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Abstract: This paper presents a leak localization approach for water distribution networks
using classifiers with pressure residuals as input features. This approach is based on applying
a non-linear transformation to the residuals of the node pressures to increase the separability
of the leak classes. The transformed features can be interpreted as the direction cosines in
the subspace spanned by the residuals of the measured pressures. In order to illustrate the
method, different tests were performed with MATLAB® applying four different classification
algorithms on a synthetic dataset obtained from an EPANET model of the Hanoi network.
Then, by considering the cosenoidal features, a significant improvement in the leak location
error was achieved. In this way, the leak location error decreases by more than 97% compared
to the use of residual features when accurate measurements are used, and about 50% when noisy
measurements with 60 dB SNR are used.

Keywords: Fault Diagnosis, Water Distribution Network, Leak Localization, Machine
Learning, Feature Extraction, Direction Cosines.

1. INTRODUCTION

Loss due to leaks in water distribution systems is one
of the main problems in managing drinking water. The
percentage of chemically treated water loss in pipelines
before reaching final consumers is around 30% worldwide,
but in some cities, it exceeds 60% (OECD, 2016). Faults
due to broken pipes, even small ones, generate important
losses of water volumes when they remain unrepaired for a
long time. Therefore, it is necessary to detect in the short
term and localize them as accurately as possible for their
rapid repair.

Leaks are not always visible, because leaking water can
drain down the pipe instead of emerging towards the sur-
face. Therefore, the precise localization requires the use of
specialized instrumentation (vibration meters, geophones,
etc.). Also, computational systems that, by monitoring
the hydraulic variables of the network (pressures and flow
rates), allow alerting about the existence of leaks and
delimit them in an area of few meters to facilitate the work
1 Corresponding author: idelossantos@ittg.edu.mx

of the maintenance staff. In Puig et al. (2017), the main
monitoring and diagnostic techniques in pipelines and
water distribution networks are described as well as the
control strategies frequently used to minimize the effect
of leaks. The localization of leaks in water distribution
networks (WDNs) is a challenging problem due to the
uncertainty that affects the performance of the localization
algorithms. The most relevant is the uncertainty in the
leak size, in the measurements (sensors noise), in the users’
demand, and some parameters of the hydraulic model of
the network such as the roughness and the actual diameter
of the pipes, among others.

In large cities, a WDN is divided into different sectors, also
known as District Metered Areas (DMAs). For control and
billing purposes, DMAs are usually equipped with pressure
and flow sensors at their inlets. Some of the recently
proposed leak localization methods use these sensors and
additional pressure sensors in inner nodes of the DMA
that are cheaper and easier to install than flow sensors. In
Pérez et al. (2011), a model-based method that relies on
the pressure measurements and leak sensitivity analysis



was proposed. In this methodology, pressure residuals,
i.e., differences between pressure measurements provided
by sensors and the corresponding estimations obtained
by using the hydraulic network model, are used. These
residuals are computed on-line and compared against
associated thresholds that take into account the effects of
modeling uncertainty and noise. When a residual exceeds
the thresholds, this is matched against a leak sensitivity
matrix in order to identify which leak was presented.
Several further works (Casillas et al., 2013; Pérez et al.,
2014; Pérez et al., 2017) have proof that this method
can provide reasonable results in real cases where the
performance is affected by uncertainty in measurements,
sensor noises, and mismatches between estimated and real
demand users and between estimated and real hydraulic
parameters (roughness and the actual diameter of the
pipes, among others). For instance, see Cugueró-Escofet
et al. (2015); Blesa and Pérez (2018) for discussions about
the effect of uncertainties in residual correlation methods.

In the last years, artificial intelligence methods have been
applied for leak localization purposes using pressure mea-
surements. For example, in Mashford et al. (2009) was
proposed a method to localize leaks using Support Vector
Machines (SVM) that analyzes data obtained by a set of
pressure sensors of a pipeline network allowing to localize
and estimate the size of the leak. In a similar way, the
use of k-Nearest Neighbors, Bayesian classifiers, Fisher
discriminant analysis, and convolutional neural network
for leak location have also been proposed in Soldevila et al.
(2016), Soldevila et al. (2017), Romero-Tapia et al. (2018)
and Javadiha et al. (2019), respectively. The performance
in leak location of some of these methods has been assessed
in Quiñones-Grueiro et al. (2018).

