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1 Introduction
In recent years, interest in the resources that can be found on the Earth’s neighbouring
celestial bodies has been slowly but steadily rising. This situation can be attributed to a
series of factors: On the one hand, the realisation that humanity’s access to certain ma-
terials might be compromised in the future as reserves in our planet’s crust are depleted,
causing increases in price as extraction moves to less favourable sources [38]. This prob-
lem is compounded by the rapid industrialisation of the developing world, which further
strains the mining industry’s capacity and accelerates the transition towards lower-grade,
more energy-intensive ores. And on the other hand, advances in the fields of rocketry
and planetary science are the causes, respectively, of a reduction in the cost of launching
equipment to space [25] and of an increased understanding of the nature of celestial ob-
jects, the pillars of a future space-based economy where resources extracted from these
bodies are competitive enough with those from Earth to, at first, replace them in the con-
struction of orbital equipment and structures and, perhaps, remove the need for mining
our planet altogether.

The objective of this project is to predict the volume of the trade flow between the Earth’s
orbit and the asteroids in the inner Solar System; both the ones in the main asteroid belt
located between Mars and Jupiter and those whose orbits bring them closer to our planet,
known as Near-Earth asteroids. To do that, a gravity model will be applied between all
the analysed Earth-asteroid pairs. This empirical economics model describes the trade
flow between two units (countries, cities...) as a function of their economic size and their
bilateral distance:

Tij = G
Mα

i M
β
j

Dζ
ij

ηij (1)

Where G, α, β and ζ are empirical parameters that depend on the pair of economic units
that are being studied, Mi and Mj are their economic sizes, Dij is their distance, and ηij
is an error parameter. For most country pairs, α, β, ζ, η ≈ 1 [10].

Part of the work in this project is, then, to find a way to extrapolate these variables to
the context of interplanetary space. For the economic size of the asteroids, this is ac-
complished in section 2. As for the economic distance, the magnitude that most closely
represents the energetic consumption of a spacecraft’s engine has been identified, by going
directly to the fundamental physics of rockets. This is discussed in subsection 3.1.

An additional goal of this project is to study the Moon’s influence in the orbital mechanics
involved in a spacecraft’s trajectory between the Earth and the target asteroids, with the
aim to help reduce the cost of launching a mining expedition. The details of these effects
will be expanded on in subsection 3.2.

And finally subsection 3.3 implements an algorithm that studies the value of the magni-
tude associated with cost for each of the targeted asteroids over a period of three decades,
so this analysis can be applicable for years after the completion of the study.
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2 The economic value of asteroids
As it has been explained on section 1, the trade flow between two economic units is pro-
portional to their economic size. In the case of asteroids, since the only economic activity
that would be carried out on them is mining, this magnitude can be defined as the market
value of the materials that can be harvested from them. Therefore, to accurately assess
it both their composition and their total mass has to be known. This section documents
how the procedure to do that was developed.

2.1 Asteroid composition
Unlike with the geology of Earth’s different regions, asteroids cannot be directly prospected
to evaluate their suitability as mineral sources. The only asteroid sample material that has
been directly studied is that of (25143) Itokawa, which was visited by Japan’s Hayabusa
space probe in November 2005. What scientists on Earth have access to, however, is the
countless meteorites that have been falling on our planet for billions of years.

A great deal of the theoretical information on the characteristics of meteorites and aster-
oids contained in this section has been extracted from [35].

2.1.1 The study and classification of meteorites

Most of the meteorites found on Earth are of a type called chondrites, named after the
silicate bubbles, or chondrules, that are found in great abundance in their structure. Their
origin can be traced back to the accretion of the protoplanetary disc, which is why their
bulk chemical composition resembles so much that of the totality of the Solar System.
Due to many different phenomena (collisions, etc.) the temperature of chondritic aster-
oids can rise to a point where some of their components melt while others remain solid.
This can cause a segregation of these materials into different areas of the asteroid, or
even a full separation into different bodies that will now have radically different chemical
composition, a process known as differentiation. The melted components (or melts) can
then recrystallise at different rates in what is known as fractional recrystallisation. The
result of these processes is the diversity of types of asteroid and therefore of meteorites:
from those who have lost their chondritic structure in the melting process (achondrites)
to asteroids that are almost purely metallic (irons) or contain differentiated metal and
silicate regions (stony irons).

Going back to chondrites, their physical make-up consists of a number of structures:

• Chondrules: They have already been mentioned. Their abundance in chondrites
ranges from 70% of their composition to almost none.

• Refractory inclusions: They consist of minerals rich in refractory chemical elements,
whose melting point is very high, while at the same time being depleted of volatile
(low melting point) elements. They are the most ancient components of chondrites.

• Metals and sulfides: Pure metals can be found as nuggets of highly refractory ele-
ments inside the refractory inclusions, and as grains of iron-nickel-cobalt inside and
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at the edges of chondrules. Finally, there are also grains of iron sulfide close to the
former metallic grains.

• Matrix: Formed by a variety of minerals with very small grains, it fills the gaps
between the other components.

Figure 1: A piece of the Allende meteorite, a carbonaceous chondrite. Source: [57]

Since chondrites are formed by the accretion of different components at different points
of the Solar System’s timeline and which therefore could be found in different physical
and chemical states themselves, they can be organised in different categories depending
on their primary classification: by their bulk chemical composition and the proportions of
the different previously mentioned structures; and their secondary classification: by the
metamorphic processes that have changed them since their accretion.

Primary classification of chondrites

• Ordinary chondrites are the most common type of meteorite. They are further
divided by their concentration of iron and other metals into the H (high), L (low)
and LL (very low) groups.

• Enstatite chondrites are notable because of their highly-reduced chemical state, with
most of their iron in metallic form and small sulphide concentrations. They are also
divided by their metallic concentration into the EH (high) and EL (low) groups.

• Carbonaceous chondrites are further subdivided into many groups with little in
common with each other regarding either their chemical or physical composition,
from those that do not form chondrules (CI), to those with a moderate number of
chondrules and a high one of refractory elements (CV and CO).

• Rumaruti (R) chondrites are highly oxidised and are about 50% composed of matrix.

• Kalangari (K) chondrites are similar to carbonaceous chondrites.

• Certain meteorites are isolates and form their own groups.
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Secondary classification of chondrites

Chondrites are classified into seven groups depending on the metamorphic processes that
they have experienced:

• Types 2 to 1 represent an increasing amount of water-caused metamorphoses.

• Types 3 to 6 do the same for thermal metamorphoses, with 3 being the closest to
an unaltered chondrite.

• Type 7 indicates an extreme amount of shock and thermal metamorphism, to the
point that the chondrites’ components become undifferentiated.

By combining the two classifications, one obtains the Van Schmus chondrite classification
system.

Figure 2: Chart of the Van Schmus chondrite classification system. Source: [35]

As for the non-chondritic meteorites, they can also be classified into their own families:

• Achondrites were chondrites that experienced a complete melting, losing all their
internal structure and becoming undifferentiated. They are in turn classified into
primitive achondrites, which occupy an intermediate stage between the two groups
since they are formed after a partial melt; and magmatic achondrites, which are
formed from complete melts, sometimes as a cumulate of different chondrite types,
whose resulting composition is different from their parents’.

• Stony irons are formed by roughly equal amounts of metal and silicates, forming
clearly separate aggregates. They are subdivided by the type of silicate that forms
the rocky phase.
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• Irons are majorly made of metal, most likely from the melting and complete differ-
entiation of chondrites.

With all meteorites classified into their respective categories, their chemical composition
can be defined. Annex A.1 contains table 2, sourced from [35], which displays the mass
fractions of most naturally-occurring chemical elements for the different chondrite groups.
In the future, to further develop the model, it would be interesting to find the elemental
mass fractions for irons and stony irons which, while being much rarer, hold much more
economic interest: They are much richer in valuable metals that, in theory, should also
be easier to extract than the mixture of components found in chondrites.

Speaking of relative economic interest, the tabulated elemental mass fractions can be com-
pared with those of the Earth’s crust to study a meteorite group’s enrichment of certain
elements compared to our planet’s. Figures 3 and 4 show that L chondrites were enriched
with regards to Earth for metals like Fe, Ni, Cr, Co, Cu and Au; but were much poorer
in rare earths.

Figure 3: Enrichment/depletion of L chondrites in selected metals in comparison with CI
chondrites and the Earth’s crust. Source: [28]

Figure 4: Enrichment/depletion of L chondrites in rare earth elements in comparison with
CI chondrites and the Earth’s crust. Source: [28]

2.1.2 Identifying asteroids with meteorite types

Like it was explained on the beginning of this section, asteroids cannot be directly sur-
veyed nowadays, but they can be compared with the data that can be collected from
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meteorites. The different groups of meteorites described in the previous subsection have
been spectroscopically analysed in search for certain markers that would help distinguish
them from one another. Once they were found, astronomers started searching for spec-
tral coincidences in asteroids, since if they were made of the same material, the light that
they reflect should feature the same radiation absorption bands. For instance, the amount
of absorption in the near-infrared is an indicator of the relative percentages of minerals
olivine and pyroxene in asteroids, which can be used to classify them as a certain type
of chondrite [18]. Observatories have then engaged in massive surveys seeking to assign a
meteorite analogue to all the known asteroids in the catalogues.

Figure 5: Classification of asteroids into meteorite types as a function of the peak of their
band I Near-Infrared centre and its width. Source: [18]

Figure 6: Classification of asteroids into ordinary chondrite classes as a function of the
estimated total olivine and proportions of olivine and pyroxene. Source: [18]
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2.2 Asteroid mass estimation
In order to completely characterise an asteroid for the purpose of this economic model,
not only does its composition have to be known, but also its mass, to define the total
amount of each element that can be found on it.

There exist several techniques that are used to evaluate an asteroid’s mass [9]:

• By studying its orbital deflection during close encounters with other, more massive
celestial bodies (see 3.2.4).

• By analysing the discrepancy between the predicted ephemerides of a planet and
its real position and velocity, a variation of the previous point but studying the
cumulative effect of a large number of bodies over one, which renders the estimations
more imprecise.

• By tracking the perturbations that an asteroid creates on the orbit of a spacecraft
that flies by it, a very precise technique but which has only been able to be used
less than a handful of times.

• In the case of multiple-asteroid systems, by radar or optical imaging. Their mass
can be derived just by observing their movement around each other using Newton’s
Third Law (see 3.2).

Since this project did not have access to observational equipment, all mass estimations
have been obtained by means of bibliographical study, same as with the asteroids’ chem-
ical compositions. The most restricting issue during the research for the economic model
has been that these two types of observations, mass and composition, are not generally
undertaken simultaneously for each asteroid, resulting in a large amount of times where
one of the two data points was known for it but not the other, causing it to be discarded
from the list of possible targets. However, 41 asteroids have been found for which both
conditions were fulfilled. A simple look at table 4, containing all these final chosen tar-
gets, confirms this situation: The sources for the two values rarely coincide in any of them.

2.3 Market price
Once the total mass of each element is defined for the targeted asteroids, by multiplying
it by the elemental fractions of their corresponding meteorite type, knowing their market
price per unit of mass results in the total monetary value of their resources. Table 3 in
annex A.2 was elaborated using two sets of data: For common metals that are openly
traded the price in the Shanghai Metals Market [54] was used as reference, using the data
values of 12th June 2019, and considering the average USD/CNY exchange rate of the
same day. For rarer metals, the average annual values in the U.S. Geological Survey [55].
Finally, a table 4 that combines all three sets of data to return the surveyed asteroids’
economic sizes is included in annex A.3.
The only lacking part in this subsection is that it assumes that all the mass of the asteroid
is available to be mined economically, which is not true. Unfortunately, no studies of the
potential yield of space mining techniques for the different elements have been found that
give clear answers to this question.
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3 The economic distance of asteroids
On Earth, determining the distance between two economic units is a comparatively sim-
ple matter: Countries, companies and most families have fixed locations; so the relative
distance between one another is constant over time. This is not true for celestial bodies,
however: The Earth, together with the rest of planets and objects in the Solar System,
orbits the Sun in periodic elliptical orbits. This orbital period is determined by the fol-
lowing formula, derived from the Third Law of Kepler and Newton’s Law of Gravitation:

T =

√
4π2a3

GMs

(2)

Where a is the orbit’s semi-major axis, G = 6.674∗10−11 m3

kg∗s2 is the universal gravitational
constant, and Ms = 1.9884 ∗ 1030 kg is the Sun’s mass.

This means that all of the targeted asteroids will get closer and then away from the
Earth at regular intervals, restricting the viable mission launch dates to short windows
with months and maybe years between them. Another aspect to consider is the nature
of movement on our planet and in outer space: On Earth, vehicles have to continuously
spend energy to go from one place to another due to friction with the air, the ground or
the sea; whereas in the void chemically-propelled spacecraft only have to carry out one-
time manoeuvres to go from their current orbit to one that intercepts their target body,
on which they coast without spending any more energy. This radically differs from the
physics that inform the concept of economic distance used on Earth’s trade gravity models.

3.1 Tsiolkovsky’s rocket equation
The key to a space-based definition of economic distance, then, is found in the energy
expenditure of orbital manoeuvres. During these, spacecraft spend their propellant to
change the magnitude and direction of their velocity, resulting in an orbital change.

As it can be seen in 7, The velocity vector that is applied to the spacecraft during the
manoeuvre is called a ∆v. Its magnitude depends on the propellant mass expelled by the
rocket engine according to the Tsiolkovsky equation:

∆v = ve ∗ ln
m0

mf

(3)

Where ve is the propellant’s exhaust velocity, which depends on the chemical or electric
process used to expel it; and m0 and mf are the spacecraft’s mass before and after the
manoeuvre, respectively.
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Figure 7: Vector diagram of a LEO-GTO orbital transfer. Source: [43]

This formula determines the amount of propellant that it will have to carry with itself
in order to complete its mission, which when multiplied by its cost per kilogram would
serve as a good metric for the expedition’s total cost, assuming reusable mining spacecraft
whose construction cost can be spread over several campaigns. Like in other space probes
the amount of propellant also would determine their dimensions and, in the case of a
mining craft, it would restrict the amount of mineral that would be able to be harvested
and carried back to Earth during an expedition, since its mass would have to be added
to the spacecraft’s dry mass in both terms of the equation. Rearranging the terms of
equation 3, the formula for the propellant mass mp is derived:

mp = ∆m = m0 −mf = mf ∗ (e
∆v
ve − 1) (4)

Where in this case mf is the spacecraft’s dry mass, and ∆v represents the mission’s total.
Noticing that mf and ve are characteristic of the spacecraft, e∆v is the only term that
is mission-dependent. The exponential relationship between the amount of manoeuvring
required to reach an asteroid and the necessary mass to do so becomes apparent. Con-
sidering all that has been previously said in this section, a mission’s exponential of its
cumulative ∆v is hypothesised to be a good metric for the costs of space transport, and
a valid analogue to physical distance in the economic distance term of the gravity trade
flow model.

For each of the target asteroids that were selected in section 2, then, an algorithm was
created that calculates their mission ∆v at each possible launch date.

3.2 The Earth-Moon Circular Restricted Three Body Problem
Before the algorithm itself can be properly described, one of its most notable features has
to be explained: Its representation of an Earth-Moon system in which the action of both
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of their gravitational accelerations influences the spacecraft’s trajectory.

A three body problem is a physical phenomenon in which a point P with mass m is under
the gravitational influence of two other punctual bodies (P1 and P2) called the primaries,
whose masses (m1 and m2) are several orders of magnitude bigger than its own so their
movement is not disturbed by it. Unlike the keplerian two body problem, this one cannot
be solved analytically; however, adding the consideration that P1 and P2 describe circular
orbits around their mutual barycenter, the situation can be characterised as a Circular
Restricted Three Body Problem (CR3BP), which can be solved by numerical methods.
This approximation is valid for systems where P2 orbits around P1 in a low-eccentricity
ellipse, like the Moon does with the Earth.

Figure 8: Diagram of a CR3BP. Source: [36]

3.2.1 Equations of movement

In the system’s barycentric inertial frame (BCI), the global angular momentum is con-
stant, and the same is true for P1’s and P2’s, who are also parallel to each other. This
means that both bodies move on the same (O,x,y) plane.

