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Summary

Design optimization has already become an important tool in industry. The benefits are clear, but several drawbacks
are still present, being the main one the computational cost. The numerical simulation involved in the solution of each
evaluation is usually costly, but time and computational resources are limited. Computational resources can be easily
increased because, nowadays, its cost is rapidly decreasing. Anyway, there is always an upper limit due to financial
constraints. On the other hand, time is key in industry. Lead time must be reduced to ensure competitiveness. It means
the design stage has a reduced time slot. In addition, industrial problems are multi-objective and multi-disciplinary,
which increases the cost and the complexity. The present communication is focused on describing a practical application
developed together with a wind energy company, who aimed to optimize the design of a Tuned Mass Damper. It is a
structural device installed within the tower of a wind turbine aimed to stabilize the oscillations and reduce the tensions
and the fatigue loads. The paper describes the decision process to define the optimization problem, as well as the issues
and solutions applied to deal with a huge computational cost, with a multi-objective and multi-disciplinary environment
including some gaps in the definition of specific points. Focusing on the optimization methodology, the communication
will describe the application of RMOP, CIMNE’s in-house optimization platform in comparison of the company’s
in-house optimization platform.

Keywords: RMOP, Genetic Algorithms, optimization platform, Wind Energy, Wind Turbine design, tuned mass damper.
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1 Introduction

During the last few decades the Wind Energy industry
has grown fast and engineers have designed wind turbines
of increasing size, while seeking lower values of cost of
energy (CoE). The sector started its industrialization in
the late seventies and eighties and soon scaled the initial
50kW, @15m rotors to 600kW, ©50m in the nineties,
3MW, ©100m in the 2000s and currently reaching SMW,
©150m."2  Alongside the said rotor upscale, the most
convenient onshore sites were taken up and modern Wind
Farm developers and contractors started exploring more
remote sites. Finally, during the last decade, offshore
wind resources reached competitive figures of CoE in
the North Sea and some smaller sites around the world.
The higher and more steady offshore winds at shallow
waters allowed for taking advantage of bigger rotors of an
already mature technology. Offshore wind turbines present,
nevertheless, particularly complex challenges in the domain
of the structure dynamics additionally to the already severe
wind loading. These heavy, slender structures, built on
uneven seabed, have low natural frequencies that fall well
within the excitation range of wave loads. In order to damp
oscillations out and therefore reduce stress in the structure,
some sort of absorbers are sometimes used, allowing for
significant overall cost reductions. An especially interesting
kind of absorber is the so called Tuned Mass Damper
(TMD), composed of a massive oscillator tuned at the
target frequency and a damper system to remove the
energy from the resonator. The effectiveness of TMDs
highly depends on its location and mass but it may have
limitations due to integration issues. The present paper
describes the optimization strategy and outcomes of a
pre-design study of an industrial 6MW class offshore wind
turbine structure equipped with a TMD tuned at the first
bending moment of the tower with a view to reduce overall
structure weight and reach more competitive CoE figures.
The focus is put on the strategies followed to overcome
the extremely high computational time. It is directly
related to the huge number of simulations accounted
for the fatigue analysis for a big number of individuals
dealt in a multi-objective genetic algorithms optimization
scheme. The comparison of several available tools is
presented. The first of them was the company’s in-house
optimization suite which includes gradient-based methods,
plus a generic evolutionary algorithms implementation,
based on NSGA-II,>4 and SPEA2.57 The second tool
was RMOP, CIMNE’s in-house optimization platform,
which implements genetic algorithm with Nash and Hybrid
games.®!'”  The implementation of the GA algorithm in
RMOP is quite standard. It was initially inspired on
NSGALII, implementing additional functionality not only
from the point of view of the evolutionary techniques,
but also from the point of view of usability and user
interface and the set-up of the internal parameters. To
mention some of the implementations, standard techniques
like SBX (Simulated Binary Cross-over) or tournament

selection, were jointly added with I/O techniques and
libraries to manage the definition of each individual
evaluation. The key point in RMOP is the implementation
of Game strategies, more specifically Nash Games, to
enhance the convergence and accuracy of the solution. This
implementation leads to an hybrid definition; the Pareto
optimality criteria is enriched with the information from the
Nash players, so the optimization analysis benefits from the
two of them Pareto and Nash.

