a clear exponential growth in runtime. However, while NetworkX and NetworKit can be

run with up to an lmax of 5, drug2ways with simple paths is several orders of magnitude faster

and is able to be run with up to an lmax of 8. The comparison also shows that of the three dif-

ferent methodologies, only drug2ways can be scaled for large values of lmax on both versions

of the algorithm.

The all_paths variant of drug2ways does not show a pronounced exponential increase in

time. However, the all_simple_paths variant shows a pronounced exponential increase in run-

ning time as it is computationally more expensive than all_paths. Here, the two standard

libraries show a rapid exponential increase in time with lmax values as low as 4 while drug2-

ways does not show a marked increase until values of lmax beyond 7.

Taken together, we can see how the all_paths variant can be easily used for any large-scale

network even when values of lmax exceed 20, while the all_simple_paths variant requires both

extensive computational power and time when such high values of lmax are reached. In con-

trast, it is impractical to run experiments on large lmax values using the other two standard

libraries as they have not been optimized for the specific reasoning tasks presented in this

work. Thus, these standard libraries would suffer from a high computation cost in conducting

the applications of this approach (i.e., optimization of several phenotypes and/or an indication

and identification of candidates for combination therapy), and in calculating paths on high

values of lmax. Finally, we would like to note that in order to conduct a fair comparison, the

experiments presented have not been conducted using the parallelization feature of drug2ways.

Thus, we expect that in using this feature for the analysis, the difference in the performance

between drug2ways and the other two libraries would have been even more pronounced.

Discussion

Increasingly, network-based methods are emerging as promising alternatives to traditional

approaches for drug discovery by taking into account causal mechanisms responsible for dis-

ease. Here, we have presented a robust and efficient method that leverages causal interactions in

biological networks to predict drug candidates for a given disease or a set of phenotypes, as well

as pairs of drugs for combination therapy. While previous methods have focused on leveraging

network proximity methods (e.g., shortest paths) between drugs and indications [22,23], drug2-

ways leverages all the paths between a given drug and disease. Although not all paths in a net-

work may be plausible as some paths may be irrelevant or erroneous, we hypothesize that by

reasoning over a multitude of possible paths, we can estimate the relative effect of each drug on

a disease as the average of all possible paths. In doing so, we assume that a drug has a greater

likelihood of modulating a disease as the number of possible paths connecting a drug to a dis-

ease increases. Therefore, exploring all paths in which a drug could modulate a disease or a phe-

notype can serve as a proxy for the prediction of novel drugs. To test our hypothesis, we

systematically predicted the effect of each drug on all diseases in two multimodal networks of

different size and content. Next, we validated our results against clinical trial information show-

ing that our approach could retrieve a large proportion of true positives. Furthermore, with a

second application, we demonstrate the ability of our approach to identify single drugs that can

simultaneously modulate multiple targets to revert a set of phenotypes. Finally, the third appli-

cation shows how a similar strategy can be applied for combination therapy.

Although drug2ways requires multimodal networks that contain causal relations between

drugs, proteins, and indications/phenotypes, it can also be tuned and applied to other net-

works with different properties. For instance, we propose the use of networks comprising non-

molecular nodes, such as biological processes, in cases when molecular information is not
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widely available. Given the exponential increase in computational complexity when using the

algorithm on multiple drugs for combination therapy, we demonstrate this application exclu-

sively on drug pairs. Nonetheless, the high performance of drug2ways, which also allows for

parallelization, enables users to conduct experiments upon millions of combinations in con-

trast to other state-of-the-art network libraries which would require an immense amount of

time and computational resources.