~H = m1~r1 ×
d~r1

dt
+m2~r2 ×

d~r2

dt
= ctt, with m1~r1 +m2~r2 = 0; (5)

~H1 = m1~r1 ×
d~r1

dt
=

m2

m1 +m2

~H ~H2 = m2~r2 ×
d~r2

dt
=

m1

m1 +m2

~H (6)

Where ~r1 and ~r2 are the primaries’ distance to the barycenter. In the inertial system, the
gravitational force that acts on P is:

d2~r

dt2
= −Gm1

r3
1

~r1 −G
m2

r3
2

~r2 (7)
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Where ~r1 and ~r2 are the particle’s distances to each of the primaries.

However, since ~r1 and ~r2 move on their own, in order to fully characterise the system their
movement equations would have to be taken into account, which increases its complexity
and the processing power required. Therefore, in order to simplify it, the movement of P1

and P2 is nullified by changing to a non-inertial rotating frame around their barycenter
in the angular momentum’s direction such that the primaries are always on the x axis;
also known in semat’s literature as a synodic frame. Its angular velocity is:

n =

√
G(m1 +m2)

a12
3

(8)

The equation of conservation of linear momentum can now be rewritten as:

−m1x1 +m2x2 = 0 (9)

From which the positions of the primaries can be derived:

x1 =
m2

m1 +m2

a12 x2 =
m1

m1 +m2

a12 =

(
1− m2

m1 +m2

)
a12 (10)

These mass fractions can be rewritten as the CR3BP’s µ parameter:

µ =
m2

m1 +m2

µ1 = 1− µ µ2 = µ (11)

The two systems of coordinates are connected by the transformation:

xy
z


inertial

=

cos(nt) −sin(nt) 0
sin(nt) cos(nt) 0

0 0 1

xy
z


rotational

(12)

Equation 7 can also be introduced to the new frame using the formula that connects the
accelerations in inertial and a non-inertial reference systems:

d2~r

dt2

∣∣∣∣
in

=
d2~r

dt2

∣∣∣∣
rot

+ 2~n× d~r

dt

∣∣∣∣
rot

+ ~n× (~n× ~r) (13)
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Rearranging and developing the previous terms, the particle’s equations of movement in
the rotational frame of reference can then be described as [62]:

ẍÿ
z̈

 =


n2x+ 2nẏ −G

(
m1

r13 (x+ x1) + m2

r23 (x− x2)
)

n2y − 2nẋ−G
(
m1

r13y + m2

r23y
)

−G
(
m1

r13 z + m2

r23 z
)

 ,

with r1 =

√
(x+ x1)2 + y2 + z2 and r2 =

√
(x− x2)2 + y2 + z2

(14)

These are the equations that the algorithm integrates to calculate the spacecraft’s trajec-
tory in the Earth-Moon system.

3.2.2 The integral of motion and Jacobi’s constant

The expression for the components of the acceleration in the rotating system, equation
14, can be generalised as the sum of the gradient of a "pseudo-potential" and a velocity
term:

d2~r

dt2

∣∣∣∣
rot

= −~∇U − 2~n× d~r

dt

∣∣∣∣
rot

, with U = −G
(
m1

r1

+
m2

r2

)
− 1

2
n2(x2 + y2) (15)

U is called a pseudo-potential because it combines the gravitational potential with a cen-
trifugal term, so P ’s motion cannot be purely defined by an exchange between kinetic
and potential energy. However, U still is a good measure of the system’s total energy:
Projecting each of the acceleration terms on the non-inertial velocity and adding them
[36] results in the expression:

ẋẍ+ ẏÿ + żz̈ = −Uxẋ− Uyẏ − Uz ż = −dU
dt

(16)

Where the subscript indicates each derivative of the pseudo-potential. Finally, this ex-
pression can be integrated into:

ẋ2+ẏ2+ż2 = V 2 = −2U−CJ → CJ = n2(x2+y2)+2G

(
m1

r1

+
m2

r2

)
−(ẋ2+ẏ2+ż2) (17)
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CJ is conserved along the particle’s motion in the system and is called Jacobi’s constant.
As such, it is a function of the particle’s initial conditions of position and velocity. This
has important consequences for its possible trajectories: Due to the energy exchange be-
tween the kinetic and pseudo-potential terms, P ’s velocity will be zero at all points that
fulfil the condition:

2U + CJ = 0 (18)

The ensemble of all those points is called a Hill surface or null-velocity surface and it
limits the areas of the three-body system that are reachable by the particle depending on
its initial energy level.

Figure 9: Trajectory of a particle in the Earth-Moon system’s x-y plane. Its Hill surfaces
are shown in red, and the Lagrange points are also highlighted. Distances in multiples of
the Earth-Moon semi-major axis. Source: [37]

3.2.3 Lagrange points

In every CR3BP there are 5 points, known as its Lagrange points, in which the gravita-
tional and the centrifugal forces are balanced against each other, which results in a null
gradient of the pseudo-potential.

~∇U = 0 (19)

Their positions are as follows:
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• L1 and L2 are located on the axis of the primaries, close to P2: The first one on the
side between P1 and P2, and the second one on the opposite side of P2.

• L3 is also located on the same axis, but behind P1, and at the same distance as P2.

• L4 and L5 form an equilateral triangle with the primaries, each one located on one
side of the axis of the primaries, symmetrically to each other.

In theory, a particle at rest (in the rotating frame of reference) at any of these points
would experience no net forces and as such should stay motionless in its vicinity. This is
not true, however, due to the nature of this equilibrium: L1, L2 and L3 are located on the
non-inertial x-axis in which, while the forces are in equilibrium, the forces in the y axis
are just null. This causes that, if P moves even slightly from the point, it will start expe-
riencing this perpendicular component, destabilising it and causing it to fall out of orbit
over time. L4 and L5, on the other hand, are geometrically stabilised by the equilibrium
between the centrifugal and gravitational forces in all directions: The Coriolis force will
keep P around these points after a perturbation. All five points represent a flattening
of the pseudo-potential field, however the unstable ones are located at the top of a slope
whereas the stable ones are at the bottom of a well.

Perturbations in the unstable equilibrium points take a long time to propagate, however,
and spacecraft can remain in orbit around them with just some periodic station keeping.
These orbits can be grouped into a series of families [21] [36]:

• Lyapunov orbits lie in a plane between the two primaries. As such, they are classified
in two families: planar and vertical, depending on whether they are contained in
the same orbital plane as the primaries or perpendicularly to it.

• Lissajous orbits are quasi-periodic orbits that are not contained in a plane of the
primaries, instead forming 2-D Lissajous curved shapes. They connect the Lyapunov
orbits of the same energy level.

• Transit orbits go directly through the Lagrange points to either the interior or the
exterior of the system. In their trajectory, they have to cross a Lyapunov orbit.

All of these orbits are grouped in stable and unstable tube-shaped manifolds: The former
remain in orbit around the libration points while the latter end up leaving their orbit.
In fact, it would be more precise to call the L1-L3 points meta-stable. Station keeping
ensures that spacecraft orbiting them remain in their stable manifolds against the effect
of perturbations, which if nothing is done to counteract them can cause a switch to an
unstable manifold that would cause the spacecraft to escape from the point. However,
these unstable manifolds can also be useful: Since they connect the Lagrange points be-
tween each other, and link to other zones in the Earth-Moon system or beyond, by taking
them the spacecraft can travel to these areas at a very low energy cost.

A large part of semat’s code, whose purpose is explained in 3.3.1, is dedicated to calcu-
lating these orbits’ dynamics.

14



Figure 10: Different types of orbits about the L2 Lagrange point: planar Lyapunov (blue),
vertical Lyapunov (black), Lissajous (green), transit (red). Source: [36]

3.2.4 Gravity assists

In a CR3BP, the definition of Jacobi’s constant can be written in the adimensionalised
inertial system as:

ẋ2 + ẏ2 + ż2 − 2(xẏ − ẋy) = 2

(
µ1

r1

+
µ2

r2

)
− CJ (20)

Where the position parameters have been divided by the distance between the primaries
and the velocities, by the latter’s product with their mean angular velocity.

Now, considering a body that follows a keplerian orbit inside the system, close to P1 (so
r1 ' r and 1

r2
' 0). It will have to follow these criteria:

• Conservation of energy:

v2 = ẋ2 + ẏ2 + ż2 =
2

r
− 1

a
(21)

• Projection of the angular momentum:
ẋy − xẏ =

√
a (1− e2)cos i (22)

By combining the three previous formulas and adding the criteria of proximity to P1, the
definition of Tisserand’s constant is obtained:
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1

a
+ 2
√
a (1− e2)cos i = constant (23)

This constant suggests that a celestial body that flies by another much more massive one
will have its orbital parameters modified. It is the cornerstone of the concept of gravity
assists.

In these manoeuvres, a spacecraft enters a planet’s sphere of influence in a hyperbolic
trajectory with an initial velocity ~v−∞, the result of subtracting its velocity with regards
to the sun to that of the planet’s:

~v−∞ = ~vsc/sun − ~vplanet/sun (24)

A planet’s sphere of influence (SOI) is the volume around which it acts as the main gravi-
tational attractor. To put it another way, when a third body enters it, its orbit goes from
being defined by a keplerian two-body problem around the Sun to a three-body problem
that fulfils the conditions for the application of Tisserand’s constant. The algorithm uses
the following definition for its radius:

rSOI = a
(m
M

)2/5

(25)

Where a is the semi-major axis of the planet’s orbit around the Sun, m is its mass and
M is the Sun’s.

After the spacecraft performs its hyperbole around the planet, it will leave its SOI with
a planetocentric velocity ~v+

∞, with the same module as when it entered but different di-
rection due to the planet’s deflection. When added to the planet’s heliocentric velocity,
results in a different spacecraft heliocentric velocity than the one before the approach.

Gravity assists reduce the necessary ∆v for interplanetary missions and allow for faster
travel between celestial bodies. Their efficiency will depend on the planet’s mass, the ra-
dius of the fly-by hyperbole’s periapsis and the angle with which the spacecraft intercepts
it. Flying behind the planet increases the spacecraft’s heliocentric velocity, while flying
in front of the planet reduces it.

This subsection has described the gravity assist procedure in terms of orbits around the
Sun, but the Earth-Moon system can also be used to carry out this manoeuvre. If a
spacecraft flies close enough to the Moon, the conditions for the application of Tisserand’s
constant are fulfilled and the satellite deflects its velocity from the geocentric frame of
reference. This effect is used in the algorithm to increase its escape velocity and orient
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Figure 11: Diagram of a planetary fly-by and its associated velocity change. Source: [36]

it in a more favourable direction for the interception of the target asteroids, reducing the
mission’s total ∆v and therefore decreasing the economic distance between them and the
Earth-Moon system.

3.3 ∆v optimisation algorithm
In this subsection, a step by step commentary of the ∆v optimiser for trajectories between
the Earth-Moon system and the targeted asteroids is provided, detailing its objectives,
its structure and the decision process that led to its current design, including flaws in
previous approaches and issues that are still open to improvement.

At its most general level, the algorithm aims to find the most favourable conditions under
which resource mining expeditions to the different target asteroids would be launched
during the next 30 years. For each day between 1st January 2020 and 1st January 2050,
the algorithm finds the most optimal combination of conditions to minimise the total ∆v
of an expedition launched that day. The results will show both the most favourable launch
windows for each asteroid, and they will provide a means to compare their reachability
in order to find the most favourable targets.

The algorithm was developed in the MATLAB programming environment, with the aid
of the SEMAT toolkit. This library has been developed by Supaero for use in orbital
calculations, primarily in the Earth-Moon system. In order to run some of its routines, it
also uses kernels from NASA’s SPICE toolkit. Their design and functionalities will now
be explained:

3.3.1 The SEMAT toolkit

In the computer’s hard drive the library’s functions’ files are organised in a series of
folders, depending on their general purpose. These are:

• C: Contains the files of a number of functions that have been coded in the C pro-
gramming language, as well as those of their headers.
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• coc: Contains the functions that transform a spacecraft’s state vector from its orig-
inal frame of reference to another, from generic changes to those of specific frames:
The Earth-Moon synodic frame, The Earth-Moon barycentric Inertial frame (BCI),
the Earth-centric inertial frame (ECI)... To perform these tasks it also contains
functions that calculate both bodies’ position and velocity at certain instants.

• computation: Includes different kinds of functions necessary for orbital analysis:
from more changes of frame of reference, to Hohmnann transfer calculations, ob-
taining an orbit’s elements from its state space and vice versa... As well as more
general tools for matric and vectorial calculus.

• data: Contains a series of .mat repositories that can be read by MATLAB, with
data related to a number of orbits around the Earth-Moon Lagrange points (see
3.2.3).

• diffcorr: Includes various differential corrections for the different types of orbits
mentioned before.

• init: Starts the semat toolbox in MATLAB, loading its folders and running a series
of processes that are described in more detail later.

• inpolyhedron: An external function that tests if a point is in a 3D triangular surface.

• lib: Includes a series of external libraries that are necessary to run semat.

• mex: Contains the MATLAB-compatible files written in C, also known as MEX
files, of a Runge-Kutta 7/8 integrator of the spacecraft’s state vector using the
Earth-Moon 3-body problem movement equations, which were explained in 3.2.1.

• mice_kernels: Includes SPICE’s data files, known as kernels.

• nro_script_sara: Contains the scripts that simulate a Near-Rectilinear Orbit (NRO)
around the Moon.

• ode: Contains the files for another two integrators of the Earth-Moon 3-body prob-
lem vector field: One with just the first-order derivatives and another one that
adds a state transition matrix with an additional 36 terms for a higher integration
precision.

• plot: Includes a series of functions with plots that are of interest in the study
of orbits in the Earth-Moon system, like trajectories over the two bodies, orbital
manifolds, etc.

• pyTest: Solves the position of the L1, L2 and L3 Lagrange points via polynomial
equations.

• rdv: Contains functions that change the frame of reference to a Lunar-centric one
and integrate the 3 body problem in it.

• Relative Dynamics EB: Includes functions that study the relative motion of two
bodies orbiting in the Earth-Moon system, called the chaser and the target.

• richardson: Contains the functions that calculate a third-order approximation of
the state vector of the initial conditions for different types of orbits.
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• scripts: Includes different scripts that test the rest of the toolkit’s functions.

• scripts EB: Similar to the previous folder.

• Third Party: Contains more third party modules that add further capabilities to
the toolbox. The new external functions used by the algorithm have been added
here.

semat was provided by the university tutor, including a flowchart that details the work of
the toolkit’s main functions. After becoming familiar with how it works, the algortihm’s
modules that were already written were integrated as much as possible with it. Sometimes
this integration is not as efficient as possible and in other cases the existing functions were
preferred over semat’s even when the latter offered more precise results, something that
should be changed later in the project. This will be further discussed in 3.3.4.

3.3.2 The SPICE toolkit

SPICE is a toolkit developed by NASA’s Navigation and Ancillary Information Facility
(NAIF) for use by the space scientific community in the modelling and planning of mis-
sions, including the agency’s own. Its main component are a series of data files called
kernels that contain the following information, compiled from the most reliable sources
available:

• Spacecraft, planet, satellite and asteroid ephemerides.

• Physical, dynamical and cartographic properties of these bodies.

• Specifications of scientific instruments and spacecraft structures.

• Space event information.

• Frames of reference used in space missions, including for positioning instruments.

• Time transformations between different measurement systems.

The kernels are regularly updated, and users can create their own and release them for
use by the rest of the community.

The second piece of the toolkit are the functions that access the kernels. These can be
added to the user’s programmes, and for increased flexibility the entire toolbox is avail-
able in a variety of programming environments and languages. This algorithm uses mice,
SPICE’s MATLAB implementation. A detailed explanation of the routines it runs and
the tasks they carry out in the programme is provided in the next sections.

SPICE is available for free on its official webpage [41], which also features extensive docu-
mentation and a considerable amount of tutorials for all aspects of the toolkit, usually in
sections especially dedicated to each of its different language implementations. Program-
ming examples are also provided with the code.