The main advantage of these artificial intelligence methods
is that they are data-driven methods that formulate the
problem of leak localization as a supervised multiclass
classification problem. They use a matrix of node pressures
or their residuals (differences between actual pressures
and leak-free pressures) to train a classifier, which will
then be used to predict the network nodes closest to
the leaks. Therefore, if enough real pressure data were
available from the network, it would not be necessary for
any hydraulic model. However, in practice is in general not
possible to have real data considering all leak scenarios
and operating conditions in the DMA. Then, artificial
data can be generated with a hydraulic model considering
model uncertainties that can be extracted from real leak-
free data (Blesa and Pérez, 2018). In this way, model
uncertainties are considered in the design of the leak
localization method.

To the best of the authors’ knowledge, all the leak local-
ization methods that have been formulated as a multiclass
classification problem considering inner pressure measure-
ments, use the pressure values or residual pressures as
features. An exploratory analysis of the residuals suggests
that leaks in the same node tend to show a characteristic
direction in the sensor subspace (see Figure 1). In fact,
this is a fundamental hypothesis in model-based leak lo-
calization methods based on leak sensitivity matrix (Pérez
et al., 2011). However, if data-driven methods use residuals
as input characteristics in a raw Cartesian form where
both magnitudes and directions of residual vectors appear

implicitly combined, makes classification more difficult.
Therefore, to improve the performance of classifiers for
leak localization, in this paper it is proposed to take the
features of a subspace derived from the original residual
subspace by means of a non-linear transformation that
summarizes only the information on the direction of leaks,
discarding the information about its magnitude.
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Fig. 1. Leaks of different magnitudes located in different
nodes, plotted on the residuals subspace. Different
colors are used for each node.

The structure of the reminder of the paper is as follows:
In section 2, the proposed leak localization methodology is
described. In Section 3, results obtained from the applica-
tion a well-known case study are presented and discussed.
Finally, Section 4 summarizes main conclusions and sug-
gests future research paths.

2. METHODOLOGY

Consider a network consisting of n nodes, and suppose
that pressure measurements on s inner nodes are avail-
able. These measurements at any time, that are sensi-
tive to leaks, are denoted by x = [x1, x2, ..., xs], and
the corresponding leak-free pressures are represented by
x∗ = [x∗1, x

∗
2, . . . , x

∗
s]. It is assumed that the s sensors

have been placed on selected nodes under some optimality
criteria (Casillas et al., 2015; Blesa et al., 2016).

From simulations with the network model, a matrix of
nodal pressures X ∈ Rm×s is constructed considering m
different leakage scenarios (different leakage magnitudes
and different leaky nodes):

Number of pressure sensor →

X =


x11 x12 · · · x1s
x21 x22 · · · x2s
...

...
. . .

...
xm1 xm2 · · · xms



L
eak

scen
arios

→

(1)

Also, a vector of targets y ∈ Nm is constructed containing
the desired output classes (node numbers) associated with
each leakage scenario in X. A matrix of leak-free pressures
X∗, the same size as X, is also generated, considering the
nominal operating conditions of the network, according to
the expected users’ demand at the time of each leakage
scenario. Each row xi of X is a sample of node pressures
for which a residual ri = xi − x∗

i can be calculated.



As mentioned in the introduction, pressure residuals pro-
vide relevant information to locate leaks. The previous
works cited are based directly on the classical Carte-
sian components of these residuals to estimate the loca-
tion of leaks. Nevertheless, according to Vector Analysis,
vectors can also be expressed in a form where informa-
tion about magnitude and direction is decoupled (Young,
2017). Thus, for any residual vector r = [r1, r2, . . . , rs], the
decoupled expression is

r =M [cos θ1, cos θ2, . . . , cos θs] (2)
where M is the residual magnitude, and

cos θk = fk(r1, r2, . . . , rs) =
rk√

r21 + r22 + · · ·+ r2s
(3)

are the so-called “direction cosines” and uniquely describe
the direction of vector r in the s-dimensional subspace, as
shown in Figure 2.
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Fig. 2. Geometric interpretation of θi in a three-
dimensional case. The vectors ei are unitary and
they indicate the direction of each residual, e.g. e1 =
[1, 0, 0].

Although s direction cosines can be calculated for each
residual, only s−1 are independent of each other, because
as can be deduced from (3), they satisfy the relationship

s∑
k=1

cos2 θk = 1. (4)

Considering (4), the number of features used by the
classifier can be reduced by one, because any one of the
direction cosines is determined by the others.

Regarding the training procedure and the predictive use
of the classifiers in the location of leaks, these have been
previously described by Ferrandez-Gamot et al. (2015).
The modification proposed in this work consists in the
use of a new type of input features. As will be shown
later, the replacement of the original features rk by the
new features cos θk improves the performance of classifiers
in leak location, facilitating the class separability. In the
diagram of Figure 3, the gray box shows where the
feature transformation is applied to improve the classifier
performance in the leak localization process.