2 Selection of optimization strategy

There are different optimization algorithms available in the
company’s in-house suite. In order to choose the most
effective one, a comparison is conducted. This task is
motivated due to the preliminary results obtained during
the initial tests and discussion with company’s engineers,
which suggested that there are significant differences
between different Multi-Objective Genetic Algorithms
(MOGA) implemented within the suite, as well as the initial
reservations against RMOP. The comparison is performed
using mathematical test cases commonly used for this
purposes. The advantages of using these cases, among
others, are that are easily implemented, fast to evaluate
and designed for this purpose. A preliminary TMD
test case is also presented. It corresponds to a very
simplified representation of the TMD, but the main aim
when analyzing this particular test case is to anticipate
potential issues both from the implementation viewpoint
and from the results viewpoint. The studied MOGAs are
the 3 available in the suite, plus RMOP:

e Evolution: it is a generic implementation of an
evolutionary algorithm. It is quite a simple
implementation with a limited control over the setup
parameters of the algorithm.

o NSGA2: it is a well known algorithms developed by
Prof. Deb.!® Its applicability and high performance
have been documented widely.

e SPEA2: it is a well known evolutionary algorithm
developed by Zitzler.?

o RMOP: Genetic algorithms with game theory. It is
an in-house CIMNE development which combines
some basic evolutionary algorithms strategies with
Nash games for improved convergence and accuracy.
It is possible thanks to the combination of Pareto
optimality criteria with Nash Games as previously
described.

The selected test cases are:

o KUR; a mathematical test case with 3 design variables
and 2 objective functions. Its complexity comes from
the definition of the functions.

o TNK mathematical test case with 2 design variables, 2
objective functions and 2 constraints, it is a first step
into a restricted search space.
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e CPT3 mathematical test case with 2 design variables,
2 objective functions and 1 constraint, its complexity
is a combination between the objective functions and
the restricted search space.

e OSY mathematical test case with 6 design variables, 2
objective functions and 6 constraints, which defines a
very restricted search space.

e ZDT2; a mathematical test case with 30 design
variables and 2 objective functions. Part of
its complexity comes from the number of design
variables.

e [.Z09-F1 mathematical test case with 1 objective
function and a variable number of design variables.
This characteristics makes it interesting for constantly
increase the problem complexity.

e TMD test case, a  multi-objective  and
multi-disciplinary structural problem based on
the real-world case of designing a wind turbine.

For more details about the mathematical test cases, please
refer to* 1821

2.1 Comparison of the Mathematical test cases results

For a fair comparison, a common set-up were defined for
all the algorithms and all the mathematical test cases. This
common set-up defines a population size equal to 4 times
the number of design variables, and a number of maximum
evaluations equal to hundred times the population size.
The crossover probability was defined equal to 0.9 and the
mutation probability equal to 0.1. Figure 1 to 6 show a
comparison between the results obtained by each algorithm.
Figures 1, 3 and 5 show the convergence history of the
objective functions for each test case. In all the three cases,
RMOP and NSGA?2? are the ones converging the faster and
lower. On the other hand, figures 2, 4 and 6 show the Pareto
fronts for each of the three cases. It is clear that the number
of evaluations is not enough to fully capture the front shapes
with enough accuracy, but, due to the fact that the aim of the
analysis was to detect which algorithms performs the better
with a restricted number of evaluations, then the objective
was fully fulfilled.

In an overall performance analysis of the results, RMOP
presents a better average performance. Evolution algorithm
shows poor performance in all tests done, both in the
convergence of the fitness functions and in the capture of
the Pareto Front. NSGA2 shows results compatible with
RMOP results in most of the problems and in most of
the Pareto front regions. However, RMOP better captures
the Pareto Front in all the cases. SPEA2 shows results
compatible with RMOP results in some of the problems
and in most of the Pareto front regions. The general
performance is lower than RMOP. In some test cases
(TNK and OSY mainly), Pareto front regions are not
well populated when using NSGA2 and SPEA2. 1t is
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Figure 1: KUR test case convergence
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Figure 2: KUR Pareto Front

clear that this phenomena is a direct consequence of the
imposed limitation on the number of evaluations and the
size of the population. It was an expected drawback which
was accepted for the sake of saving time. In case the
company’s proprietary software would be a requirement,
NSGA2 method should be the most appropriate selection.
In case company’s software can be coupled with the RMOP
optimization algorithm, then this configuration is the best
choice.