19



3.3.3 Referenced algorithms

The algorithm’s operation is based on those proposed in [4] and [23]. Both are feasibility
studies on the exploration of Near-Earth Asteroids in both unmanned and man-rated
missions: Their objective was finding which of these asteroids had the most favourable ∆v.
To do that, they iterated over different values of a spacecraft launch’s initial conditions
until finding the one that yielded the lowest ∆v at each possible launch date. The studied
initial parameters were:

• Launch dates: Both the total studied time-span and the time step between each
one.

• Flight time: Both the mission’s minimum and maximum possible flight times and
the studied time step, for the departure and return trips.

• Stay time at the asteroid: Same considerations as the previous variable.

• Total mission time: Limited to an amount considered acceptable for manned inter-
planetary missions.

• Hyperbolic excess velocity: The minimum and maximum v∞ that the launch vehicle
is able to provide, as defined by the parameter C3 = v∞

2.

• Maximum reentry velocity: Limited due to structural considerations of the vehicle.

The approach taken by the algorithm in [4] to calculate the mission’s ∆v is as follows:
First, for each launch date and flight time, it calculates their ephemerides at the start and
end of the departing trip and solves its corresponding Lambert’s problem. Its solution
are the velocities that the spacecraft should have at the start of the trip, when it leaves
the planet’s position, and at the end when it intercepts the target asteroid, in order to
describe an heliocentric elliptical orbit that connects these two points in the desired flight
time. Since the celestial bodies’ velocities are also known, the necessary departure and
arrival ∆v values can be easily obtained:

∆vDEP = v∞ = ||~v1 − ~vEARTH,DEP || (26)

∆vARR = ||~vAST,ARR − ~v2|| (27)

Where ~v1 and ~v2 are the solutions to Lambert’s problem, ~vEARTH,DEP is Earth’s velocity
at departure and ~vAST,ARR is the asteroid’s at arrival.

From there, the algorithm would calculate if the calculated v∞ was within the acceptable
bounds. If so, it would then calculate the return trip’s ∆v for all possible combinations of
stay time at the asteroid and return flight time. The restrictions at these stage are whether
the sum of both flight times and the stay time exceeds the maximum possible mission
time, and whether after returning to the Earth’s SOI on a hyperbolic Earth-centric orbit
its velocity at the perigee exceeds the maximum reentry velocity. Finally, if the mission is
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viable, the algorithm adds all the impulses to calculate the mission’s total ∆v, iterating
over all possible parameters for each launch date until finding the combination that yields
the minimum one.

The algorithm shown in [23] is an attempt to improve the previous one by introducing the
effects of a Lunar fly-by in the spacecraft’s initial trajectory, as seen in 3.2.4. In this case,
the C3 parameter is not provided as a function of the launch vehicle’s capabilities, instead
v∞ is defined by the initial conditions: The spacecraft starts in a circular LEO orbit with
an altitude of 185 km. At launch, its engines send it on a Lunar fly-by trajectory via a
Hohmann transfer, with an initial ∆v:

∆vLEO =

√
2Gme

(
2

rLEO
− 1

aM

)
−
√
Gme

rLEO
= 3.1352 km/s (28)

Where me is the Earth’s mass, rLEO is the initial orbital radius and aM is the Earth-Moon
semi-major axis of the Hohmann transfer. With the appropriate angle between the space-
craft and the Moon, that the authors quantify at between 110° and 125°, the spacecraft
gets close enough to the Moon for it to perform a gravity assist, which launches it in a
hyperbolic geocentric trajectory outside of the planet’s SOI, whose radius it reaches with
a C3 parameter of:

C3 = 2E = −Gme

aM
= −2.3090 km2/s2 (29)

Using the Earth’s ephemerides, the spacecraft’s position and velocity are then transformed
to a heliocentric frame of reference, and act as the initial state of the departure Lambert
problem. The rest of the process is carried out as in [4] from that point forward.

The differences between the approach taken by those algorithms and the one created for
this project are the following:

• The cited papers analysed the feasibility of reaching the NEAs that they studied
using a defined spacecraft, whose performance capabilities (engine specific impulse,
dry mass...) were based on those known at the time of their writing for the Orion
Multi-Purpose Crewed Vehicle. There are no feasibility considerations in terms of
maximum possible ∆v or flight time for this algorithm. This is due to the fact that
the values used in those papers were too limiting, since they had to consider the
restrictions involving manned missions, while this is not the aim of this project.

• The cited papers calculated the total ∆v for a return trip mission to the studied
NEAs, whereas this algorithm only considers the departure trip. Even though that
might seem limiting, the reasons are due to the differences in mission purposes that
have been previously described. Those papers expected a relatively short stay on
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Figure 12: The Orion spacecraft. Its capabilities were used to constrain the cited algo-
rithms. Source: [58]

the asteroids before returning to Earth due to the nature of manned exploratory
missions, whereas mining expeditions would require a long time to extract all the
desired resources before going back. However, since during the study of the literature
no conclusive value of the length of that stay has been found, it was decided that
it was preferable not to use a speculative value that might greatly differ from that
of reality, rendering this study useless. If a reliable time-frame can be found, the
return part of the algorithm could be implemented. However, it should be considered
whether the spacecraft would re-enter the Earth’s atmosphere or if instead would
aim to return to its starting position, maybe slowing it down via aerobraking as it
has been suggested in [56] for the capture of asteroids.

There are also differences in their implementation that will be discussed in the description
of the corresponding sections of the code.

3.3.4 Description of the code

All functions that were developed for this project can be found in annex D.

First of all, the code clears all the variables in the workspace and all the commands and
messages in the console in order to avoid possible conflicting data from previous scripts
when running the algorithm anew. Then, it starts the semat environment by calling the
init function. This loads different types of data that semat needs to work:

• Pre-defined coordinate systems.

• Different frameworks, aimed at varying types of mission.

• Two dynamic models: the CR3BP that has already been discussed in 3.2 and the
Quasi-Bicircular model, which adds a fourth body to the system.

• Types of manifold for the computation of orbits around the Lagrange points (see
3.2.3).
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• Environment data, which ranges from definitions for certain physical constants and
ephemeris time values to physical properties of the Earth, the Sun and the Moon.

• Options for selecting the different types of orbit discussed in 3.2.3.

• Instructions to call different plotting scripts, as well as whether to show the depicted
units in dimensional or adimensional form.

• Selector for using the environment’s routines in Matlab or MEX form (see 3.3.1).

The function then selects the user’s specific preferences among those categories for the
problem that the they want to study and stores them in a struct file. For this algorithm
the default values were picked, resulting in the eponymous data structure.

However, semat does not use the SPICE kernels (discussed in 3.3.2) by default. To do
so, the load_kernels function is called, which adds the ones stored in the mice_kernels
folder to the algorithm’s project, making them available for use, and modifies the default
struct to reflect this change.

Next, the environment for the study of the Earth-Moon three-body problem is loaded
by calling the init_CR3BP function, which adds the cr3bp struct to the workspace. It
contains relevant physical parameters for calculations related to the problem in a way that
is easy to reference and to export to nested functions. However, since typing their entire
name is a bit inconvenient for some of them, especially those that are repeatedly used in
the algorithm, the following step was to directly add them to the workspace with shorter
names. For example, the Earth’s mass can be called by cr3bp.m1.M or just m_1. In this
section certain magnitudes derived from these are also calculated, like the mean angular
velocity of the primaries around their common barycenter or their position in the synodic
frame of reference. Finally, the vector with all the studied launch dates is introduced:
It goes in 6-day increments from 0:00:00 1st January 2020 to 0:00:00 1st January 2050
in the Coordinated Universal Time (UTC) time scale. The initial date was selected to
provide relevant data immediately from the deposition of this document, while the final
one is the same as in the case studies presented in [4] and [23]. The time step is also the
same as in the referenced algorithms. The dates are written in their Julian Date format
due to its greater ease of numerical manipulation. However, when carrying out orbital
calculations these are transformed into their corresponding Barycentric Dynamical Time
(TDB) value, since that is the time scale used by the SPICE toolkit.

Afterwards, the position of the Earth-Moon system’s Lagrange points is determined by
the Lagrange_solver_adim function. While these values can already be found in the cr3bp
struct, this function had already been written before receiving the semat toolbox, so since
the work was already done in its runtime is very short it was kept. Lagrange_solver_adim
takes the the Earth-Moon µ1 and µ2 parameters and introduces them in the formulas for
the components of the gradient of the pseudo-potential defined in 3.2.2. A non-linear
solver then finds the values of the (x,y) coordinates in which that gradient is zero (the
definition of a Lagrange point, per equation 19). Finally, the null values in the z coordinate
are added and the result is is sent back to the main function as a 5 × 3 matrix. Note that
the values of the Lagrange point coordinates, like those of the primaries that were obtained
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in the previous section, are given in their adimensional form due to the greater ease of
calculating the CR3BP problem in that way, as it will be seen in the following paragraphs.

Figure 13: Lagrange points of the Earth-Moon system obtained by Lagrange_solver_adim
in black, with the two primaries in blue and magenta respectively

Later, the target asteroid’s orbital parameters are added to the workspace by inputting
its official number and name. These are extracted from the Jet Propulsion Labora-
tory’s Small-Body Database Browser [26]. Their ephemerides have been downloaded
from HORIZONS upon request in the form of the custom wld86210.15 and wld1156302.15
SPICE kernel files, which have then been added to load_kernels so that they are available
to mice, since the ones that were previously in the mice_kernels folder did not contain
these asteroid ephemerides. These files have also been deposited there. This approach
increases the precision of the computed position and velocity of the targets, since their
future ephemerides are calculated by integrating the Solar System’s n-body problem in-
stead of just extrapolating from the current ones over time while assuming they follow
unperturbed keplerian orbits around the Sun, the approach that the algorithm previously
used.

Figure 14: Orbital elements of (1036) Ganymed. Source: [26]
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Next, the vectors of the different optimisation parameters are selected. Like with the
referenced algorithms, the outward flight time is one of the chosen ones. In their case,
the other variables were also time-based, which were then constrained by the limitations
of manned space missions and the capsule’s characteristics. This algorithm, instead,
attempts to achieve the lowest possible mission ∆v by finding the most optimal initial
flight conditions via the use of a Lunar gravity assist. Instead of regarding the launch
velocity as a constrain like in [4] or considering it fixed like in [23], the algorithm studies
different values of:

• The initial ∆v norm, ∆v0 (variable delta_v_0 ): The spacecraft starts at the L1

Lagrange point, in a static position from the synodic frame of reference. The initial
kick-off is therefore necessary to set it in a escape orbit from the Earth-Moon system.

• The initial ∆v deflection angle, α0 (variable alpha_0 ): This will affect the direction
in which the spacecraft’s velocity is deflected.

This approach attempts to improve the results of the gravity assist presented in [23] by
taking more advantage of its possibilities: In that algorithm the spacecraft’s position and
velocity were restricted to the Earth-Moon orbital plane until it left the system’s SOI,
at which point the Lambert problem’s solution resulted in a ∆v that might involve a
big change of orbital plane, one of the most costly manoeuvres. By heading towards the
Moon at an angle, the satellite sends the spacecraft out of plane at no extra energetic cost,
potentially reducing the magnitude of the SOI impulse and by consequence the mission’s
total ∆v.

To explain how that angle is defined, first of all it was ensured that the spacecraft would
never be sent in a collision course with the Moon by the initial ∆v, while getting it close
enough to the satellite for the gravity assist to be effective. To achieve that, the initial ∆v
should be tangential to the Moon, and so it was divided into a normal and a tangential
component by the angle θL1M (variable theta_L1M ), the angle of a right triangle whose
vertices are the L1 Lagrange point, the centre of the Moon and a perpendicular point on
the Moon’s surface:

(
vn0

vt0

)
=

(
∆v0 cos(θL1M)
∆v0 sin(θL1M)

)
, with θL1M = arctg(

RM/aEM
xM − xL1

) = 0.029 rad (30)

Where RM is the Moon’s radius, aEM is the Earth-Moon semi-major axis and xM and
xL1 are the x coordinates of its centre and the L1 Lagrange point in the synodic frame of
reference.

The normal component is equivalent to the x component in the synodic frame of reference,
while the tangential one is the sum of the y and z components. The initial ∆v deflection
angle, α0, is added in order to separate them. This angle is defined by projecting the
Moon on the y-z synodic plane, with the origin point at its centre. Its null angle is that
of a vector aiming in the positive z direction, and it increases in value clockwise. Thus,
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the y and z components of the initial velocity are defined as:

(
vy0

vz0

)
=

(
−vt0 sin(α0)
vt0 cos(α0)

)
, with α0 = [0, 2π] rad (31)

In practice, the only values of α0 that are of interest to the project are between 0 and
π rad, since those between π and 2π rad cause the spacecraft to do a fly-by in front of
the Moon, losing velocity in the process. The components of the initial ∆v can then be
written as a function of the optimisation parameters:

vx0

vy0

vz0

 =

 ∆v0 cos(θL1M)
−∆v0 sin(θL1M) sin(α0)
∆v0 sin(θL1M) cos(α0)

 (32)

However, the magnitude of these variables has to be defined. A problem that arose during
the development of the algorithm was the difficulty of properly calibrating these for each
target asteroid. A very wide margin of initial ∆v caused its total run-time to skyrocket
to more than a day, while narrowing it down too much diminished the maximum possible
degree of optimisation. And even when a reasonable margin width and ∆v step size had
been found, its minimum value was also dependent on each target’s orbital characteris-
tics: Those with large semi-major axes or high inclination angles had a higher minimum
possible ∆v than NEA asteroids with an orbital plane close to the ecliptic. Furthermore,
the only way to know if the selected initial ∆v range had been well-fit was to let the
simulation run until completion and analyse the results, and if they were negative the
only way to find a better fit was guesswork. Furthermore, even what the most optimised
trajectories for each asteroid looked like was unknown. All of this caused the project’s
advancement to stop almost completely, delaying both the collection of accurate results
for the creation of the economic model and even the composition of this report.

The solution to this issue was to develop a method to obtain a first approximation of the
desired results: This is the objective of preliminary_solver. This function solves the op-
timisation problem, but with a significant difference: It neglects the gravitational effects
of the Earth-Moon system and operates just in the heliocentric one. For each possible
launch date, the spacecraft starts at rest in the Earth-Moon synodic frame at the L1

Lagrange point. However, instead of then propelling itself to leave its SOI, and once it
has done that solve the Lambert problem towards the target, the function transforms that
initial state into the heliocentric frame of reference and solves it from there, neglecting
both the Earth’s pull as it leaves its SOI and any possible assistance that the Moon might
offer. The way its nested structure works specifically will be explained in the rest of the
main function’s description, since preliminary_solver is derived from it and thus are very
similar, so it will not be repeated here. What matters is that it outputs the value of the
minimum departure ∆v it finds, as well as its associated trip time between the starting
point and the target. The entire function is solved in mere minutes, even with a very
wide range of possible flight times.
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This large number of flight times, however, generated an unexpected problem: The solver
refused to work beyond 9 October 2053, which limited the number of available solutions at
the end of the studied period. At first, the issue was thought to be an error in translating
between UTC and TDB dates, prompting a modification in the way the start date vector
is computed. However, that did not solve the error. The asteroid ephemeris kernels were
re-downloaded multiple times, but the problem persisted. Finally, the source of the issue
was found: To calculate the planets ephemerides, semat used the DE 421 ephemeris cat-
alogue, which is indeed limited to that date. The error was then solved by downloading
the more up-to-date DE 438 version, which goes up to 2100, and modifying load_kernels
to use it instead of the older one.

With those two preliminary values in the main function, the optimisation parameter
vectors are generated from them: The initial ∆v0 ranges from 0.4 km/s, the minimum
necessary to escape the Earth-Moon system, to more than 2 km/s from the preliminary
optimal departure value; while the possible flight times are studied over 750 days in 6-day
increments, from 30 less to 2 years more than the preliminary value, and a minimum
value of 4 days as seen in [23]. The deflection angle α0, which is not subject to this first
estimation, ranges from 0 to π rad in 22.5 degree steps.

Finally, the CR3BP integrator configuration options are added in. First of all, the inte-
gration timespan: It ranges from the starting point to a maximum of a sidereal period,
enough for a spacecraft in a escape trajectory to leave Earth’s SOI. This is expressed
adimensionally as 2π.

Then, the integrator’s events at which it should stop even if the timespan was not over
were defined in the odezero_EARTHSOI function, stored in the ode folder. These are:

• The asteroid crashes against the Earth.