In a way, the proposed feature transformation can be seen
as an ad-hoc kernelization, because the original features
are projected into another subspace through a non-linear
transformation. However, in this proposal, the subspace
dimension does not increase as is usually the case when
the kernel trick is applied.

Nonlinear mapping

fk : (r1, . . . , rs)→ cosθk
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Fig. 3. Feature transformation to improve the classifier
performance in leak location.

3. RESULTS AND DISCUSSION

3.1 Experimental setup

Different algorithms for data-driven leak location using
classifiers were implemented in MATLAB®, and tested
with a synthetic database of leaks in the Hanoi network
(Fujiwara and Khang, 1990), which is shown in Figure 4.
This network consists of 32 nodes (31 junction nodes and
one reservoir) and 34 pipelines with a total length of
39 420m.

The database used was generated through a steady-state
simulation with the EPANET software (Rossman, 2000)
using a hydraulic model that considers the pressure avail-
able in the reservoir, the geometry of the pipes and
their roughness, as well as the demands on the con-
sumption nodes. The leaks were simulated by manip-
ulating the demands on the consumption nodes using
the EPANET/MATLAB Toolkit interface (Eliades et al.,
2016), increasing the base demand by an amount equal to
the simulated leakage rate. The procedure for using the
EPANET solver from MATLAB has been described by
Vegas Niño et al. (2018).

In each node of the network, leaks of different magnitudes
were simulated, considering flowsQleak = {1, 2, . . . , 50} l/s.
Only single leaks (non-concurrent leaks) have been con-
sidered. In this way, a matrix of node pressures with 1 550
hypothetical leak scenarios was built, corresponding to the
51 different leakage magnitudes for each of the 31 junction
nodes. This dataset was partitioned into 2 subsets, one for
training and one for testing: Half of data, corresponding to
Qleak = {1, 3, . . . , 49} l/s, were used for training; the other
half, corresponding to Qleak = {2, 4, . . . , 50} l/s, were used
for testing. Using a test dataset other than the training
dataset will assess the predictability of the classification
models used to locate leaks. The entire dataset is available
in binary MATLAB® format (MAT-file) for download at
http://github.com/isantosruiz/direction.

From the database, four different classification algorithms
were tested: k-Nearest neighbors, Naïve Bayes, Decision
tree, and Linear discriminant. The training and prediction
tests of the classification models were performed using the
MATLAB® Statistics and Machine Learning Toolbox.

To assess the performance of classifiers in leak location
using different input features, the following error measure
(often called “classification loss”) is used:

E = 1−
∑

i cii∑
i

∑
j cij

, (5)



Fig. 4. Hanoi Network. Pressure sensors are located at the
starred nodes.

where [cij ] is the confusion matrix. The localization error
is calculated both in the training subset itself and in the
subset selected specifically for testing. Then, to quan-
tify the improvement obtained by the use of cosenoidal
features, instead of unprocessed residuals, the following
improvement index is used:

I =
Eres − Ecos

Eres
, (6)

where Eres is the leak localization error obtained using
residual features, and Ecos is the corresponding error when
using cosenoidal features.

Additionally, since the classification loss (5) only provides
a reference of the classification goodness and not how good
it is the leak localization, the Average Topological Distance
(ATD) is also calculated. This indicator was proposed by
Soldevila et al. (2016) to assess the overall performance
of a leak localization method in a real DMA. The ATD
is defined as the average value of the minimum distance
in nodes between the node with the leak and the node
predicted by the leak localization method, and is computed
as follows:

ATD =

∑
i

∑
j cijdij∑

i

∑
j cij

, (7)

where [dij ] is a symmetric matrix such that each element
dij contains the minimum topological distance in nodes
between the nodes referred by i and j.

3.2 Simulation results

From the dataset described above, classifiers of four dif-
ferent machine learning methods, using both residual and
cosenoidal features, were trained and tested to compare
performance with each type of feature. In all cases, only
the pressure measurements corresponding to nodes 12, 21,
and 27 were used. For classification, the node numbers
{1, 2, . . . , 31} where leaks occur were used as class labels.
The results of the performance test are summarized in Ta-
bles 1 and 2. Based on these results, it was determined that
the classification error with k-NN had decreased 99.3%
when using cosines, with respect to when residuals are used
directly as features. When Naïve Bayes, Decision Tree, and

Linear Discriminant classifiers are used, the classification
error is reduced by 99.7%, 99.6%, and 97.0%, respectively.