3 Industrial application: TMD Optimization

The industrial application is based on a real case, a set
of wind turbine, nacelle, tower and mono-pile which the
company is designing and manufacturing for an Atlantic
offshore site. The addition of a TMD is under study.
The wind turbine design including rotor, nacelle and tower
is fixed, so the analysis will not modify any of their
parameters. The main aims of the work is to optimize the
mono-pile and the TMD. Two are the principal objective
functions; the first of them is the structural performance of
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Figure 4: OSY test case Pareto Front

the structure when using or not the TMD, and according
to the mass and dumping parameters, while the second one
is the overall cost including the mono-pile and the TMD.
The performance is split into three objective functions
representing the behavior under ultimate and fatigue loads.
To define the performance function, the objective functions
that reflect performance in Ultimate and Fatigue loads must
be defined:
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Figure 5: TNK test case convergence
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Figure 6: TNK test case Pareto Front
o FOprs_g: side-to-side FLS performance objective
function,

e FOyrs: fore-aft FLS performance objective function,
e M, ;: moment in fore-aft direction at point i,

e M, ;: moment in side-to-side direction at point i,

® M, ;: modulus of resultant moment

Where i represents the points: 1 for the Tower bottom, 2
for the Tower lower intermediate, 3 for the Tower upper
intermediate, and 4 for the Tower top. Variables w¥ and w!’
are weights to take into account the more relevance of the
moments when closer to the bottom of the tower:

U 1

w: = -

WII: B Hial (2)
i T 1+di

Parameters a and a’ are chosen according to structural
criteria. For this case, in order to obtain a linear cost
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function and under agreement with the engineers of the
company, they are chosen constants and equal to 0.1.
Finally, objective functions in Ultimate and Fatigue results
in:

Mt oMb, oMES ME
FOrrs—pa = 1p1+II;Jrl)nger;‘
FOFLS—SS = 1U1 + 1%/'1' 13 + 1V44 (3)
M
FOurs = <t + 1”22"‘ 1x§3+ wa

The functions will be minimized in order to maximize the
performance of the system.

The cost is the main objective function, because
the benefits of the company is directly related to the
manufacturing and installation cost (CAPEX cost) of the
TMD. It can be calculated according a complete cost
function, or just considering the cost of the TMD (its mass
as the main contributor to the cost).

74600 + 1.415 - TMDmass+
4117004 29000i fTMDmaxEx < 0.5
74600+ 1.415 - TMDmass+

444000 - TMDmaxEx + 11700+
+29000i fTMDmaxEx > 0.5

FOcosr =

“)

Due to the cost of computing a single individual, several
strategies have been implemented to reduce the overall
computational cost. These strategies include on one hand
stopping the calculation if the individual is not fulfilling
the restrictions, and on the other hand a careful selection
of the load cases to be calculated, just to mention two
of them. Although applying these simplifications, the
evaluation work flow is quite complex involving several
solvers and checkpoints.

Three different models based on three different loads’
computation approaches have been studied. Based on
accuracy reasons and on the possibility of customization
of the tool, a FE based flexible Multibody model of a
wind turbine, substructure and tuned mass damper built in
SAMCEF was considered in the first place. This option
was early discarded for the full optimization procedure
due to the high CPU times, which were unfordable when
considering the industrial cost limitation. This limitation is
related, amongst others, to the limited number of software
licenses available, which is not a technical issue, but
an industrial issue. From the technical point of view,
the license issue was limiting the parallelization of the
individual evaluations. Its use was reduced to periodic
verification purposes only. GH Bladed was chosen as an
alternative. The CPU time per thread is similar to that
of SAMCEF but the available licenses at the company
allowed for multiple simulations running in parallel in
different threads, which significantly speed up the overall
optimization procedure. While SAMCEEF is a FE solver
that features mechanism modeling,>> Bladed is a Wind
Turbine dedicated multi-body simulation (MBS) software
that models mechanisms with kinematic laws and features

elasticity by modal condensation of its main structures.”