• The asteroid crashes against the Moon.

• The asteroid escapes the Earth’s SOI.

With all the parameters in place, the optimisation process can start. This consists of four
nested levels of for loops, which look for the most optimal combination of their variables’
values. The order in which they are executed conditions the algorithm’s overall perfor-
mance and run-time, so a lot of consideration went into it. The definitive choice will now
be explained, together with the issues that the alternatives caused.

The first level is the selection of the different values of the initial ∆v norm, ∆v0.

The second level is the choice of the initial ∆v deflection angle, α0. With that and the
previous variable, the spacecraft’s initial velocity is obtained. By combining its initial
position with it, the six-variable initial state vector is composed. This vector is then
concatenated with the default initial value of the state transition matrix (STM).
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Finally, these parameters are sent into the integration function. Initially, it was a cus-
tom one written fpr the project; however the new version of the algorithm uses se-
mat’s cr3bp_derivatives_42 function. cr3bp_derivatives_42 is a variable order Adams-
Bashforth-Moulton ode113 integrator that contains the formulas of the state vector mag-
nitudes’ derivatives: for the positions, these are the velocities, and for the velocities, they
are the accelerations in the synodic frame of reference, whose formulas can be found in
equation 14. To increase precision, to the 6 first-order derivatives it adds a 36-term state
transition matrix (STM) calculated with the second-order derivatives, that allows for an
extra order of precision when modelling the system’s behaviour. The integrator concludes
by returning to the main function the adimensional time value and the state vector at the
instant where the spacecraft reaches the limit of the Earth’s SOI.

Figure 15: Trajectory in the synodic frame of reference for ∆v0 = 2.5 km/s and α0 = 30º.
The Earth and the Moon are shown as blue and magenta dots, respectively. Axes not to
scale

The time value and state vector at SOI then go to the next level of the optimisation. The
iterative variable this time is the mission’s start date. At first, this step was executed in
a regular for loop like the others, but since the aim of the optimiser is to find the least
∆v-intensive combination of parameters for each start date, it was set up as a parfor
loop instead: Since the results for each launch date are independent from each other, the
analysis for each start date can be run in parallel without interfering with one another.
That way, each of the computer’s processor cores is running its own separate iteration
of the loop, a significant increase of processing capacity from that of standard Matlab
scripts, which only make use of one core save for in the case of some functions that come
pre-programmed with parallel computing capabilities. The first consideration was to put
this loop in first place, but that way all permutations of the CR3BP trajectory integration
had to be iterated for each launch date, which is extremely wasteful for two reasons:

• The integration is a relatively time-intensive process, so repeating it should be
avoided as much as possible.

• The integration results in the synodic frame are the same for all launch dates,
making obtaining them separately for each one pointless.
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Running a parfor loop comes with its own set of requirements, however:

• Matlab’s Parallel Computing Toolbox has to be installed in the computer that is
running the algorithm.

• Certain variables do not transfer well from the general workspace to the parfor loop’s
as it will be explained next.

This is the case for the mice kernels that had been loaded at the start of the algorithm.
The cause for that might be that parfor does not recognise them since technically they
are not part of either semat or the regular Matlab environment. At any rate, that initial
load_kernels function has to still be called to modify the default struct, but now a new
version has to also be run at the start of each parfor iteration that loads the kernels with-
out affecting the struct. This modified function is called load_kernels_alt, and unlike the
original one it does not require any input variables. Before ending the parfor loop, the
kernels that were loaded at its start are cleared out using the new unload_kernels_alt
function. This is caused by the fact that despite having to start them manually at the
beginning of each parfor loop, they are not stopped at its end, so with each iteration
SPICE’s memory buffer gets added new data until it overflows.

With the SPICE kernels activated, the time and state vector at SOI are sent, with the
parfor loop’s start date, the cr3bp struct and the Earth-Moon system’s characteristic
time, into the syn2scECLIPJ2000 change of frame of reference function. Like its name
says, it changes the state vector’s position and velocity from the Earth-Moon synodic one
to the J2000 inertial heliocentric ecliptic one, while dimensionalising them. This function
is a modification of the default semat syn2J2000 change of reference, which transforms
the state vector to the inertial geocentric equatorial J2000 frame. To do so, it obtains
the ephemerides of the Sun, the Earth and the Moon at the time of escaping the Earth’s
SOI from the chosen launch date using SPICE’s spkezr function, and then uses these to
perform the necessary translations and rotations. Once it is finished, it sends the values
back to the main function. The result is that the time and state vector at SOI are trans-
formed into the number of seconds between it and J2000 TDB, and into the same frame
of reference as the asteroid ephemerides, respectively.

When both frames of reference are inertial, to go from a geocentric to an heliocentric
one only requires adding a simple Earth/Sun position and velocity translation. Changing
from the equatorial to the ecliptic reference plane is just a matter of modifying a variable
in the spkezr calls. However, it is an important factor that was not found out about until
late in development, when a 23.4º inclination discrepancy was noticed, and it was realised
that the planetary and asteroid ephemerides had been using different reference planes.

Another matter that should be taken into account is that this transformation applies the
Earth and Moon’s true positions and velocities at the corresponding instant instead of the
idealised ones used in the CR3BP, so the spacecraft’s position and velocity components
differ noticeably in value due to using the syn2J2000 function instead of syn2eci, when in
theory they are performing the same change of reference frame. This is also an argument
in favour of also using SPICE kernels to obtain the target asteroids’ ephemerides, as it
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Figure 16: Inclination differences between equatorial and ecliptical inertial frames. Source:
[42]

has finally been done.

The variable in the final for loop is the flight time. For each one of its possible values, it
finds the target’s ephemerides at the corresponding rendezvous date and then solves the
ensuing Lambert problem. With the resulting spacecraft velocities at SOI and target ren-
dezvous, it calculates the norms of the departure and arrival ∆vs, and after adding them
to the initial ∆v norm of the first level of the iteration, it obtains the total mission ∆v
for that combination of values of the parametric variables. It then compares its value to
the minimum one for that start date. If it is smaller, it becomes the new minimum value,
and the corresponding parameters are also overwritten. At the end of all iterations, the
result are 5 vectors of optimised variables for each start date: the three parameters, the
total mission ∆v and the ∆v at departure from SOI. This last one serves as a measure for
the effectiveness of the Lunar gravity assist: The lower its value, the more it is capable of
deflecting the spacecraft’s velocity in the right direction and the less it has to be corrected
towards the target at SOI, which should in principle contribute to a reduction in the total
∆v.

Lastly, in order to provide a visual representation of the optimised results, the programme
takes the vector of optimised total mission ∆v over all the possible launch dates and picks
the mission with the lowest one of them all. From there, it takes its parameters and it
computes the whole mission from launch to rendezvous, calculating the state spaces of
the spacecraft, the target asteroid, the Earth and Mars over time, and finally plotting
their trajectories.

3.3.5 Discussion of the results

The implementation of the first estimation has corrected many of the previously men-
tioned issues with the algorithm: Its total run-time has been massively decreased to an
estimated average of between 30 minutes and 3 hours, depending on the target; a signifi-
cant improvement to previous versions that lasted more than a day. However, a large part
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of the reduction has been achieved by enlarging the start date and flight time step sizes
from 1 to 6 days, abandoning improvements in that area with regards to the referenced
algorithms. Still, the optimisation parameters are much better fit to each target than
before, and the optimised results can be validated.

To check their consistency, the trajectory towards NEA 2003 LN6 was calculated. This
asteroid was used as the example in [23], so numerical results can be compared between
them. Since that algorithm takes into account the return trip to Earth, the total ∆v
cannot be used for this purpose; however, there is a metric that is available in both cases:
The Earth SOI departure ∆v that sets the spacecraft in its trajectory towards the target
asteroid, which is obtained by solving the Lambert problem. Its value for the minimum
total ∆v case is shown for the most optimal case in the reference and the two most optimal
ones for this one:

2003 LN6 optimal ∆vSOI km/s
Reference: Most optimal case 0.1122

New algorithm: Most optimal case 0.0750
New algorithm: 2nd most optimal case 0.1426

Table 1: Comparison of ∆v at SOI values between the referenced and developed algorithms

The results are coherent with those in [23], while at the same time showing an improve-
ment for the most optimal case, as it was the objective for this project. In general,
when compared with the performance of the referenced algorithms, especially that of
[23], this one shows significant improvements: It successfully implements the Moon’s true
ephemerides instead of using a simplified model that assumes it is located in the ecliptic
plane. Using the gravity assist to aid in the spacecraft’s change of plane is also a con-
sideration that had been made in that study but not implemented. For that matter, the
initial ∆v there had a fixed value, with most of the change in trajectory provided by the
unassisted manoeuvres at the Earth’s SOI and at rendez-vous with the target; the authors
expressed the desire to implement a system to reduce their contribution and maximise the
former’s: This has been successfully implemented in this project. On the other hand, the
fact that it currently only considers the outbound part of a mining expedition, with no
consideration for the return trip, shows that there are still further areas of improvement
in the future.

The plots of the total mission ∆v values for each launch date can be found in annex
B.1, while those of the most favourable trajectories towards each target are in B.2. When
analysing the results, the first thing one notices is the large variability in the total trip ∆v
value over time: There are narrow periodical windows in which the trip cost is minimised,
separated by large time-spans in which it increases massively. This behaviour coincides
with that of real-life interplanetary missions, and Hohmann transfers in general. Regard-
ing the minimums, two trends in their distribution of values can be observed, depending
on the region of the Solar System where the targets are found: Main Belt Asteroids tend
to display a smaller amount of variability in their values, while their lowest ones are
relatively high: This is due to both their larger semi-major axis and their lower orbital
inclination and eccentricity. Near-Earth Asteroids, on the other hand, are much more di-
verse in their orbital characteristics, resulting in either the cheapest targets to attain, the
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most expensive, or the ones with the highest amount of variability between the minimum
∆v’s values, due to their diversity in the three previously-mentioned orbital parameters.

A noticeable increase in precision was achieved in the calculations of certain targets thanks
to the use of JPL’s Small Body Database ephemerides integrated using the Solar System’s
n-body problem over the entire range of possible launch dates, instead of using the orbital
parameters at the reference epoch and extrapolating them over time while considering
only a 2-body problem. This is especially true for (99942) Apophis, whose close approach
to the Earth in 2036 will modify its orbit around the Sun due to the same principles that
would be used in the Earth-Moon gravity assist, as seen in 3.2.4. The previous approach
would not have been able to take it into account, while the new one does.

With the economic distances towards the studied targets, all the data was in place to
implement the gravity trade model in the following section.
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4 The gravity trade model
After the trajectory algorithm’s simulations were carried out on the targets, ∆v plots for
each of the asteroids were generated. In order to obtain results that were valid for the
entire 30-year launch window, instead of just using the lowest ∆v window, since the values
of the bottoms of the periodic minimums can vary a lot at each approximation between
the Earth and an asteroid, the average value of the five least expensive windows is used
instead. Naturally, only the minimums were used instead of the whole data set because
it does not make sense to launch the mission at a less favourable time from an energetic,
and therefore economic cost, point of view. Once that part was complete, each asteroid’s
"favourability factor" was calculated. Its formula, derived from that of the trade flow
seen in 1, is:

Fj =
Mj

Dj

(33)

Where Mj is its economic size and Dj is the exponential of the averaged minimum ∆v,
in km/s. This factor, multiplied by the Earth’s economic size, would result in the trade
volume between the two bodies, but since the value of the planet’s economy is the same
with regards to all of the targets, the factor can be used to find which asteroid would
have a higher volume of commerce with Earth, and consequently will be more economi-
cally attractive. Due to the large magnitude of the results, the decimal logarithm of the
favourability factor is presented instead. The values for each studied target can be found
in C.1.

The results show that the current model is most weighted towards the asteroids’ total
economic size, displaying a higher degree of favourability for the largest asteroids that
have been analysed over those that are easiest to reach from the Earth: See how the
most massive asteroids in the Main Belt appear to be 5 or 6 orders of magnitude more
interesting to exploit than NEAs that have actually been visited by probes, like (25143)
Itokawa, which should be proof of their higher viability. This suggests that the model is
most appropriate for evaluating the commercial flow between our planet and other celestial
bodies over very long periods of time, so the benefit of having more material available for
extraction becomes more prominent, and for an scenario where propellant consumption is
not such a big concern, like one where orbital refueling stations or propellant generation
on the asteroids themselves are available. Attempts to correct this tendency by adding
more weight to the economic distance term did not yield a model that is more accurate to
the fact that not all the material from an asteroid can be harvested at once, or that the
largest obstacle to interplanetary economic development, at least with humanity’s current
technological capabilities, lies in the exponential increase of the mass required to visit a
celestial body the harder it is to reach, and its associated cost. A different concept for the
economic size of the asteroids, based on humanity’s annual capacity of resource extraction
from them instead of the total available resources, would also produce a more accurate
substitute for GDP in the Earth-based gravity trade model, but until the technology for
large-scale space mining is not implemented or at least better conceptually defined such
a model will not be available.
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5 Conclusions
In summary, this project was successful at developing a tentative approach to exporting
the concepts of Earth-based gravity trade models to the interplanetary environment, de-
veloping the ideas of economic size and distance in this context using a new model that
is innovative but shows clear conceptual gaps that can be improved and expanded upon.

For the economic size of asteroids combining cosmochemical, spectroscopic and orbito-
graphic observations to estimate their total value is an original approach, however the
number of studied types can be increased to include the parent bodies of iron and stony
iron meteorites, which are potentially much more economically attractive than chondrites.
Speaking of which, the current model does not take into consideration their mineralogical
properties and the ease with which valuable materials can be extracted from them, and
what the real capacity for extraction over a set period of time would be.

For the economic distance, the new trajectory algorithm improves on those in the refer-
enced literature by providing a more robust and precise approach to adding a lunar gravity
assist that reduces the trip cost to the targeted asteroids, in a work that also serves to
expand the capabilities of the SEMAT toolkit for studying interplanetary missions. The
main area of improvement in this side of the project would be defining the amount of time
required for mining operations so that the return trip and therefore the total mission cost
can be more accurately studied.
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A Economic value

A.1 Meteorite elemental mass fractions

H L LL L/LL CI CM CV CO
chondrites chondrites chondrites chondrites chondrites chondrites chondrites chondrites