Table 1. Classification error in training data
(resubstitution loss) using different feature

sets.

Classification
Method

Features

Residuals Cosines

k-Nearest Neighbors† 0.4813 0.0013
Naïve Bayes 0.7665 0.0026
Decision Tree 0.4516 0.0013
Linear discriminant 0.7729 0.0232
† Using Euclidean distance with k = 5.

Table 2. Classification error in testing data
using different feature sets.

Classification
Method

Features

Residuals Cosines

k-Nearest Neighbors† 0.3458 0.0026
Naïve Bayes 0.7613 0.0026
Decision Tree 0.5936 0.0026
Linear discriminant 0.7665 0.0232
† Using Euclidean distance with k = 5.

The lower classification error obtained when using cosines
as features lead to a better class separability. Therefore,
with the four classifiers tested, cosines better capture the
directionality of leaks in the residual subspace. This is
shown in Figure 5(b), where it is observed that the conver-
gence region towards three of the 31 classes in the Hanoi
network, using cosenoidal features, are better defined than
those corresponding to Figure 5(a) where unprocessed
residual features are used. Both figures correspond to a
classification by decision tree but with a different types of
features.

In order to analyze the robustness of the classifiers fed by
cosenoidal features, leak localization tests were performed
considering measurement noise at node pressures. The
noise was assumed Gaussian and characterized by the
signal-to-noise ratio:

SNR = 20 log10

(
True pressure
Pressure noise

)
. (8)

The results presented in Table 3 show that the percentage
of improvement when using the cosenoidal features with
respect to the residual features is higher than 50% for
a wide noise margin. The rate of improvement decreases
as the proportion of the noise in the signal increases,
because when the noise is considerable (SNR less than
40 dB), the leak directions captured by the cosines become
irrelevant to locate the leak. However, in the worst case,
the improvement percentages remain close to zero, which
means that the use of cosenoidal features is not decreasing
performance.

To assess the overall performance of the classifiers in the
leak location task, the ATD was calculated as defined
in (7). The results are presented in Table 4 for noise-
free measurements, confirming the best performance when
using the cosenoidal features. With noisy measurements,
the ATD increases (see Table 5), but its variation is
consistent with the increase in the classification error.



(a) Using residual features

(b) Usign cosenoidal features

Fig. 5. Convergence regions of three classes (leaks in three
different nodes) of a leak locator by decision tree. Each
color corresponds to predictions of different classes.
The geometric figure symbols show the data of each
class used for training.

Table 3. Improvement index in classifier per-
formance when using cosenoidal features for
different noise magnitude in measurements, ac-

cording to (6).

Classification
Method

Signal/Noise Ratio (SNR)

∞† 80 dB 60 dB 40 dB 20 dB 0dB‡

k-Nearest Neighbors 0.993 0.873 0.394 0.006 0.013 0.005
Naïve Bayes 0.997 0.939 0.405 0.009 -0.003 0.003
Decision Tree 0.996 0.917 0.473 0.021 -0.018 -0.007
Linear discriminant 0.970 0.929 0.550 0.016 -0.040 -0.018

† Noise-free measurements.
‡ Noise and measurements of the same magnitude.

Table 4. Average topological distance on noise-
free testing data using different feature sets.

Classification
Method

Features

Residuals Cosines

k-Nearest Neighbors† 0.6555 0.0026
Naïve Bayes 2.4090 0.0026
Decision Tree 1.3239 0.0026
Linear discriminant 2.1974 0.0232
† Using Euclidean distance with k = 5.

Table 5. Average topological distance on noisy
testing data, SNR = 60 dB, using different

feature sets.

Classification
Method

Features

Residuals Cosines

k-Nearest Neighbors† 0.9523 0.5948
Naïve Bayes 2.4387 0.9742
Decision Tree 1.3935 0.7303
Linear discriminant 2.2090 0.7432
† Using Euclidean distance with k = 5.

4. CONCLUSION

The use of cosenoidal features, instead of raw residuals,
showed a good performance in leak location using different
classifiers, considering accuracy and robustness. The non-
linear transformation to obtain the direction cosines im-
plies a low computational cost but significantly improves
performance because it reduces most of the localization
error in the four machine learning techniques tested. In
future work, it is expected to test this methodology using
physical measurements in water distribution networks with
a greater number of nodes. In addition, considering that
the current approach requires a well-calibrated hydraulic
network model to obtain training data, in the future, it
is intended to develop methodologies less dependent on
the model in the search for leak localization techniques
completely based on data.
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