One of the major limitations of this work is the absence of signed causal information

regarding the effect of proteins on indications and phenotypes. To circumvent this issue, we

inferred all protein-indication and protein-phenotype associations as activations, an assump-

tion that may not correspond to the true biology. Thus, due to a lack of such information,

curating and qualifying directionality for these relations could be a future improvement for

drug2ways. Additionally, we would like to acknowledge the possible effects of feedforward

loops on the results, especially as lmax increases. However, the design of our validation has

taken this factor into consideration. Finally, although we validated our results with clinical

trial information and tested the robustness of our approach, by simplifying biology to a net-

work of binary causal relationships, we overlook its quantitative aspects. Therefore, we would

like to note that quantitative measures, such as kinetic rates for reactions, the confidence of the

interaction, and the magnitude of the effect, may provide a more realistic representation and

thus, could be considered in future work by adding these aspects as weights to the edges in a

network. Finally, we also intend to investigate the feasibility of drug2ways to identify drugs

that mimic disease phenotypes and hence, could be potentially employed to generate in vitro
or in vivo models.

In summary, our approach demonstrates that reasoning over multiple causal paths in bio-

logical networks can potentially serve to predict candidates for drug discovery. From a transla-

tional perspective, drug2ways can be used to identify novel drugs and combination therapies

for indications where their mechanisms of action can be well represented in a network. Finally,

we provide a user-friendly Python package that enables conducting the three presented appli-

cations on biological networks in multiple standard formats.

Methods

In the first four subsections, we outline relevant graph theoretical concepts, describe the graph

traversal algorithm presented in the study, delineate its complexity, and provide details on the

implementation of the software. Next, we discuss applications of the algorithm which are illus-

trated in case scenarios and validation experiments. In the final subsection, we provide details

on the hardware used.

Theoretical background

Given that most biological networks display the small-world property in which paths between

pairs of nodes are relatively short, many genes can be in the vicinity of disease-relevant ones

[14]. Accordingly, a simple yet effective approach to identifying potential drug targets is to

consider nodes that are in close proximity to disease genes. However, not all of these nodes

may necessarily be linked to disease genes, but rather, may simply be false positives resulting

from spurious or irrelevant interactions [37]. Furthermore, such an approach can overlook

interesting genes linked to disease-relevant ones by longer, alternative paths. One possible

solution to this problem lies in traversing all possible paths between a pair of nodes to reach

beyond the limits of local, proximity-based approaches. Beyond calculation of all paths

between a drug and disease-related gene, however, a reasoned approach can be used to suggest

how a drug may modulate a disease given the number of paths and types of interactions
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between the two. Essentially, with a causal network containing directed relationships, signed

-1 to indicate inhibition and +1 to indicate activation, we can define the relative effect of each

drug as the proportion of activatory/inhibitory paths from all possible paths between the two

(Fig 1). Nonetheless, with several thousand drugs and diseases, the computational complexity

to traverse all possible paths between each pairwise combination can increase dramatically.

An intuitive solution to determine the relative effect of a drug on an indication would be to

first find the set of all paths between them and then compute the effect on each of these paths.

However, the problem of finding all paths in a network, which we will interchangeably refer to

as a graph, is known to be NP-Hard (i.e., computationally hard), which are the class of prob-

lems in computational complexity that are not solvable in polynomial time. This makes the

problem intractable as with an increasing number of vertices for some types of graphs (e.g.,

fully connected graphs), the total number of paths grows exponentially. However, to solve this

problem we are not required to store the whole sequence of edges forming each path. Instead,

if edges in a path are represented by their effects (i.e., -1 and +1 labels indicating inhibition

and activation, respectively), we can define the combined effect of the path as the product of all

edges it contains, while for the same set of edges regardless of the order they appear in the

graph, the combined effect will always remain the same. This enables a series of optimizations

which allow us to reduce time and space complexity, as explained in detail in the Subsection

Algorithm. If a graph contains cycles (i.e., feedback loops), an infinite number of possible paths

can be found by repeating the sequence of edges containing the cycle (Fig 1B). However, an

increasing number of possible edges can also lead to an exponential increase in the number of

paths, most of which may not be biologically plausible and result in the true biological effect

becoming lost. We thus consider paths only up to a maximum length to limit the influence of

cycles and highly elongated paths whilst still capturing feedback loops (Fig 1C).