This approach has an impact on accuracy of the results,
mostly due to poor modeling of TMD nonlinear region,
that is overcome with periodic verification with a higher
standard approach. A third option is finally considered
which stretches the latter approach. An ad-hoc solver
is developed to compute loads of a simplified model of
WT, substructure and nonlinear TMD. While the motion
of the TMD remains in the linear region a fast and
exact recursive closed form solution is used”* and it
swaps to Newton family solvers, HHT, when nonlinearities
must be accounted for. This approach totally solves the
problem of threads used in parallel and the CPU cost
per load case is significantly reduced. The use of the
SAMCEF model for verification guarantees accuracy of
overall procedure. Finally, the selected procedure was a
mix between the use of Bladed and the ad-hoc solver, which
was implemented within MATLAB. Bladed was used to
perform a Campbel analysis of the individual, which first
determine its feasibility, and early discard those leading to
a poor design.

N
%
i
$9
%

Figure 7: Evaluation workflow

Figure 7 describes the individual evaluation workflow.
Step by step can be described as:

1. START: Start node for the individual evaluation.

2. getTempDir: Scripting Process (Java). Sets the
local variable TempDir with the path of the current
evaluation folder. It changes for each individual
evaluation of the optimization.

3. Init: Scripting Process (Python). Sets initial values for
several variables. The relation of initiated variables.

4. Copy Essential Files: File Copy Process. Copy the
files needed for the evaluation to the temporary folder,
which must be located in the optimization directory:
(a) Excel file (DLCs.xlsx) containing the dynamic
load cases to evaluated. (b) Bladed Campbel model
file (DTBLADED.MODEL). (¢) Binary Matlab file
containing information about the files and folders
name (Names.mat).

5. Eval.DVs: File Creation Process. Creates a file
containing the value of each design variable. The file
format is ASCII with one line containing:TMDmass,
TMDfreq, TMDdamp, TMDnode

6. subsBladedFile: Execution Process. Runs executable
file subsBladedInFile.exe. It combines the files
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10.

11.

12.

13.

14.

15.

16.

17.

DTBLADED.MODEL with Eval.DVs to generate
DTBLADED.IN.

Dir BladedRun: Directory Creation Process. Creates
the directory BladedRun inside the TempDir directory
so Bladed can run in it.

Dtbladed.exe: Execution Process. Runs executable file
dtbladed.exe to perform the Campbel analysis. The
call does not take parameters, it is: BladedFolder
dtbladed.exe

. evalBladedCampbel: Scripting Process

(Python). Reads Campbel results from file
BladedRun/modalResultsFileName and evaluates
the 3P dynamic criteria. It also sets the Penalty output
variable to 1 if the file does not exist or to 2 if the
dynamic criteria is not met.

Cond evalBladedCampbel: Condition. Decision point
that checks if the evaluation of the Campbel analysis
is satisfactory (ValEvalBladedCampbel == 0) and
the runs the node evalMatlab.exe or it skips further
evaluations and goes directly to the node Delete
TempDir.

evalMatlab.exe: Execution Process. Runs
evalMatlab.exe. It calculates the dynamic load cases
transformation for the current TMD, the performance
objective functions, among others. Call is:
ToolsFolder/evalMatlab.exe TMDmaxExcursionRestr
ApplyExcursionBreak

Read Constraint: Parameter Reader. Reads
Eval.constraint  file  previously  written by
evalMatlab.exe which contains the value of
TMDExcursionRestr.

Calc TMDmaxExcursion: Calculator Process.
Calculates the value of the maximum escursion:
TMDmaxExcursion= TMDmaxExcursionRestr —
TMDExcursionRestr

Eval TMDmaxExcursionRestr. Condition. Decision
point for maximum excursion criteria.

Read Performance FOs: Parameter Reader. Reads
Eval.2to4 individual file which contains the values of
the objective functions from 2 to 4. The file format
is ASCII with one line containing: FO_(FLS-fa),
FO_(FLS-ss), FO_ULS

TMD cost FO calc: Scripting Process (Python).
Calculates TMD cost objective function. See [1] for
details on the function.

ErasePenalty: Calculator Process. Sets local variable
Penalty value to 0, indicating that the evaluation is
correct and have not been applied any penalty during
the process.

18. Delete TempDir: Scripting Process (Python). If the
evaluation has been launched from an optimization
process deletes TempDir folder, if it has been launched
for a single evaluation it does not erase the TempDir.