Li 1.70E-06 1.85E-06 1.80E-06 1.83E-06 1.50E-06 1.50E-06 1.70E-06 1.80E-06
Be 3.00E-08 4.00E-08 4.50E-08 4.25E-08 2.50E-08 4.00E-08 5.00E-08
B 4.00E-07 4.00E-07 7.00E-07 5.50E-07 8.70E-07 4.80E-07 3.00E-07
C 2.10E-03 2.50E-03 3.10E-03 2.80E-03 3.45E-02 2.20E-02 5.30E-03 4.40E-03
N 4.80E-05 4.30E-05 7.00E-05 5.65E-05 3.18E-03 1.52E-03 8.00E-05 9.00E-05
O 3.57E-01 3.77E-01 4.00E-01 3.89E-01 4.64E-01 4.32E-01 3.70E-01 3.70E-01
F 1.25E-04 1.00E-04 7.00E-05 8.50E-05 6.00E-05 3.80E-05 2.40E-05 3.00E-05
Na 6.11E-03 6.90E-03 6.84E-03 6.87E-03 5.00E-03 3.90E-03 3.40E-03 4.20E-03
Mg 1.41E-01 1.49E-01 1.53E-01 1.51E-01 9.70E-02 1.15E-01 1.43E-01 1.45E-01
Al 1.06E-02 1.16E-02 1.18E-02 1.17E-02 8.65E-03 1.13E-02 1.68E-02 1.40E-02
Si 1.71E-01 1.86E-01 1.89E-01 1.88E-01 1.06E-01 1.27E-01 1.57E-01 1.58E-01
P 1.20E-03 1.03E-03 9.10E-04 9.70E-04 9.50E-04 1.03E-03 1.12E-03 1.21E-03
S 2.00E-02 2.20E-02 2.10E-02 2.15E-02 5.41E-02 2.70E-02 2.20E-02 2.20E-02
Cl 1.40E-04 2.70E-04 2.00E-04 2.35E-04 7.00E-04 4.30E-04 2.50E-04 2.80E-04
K 7.80E-04 9.20E-04 8.80E-04 9.00E-04 5.50E-04 3.70E-04 3.60E-04 3.60E-04
Ca 1.22E-02 1.33E-02 1.32E-02 1.33E-02 9.26E-03 1.29E-02 1.84E-02 1.58E-02
Sc 7.80E-06 8.10E-06 8.00E-06 8.05E-06 5.90E-06 8.20E-06 1.02E-05 9.50E-06
Ti 6.30E-04 6.70E-04 6.80E-04 6.75E-04 4.40E-04 5.50E-04 8.70E-04 7.30E-04
V 7.30E-05 7.50E-05 7.60E-05 7.55E-05 5.50E-05 7.50E-05 9.70E-05 9.50E-05
Cr 3.50E-03 3.69E-03 3.68E-03 3.69E-03 2.65E-03 3.05E-03 3.48E-03 3.52E-03
Mn 2.34E-03 2.59E-03 2.60E-03 2.60E-03 1.94E-03 1.65E-03 1.52E-03 1.62E-03
Fe 2.73E-01 2.18E-01 1.98E-01 2.08E-01 1.82E-01 2.13E-01 2.35E-01 2.50E-01
Co 8.30E-04 5.80E-04 4.80E-04 5.30E-04 5.05E-04 5.60E-04 6.40E-04 6.80E-04
Ni 1.71E-02 1.24E-02 1.06E-02 1.15E-02 1.10E-02 1.23E-02 1.32E-02 1.42E-02
Cu 9.40E-05 9.00E-05 8.50E-05 8.75E-05 1.25E-04 1.30E-04 1.04E-04 1.30E-04
Zn 4.70E-05 5.70E-05 5.60E-05 5.65E-05 3.15E-04 1.80E-04 1.10E-04 1.10E-04
Ga 6.00E-06 5.40E-06 5.30E-06 5.35E-06 9.80E-06 7.60E-06 6.10E-06 7.10E-06
Ge 1.00E-05 1.00E-05 1.00E-05 1.00E-05 3.30E-05 2.60E-05 1.60E-05 2.00E-05
As 2.20E-06 1.36E-06 1.30E-06 1.33E-06 1.85E-06 1.80E-06 1.50E-06 2.00E-06
Se 8.00E-06 8.50E-06 9.00E-06 8.75E-06 2.10E-05 1.20E-05 8.70E-06 8.00E-06
Br 1.00E-06 2.00E-06 1.00E-06 1.50E-06 3.50E-06 3.00E-06 1.60E-06 1.40E-06
Rb 2.30E-06 2.80E-06 2.20E-06 2.50E-06 2.30E-06 1.60E-06 1.20E-06 1.30E-06
Sr 8.80E-06 1.10E-05 1.30E-05 1.20E-05 7.30E-06 1.00E-05 1.48E-05 1.30E-05
Y 2.00E-06 1.80E-06 2.00E-06 1.90E-06 1.56E-06 2.00E-06 2.60E-06 2.40E-06
Zr 7.30E-06 6.40E-06 7.40E-06 6.90E-06 3.90E-06 7.00E-06 8.90E-06 9.00E-06
Nb 4.00E-07 4.00E-07 2.00E-07 2.50E-07 4.00E-07 5.00E-07
Mo 1.40E-06 1.20E-06 1.10E-06 1.15E-06 9.20E-07 1.40E-06 1.80E-06 1.70E-06
Ru 1.10E-06 7.50E-07 3.75E-07 7.10E-07 8.70E-07 1.20E-06 1.08E-06
Rh 2.10E-07 1.55E-07 7.75E-08 1.40E-07 1.60E-07 1.70E-07
Pd 8.45E-07 6.20E-07 5.60E-07 5.90E-07 5.60E-07 6.30E-07 7.10E-07 7.10E-07
Ag 4.50E-08 5.00E-08 7.50E-08 6.25E-08 2.00E-07 1.60E-07 1.00E-07 1.00E-07
Cd 1.00E-08 3.00E-08 4.00E-08 3.50E-08 6.90E-07 4.20E-07 3.50E-07 8.00E-09
In 1.50E-09 2.00E-08 2.00E-08 2.00E-08 8.00E-08 5.00E-08 3.20E-08 2.50E-08
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Sn 3.50E-07 5.40E-07 2.70E-07 1.70E-06 7.90E-07 6.80E-07 8.90E-07
Sb 6.60E-08 7.80E-08 7.50E-08 7.65E-08 1.35E-07 1.30E-07 8.50E-08 1.10E-07
Te 5.20E-07 4.60E-07 3.80E-07 4.20E-07 2.30E-06 1.30E-06 1.00E-06 9.50E-07
I 6.00E-08 7.00E-08 3.50E-08 4.30E-07 2.70E-07 2.00E-07 2.00E-07
Cs 2.00E-07 5.00E-07 1.50E-07 3.25E-07 1.90E-07 1.10E-07 9.00E-08 8.00E-08
Ba 4.40E-06 4.10E-06 4.00E-06 4.05E-06 2.35E-06 3.10E-06 4.55E-06 4.30E-06
La 3.01E-07 3.18E-07 3.30E-07 3.24E-07 2.35E-07 3.20E-07 4.69E-07 3.80E-07
Ce 7.63E-07 9.70E-07 8.80E-07 9.25E-07 6.20E-07 9.40E-07 1.19E-06 1.14E-06
Pr 1.20E-07 1.40E-07 1.30E-07 1.35E-07 9.40E-08 1.37E-07 1.74E-07 1.40E-07
Nd 5.81E-07 7.00E-07 6.50E-07 6.75E-07 4.60E-07 6.26E-07 9.19E-07 8.50E-07
Sm 1.94E-07 2.03E-07 2.05E-07 2.04E-07 1.50E-07 2.04E-07 2.94E-07 2.50E-07
Eu 7.40E-08 8.00E-08 7.80E-08 7.90E-08 5.70E-08 7.80E-08 1.05E-07 9.60E-08
Gd 2.75E-07 3.17E-07 2.90E-07 3.04E-07 2.00E-07 2.90E-07 4.05E-07 3.90E-07
Tb 4.90E-08 5.90E-08 5.40E-08 5.65E-08 3.70E-08 5.10E-08 7.10E-08 6.00E-08
Dy 3.05E-07 3.72E-07 3.60E-07 3.66E-07 2.50E-07 3.32E-07 4.54E-07 4.20E-07
Ho 7.40E-08 8.90E-08 8.20E-08 8.55E-08 5.60E-08 7.70E-08 9.70E-08 9.60E-08
Er 2.13E-07 2.52E-07 2.40E-07 2.46E-07 1.60E-07 2.21E-07 2.77E-07 3.05E-07
Tm 3.30E-08 3.80E-08 3.50E-08 3.65E-08 2.50E-08 3.50E-08 4.80E-08 4.00E-08
Yb 2.03E-07 2.26E-07 2.30E-07 2.28E-07 1.60E-07 2.15E-07 3.12E-07 2.70E-07
Lu 3.30E-08 3.40E-08 3.40E-08 3.40E-08 2.50E-08 3.30E-08 4.60E-08 3.90E-08
Hf 1.50E-07 1.70E-07 1.70E-07 1.70E-07 1.05E-07 1.80E-07 2.30E-07 2.20E-07
Ta 2.10E-08 2.10E-08 1.05E-08 1.40E-08 1.90E-08
W 1.64E-07 1.38E-07 1.15E-07 1.27E-07 9.30E-08 1.60E-07 1.60E-07 1.50E-07
Re 7.80E-08 4.70E-08 3.20E-08 3.95E-08 3.80E-08 5.00E-08 5.70E-08 5.80E-08
Os 8.35E-07 5.30E-07 4.10E-07 4.70E-07 4.90E-07 6.70E-07 8.00E-07 8.05E-07
Ir 7.70E-07 4.90E-07 3.80E-07 4.35E-07 4.65E-07 5.80E-07 7.30E-07 7.40E-07
Pt 1.58E-06 1.09E-06 8.80E-07 9.85E-07 1.00E-06 1.10E-06 1.25E-06 1.24E-06
Au 2.20E-07 1.56E-07 1.46E-07 1.51E-07 1.45E-07 1.50E-07 1.53E-07 1.90E-07
Hg 3.00E-08 2.20E-08 2.60E-08 3.10E-07
Tl 1.00E-09 5.00E-09 3.00E-08 1.75E-08 1.42E-07 9.20E-08 5.80E-08 4.00E-08
Pb 2.40E-07 4.00E-08 2.00E-08 2.50E-06 1.60E-06 1.10E-06 2.15E-06
Bi 1.00E-08 1.40E-08 3.00E-08 2.20E-08 1.10E-07 7.10E-08 5.40E-08 3.50E-08
Th 3.80E-08 4.20E-08 4.70E-08 4.45E-08 2.90E-08 4.10E-08 5.80E-08 8.00E-08
U 1.30E-08 1.50E-08 1.50E-08 1.50E-08 8.00E-09 1.20E-08 1.70E-08 1.80E-08

Table 2: Elemental mass fractions of different chondrite groups

A.2 Elemental market price

Market price ($/kg) Source Date Notes
Li 104.76 [54] 12/6/2019
Be 830.88 [54] 12/6/2019
B 0.39 [55] February 2019 For borate products
C 0.43 [55] February 2019 For graphite
N 2.77
O 0.64
F 270.00 [55] February 2019 For fluorspar
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Na 3.14 [54] 12/6/2019
Mg 2.49 [54] 12/6/2019
Al 2.03 [54] 12/6/2019
Si 2.01 [54] 12/6/2019 For Si #2202
P 300.00
S 0.07 [55] February 2019
Cl 1.50
K 13.01 [54] 12/6/2019
Ca 6.43 [54] 12/6/2019
Sc 15,000.00 [55] January 2018 In 5g samples
Ti 10.12 [54] 12/6/2019
V 390.15 [54] 12/6/2019
Cr 9.39 [54] 12/6/2019
Mn 2.13 [54] 12/6/2019
Fe 0.60 [54] 12/6/2019 For cold-rolled steel
Co 35.76 [54] 12/6/2019
Ni 14.26 [54] 12/6/2019
Cu 6.74 [54] 12/6/2019
Zn 3.05 [54] 12/6/2019
Ga 140.89 [54] 12/6/2019
Ge 1,076.53 [54] 12/6/2019
As 1.37 [54] 12/6/2019
Se 23.84 [54] 12/6/2019
Br 4.90 [55] June 2018
Rb 15,460.00 [55] February 2019
Sr 6.21 [55] June 2018
Y 32.51 [54] 12/6/2019
Zr 36.13 [54] 12/6/2019
Nb 89.59 [54] 12/6/2019
Mo 40.17 [54] 12/6/2019
Ru 10,765.25 [54] 12/6/2019
Rh 116,250.25 [54] 12/6/2019
Pd 50,719.50 [54] 12/6/2019
Ag 513.12 [54] 12/6/2019
Cd 2.87 [54] 12/6/2019
In 156.06 [54] 12/6/2019
Sn 20.88 [54] 12/6/2019
Sb 5.82 [54] 12/6/2019
Te 59.25 [54] 12/6/2019
I 22.00 [55] February 2019
Cs 78,700.00 [55] February 2019
Ba 0.18 [55] February 2019 For barium sulphate
La 5.13 [54] 12/6/2019
Ce 4.99 [54] 12/6/2019
Pr 102.60 [54] 12/6/2019
Nd 66.11 [54] 12/6/2019
Sm 1.81 [54] 12/6/2019 For samarium oxide
Eu 33.24 [54] 12/6/2019 For europium oxide
Gd 29.62 [54] 12/6/2019 For gadolinium oxide
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Tb 722.50 [54] 12/6/2019
Dy 346.80 [54] 12/6/2019
Ho 58.52 [54] 12/6/2019 For holmium oxide
Er 27.09 [54] 12/6/2019 For erbium oxide
Hf 775.00 [55] February 2019
Ta 218.00 [55] February 2019 For tantalum oxide
W 36.49 [54] 12/6/2019
Re 4,190.50 [54] 12/6/2019
Os 5,888.89 [55] November 2018
Ir 55,849.25 [54] 12/6/2019
Pt 27,455.00 [54] 12/6/2019
Au 43,224.29 [54] 12/6/2019
Hg 81.22 [55] February 2019
Tl 4,000.00 [55] February 2019
Pb 2.33 [54] 12/6/2019
Bi 6.14 [54] 12/6/2019
Th 176.00
U 52.91

Table 3: Market price of the different studied chemical elements

A.3 Asteroid total economic sizes

Asteroid Chondrite Type Source Mass (kg) Source Value ($)
(19) Fortuna CM [7] 9.03E+18 [8] 17,952,660,131,558,000,000
(23) Thalia H [59] 1.96E+18 [9] 4,456,892,820,224,430,000
(41) Daphne CM [8] 6.10E+18 [8] 12,127,489,125,415,700,000
(78) Diana CM [9] 8.99E+17 [8] 1,787,313,561,270,280,000
(87) Sylvia CM [60] 1.48E+19 [5] 29,073,196,487,665,100,000
(93) Minerva CO [34] 3.35E+18 [30] 7,330,792,621,362,170,000
(117) Lomia CV [9] 6.08E+18 [66] 13,233,302,316,286,100,000

(121) Hermione CM [13] 4.94E+18 [8] 9,821,278,078,615,320,000
(130) Elektra CM [14] 6.20E+18 [8] 12,326,300,422,553,600,000
(253) Mathilde CM [61] 1.03E+17 [63] 204,775,636,052,101,000
(259) Aletheia CV [9] 7.79E+18 [66] 16,955,168,592,741,500,000
(324) Bamberga CM [24] 1.03E+19 [9] 20,477,563,605,210,100,000
(372) Palma CV [9] 5.15E+18 [9] 11,209,129,429,091,000,000
(433) Eros LL [18] 6.69E+17 [64] 13,904,608,493,757,100

(442) Eichsfeldia CM [9] 2.50E+17 [8] 497,028,242,844,905,000
(554) Peraga CI [12] 5.86E+17 [8] 1,045,542,093,710,350,000

(617) Patroclus CV [9] 1.36E+18 [29] 2,960,080,781,274,510,000
(654) Zelinda CM [9] 1.22E+18 [8] 2,425,497,825,083,140,000

(704) Interamnia CI [12] 3.28E+19 [9] 58,521,810,023,377,800,000
(751) Faina CM [13] 3.67E+18 [8] 7,296,374,604,963,210,000
(762) Pulcova CM [12] 1.40E+18 [31] 2,783,358,159,931,470,000
(1089) Tama L/LL [27] 8.90E+14 [6] 1,886,230,501,622,000
(1313) Berna LL [27] 2.25E+15 [6] 4,678,535,832,354,350
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(1620) Geographos LL [18] 1.48E+13 [45] 30,774,369,030,598
(1627) Ivar LL [18] 5.64E+14 [16] 1,171,962,829,258,470

(1862) Apollo LL [18] 5.68E+12 [52] 11,810,703,790,121
(3671) Dionysus CM [15] 8.38E+11 [49] 1,666,038,670,016
(3749) Balam L [27] 5.10E+14 [32] 1,060,468,122,000,320
(4179) Toutatis L [28] 5.00E+13 [28] 110,740,457,809,329
(25143) Itokawa LL [1] 3.58E+10 [2] 74,440,703,466
(65803) Didymos L [28] 5.28E+11 [51] 1,168,976,272,635
(66063) 1998 RO1 L [3] 3.60E+11 [9] 797,331,296,227
(66391) Moshup L [50] 2.49E+12 [44] 5,510,445,180,592
(99942) Apophis LL [18] 5.20E+10 [39] 108,126,161,459
(101955) Bennu CM [22] 7.80E+10 [11] 155,072,811,768

(153591) 2001 SN263 CI [47] 9.51E+12 [20] 16,972,716,583,969
(175706) 1996 FG3 CM [17] 3.54E+12 [65] 7,034,412,480,685

(185851) 2000 DP107 L [46] 4.83E+11 [40] 1,055,991,970,686
(276049) 2002 CE26 CM [48] 1.95E+13 [53] 38,768,202,941,903
(311066) 2004 DC CM [9] 3.59E+10 [19] 71,365,303,221