We first define a series of terms that will be used throughout this section to provide a formal

definition of the problem. Given an unweighted directed graph G = (V, E), V is the set of verti-

ces (interchangeably nodes) and E is the set of edges in the graph. A path is defined as a

sequence of edges (e1,e2,. . .,ek) that joins a sequence of vertices (v1,v2,. . .,vk+1) in a graph, for

1�k�|E| such that ei = {vi,vi+1}, for 1�i�k, where k is the number of edges and the length of the

path. Consequently, we denote a path between a source node s and a target node t as ps,t, for s,
t2V i.e. for the set of nodes (v1,v2,. . .,vk+1) joined by the path, s = v1 and t = vk+1, while nodes vi,
for 1�i�k+1 are intermediate nodes (see Table 3 for key definitions). Similarly, a cyclic path is a

path when the first and last vertices it joins are the same, while a simple path is a path where all

vertices are distinct. Furthermore, any edge e2E in G represents a relationship between the pair

of nodes it connects and it is labeled +1 or -1 depending on whether it is an activatory or an

inhibitory relationship, respectively. Following, the effect that a node s2V has on node t2V over

a given path ps,t is computed as effectðps;tÞ ¼
Qk

i¼1
ei; 8e 2 ps;t , where ei2{−1, +1} and is the label

Table 3. Definitions of terms used in this paper.

Term Definition

Simple path A path in which all vertices are distinct (and therefore, all edges).

Cyclic path A path in which repetition of vertices occurs.

All paths The set of all paths, including those which contain cycles.

Intermediate

node

Any node v in a path between two nodes u, t, s.t. v =2 {u, t}.

Path length The number of edges in a path between a source node and a target node.

lmax The maximum length of the paths between a source and target node. In other words, for any

given lmax, only paths with a length less than or equal to lmax are considered.

https://doi.org/10.1371/journal.pcbi.1008464.t003
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of the ith edge in the path. A path ps,t is said to be an activatory path if its effect is equal to +1.

Analogously, the path is said to be an inhibitory path if its effect is equal to -1.

Before defining the problem, we would like to remark that ps,t does not necessarily repre-

sent a singular path; as s and t might be connected by multiple sets of edges and different sets

of edges may yield different effects between the nodes, a path is uniquely identified if its entire

sequence of edges is unique. Furthermore, we would also like to remark that once the effect of

a path is computed, we are no longer interested in the set of edges and intermediate nodes of a

given path. Therefore, for simplicity, we define Ps,t as the set of all paths between s and t. Simi-

larly, As,t denotes the set of all activatory paths between s and t and Is,t the set of all inhibitory

paths between s and t.
Finally, we define the problem as follows: given an unweighted directed graph G = (V,E), a

subset of vertices D�V, representing drugs, and a subset T�V, representing target phenotypes,

we are interested in finding the relative effect of a node s over a node t dk s; tð Þ ¼ j�s;t j

jPs;t j
, for s2D,

t2T and 1�k�|E|, where �s,t is equal to As,t or Is,t, depending on the effect we are interested in.

For instance, if we want to investigate whether a drug could reverse a phenotype, we would

compute the proportion of inhibitory paths over all paths of length less than or equal to k
between the pair of nodes.

Algorithm

From the previous definition of relative effect, (e.g., dk s; tð Þ ¼ jIs;t j
jPs;t j

for the relative inhibition),

its computation requires that activatory and inhibitory paths between nodes s and t are

counted independently. The number of paths from s to t with length less than or equal to k can

be defined as the sequence shown in Eq 1. From the equation, it is intuitive to think of a recur-

sive implementation to traverse the graph using a modified version of the DFS (Depth First

Search) algorithm. This definition yields the foundations for an intuitive yet optimized algo-

rithm by means of dynamic programming and memoization.

allpathsðs; t; kÞ ¼ f1 if s ¼ t; otherwise
P

path sðu; t; k � 1Þ8u 2 neighborsðsÞg Eq 1

Dynamic programming is a method for solving a complex problem by breaking it down

into simpler problems whose solutions are part of the former’s solution. From Eq 1, we can

easily extract that the problem of finding the number of paths from s to t can be broken down

to finding the number of paths from all neighbors of s to t, with maximum length of k-1. Once

a solution for all_paths(u, t, k) is found, for any u2V, it is stored and used whenever it is a sub-

problem to be solved again. This optimization technique is called memoization and is what

guarantees that a node is never revisited with the same length k.