19. FINISH: Finish node for the individual evaluation.
MarcaPenalty3: Calculator Process.  Sets local
variable Penalty value to 3, indicating that the
evaluation has been stopped during the maximum
excursion check.

20. MarcaPenalty3: Calculator Process.  Sets local
variable Penalty value to 3, indicating that the
evaluation has been stopped during the maximum
excursion check.
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Figure 8: Cost objective function convergence
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Figure 9: Fatigue loads (front-aft) objective function
convergence

An initial definition of the optimization problem had 8
design variables, 4 to define the basic substructure geometry
and 4 to define the TMD characteristics. The variation of
substructure geometry has a direct impact on the driving
substructure cost and on the dynamic behavior of the whole
system. The variation of the TMD characteristics contribute
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Figure 10: Fatigue loads (side to side) convergence
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Figure 11: Ultimate loads objective function convergence

for each individual to reduce the dynamic response and has
a secondary contribution to the cost. Finally, a selection
of 4 design variables was made to simplify the problem,
all of them related to TMD. This selection includes the
mass, the frequency, the damping coefficient and the station
where to install it. Objective functions has been described
in 3 and 4. Both the search space and the solution space
are multi-dimensional, which means the Pareto front is no
longer a 2D line, nor a 3D surface. The analysis of the
solution is done on the projection of this multi-dimensional
space into 2D plots. Figures 12, 13 and 14 show an example
of how the solutions are plotted, taking couples of the 4
objective functions. Additionally, figures 15 and 16 show
the Pareto Front plotting 3 of the objective functions, one
of them as a color scale. Figures 8, 9, 10, and 11 are the
convergence history of each objective function. No major
issues can be extracted from these plots, more than compare
how fast each function is converging. Figure 8 shows the
cost objective function convergence, which until the end
of the analysis does not present a significant improvement.
Figure 9 shows a gradual improvement of the Fatigue loads
(front aft). Figure 10 shows also a constant improvement
of the function, anyway, the last 200 evaluations do not

provide further improvement. It shows two regions, the first
half with a gradual improvement, and the second half where
the improvement is less significant. Figure 11, regarding
the ultimate loads, does not show improvement much
improvement during the optimization. Although the scale
of the y axis has been normalized, to fulfill with the NDA
signed with the company, all the functions show a good
improvement along the optimization analysis, compared to
initial values. Later, when analyzing the Pareto Front plots,
a comparison with the baseline design will be provided.

The plots for the Pareto Front show the results using
Bladed plus MATLAB implementation. In all of them an
improvement respect to the baseline design is obtained.
There are a lot of Pareto individuals improving the values
for the baseline, demonstrating the performance of the
optimizer RMOP as expected. The computational cost
associated to this analysis is reduced applying a preliminary
selection of the load cases for each individual, without
penalizing the accuracy and feasibility of the design. Figure
12 shows the cost versus the Fatigue loads. As shown in the
graph both functions are opposed; to improve one function
the other must get worse. This is not always the case, as
happens with the two functions related to fatigue loads.
Individuals that belong to the Pareto Front are marked in
green. As a remark, the plots presented are a projection of
the four dimensional objective functions space; this yields
to a Pareto Front representation that has individuals that
may appear as dominated, but are not. Those individuals
appear as non-dominated in other projections. TMD cost
in front of PF Fatigue side-side is shown in Figure 13.
These two functions are opposed too. TMD cost in front
of PF Ultimate is shown in Figure 14. The two functions
are opposed, but the more expensive TMDs is, the PF
Ultimate almost constant is. the Pareto Front of the two
Fatigue loads (front aft and side to side) is not shown
because the two functions present a strong correlation, so
any improvement on one of the two also means improving
the other one. Two additional Pareto Front plots, including
3 objective functions, are presented. Figure 15 and 16
do not shown the dominated points to simplify and make
them more understandable. In the second one, the region
where the ultimate loads keep constant while the cost or the
fatigue loads increase is also there, as seen previously in
figure 14. In the Pareto front plots, some individuals have
been marked as "selected". Those individuals have been
used by the company to evaluate the overall performance
of the optimization and to compare the the four objective
functions values with the baseline design. All the selected
points are located near the influence area of the baseline,
although they improve the baseline values. It is true
that in some cases, it is not possible to simultaneously
improve all the functions, but improvements of about 10
to 20% are possible. Table 3, below, describes the error
of the selected individuals compared to the baseline. The
individuals improving all the objective functions show
lower improvement, while those with larger improvements
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in some functions show more variability on the error along
the four objective functions.