(494658) 2000 UG11 CM [9] 9.40E+09 [33] 18,688,261,931
Table 4: Total economic size of the target asteroids

B Economic distance

B.1 Optimal total ∆v values

Figure 17: Optimal ∆v values for (19) Fortuna
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Figure 18: Optimal ∆v values for (23) Thalia

Figure 19: Optimal ∆v values for (41) Daphne
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Figure 20: Optimal ∆v values for (78) Diana

Figure 21: Optimal ∆v values for (87) Sylvia
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Figure 22: Optimal ∆v values for (93) Minerva

Figure 23: Optimal ∆v values for (117) Lomia
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Figure 24: Optimal ∆v values for (121) Hermione

Figure 25: Optimal ∆v values for (130) Elektra
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Figure 26: Optimal ∆v values for (253) Mathilde

Figure 27: Optimal ∆v values for (259) Aletheia
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Figure 28: Optimal ∆v values for (324) Bamberga

Figure 29: Optimal ∆v values for (372) Palma
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Figure 30: Optimal ∆v values for (433) Eros

Figure 31: Optimal ∆v values for (442) Eichsfeldia
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Figure 32: Optimal ∆v values for (554) Peraga

Figure 33: Optimal ∆v values for (617) Patroclus
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Figure 34: Optimal ∆v values for (654) Zelinda

Figure 35: Optimal ∆v values for (704) Interamnia
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Figure 36: Optimal ∆v values for (751) Faina

Figure 37: Optimal ∆v values for (762) Pulcova
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Figure 38: Optimal ∆v values for (1089) Tama

Figure 39: Optimal ∆v values for (1313) Berna
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Figure 40: Optimal ∆v values for (1620) Geographos

Figure 41: Optimal ∆v values for (1627) Ivar
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Figure 42: Optimal ∆v values for (1862) Apollo

Figure 43: Optimal ∆v values for (3671) Dionysus
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Figure 44: Optimal ∆v values for (3749) Balam

Figure 45: Optimal ∆v values for (4179) Toutatis
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Figure 46: Optimal ∆v values for (25143) Itokawa

Figure 47: Optimal ∆v values for (65803) Didymos
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Figure 48: Optimal ∆v values for (66063) 1998 RO1

Figure 49: Optimal ∆v values for (66391) Moshup
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Figure 50: Optimal ∆v values for (99942) Apophis

Figure 51: Optimal ∆v values for (101955) Bennu
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Figure 52: Optimal ∆v values for (153591) 2001 SN263

Figure 53: Optimal ∆v values for (175706) 1996 FG3
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Figure 54: Optimal ∆v values for (185851) 2000 DP107

Figure 55: Optimal ∆v values for (276049) 2002 CE26
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Figure 56: Optimal ∆v values for (311066) 2004 DC

Figure 57: Optimal ∆v values for (494658) 2000 UG11
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B.2 Most optimal trajectories

Figure 58: Minimum ∆v trajectory for (19) Fortuna

Figure 59: Minimum ∆v trajectory for (23) Thalia
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Figure 60: Minimum ∆v trajectory for (41) Daphne

Figure 61: Minimum ∆v trajectory for (78) Diana
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Figure 62: Minimum ∆v trajectory for (87) Sylvia

Figure 63: Minimum ∆v trajectory for (93) Minerva
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Figure 64: Minimum ∆v trajectory for (117) Lomia

Figure 65: Minimum ∆v trajectory for (121) Hermione

70



Figure 66: Minimum ∆v trajectory for (130) Elektra

Figure 67: Minimum ∆v trajectory for (253) Mathilde

71



Figure 68: Minimum ∆v trajectory for (259) Aletheia

Figure 69: Minimum ∆v trajectory for (324) Bamberga
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Figure 70: Minimum ∆v trajectory for (372) Palma

Figure 71: Minimum ∆v trajectory for (433) Eros
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Figure 72: Minimum ∆v trajectory for (442) Eichsfeldia

Figure 73: Minimum ∆v trajectory for (554) Peraga
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Figure 74: Minimum ∆v trajectory for (617) Patroclus

Figure 75: Minimum ∆v trajectory for (654) Zelinda
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Figure 76: Minimum ∆v trajectory for (704) Interamnia

Figure 77: Minimum ∆v trajectory for (751) Faina
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Figure 78: Minimum ∆v trajectory for (762) Pulcova

Figure 79: Minimum ∆v trajectory for (1089) Tama
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Figure 80: Minimum ∆v trajectory for (1313) Berna

Figure 81: Minimum ∆v trajectory for (1620) Geographos
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Figure 82: Minimum ∆v trajectory for (1627) Ivar

Figure 83: Minimum ∆v trajectory for (1862) Apollo
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Figure 84: Minimum ∆v trajectory for (3671) Dionysus

Figure 85: Minimum ∆v trajectory for (3749) Balam
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Figure 86: Minimum ∆v trajectory for (4179) Toutatis

Figure 87: Minimum ∆v trajectory for (25143) Itokawa
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Figure 88: Minimum ∆v trajectory for (65803) Didymos

Figure 89: Minimum ∆v trajectory for (66063) 1998 RO1
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Figure 90: Minimum ∆v trajectory for (66391) Moshup

Figure 91: Minimum ∆v trajectory for (99942) Apophis
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Figure 92: Minimum ∆v trajectory for (101955) Bennu

Figure 93: Minimum ∆v trajectory for (153591) 2001 SN263
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Figure 94: Minimum ∆v trajectory for (175706) 1996 FG3

Figure 95: Minimum ∆v trajectory for (185851) 2000 DP107
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Figure 96: Minimum ∆v trajectory for (276049) 2002 CE26

Figure 97: Minimum ∆v trajectory for (311066) 2004 DC
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Figure 98: Minimum ∆v trajectory for (494658) 2000 UG11

C Gravity model

C.1 Favourability factor values

Asteroid Economic size ($) Economic distance (km/s) log10(Fj)
(19) Fortuna 1.80E+19 10.11 14.86
(23) Thalia 4.46E+18 12.02 13.43
(41) Daphne 1.80E+19 12.06 14.02
(78) Diana 1.79E+18 11.23 13.38
(87) Sylvia 2.91E+19 13.17 13.74
(93) Minerva 7.33E+18 11.97 13.67
(117) Lomia 1.32E+19 12.67 13.62

(121) Hermione 9.82E+18 12.94 13.37
(130) Elektra 1.23E+19 14.25 12.90
(253) Mathilde 2.05E+17 11.21 12.44
(259) Aletheia 1.70E+19 12.34 13.87
(324) Bamberga 2.05E+19 11.76 14.20
(372) Palma 1.12E+19 14.52 12.74
(433) Eros 1.39E+16 7.35 12.95

(442) Eichsfeldia 4.97E+17 10.07 13.32
(554) Peraga 1.05E+18 9.92 13.71

(617) Patroclus 2.96E+18 15.64 11.68
(654) Zelinda 2.43E+18 11.61 13.34

(704) Interamnia 5.85E+19 13.52 13.90
(751) Faina 7.30E+18 12.13 13.60
(762) Pulcova 2.79E+18 12.71 12.92
(1089) Tama 1.89E+15 9.27 11.25
(1313) Berna 4.68E+15 12.24 10.35

(1620) Geographos 3.08E+13 11.99 8.28
(1627) Ivar 1.17E+15 8.093 11.55

(1862) Apollo 1.18E+13 11.61 8.03
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(3671) Dionysus 1.67E+12 10.5 7.66
(3749) Balam 1.06E+15 9.32 10.98
(4179) Toutatis 1.11E+14 9.729 9.82
(25143) Itokawa 7.44E+10 4.714 8.82
(65803) Didymos 1.17E+12 7.8 8.68
(66063) 1998 RO1 7.97E+11 17.3 4.39
(66391) Moshup 5.51E+12 21.85 3.25
(99942) Apophis 1.08E+11 5.533 8.63
(101955) Bennu 1.55E+11 5.72 8.71

(153591) 2001 SN263 1.70E+13 8.048 9.73
(175706) 1996 FG3 7.03E+12 6.294 10.11

(185851) 2000 DP107 1.06E+12 10.78 7.34
(276049) 2002 CE26 3.88E+13 19.01 5.33
(311066) 2004 DC 7.14E+10 11.14 6.02

(494658) 2000 UG11 1.87E+10 11.305 5.36
Table 5: Favourability factor of the target asteroids

D Matlab code

D.1 Asteroid_deltav_calculator

1 c l o s e a l l
2 c l e a r v a r i a b l e s
3 c l c
4

5 i n i t ; % Star t the semat environment
6 de f au l t = load_kerne l s ( d e f au l t ) ; % Star t the SPICE ke rn e l s
7 cr3bp = init_CR3BP( ’EARTH’ , ’MOON’ , d e f au l t ) ; % Star t Earth−Moon

CR3BP model
8

9 % Problem constant s
10 G = cs t . env .G∗10^−9; %[km^3∗kg^−1∗s^−2]
11 m_1 = cr3bp .m1.M; %[ kg ] Earth mass
12 m_2 = cr3bp .m2.M; %[ kg ] Moon mass
13 m_s = cs t . sun .ms∗(m_1+m_2) ; %[ kg ] Sun mass
14 r_s = [ 0 , 0 , 0 ] ; % Sun po s i t i o n at o r i g i n in ECLIPJ2000
15 mu_s = G∗m_s; %[km^3/ s ^2] Sun standard g r a v i t a t i o n a l parameter
16 R_1 = cr3bp .m1. Req ; %[km] Earth equa t o r i a l r ad iu s
17 R_2 = cr3bp .m2. Req ; %[km] Moon equa t o r i a l r ad iu s
18 a_12 = cr3bp .L ; %[km] Earth−Moon semi−major ax i s
19 n_12 = sq r t (G∗(m_1+m_2) /(a_12^3) ) ; %[ rad/ s ] Earth−Moon angular

v e l o c i t y
20 t_12 = sq r t ( ( a_12^3) /(G∗(m_1+m_2) ) ) ; %[ s ] Earth−Moon c h a r a c t e r i s i t c

time
21 mu = cr3bp .mu; % CR3BP mu parameter
22 mu_1 = 1−mu; % Earth mu parameter
23 mu_2 = mu; % Moon mu parameter
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24 P1 = [−mu_2, 0 , 0 ] ; %[ adim ] Earth po s i t i o n in the synodic frame o f
r e f e r e n c e

25 P2 = [mu_1, 0 , 0 ] ; %[ adim ] Moon po s i t i o n in the synodic frame o f
r e f e r e n c e

26 t_0 = 2458849 .5 ; %[JD ] Minimum s t a r t date 01/01/2020 00 : 00 : 00 UTC
27 t_f = 2469807 .5 ; %[JD ] Maximum s t a r t date 01/01/2050 00 : 00 : 00 UTC
28 t_start = ( t_0 : 6 : t_f ) ; %[ days ] Vector o f s t a r t dates
29 t_start_J2000 = csp i c e_s t r 2 e t ( s t r c a t ( ’JD ’ , num2str ( t_start ( : ) ) ) ) ; %[ s ]

Vector o f seconds between J2000 TDB and s t a r t date
30

31 % Lagrange po int c a l c u l a t i o n
32 [LP ] = Lagrange_solver_adim ( cr3bp ) ; %[ adim ] Lagrange po int p o s i t i o n

matrix
33

34 % Target parameters
35 number = 19 ; % Target number
36 name = ’ Fortuna ’ ; % Target name
37 SPKID = num2str (2 e6+number ) ; % Target SPK ID
38 de s i gna t i on = char ( s t r c a t ( ’ ( ’ , num2str ( number ) , ’ ) ’ ,{ ’ ’ } ,name) ) ; %

Target de s i gna t i on
39 f i l ename = s t r c a t ( ’ ( ’ , num2str ( number ) , ’ )_’ ,name , ’ . mat ’ ) ; % Data f i l e

name
40

41 % Spacec ra f t i n i t i a l p o s i t i o n in the synodic frame o f r e f e r e n c e
42 x_0 = LP(1 , 1 ) ; %[ adim ] I n i t i a l x p o s i t i o n
43 y_0 = LP(1 , 2 ) ; %[ adim ] I n i t i a l y p o s i t i o n
44 z_0 = LP(1 , 3 ) ; %[ adim ] I n i t i a l z p o s i t i o n
45

46 plot_pre l = true ; % Plot pre l im inary r e s u l t s
47

48 % Pre l iminary s o l v e r
49 [ delta_v_dopmin , t_flight_opmin ] = pre l im inary_so lve r (SPKID,

des ignat ion , t_start , t_start_J2000 , x_0 , y_0 , z_0 , cr3bp , t_12 ,mu_s,
p lot_pre l ) ;

50

51 % Optimisat ion parameters
52 delta_v_0 = ( 0 . 4 : 0 . 1 : delta_v_dopmin+2) ; %[km/ s ] I n i t i a l de l ta−v from

the L1 point
53

54 delta_v_0_adim = delta_v_0 /(n_12∗a_12) ; %[ adim ] I n i t i a l de l ta−v from
the L1 point

55

56 alpha_0 = deg2rad ( 0 : 2 2 . 5 : 1 8 0 ) ; %[ rad ] I n i t i a l t ang en t i a l ang le to the
Moon

57

58 i f min ( t_flight_opmin−30) > 4
59 t_ f l i g h t = ( t_flight_opmin −30:6 : t_flight_opmin+720) ;%[ days ]

F l i gh t time from Earth SOI to t a r g e t
60 e l s e
61 t_ f l i g h t = ( 4 : 6 : t_flight_opmin+720) ;
62 end
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63

64 % Spacec ra f t i n i t i a l s t a t e
65 theta_L1M = atan ( (R_2/a_12) /(P2 (1 )−x_0) ) ; %[ rad ] Angle o f the normal

component o f the i n i t i a l v e l o c i t y
66

67 % Optimised v a r i a b l e s
68 delta_v_min = 10000∗ ones ( s i z e ( t_start ) ) ; %[km/ s ] Minimum to t a l de l ta−

v f o r each s t a r t date
69 delta_v_0_opt = ze ro s ( s i z e ( t_start ) ) ; %[km/ s ] Optimal i n i t i a l de l ta−v

f o r each s t a r t date
70 alpha_0_opt = ze ro s ( s i z e ( t_start ) ) ; %[ deg ] Optimal i n i t i a l t ang en t i a l

ang le to the Moon f o r each s t a r t date
71 t_f l ight_opt = ze ro s ( s i z e ( t_start ) ) ; %[ days ] Optimal f l i g h t time from

Earth SOI to t a r g e t f o r each s t a r t date
72 delta_v_dep_opt = 10000∗ ones ( s i z e ( t_start ) ) ; %[ days ] Optimal

departure from Earth SOI de l ta−v to t a r g e t f o r each s t a r t date
73

74 t_span = [0 2∗ pi ] ; %[ adim ] I n t e g r a t i on timespan
75

76 % In t e g r a t i on cond i t i on s
77 opt ions = odeset ( ’ Re l t o l ’ , d e f au l t . ode113 . RelTol , ’ Abstol ’ , d e f au l t .

ode113 . AbsTol , ’ Events ’ ,@odezero_EARTHSOI) ;
78

79 % Optimis ing a lgor i thm
80 f o r i = 1 : s i z e ( delta_v_0 , 2 )
81 delta_v_0_adim_i = delta_v_0_adim ( i ) ;
82 delta_v_0_i = delta_v_0 ( i ) ;
83 f o r j = 1 : s i z e ( alpha_0 , 2 )
84 alpha_0_j = alpha_0 ( j ) ;
85 vx_0 = delta_v_0_adim_i∗ cos ( theta_L1M) ; %[ adim ] I n i t i a l vx

v e l o c i t y
86 vy_0 = −delta_v_0_adim_i∗ s i n ( theta_L1M) ∗ s i n ( alpha_0_j ) ; %[

adim ] I n i t i a l vy v e l o c i t y
87 vz_0 = delta_v_0_adim_i∗ s i n ( theta_L1M) ∗ cos ( alpha_0_j ) ; %[ adim