We have implemented two variants of drug2ways to calculate the relative effect of a pair of

nodes, namely all_paths and all_simple_paths (detailed explanation and pseudocode in the S1

Text). The former considers all paths between two nodes in the graph, i.e. including cyclic
paths, while the latter considers only simple paths (Table 3). This differentiation is important

because all_simple_paths adds the restriction that cycles must be avoided and with it comes a

higher complexity of the algorithm, as some nodes might be revisited. In order to evaluate the

scalability of our methodology with respect to comparable methods for graph traversal, in the

Subsection Performance comparison and scalability of the algorithm, we analyzed the perfor-

mance of two variants of drug2ways (i.e., all_paths and all_simple_paths) to obtain the number

of activating and inhibiting paths between pairs of nodes. We then compared the performance

of drug2ways against two equivalent path-finding methods implemented in two state-of-the-

art network libraries.
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Complexity

Both variants of drugs2ways (i.e. all_paths and all_simple_paths) traverse the graph visiting

nodes recursively in DFS order with a maximum path length k. However, as previously stated,

reasoning over all paths versus only simple paths are two different problems with disparate

computational complexities. In the first variant of drug2ways (i.e., all_paths), once a node is

visited, it is never revisited for a path length less than or equal to k, as the intermediate result

stored in the cache is enough to guarantee a valid solution (S1 Text: Algorithm 1). In the worst

case, a node is visited lmax times, with lmax being the maximum path length when the algo-

rithm starts. Therefore, all_paths has a complexity of O(lmax × |V|). As for space, the cache

stores two integer values (activatory and inhibitory paths are counted separately) for each pair

of nodes u, t for u 2 TC�Vand t 2 T�V and for each length k 1�k�|E|, for which a node has

been visited. This translates to an upper bound in space of
jVj2

4
. Thus, the algorithm has a space

complexity of O(|V|2). Nevertheless, we would like to note that for biological graphs and the

applications of the algorithm we devised, it is rarely the case that every target node in the

graph is explored. As a consequence, the complexity is lower on the average case, as the num-

ber of target nodes is usually a small subset of V and the number of targets to explore is in the

order of units. On the other hand, the second variant of drug2ways (i.e., all_simple_paths)
revisits a node every time a cycle is detected (S1 Text: Algorithm 2). This increases the com-

plexity to O(|V|lmax) in the worst case. However, the average case is still several orders of mag-

nitude faster than other standard algorithms, as discussed in the Subsection Performance
comparison and scalability of the algorithm.

Software and implementation

To facilitate the usage of the algorithm presented in the previous section, we implemented it in

a Python package called drug2ways. The package leverages state-of-the-art Python packages

such as NetworkX for network analysis [35], MPI for parallelization (https://mpi4py.

readthedocs.io/), and click for exposing the command line interface (CLI) (https://click.

palletsprojects.com). Drug2ways allows users to use the algorithm on a variety of standard net-

work formats (e.g., GraphML, Node-Link, and EdgeList) and is powered by a CLI, following

the standard proposed by [38]. The CLI offers all the case scenarios for proposing drug candi-

dates that are presented in the results section.

The Python package is available at https://github.com/drug2ways/drug2ways, its latest doc-

umentation can be found at https://drug2ways.readthedocs.io and its distributions can be

found on PyPI at https://pypi.org/project/drug2ways. Finally, the scripts for generating the fig-

ures in this manuscript are included in Jupyter notebooks at https://github.com/drug2ways/

results.