Relative error compared to baseline
Cost FLS-fa FLS-ss ULS
-24.00  -0.55 19.03 1.18
-0.13 -0.29 -4.58 231
-2.52 -0.14  -0.004 -1.25
19.54  -0.80 -2349 -231
-7.56 0.09 7.15 0.04
-0.90  -0.23 235  -1.84
-6.04  -0.04 3.83 -0.42

It has been mentioned that several strategies have
been evaluated in order to reduce the computational cost
associated to the analysis. The most relevant ones have
been:

e Parallelize: it is the first one thing about, but one
should bear in mind that the solver can be also
parallelized. The use of smart strategy, defining how
many cores is using each individual evaluation and
how many are available, is of great importance. This
is the first and more important startegy because it can
be applied whatever analysis and solver you are going
to use.

e Individual evaluation: in some cases it is not possible
to interact with the individual evaluation, so its cost
cannot be reduced. But it was not the case of the actual
analysis. The standard procedure of the company,
when validating a design includes a long list of load
cases to be evaluated. Initial, the company was
requesting to apply the same list to each individual on
the evaluation, leading to an unfordable cost. a careful
analysis determine that the relevant load cases can be
restricted to only a 5%, then the computational cost
has been extremely reduced.

e Constraints: one can use the constraints as restrictions,
so defining a go-no go criteria. If any individual does
not fulfill a constraint, the individual is penalized and
the evaluation is stopped. This strategy is easy to
implement if your evaluation workflow is split into
several steps, otherwise it can be difficult or no sense
to apply because the cost reduction is not relevant.

An important point must be highlighted in regards the
restrictions applied to the individuals. There have been
137 individuals that do not meet the maximum excursion
for the TMD displacement (set at 1.5 meters), with a
maximum excursion of 2.1 meters. Another remark is
that any individual has been penalized for the dynamic
check, evaluated with the Campbel analysis and the 3P
criteria. This should be analyzed further to evaluate the
reason that any individual has not met the constraint; maybe
is not set correctly or maybe there is some error in the

implementation. If it is confirmed that the restriction was
satisfactorily setup, then the use of Bladed, to perform
the Campbel analysis should be removed, simplifying the
workflow and reducing the computational cost of each
individual evaluation.
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Figure 13: Cost vs Fatigue loads (side to side)

4 Conclusions and further work

Industrial applications differ from academic problems on
many ways. Although academic and mathematical test case
can reach a high complexity level, the multi-disciplinary
involved in industrial problems, added to the complexity
of the design process by itself conform the key issues.
This communication is aimed to describe how the authors
deal with this complexity, and how closely working with
the engineers in the company face and partially solve this
problem. The paper is also aimed to demonstrate the
capabilities of RMOP in comparison to industrial suites.
The results from both the mathematical test cases and the
industrial application show how RMOP performs better,
even without using additional functionalities like Nash
Games. From the point of view of the industrial application,
the results lead to a relevant reduction of the cost, as
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Figure 15: Cost vs Fatigue loads (side to side) vs ULS

well as the loads. The Pareto hyper-surface is defining a
large number of Pareto individuals which are improving
the 4 objective functions in comparison with the baseline
design. Significant improvements have been obtained when
improving. Although those individuals with spectacular
improvements on one function do not show consistent
improvements for all the four objective functions, there
are many individuals improving the four functions within
the range of 1 to 5%, which is more than interesting.
From the point of view of the company, the cost of the
TMD was the most important objective function, so it
was used to identify and select those individuals and more
promising configurations. Further work is two-fold. On
one hand an on-going implementation of a most simplified
solver in MATLAB, which can lead to a simplified solver,
with a reduced computational cost but with an appropriate
accuracy level. On the other hand, CIMNE is working
on the continuous improvement of RMOP. It focus on the
implementation of hierarchical evaluation strategies within
the platform. Each of the two will mean a significant
improvement on the calculation time and on the efficient
use of the available solver to get a fast scan of the search
space and an accurate optimal solution.

Figure 16: Fatigue loads (side to side) vs Ultimate loads vs
Cost
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