] I n i t i a l vz v e l o c i t y
88 C=[x_0 , y_0 , z_0 , vx_0 , vy_0 , vz_0 ] ; %[ adim ] I n i t i a l c ond i t i on s o f

s t a t e vec to r (x , y , z , vx , vy , vz )
89 % In t e g r a t i on setup
90 cv0 = (1 : 4 2 ) ’ ; % In t e g r a t i on vec to r
91 cv0 ( 1 : 6 ) = C; % 6−dim s t a t e
92 cv0 = matrixToVector ( cv0 , cr3bp . c s t . o r b i t .STM0, 6 , 6 , 6 ) ; % STM

concatenat ion a f t e r the 6−dim s t a t e
93 % In t e g r a t i on o f the movement equat ions us ing ODE113 with STM

un t i l departure from the Earth ’ s SOI
94 [~ ,~ , t_sc_soi_syn_adim , cv_soi_syn_adim ,~ ] = ode113 (@( t , y )

cr3bp_derivat ives_42 ( t , y ,mu) , t_span , cv0 , opt ions ) ;
95 s_sc_soi_syn_adim = cv_soi_syn_adim ( 1 : 6 ) ; %[ adim ] State

vec to r o f the s p a c e c r a f t at the Earth ’ s SOI
96 pa r f o r k = 1 : s i z e ( t_start , 2 )
97 l oad_kerne l s_alt ( ) ;
98 t_start_J2000_k = t_start_J2000 (k ) ;

90



99 % Seconds between J2000 TDB and SOI and s t a t e vec to r o f
the s p a c e c r a f t with regards to the Sun at SOI in the
J2000 i n e r t i a l r e f e r e n c e frame

100 [ t_sc_soi_J2000 , s_sc_soi ] = syn2scECLIPJ2000 (
t_sc_soi_syn_adim , s_sc_soi_syn_adim ’ , cr3bp , t_12 ,
t_start_J2000_k , f a l s e , f a l s e ) ;

101 r_sc_soi = s_sc_soi ( 1 : 3 ) ; %[km] Pos i t i on o f the
s pa c e c r a f t at SOI

102 v_sc_soi = s_sc_soi ( 4 : 6 ) ; %[km/ s ] Ve loc i ty o f the
s pa c e c r a f t at SOI

103 f o r l = 1 : s i z e ( t_f l i gh t , 2 )
104 t_ f l i gh t_ l = t_ f l i g h t ( l ) ;
105 t_rv_J2000 = t_sc_soi_J2000+t_f l i gh t_ l ∗ c s t . env . days ;

%[ s ] Seconds between J2000 TDB and rendez−vous
date

106 eph_target_patch_rv_l = mice_spkezr (SPKID, t_rv_J2000 ,
’ECLIPJ2000 ’ , ’NONE’ , ’SUN ’ ) ;

107 r_t_rv_l = eph_target_patch_rv_l . s t a t e ( 1 : 3 ) ; %
Pos i t i on o f the t a r g e t wrt the Sun in ECLIPJ2000
at rendez−vous date

108 v_t_rv_l = eph_target_patch_rv_l . s t a t e ( 4 : 6 ) ; %
Ve loc i ty o f the t a r g e t wrt the Sun in ECLIPJ2000
at rendez−vous date

109 [ v_sc_dep_l , v_sc_arr_l ,~ ,~ ] = lambert_mex ( r_sc_soi ’ ,
r_t_rv_l ’ , t_f l ight_l , 0 ,mu_s) ; % Cal l to Lambert
s o l v e r

110 delta_v_dep_l = norm(v_sc_dep_l ’−v_sc_soi ) ; %[km/ s ]
Earth departure de l ta−v

111 delta_v_arr_l = norm(v_t_rv_l−v_sc_arr_l ’ ) ; %[km/ s ]
Astero id rendez−vous de l ta−v

112 delta_v_l = delta_v_0_i+delta_v_dep_l+delta_v_arr_l ;
%[km/ s ] Total miss ion de l ta−v

113 i f delta_v_l < delta_v_min (k )
114 delta_v_min (k ) = delta_v_l ;
115 delta_v_0_opt (k ) = delta_v_0_i ;
116 alpha_0_opt (k ) = rad2deg ( alpha_0_j ) ;
117 t_f l ight_opt (k ) = t_f l i gh t_ l ;
118 delta_v_dep_opt (k ) = delta_v_dep_l ;
119 end
120 end
121 unload_kernels_alt ( ) ;
122 end
123 end
124 end
125

126 f o l d e r = ’C: \ Users \Joan\MUEA\SFE\ Tr a j e c t o r i e s \ ’ ;
127 save ( s t r c a t ( f o l d e r , f i l ename ) , ’ t_start ’ , ’ delta_v_min ’ , ’ delta_v_0_opt ’

, ’ alpha_0_opt ’ , ’ t_f l ight_opt ’ , ’ delta_v_dep_opt ’ ) ;
128

129 f i g u r e
130 p lo t ( t_start , delta_v_min ) ;
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131 t i t l e ( de s i gna t i on ) ;
132 x l ab e l ( ’UTC launch date [ JD ] ’ ) ;
133 y l ab e l ( ’Minimum delta−v [km/ s ] ’ ) ;
134

135 f i g u r e
136 p lo t ( t_start , delta_v_0_opt ) ;
137 t i t l e ( de s i gna t i on ) ;
138 x l ab e l ( ’UTC launch date [ JD ] ’ ) ;
139 y l ab e l ( ’ Optimal launch de l ta−v [km/ s ] ’ ) ;
140

141 f i g u r e
142 p lo t ( t_start , alpha_0_opt ) ;
143 t i t l e ( de s i gna t i on ) ;
144 x l ab e l ( ’UTC launch date [ JD ] ’ ) ;
145 y l ab e l ( ’ Optimal t ang en t i a l ang le [ deg ] ’ ) ;
146

147 f i g u r e
148 p lo t ( t_start , delta_v_dep_opt ) ;
149 t i t l e ( de s i gna t i on ) ;
150 x l ab e l ( ’UTC launch date [ JD ] ’ ) ;
151 y l ab e l ( ’ Optimal Earth SOI departure de l ta−v [km/ s ] ’ ) ;
152

153 f i g u r e
154 p lo t ( t_start , t_f l ight_opt ) ;
155 t i t l e ( de s i gna t i on ) ;
156 x l ab e l ( ’UTC launch date [ JD ] ’ ) ;
157 y l ab e l ( ’ Optimal f l i g h t time [ days ] ’ ) ;
158

159 % Disp lay ing the minimum delta−v o r b i t a l t r a n s f e r
160 [~ , h ] = min ( delta_v_min ) ;
161 delta_v_0_adim_h = delta_v_0_opt (h) /(n_12∗a_12) ;
162 alpha_0_h = deg2rad ( alpha_0_opt (h) ) ;
163 vx_0_h = delta_v_0_adim_h∗ cos ( theta_L1M) ;
164 vy_0_h = −delta_v_0_adim_h∗ s i n ( theta_L1M) ∗ s i n ( alpha_0_h) ;
165 vz_0_h = delta_v_0_adim_h∗ s i n ( theta_L1M) ∗ cos ( alpha_0_h) ;
166 C_h = [ x_0 , y_0 , z_0 , vx_0_h , vy_0_h , vz_0_h ] ;
167 cv0_h = (1 : 4 2 ) ’ ; % In t e g r a t i on vec to r
168 cv0_h ( 1 : 6 ) = C_h; % 6−dim s t a t e
169 cv0_h = matrixToVector ( cv0_h , cr3bp . c s t . o r b i t .STM0, 6 , 6 , 6 ) ; % STM

concatenat ion a f t e r the 6−dim s t a t e
170 [~ ,~ , t_sc_soi_syn_adim_h , cv_soi_syn_adim_h ,~ ] = ode113 (@( t , y )

cr3bp_derivat ives_42 ( t , y ,mu) , t_span , cv0_h , opt ions ) ;
171 s_sc_soi_syn_adim_h = cv_soi_syn_adim_h ( 1 : 6 ) ;
172 % [ t_sc_soi_syn_h , s_sc_soi_syn_h ] = CR3BP_integrator_syn (C_h, cr3bp ) ;
173 t_start_J2000_h = t_start_J2000 (h) ;
174 [ t_sc_soi_J2000_h , s_sc_soi_h ] = syn2scECLIPJ2000 ( t_sc_soi_syn_adim_h ,

s_sc_soi_syn_adim_h ’ , cr3bp , t_12 , t_start_J2000_h , f a l s e , f a l s e ) ;
175 % [ t_sc_soi_J2000_h , s_sc_soi_h ] = framechange ( t_sc_soi_syn_h ,

s_sc_soi_syn_h , cr3bp , t_start_J2000_h ) ;
176 r_sc_soi_h = s_sc_soi_h ( 1 : 3 ) ;
177 t_f l ight_h = t_f l ight_opt (h) ;
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178 t_rv_J2000_h = t_sc_soi_J2000_h+t_fl ight_h ∗ c s t . env . days ;
179 eph_target_patch_rv_h = mice_spkezr (SPKID, t_rv_J2000_h , ’ECLIPJ2000 ’ , ’

NONE’ , ’SUN ’ ) ;
180 r_t_rv_h = eph_target_patch_rv_h . s t a t e ( 1 : 3 ) ;
181 [ v_sc_dep_h ,~ ,~ ,~ ] = lambert_mex ( r_sc_soi_h ’ , r_t_rv_h ’ , t_fl ight_h , 0 ,

mu_s) ;
182 s_sc_dep_h ( 1 : 3 , 1 ) = r_sc_soi_h ;
183 s_sc_dep_h ( 4 : 6 , 1 ) = v_sc_dep_h ’ ;
184 [~ , a_sc , e_sc , I_sc , o_ap_sc , o_an_sc ,~ ,~ ,M_sc_dep_h ] = cart2kep (

s_sc_dep_h ,mu_s) ;
185 n_sc = sq r t (mu_s/a_sc^3) ;
186

187 t_JD = ze ro s (1 , t_f l ight_h+1) ;
188 r_t = ze ro s ( t_fl ight_h+1 ,3) ;
189 r_sc = ze ro s ( t_fl ight_h+1 ,3) ;
190 r_earth = ze ro s ( t_fl ight_h+1 ,3) ;
191 r_mars = ze ro s ( t_fl ight_h+1 ,3) ;
192

193 f o r g = 0 : t_fl ight_h
194 t_J2000_g = t_sc_soi_J2000_h+g∗ c s t . env . days ; %[ s ] Seconds between

J2000 TDB and cur rent date
195 M_sc = M_sc_dep_h+n_sc∗( t_J2000_g−t_sc_soi_J2000_h ) ;
196 s_sc = kep2cart ( a_sc , e_sc , I_sc , o_ap_sc , o_an_sc ,M_sc ,mu_s) ; %

Spacec ra f t s t a t e vec to r
197 eph_target_patch = mice_spkezr (SPKID, t_J2000_g , ’ECLIPJ2000 ’ , ’

NONE’ , ’SUN ’ ) ;
198 eph_earth_patch = mice_spkezr ( ’EARTH’ , t_J2000_g , ’ECLIPJ2000 ’ , ’

NONE’ , ’SUN ’ ) ;
199 eph_mars_patch = mice_spkezr ( ’MARS BARYCENTER’ , t_J2000_g , ’

ECLIPJ2000 ’ , ’NONE’ , ’SUN ’ ) ;
200 r_sc ( g+1 , :) = s_sc ( 1 : 3 ) ; % Spacec ra f t p o s i t i o n
201 r_t ( g+1 , :) = eph_target_patch . s t a t e ( 1 : 3 ) ; % Target p o s i t i o n
202 r_earth ( g+1 , :) = eph_earth_patch . s t a t e ( 1 : 3 ) ; % Earth po s i t i o n
203 r_mars ( g+1 , : ) = eph_mars_patch . s t a t e ( 1 : 3 ) ; % Mars po s i t i o n
204 end
205

206 f i g u r e
207 hold on
208 s c a t t e r 3 ( r_s (1 ) , r_s (2 ) , r_s (3 ) , ’ ye l low ’ , ’ f i l l e d ’ ) ;
209 p lo t3 ( r_t ( : , 1 ) , r_t ( : , 2 ) , r_t ( : , 3 ) , ’ b lack ’ ) ;
210 p lo t3 ( r_sc ( : , 1 ) , r_sc ( : , 2 ) , r_sc ( : , 3 ) , ’ green ’ ) ;
211 p lo t3 ( r_earth ( : , 1 ) , r_earth ( : , 2 ) , r_earth ( : , 3 ) , ’ b lue ’ ) ;
212 p lo t3 ( r_mars ( : , 1 ) , r_mars ( : , 2 ) , r_mars ( : , 3 ) , ’ red ’ ) ;
213 ax i s ( [−6.0 e8 6 .0 e8 −6.0 e8 6 .0 e8 −6.0 e8 6 .0 e8 ] )
214 x l ab e l ( ’km ’ ) ;
215 y l ab e l ( ’km ’ ) ;
216 z l a b e l ( ’km ’ ) ;
217 t i t l e ( s t r c a t ( ’ Tra j ec tory towards ’ ,{ ’ ’ } , d e s i gna t i on ) ) ;
218 hold o f f
219

220 unload_kernels_alt ( ) ;
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D.2 Lagrange_solver_adim

1 f unc t i on [LP] = Lagrange_solver_adim ( cr3bp )
2

3 mu = cr3bp .mu;
4 mu_1 = 1−mu;
5 mu_2 = mu;
6

7 % dU/dx , ad ime s i ona l i s ed
8 fun1 =@(x , y ) x−mu_1∗( x+mu_2) /( sq r t ( ( x+mu_2)^2+y^2) )^3−mu_2∗(x−mu_1) /(

sq r t ( ( x−mu_1)^2+y^2) )^3 ;
9 % dU/dy , ad ime s i ona l i s ed

10 fun2 =@(x , y ) y−(mu_1/( sq r t ( ( x+mu_2)^2+y^2) )^3+mu_2/( sq r t ( ( x−mu_1)^2+y
^2) ) ^3)∗y ;

11 % Solver , f i nd the (x , y ) po in t s f o r which the g rad i en t o f
12 % U i s nu l l ( De f i n i t i o n o f Lagrange po in t s )
13 fun3 =@( r ) [ fun1 ( r (1 ) , r (2 ) ) , fun2 ( r (1 ) , r (2 ) ) ] ;
14 L1 = ( f s o l v e ( fun3 , [ 0 . 5 , 0 ] ) ) ; %[ adim ] (x , y ) p o s i t i o n o f L1
15 L2 = ( f s o l v e ( fun3 , [ 1 . 5 , 0 ] ) ) ; %[ adim ] (x , y ) p o s i t i o n o f L2
16 L3 = ( f s o l v e ( fun3 , [ −2 , 0 ] ) ) ; %[ adim ] (x , y ) p o s i t i o n o f L3
17 L4 = ( f s o l v e ( fun3 , [ 0 . 5 , 0 . 5 ] ) ) ; %[ adim ] (x , y ) p o s i t i o n o f L4
18 L5 = ( f s o l v e ( fun3 , [ 0 . 5 , − 0 . 5 ] ) ) ; %[ adim ] (x , y ) p o s i t i o n o f L5
19

20 Lx = [ L1 (1) ; L2 (1 ) ; L3 (1 ) ; L4 (1 ) ; L5 (1 ) ] ;
21 Ly = [ L1 (2) ; L2 (2 ) ; L3 (2 ) ; L4 (2 ) ; L5 (2 ) ] ;
22 Lz = [ 0 ; 0 ; 0 ; 0 ; 0 ] ;
23

24 LP = [ Lx , Ly , Lz ] ; %[ adim ] Lagrange po int p o s i t i o n matrix

D.3 preliminary_solver

1 f unc t i on [ delta_v_dep_opt_prelim_min , t_flight_opt_prelim_min ] =
pre l im inary_so lve r (SPKID, des ignat ion , t_start , t_start_J2000 , x_0 , y_0
, z_0 , cr3bp , t_c ,mu_s, plot_bool )