Case scenarios

Networks. To demonstrate the above-mentioned applications, we used two different mul-

timodal networks of varying size and content (Fig 4). Although each of the two networks con-

tain unique interactions depending on the source databases they include, both the networks

incorporate the following types of relations: drug-protein, protein–protein, protein–indica-

tion, and protein–phenotype. Minimally, we required each of these relationships as they simu-

late the binding of a drug to a target (i.e., drug-protein relation), the triggering of a cascade of

events (i.e., a set of protein-protein interactions), and an effect on an indication or a pheno-

typic observation (i.e., protein-phenotype/indication associations), respectively. Notably, while

all relationships maintained their original directionality from their source database, protein-
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phenotype and protein-indication associations lacked explicit causal information and were

thus inferred as activation relationships. Details about the types of each interaction are pro-

vided in S1 and S2 Tables. Below, we describe each of the two networks used.

The first network, OpenBioLink, is a large-scale KG generated from an integrative effort

designed to establish a benchmark dataset for link prediction [39]. The second is an In-House

network that is comprised of tens of thousands of interactions from eight databases that we

have harmonized for this work including PathMe [40–43], BioGrid [44], IntAct [45], and

PathwayCommons [46] for protein-protein relations, DrugBank [47] for drug-protein rela-

tions, and DisGeNet [26] for protein-indication interactions. In addition to these eight data-

bases, protein-phenotype relationships were sourced from the OpenBioLink KG.

Validation experiments. In the first of three validation experiments, we ran the algorithm

on two versions (all paths vs simple paths) of each of the networks over a wide range of lmax.

We selected 2 as the minimum lmax as we require at least one intermediate target node

between a drug and an indication. In choosing 2 as the lower bound, we incorporate the short-

est possible path between a drug and an indication. However, our approach was focused more

heavily on elaborate paths as a means to exploit a greater degree of complexity in biological

networks. Accordingly, we set 8 as an upper bound for lmax such that longer paths connecting

a target and a disease could also be explored. Above this range, the score, defined as the pro-

portion of activatory/inhibitory paths (i.e., activation/inhibition ratio) tends to converge as the

effect of a drug appears to cancel itself out through several, contradictory interactions (S2 Text

and S1 Appendix). This event is altogether unsurprising and could be partially explained by

interactions that may not be biologically plausible and through the exploration of distant

nodes. Thus, users that intend to use our methodology on a different network should first

study the distribution of scores as lmax increases, prior to determining an optimal lmax range.

The reason is that an optimal lmax range can vary depending on the characteristics of a net-

work (e.g., size, number of activation versus inhibition interactions, average number of con-

nections, etc). Finally, we would also like to mention that a significant increase in

computational time would be required for the algorithm to run for larger values of lmax as the

number of paths with an lmax of 8 exceeds several millions for numerous drug-disease pairs

(see Subsection Performance comparison and scalability of the algorithm).

Fig 4. Distribution of node types and relationships in the In-House and OpenBioLink networks. a) The OpenBiolink KG contains a greater proportion of

PubChem drugs relative to the In-House network which solely contains drugs from DrugBank. While the number of proteins in each of the two networks is

comparable, indications are more numerous in the In-House network with respect to the OpenBioLink KG. Phenotypes for the In-House network were sourced

from OpenBioLink, and as such, are equivalent in number. b) The total number of drug-protein interactions is greater in the OpenBioLink network than in our In-

House. A greater proportion of protein-protein interactions are present in the In-House network, as are the number of protein-indication edges while the number of

protein-phenotype interactions are nearly equivalent.

https://doi.org/10.1371/journal.pcbi.1008464.g004
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In the second experiment, we sought to validate drugs which could be effective against a

given disease by incorporating clinical trial information in line with similar recent validation

approaches in the literature [48,49]. As clinical trial investigations evaluate the effects of drug

interventions for various indications, drug-disease pairs from ClinicalTrials.gov were used as

the ground-truth list of positive labels. In total, 59.798 unique drug-disease pairs were

extracted from the ClinicalTrials.gov website on 16-04-2020. Since our approach will only find

paths between pairs when both the drug and disease are present in the network, only those

pairs from Clinicaltrials.gov that could map to OpenBioLink and the In-House network were

used as positive labels (Table 4). Thus, the original list of 59.798 unique drug-disease pairs was

reduced according to the number of pairs that could be mapped to each network (i.e., 5.151

for OpenBioLink, and 9.537 for the In-House network). To conduct the validation experi-

ments, we ran drug2ways using the drugs (source nodes) and the diseases (target nodes) pres-

ent in these two filtered lists of positive labels, corresponding to a total of 161.040 possible

pairs for OpenBioLink and 253.638 for the In-House network (Table 4).

Our approach exhibits the so-called early retrieval problem, or in other words, from the

thousands of possible combinations of drug-disease pairs, only the top-ranked pairs contain

interesting candidates for drug discovery. For such classification tasks, conventional metrics

such as receiver operating characteristic (ROC) curves (i.e.. AUC-ROC and AUC-PR) become

inadequate [50] This is because a classifier may accurately predict positive cases in the top-

ranked pairs, but have a low predictive performance in the remaining cases that are not partic-

ularly interesting for drug discovery, leading to Area Under the Curve (AUC) values close to

0.5. For example, imagine a scenario in which 150.000 combinations of drug-disease pairs are

possible in the OpenBioLink network, and of these, 5.000 are positive labels (i.e., 3%). From all

possible combinations, if we consider the top 100 pairs prioritized by drug2ways and of these,

50 (i.e., 50%) are true positives, then drug2ways has captured a significantly greater number of

true positives (50%) than what is expected by chance (3%). However, depending on the rank-

ing of these pairs, it is possible to obtain a low AUC-ROC if the true positives are fairly distrib-

uted across this list of 100 pairs. Furthermore, some of these prioritized pairs may represent

potential drug-disease pairs that have not been investigated before. Finally, we would like to

note that only 3% of drug-disease pairs are positive labels in both networks; thus, implying a

significant imbalance of class labels (Table 4). In light of these shortcomings, we have evaluated

drug2ways using the AUC-ROC as a metric, yielding an AUC value of approximately 0.65 for

both networks and versions of the algorithm (S3 and S4 Figs). Nonetheless, we also present a

validation based on the ratio of true positives that appear in the top-ranked drug-disease pairs

in order to evaluate the top-ranked set of pairs prioritized by drug2ways. Subsequently, we pri-

oritized these pairs if they fulfilled the prioritization criteria as follows (see examples in

Table 5):

1. High inhibition. Since we are interested in identifying drugs that inhibit a particular indi-

cation, for a pair to be prioritized, we required that at least 75% of the paths between the

pair must be predicted to inhibit the indication. As we empirically selected this value, we

also studied the effect of this parameter on the performance of drug2ways in the S5 and S6

Tables.

Table 4. Clinical trial information mapped to the OpenBioLink and In-House networks for drug2ways validation. The procedure to extract the information from

ClinicalTrials.gov and the corresponding lists of drugs and diseases are available at https://github.com/drug2ways/results/tree/master/validation.

Network Drug-Disease Pairs from ClinicalTrials.gov Unique Drugs Unique Diseases Possible Combinations

OpenBioLink 5.151 610 264 161.040

In-House Network 9.537 671 378 253.638

https://doi.org/10.1371/journal.pcbi.1008464.t004
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2. Consistent inhibition. The second criteria aimed at testing the stability of the predicted

effect for a given pair independent of changes to lmax. Accordingly, we only consider pairs

where the previous criteria (i.e., more than 75% of the paths inhibit the disease) is main-

tained through the lmax range used (i.e., from 2 to 8).