2

3 % Pre l iminary problem va r i a b l e s
4 t_f l i ght_pre l im = (60 : 1 : 2 1 9 0 ) ; %[ days ] F l i gh t time from Earth SOI to

t a r g e t
5

6 % Pre l iminary opt imised v a r i a b l e s
7 delta_v_min_prelim = 10000∗ ones ( s i z e ( t_start ) ) ; %[km/ s ] Minimum to t a l

de l ta−v f o r each s t a r t date
8 t_fl ight_opt_prel im = ze ro s ( s i z e ( t_start ) ) ; %[ days ] Optimal f l i g h t

time from Earth SOI to t a r g e t f o r each s t a r t date
9 delta_v_dep_opt_prelim = ze ro s ( s i z e ( t_start ) ) ; %[ days ] Optimal

departure from Earth SOI de l ta−v to t a r g e t f o r each s t a r t date
10

11 % Spacec ra f t i n i t i a l s t a t e in the synodic frame o f r e f e r e n c e
12 vx_0 = 0 ; %[ adim ] I n i t i a l x v e l o c i t y
13 vy_0 = 0 ; %[ adim ] I n i t i a l y v e l o c i t y
14 vz_0 = 0 ; %[ adim ] I n i t i a l z v e l o c i t y
15 C=[x_0 , y_0 , z_0 , vx_0 , vy_0 , vz_0 ] ; %[ adim ] I n i t i a l c ond i t i on s o f s t a t e
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vec to r (x , y , z , vx , vy , vz )
16 t_i = 0 ; %[ adim ] I n i t i a l time from s t a r t date
17

18 pa r f o r k = 1 : s i z e ( t_start , 2 )
19 l oad_kerne l s_alt ( ) ; % Star t the SPICE ke rn e l s
20 t_start_k_J2000 = t_start_J2000 (k ) ; %[ s ] Seconds between J2000

TDB and s t a r t date
21 % [~ , s_sc_k ] = framechange_adim ( t_i , t_c ,C, cr3bp , t_start_k_J2000 ) ;
22 [~ , s_sc_k ] = syn2scECLIPJ2000 ( t_i ,C’ , cr3bp , t_c , t_start_k_J2000 ,

f a l s e , f a l s e ) ;
23 r_sc_k = s_sc_k ( 1 : 3 ) ; %[km] Pos i t i on o f the s pa c e c r a f t wrt the

Sun in ECLIPJ2000 at s t a r t date k
24 v_sc_k = s_sc_k ( 4 : 6 ) ; %[km/ s ] Ve loc i ty o f the s p a c e c r a f t wrt the

Sun in ECLIPJ2000 at s t a r t date k
25 f o r l = 1 : s i z e ( t_f l ight_pre l im , 2 )
26 t_ f l i gh t_ l = t_f l ight_pre l im ( l ) ;
27 t_arr_J2000 = t_start_k_J2000+t_f l i gh t_ l ∗ cr3bp . c s t . env .

days ; %[ s ] Seconds between J2000 TDB and a r r i v a l date
28 eph_target_patch_l = mice_spkezr (SPKID, t_arr_J2000 , ’

ECLIPJ2000 ’ , ’NONE’ , ’SUN ’ ) ;
29 r_t_l = eph_target_patch_l . s t a t e ( 1 : 3 ) ; % Pos i t i on o f the

t a r g e t wrt the Sun in ECLIPJ2000 at a r r i v a l date l
30 v_t_l = eph_target_patch_l . s t a t e ( 4 : 6 ) ; % Ve loc i ty o f the

t a r g e t wrt the Sun in ECLIPJ2000 at a r r i v a l date l
31 [ v_sc_dep , v_sc_arr ,~ ,~ ] = lambert_mex ( r_sc_k ’ , r_t_l ’ ,

t_f l i ght_l , 0 ,mu_s) ; % Cal l to Lambert s o l v e r
32 delta_v_dep = norm(v_sc_dep’−v_sc_k) ; %[km/ s ] Earth

departure de l ta−v
33 delta_v_arr = norm(v_t_l−v_sc_arr ’ ) ; %[km/ s ] Mars rendez−

vous de l ta−v
34 delta_v = delta_v_dep+delta_v_arr ; %[km/ s ] Total miss ion

de l ta−v
35 i f delta_v < delta_v_min_prelim (k )
36 delta_v_min_prelim (k ) = delta_v ;
37 t_fl ight_opt_prel im (k ) = t_f l i gh t_ l ;
38 delta_v_dep_opt_prelim (k ) = delta_v_dep ;
39 end
40 end
41 unload_kernels_alt ( ) ;
42 end
43

44 % Pre l iminary optimal departure de l ta−v and a s s o c i a t ed f l i g h t time
45 delta_v_dep_opt_prelim_min = min ( delta_v_dep_opt_prelim ) ; %[km/ s ]

Pre l iminary optimal departure de l ta−v
46 delta_v_dep_opt_prelim_min = f l o o r ( delta_v_dep_opt_prelim_min /0 . 1 )

∗ 0 . 1 ; % rounding down
47 t_flight_opt_prelim_min = min ( t_fl ight_opt_prel im ) ; %[ days ]

Pre l iminary optimal f l i g h t time
48

49 i f p lot_bool == true
50 % Pre l iminary minimum t o t a l miss ion de l ta−v p lo t
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51 f i g u r e
52 p lo t ( t_start , delta_v_min_prelim ) ;
53 t i t l e ( de s i gna t i on ) ;
54 x l ab e l ( ’ Launch date [ JD ] ’ ) ;
55 y l ab e l ( ’Minimum delta−v [km/ s ] ’ ) ;
56

57 % Pre l iminary minimum departure de l ta−v p lo t
58 f i g u r e
59 p lo t ( t_start , delta_v_dep_opt_prelim ) ;
60 t i t l e ( de s i gna t i on ) ;
61 x l ab e l ( ’ Launch date [ JD ] ’ ) ;
62 y l ab e l ( ’Minimum departure de l ta−v [km/ s ] ’ ) ;
63

64 % Pre l iminary optimal f l i g h t time p lo t
65 f i g u r e
66 p lo t ( t_start , t_f l ight_opt_prel im ) ;
67 t i t l e ( de s i gna t i on ) ;
68 x l ab e l ( ’ Launch date [ JD ] ’ ) ;
69 y l ab e l ( ’ F l i gh t time [ days ] ’ ) ;
70 end

D.4 odezero_EARTHSOI

1 f unc t i on [ value , i s t e rm ina l , d i r e c t i o n ] = odezero_EARTHSOI(T,Y)
2

3 % In t e g r a t i on stop cond i t i on s f o r an escape t r a j e c t o r y from the Earth
−Moon

4 % CR3BP system
5

6 ms = 1.98841695225459 e30 ; %[ kg ] Sun mass
7 me = 5.97219 e24 ; %[ kg ] Earth mass
8 mm = 7.34581412062866 e22 ; %[ kg ] Moon mass
9

10 mu = mm/(me+mm) ;
11 mu_1 = 1−mu;
12 mu_2 = mu;
13

14 a_em = 384400; %[km] Earth−Moon semi−major ax i s
15 a_se = 149597871; %[km] Sun−Earth semi−major ax i s
16

17 R_1 = 6378.14/a_em; %[ adim ] Earth equa t o r i a l r ad iu s
18 R_2 = 1737.5/a_em; %[ adim ] Moon equa t o r i a l r ad iu s
19

20 P_1 = [−mu_2, 0 , 0 ] ; %[ adim ] Pos i t i on o f the Earth
21 P_2 = [mu_1, 0 , 0 ] ; %[ adim ] Pos i t i on o f the Moon
22

23 R_SOI = a_se/a_em∗ ( (me/ms) ^(2/5) ) ; %[ adim ] Earth SOI rad iu s
24

25 value = [ sq r t ( (Y(1)−P_2(1) )^2+(Y(2)−P_2(2) )^2+(Y(3)−P_2(3) ) ^2)<
R_2; % Spacec ra f t c ra she s aga in s t the Moon

26 s q r t ( (Y(1)−P_1(1) )^2+(Y(2)−P_1(2) )^2+(Y(3)−P_2(3) ) ^2)<
R_1; % Spacec ra f t c ra she s aga in s t the Earth

96



27 s q r t ( (Y(1)−P_1(1) )^2+(Y(2)−P_1(2) )^2+(Y(3)−P_2(3) ) ^2)>
R_SOI ] ; % Spacec ra f t l e av e s the Earth ’ s SOI

28

29 i s t e rm i n a l = [ 1 ; 1 ; 1 ] ; % Stop the i n t e g r a t i o n
30 d i r e c t i o n = [ 0 ; 0 ; 0 ] ;
31

32 end

D.5 syn2scECLIPJ2000

1 f unc t i on [ t_J2000 , y_J2000_sun ] = syn2scECLIPJ2000 ( t_syn , y_syn ,
cr3bp , T_adim , s ta r t , bool_J2000 , bool_ec i )

2 %SYN2J2000 Change o f coo rd ina t e s from adimens ionnal synodic frame to
h e l i o c e n t r i c e c l i p t i c J2000

3 %
4 %% Time
5 t_syn_dim = Dimensional isat ion_T ( t_syn , T_adim) ;
6 %Time mesured wrt a c e r t a i n epoch ’ s t a r t ’ and t r an s l a t ed in to

ephemeris
7 %time
8 t_J2000 = t_syn_dim + s t a r t ;
9

10 %% Construct ion o f the ins tantaneous r o t a t i n g frame
11 %i n i t p l o t
12 i f bool_J2000==true
13 f i g u r e
14 s c a t t e r 3 (0 , 0 ,0 , ’ g ’ , ’ o ’ )
15 hold on
16 end
17

18 %In i t v a r i a b l e s
19 y_syn_dim = ones (6 , s i z e (y_syn , 2) ) ;
20 y_J2000_sun = ones (6 , s i z e (y_syn , 2) ) ;
21

22 %Conversion loop on a l l patch po in t s
23 f o r i = 1 : s i z e (y_syn , 2)
24 %Compute ephemerides o f Earth , Moon , and Earth−Moon Barycenter (EMB)
25 eph_date = t_J2000 ( i ) ;
26 eph_moon_patch = mice_spkezr ( ’MOON’ , eph_date , ’ECLIPJ2000 ’ , ’NONE’ ,

’EARTH’ ) ;
27 eph_bem_patch = mice_spkezr ( ’ Earth−Moon barycenter ’ , eph_date , ’

ECLIPJ2000 ’ , ’NONE’ , ’SUN ’ ) ;
28 X_moon = eph_moon_patch . s t a t e ( 1 : 6 ) ;
29 pos_eph_bem_patch = eph_bem_patch . s t a t e ( 1 : 3 ) ;
30 v_eph_bem_patch = eph_bem_patch . s t a t e ( 4 : 6 ) ;
31

32 %Loca l l y d imens i ona l i z e synodic s t a t e
33 % y_syn_dim (1 : 3 , i ) = y_syn ( 1 : 3 , i ) ∗norm(X_moon( 1 : 3 ) ) ;
34 % y_syn_dim (4 : 6 , i ) = y_syn ( 4 : 6 , i ) ∗norm(X_moon( 1 : 3 ) ) /T_adim ;
35 y_syn_dim ( : , i ) = Dimensional isat ion_X (y_syn ( : , i ) , norm(X_moon( 1 : 3 ) ) ,

T_adim) ;
36
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37 %Build r o t a t i n g to i n e r t i a l p o s i t i o n t r a n s i t i o n matrix
38 e t e s t 1 = X_moon( 1 : 3 ) /norm(X_moon( 1 : 3 ) ) ;
39 e t e s t 3 = c r o s s (X_moon( 1 : 3 ) ,X_moon( 4 : 6 ) ) /norm( c r o s s (X_moon( 1 : 3 ) ,X_moon

( 4 : 6 ) ) ) ;
40 e t e s t 2 = c r o s s ( e t e s t3 , e t e s t 1 ) /norm( c r o s s ( e t e s t3 , e t e s t 1 ) ) ;
41 T_test = [ e t e s t1 , e t e s t2 , e t e s t 3 ] ;
42

43 %Apply r o t a t i on matrix to p o s i t i o n s and change o r i g i n from EMB to Sun
44 y_J2000_sun ( 1 : 3 , i ) = T_test∗y_syn_dim (1 : 3 , i ) + pos_eph_bem_patch ;
45

46 %Trans i t i on v e l o c i t i e s
47 thetadot_inst = norm( c r o s s ( eph_moon_patch . s t a t e ( 1 : 3 ) , eph_moon_patch .

s t a t e ( 4 : 6 ) ) ) / (norm(eph_moon_patch . s t a t e ( 1 : 3 ) ) ) ^2;
48 Tv = [ [ thetadot_inst ∗T_test (1 , 2 ) −thetadot_inst ∗T_test (1 , 1 ) 0 T_test

(1 , 1 ) T_test (1 , 2 ) T_test (1 , 3 ) ] ; [ thetadot_inst ∗T_test (2 , 2 ) −
thetadot_inst ∗T_test (2 , 1 ) 0 T_test (2 , 1 ) T_test ( 2 , 2 ) T_test (2 , 3 ) ] ;
[ thetadot_inst ∗T_test (3 , 2 ) −thetadot_inst ∗T_test (3 , 1 ) 0 T_test
(3 , 1 ) T_test (3 , 2 ) T_test (3 , 3 ) ] ] ;

49 y_J2000_sun ( 4 : 6 , i ) = Tv∗y_syn_dim ( : , i ) + v_eph_bem_patch ;
50

51 %Plo t t i ng
52 i f bool_J2000==true
53 s c a t t e r 3 (X_moon(1) , X_moon(2) ,X_moon(3) , ’b ’ , ’ o ’ )
54 hold on
55 end
56

57 end
58

59 %% Plot e c i comparison
60 i f bool_ec i==true
61 f o r i = 1 : s i z e (y_syn , 2 )
62 ye c i = cr3bp .L∗ syn2ec i ( y_syn ( : , i ) , t_syn ( : , i ) , cr3bp ) ;
63 ye c i ( 4 : 6 ) = yec i ( 4 : 6 ) / cr3bp .T∗2∗ pi ;
64 yeci_moon = cr3bp .L∗ syn2ec i ([1− cr3bp .mu, 0 , 0 , 0 , 0 , 0 ] ’ ,

t_syn ( : , i ) , cr3bp ) ;
65 s c a t t e r 3 ( y e c i (1 ) , y e c i (2 ) , y e c i (3 ) , ’m’ , ’ x ’ )
66 hold on
67 s c a t t e r 3 ( yeci_moon (1) , yeci_moon (2) , yeci_moon (3) , ’b ’ , ’ o ’ )
68 hold on
69 end
70 end
71

72 %% Plot J2000 conver s i on
73 i f bool_J2000==true
74 s c a t t e r 3 ( y_J2000_sun ( 1 , : ) , y_J2000_sun ( 2 , : ) , y_J2000_sun ( 3 , : ) , ’ r ’ ,

’ x ’ )
75 hold o f f
76 end
77

78 end
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D.6 load_kernels

1 f unc t i on [ params ] = load_kerne l s ( params )
2 % Loads a l l nece s sa ry sp i c e Kerne ls
3

4 i f ( params . ephemerides . isLoaded == f a l s e )
5 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \

de438s . bsp ’ ) ;
6 %csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \

de421 . bsp ’ ) ;
7 %csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \

de405 . bsp ’ ) ;
8 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \

na i f 0012 . t l s . pc ’ ) ;
9 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \de

−403−masses . tpc ’ ) ;
10 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \

wld86210 .15 ’ ) ;
11 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \

wld1156302 .15 ’ ) ;
12 params . ephemerides . isLoaded = true ;
13 end
14 end

D.7 load_kernels_alt

1 f unc t i on [ ] = load_kerne l s_alt ( )
2 % Loads a l l nece s sa ry sp i c e Kerne ls
3

4 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \ de438s .
bsp ’ ) ;

5 %cspice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \de421 .
bsp ’ ) ;

6 %cspice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \de405 .
bsp ’ ) ;

7 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \ na i f 0012 .
t l s . pc ’ ) ;

8 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \de−403−
masses . tpc ’ ) ;

9 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \wld86210
.15 ’ ) ;

10 csp ice_furnsh ( ’C: \ Users \JOAN\MUEA\SFE\semat−eb\mice_kernels \
wld1156302 .15 ’ ) ;

11

12 end

D.8 unload_kernels_alt

1 f unc t i on [ ] = unload_kernels_alt ( )
2 %UNLOAD_KERNELS Unloads a l l s p i c e k e rn e l s
3

4 c sp i c e_kc l ea r ( ) ;
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5

6

7 end
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