3. Increasing number of paths. With each incremental increase in lmax, the number of paths

must also increase such that novel paths are reported at every step of lmax.

As a third and final validation, we compared the two prioritized lists for each network

against random lists generated by permuted versions of the original networks that were created

using the XSwap algorithm [51]. By using this algorithm, we ensured that the permuted ver-

sions preserved the original structure of the original network (i.e., each node has the same

number of in- and out-edges) as well as maintained the same number of activation and inhibi-

tion edges.

Hardware

Computations for each of the tasks were performed on a symmetric multiprocessing (SMP)

node with four Intel Xeon Platinum 8160 processors per node with 24 cores/48 threads each

(96 cores/192 threads per node in total) and 2.1GHz base / 3.7 GHz Turbo Frequency with

1536GB/1.5TB RAM (DDR4 ECC Reg). The network was 100GBit/s Intel OmniPath, storage

was 2x Intel P4600 1.6TB U.2 PCIe NVMe for local intermediate data and BeeGFS parallel file

system for Home directories.

Supporting information

S1 Fig. Frequencies of the lengths of the shortest-paths calculated between all drug-disease

pairs with lmax < = 8 in the OpenBiolink and In-House networks.

(DOCX)

S2 Fig. Distribution of total paths between all drug-disease pairs in the OpenBiolink and

In-House networks with lmax = 8.

(DOCX)

S3 Fig. The AUROC curves for both networks presented in the case scenario using the all

paths version of drug2ways.

(DOCX)

S4 Fig. The AUROC curves for both networks presented in the case scenario using the sim-

ple paths version of drug2ways.

(DOCX)

Table 5. Illustration of the prioritization with three example pairs (i.e., A, B, and C). For each lmax, the number and percentage of inhibitory paths is shown. While all

three pairs show a similar pattern, pair B has less than 70% of inhibitory paths for lmax = 3 (i.e., Criterion 2) while for pair C, an increase in the number of paths from

lmax = 2 to lmax = 3 does not occur (i.e., Criterion 3). Finally, pair A fulfills all three criteria and can thus be categorized as a prioritized pair.

Pair lmax Prioritize

- 2 3 4 5 6 7 8 -

A 1 (80%) 4 (90%) 20 (100%) 50 (100%) 100 (80%) 400 (90%) 1.000 (80%) Yes

B 1 (80%) 4 (70%) 20 (100%) 50 (100%) 100 (80%) 400 (90%) 1.000 (80%) No

C 1 (80%) 1 (90%) 20 (100%) 50 (100%) 100 (80%) 400 (90%) 1.000 (80%) No

https://doi.org/10.1371/journal.pcbi.1008464.t005

PLOS COMPUTATIONAL BIOLOGY Drug2ways: Reasoning over causal paths in biological networks for drug discovery

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008464 December 2, 2020 17 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008464.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008464.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008464.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008464.s004
https://doi.org/10.1371/journal.pcbi.1008464.t005
https://doi.org/10.1371/journal.pcbi.1008464


S1 Table. Relationships in the In-House network and their assigned polarity.

(DOCX)

S2 Table. Relationships in OpenBioLink and their assigned polarity.

(DOCX)

S3 Table. Results of the validation experiments focusing on prioritized drugs that activate

an indication.

(DOCX)

S4 Table. Phenotypes associated with cystic fibrosis of pancreas, the indication investi-

gated in the Subsection Identifying drug candidates with multiple phenotypic targets.
(DOCX)

S5 Table. Effect of the percentage of inhibitory paths on the number of true positives (6/7

lmax inhibit).

(DOCX)

S6 Table. Effect of the percentage of inhibitory paths on the number of true positives (7/7

lmax inhibit).

(DOCX)

S1 Appendix. “score_distributions.zip”. Distribution of the scores for each lmax value on

both networks

(ZIP)

S1 Text. Algorithm.

(DOCX)

S2 Text. Comparing distribution scores between the original and permuted networks.

(DOCX)
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