

Treball realitzat per:

Toni RIERA ROIG

Dirigit per:

Pedro DIEZ MEJIA
Sergio ZLOTNIK MARTINEZ

Màster en:

Enginyeria de Camins, Canals i Ports

Barcelona, 26/06/2020

Departament d’Enginyeria Civil i Ambiental

 T
R

EB
A

LL
 F

IN
A

L
D

E
M

À
ST

ER

Surrogate data-driven models for
parametric analysis of vehicle
structural dynamics for NVH
assessment

1

ABSTRACT

The limitations of numerical simulations by a lack of computational resources has

favoured the development of approaches that aim at reducing the computational cost

of these simulations, while retaining a high degree of reliability. In the context of

automotive structural analysis, we present the development of a surrogate model for

linear elasticity through the implementation of Model Order Reduction (MOR)

techniques. This document is divided in two main parts: first, an overview of the

techniques used, as well as its role in the construction of the surrogate model, and a

discussion on its implementation through the commercial software NASTRAN; and

second, the analysis of the results obtained for different cases of linear and non-linear

MOR implementations, and of the results of the surrogate model itself, with respect to

the results offered by a direct NASTRAN simulation.

2

TABLE OF CONTENTS

1 INTRODUCTION ... 3

2 DIMENSIONALITY REDUCTION THROUGH PCA, POD AND kPCA. 7

2.1 PCA and POD .. 8

2.2 kPCA ... 12

3 SURROGATE MODEL CONSTRUCTION THROUGH PCA ... 17

3.1 Linear elasticity in FEM .. 17

3.2 Application of PCA results .. 18

3.3 Surrogate model formulation .. 19

4 DATA GENERATION ... 20

4.1 NASTRAN model... 20

4.2 Definition of parameters and data generation .. 27

5 ANALYSIS OF POD AND kPCA RESULTS ... 30

5.1 Implementation case 1 .. 34

5.2 Implementation case 2 .. 37

5.3 Implementation case 3 .. 40

5.4 Implementation case 4 .. 43

5.5 Implementation case 5 .. 46

5.6 Results comparison .. 48

6 SURROGATE MODEL IMPLEMENTATION .. 53

6.1 Analysis of results .. 54

7 CONCLUSION ... 57

8 REFERENCES .. 59

3

1 INTRODUCTION

Numerical analyses have become a standard practice among the scientific and industrial

world, to help in the design and optimisation processes. From fluid dynamics to micro-

electro mechanical systems, several methods, such as Finite Elements, have proven their

usefulness in modelling and computing different natural phenomena that couldn’t be

solved with traditional analytic methods.

The solutions of certain partial differential equations have been obtained thanks to the

development of computational techniques. As time has passed, new simulation

techniques have required more and more computational resources, as greater accuracy

in the modelling stage has been deemed necessary. However, a greater demand for not

only greater accuracy, but also speed and reliability, has emerged, which contrast to the

ever increasing computational requirements of modern simulations.

In the same sense, traditional computational techniques may not be suited for

approaches based on trial and error, as its computational cost can be just too large to

make them viable. This is especially certain in models characterized by several

parameters, whose effects in the overall system cannot be assessed by simply carrying

out a massive amount of simulations because of this.

On the other hand, another question that has been raised is that of the

“democratisation” of simulations, or the push for a higher accessibility where potent

computers are not required, in favour of portable devices such as tablets or phones.

Hence, in this situation, an approach favouring the simplification of computational

technics, while conserving a high degree of reliability, has been gaining momentum, as

a way of increasing the efficiency of current technology. This responds to the need for

higher speed and reliability, the high number of simulations required to perform certain

optimisation problems, and the push for a simplification on simulation models and its

computational requirements.

4

Several methods have been being developed over the years, from machine learning

technics, to dimensionality reduction approaches. Many focus on the idea of dividing

the overall necessary work on an offline work, and an online work, where a large amount

of computations are carried out first to generate a model that allows the user to obtain

faster and reliable results.

In this sense, reduced models have emerged to answer to this demand. When many

possible realizations of a simulation need to be carried out, the computational resources

available may not be enough. Hence, reduced models present low-dimensional,

efficient, and fast approaches capable of providing a high reliability.

Several parameters are usually needed to compute the results of partial differential

equations, such as material properties, system geometry, boundary conditions... The

idea behind parametric model reduction is to generate models capable of describing the

behaviour of the original one in a certain range of parameters, so that fast results can

be obtained. This is a really useful technique in many cases: design, control,

optimisation, or uncertainty quantification.

In the same sense, and combined with these techniques, model order reduction (MOR)

are techniques whose objective is to reduce the complexity of certain models and

simulations, by reducing the degrees of freedom that need to be considered. Examples

of these are the Proper Orthogonal Decomposition (POD), and the Proper Generalized

Decomposition (PGD), but many more can be mentioned, like the Singular Value

Decomposition (SVD), Principal Component Analysis (PCA), kernel-Principal Component

Analysis (kPCA)... In the case of the POD, its objective is to extract the most significant

elements of a system, and to represent them in a set of basis vectors that can provide a

reliable representation of the system’s behaviour. Not only that, but it also provides a

way to simplifying interpolations and to deal with missing data.

As said by [5], the origin of these techniques can be difficult to define, as many of them

are equivalent. For example, the SVD was first independently derived during the XIXth

century by scholars like Beltrami (1873) and Jordan (1874), though we’ll have to wait

until the XXth century to find applications such as those of Fisher and Mackenzie (1923).

Other methods, like the PCA, appeared early on the XXth century, thanks to the work of

5

Pearson (1901) and Hotelling (1933), who derived it through simillar (but different)

approaches. Other autors, such as Frisch (1929) and Thurstone (1931), were also working

in similar methods, but Pearson’s and Hotelling’s contribution is regarded as more

significant, even some of their work (Hotelling in particular) contains material on the

factor analysis.

Still, not much progress was seen until a few years later, as these methods required a

significant computation power that had yet to be developed. Though Pearson claimed

that the PCA could be carried out by hand with a small number of parameters, this didn’t

seem to be a possibility; however, once computers came to be, the application of these

techniques became an actual possibility. Other important papers regarding the PCA, that

were developed during this period of popularisation, are those of Anderson (1936), Rao

(1964), Gower (1966), and Jeffers (1967).

It’s important to note, too, that these methods have been used in several fields. For

example, a remarkable paper on meteorology and oceanography by Preisendorfer and

Mobley (1988) also introduces several new ideas related to the PCA. Other examples

presented by [6] would be those of Graham and Kevrekedis (1996), that apply the POD

on reaction-diffusion chemical processes, or Epureanu et al. (2001), on viscous flow.

Regarding the field of structural dynamics, the first applications are found on the 1990s,

dealing with distributed systems [Fitzsimons and Rui (1993)], dimensionality studies

[Cusumano et al. (1993-1994)], or vibration of long torsional strings [Kreuzer and Kust

(1996)]. Currently, we can find applications in fields such as active control, aeroelastic

problems, finite element model updating, any many more.

In this document, several MOR techniques will be presented, for both linear and non-

linear cases. Our interest is to assess its implementation on Finite Element Method data,

in order to find the underlying dimensions that can be obtained from several

approaches. Particularly, we will work on the implementation of a linear elastic model

of an automotive structure in the software NASTRAN, in order to assess its particularities

and challenges. This software will be used both because of its capabilities, and because

we are interested in carrying out this project in a commercial software.

6

This project needs to be understood in the context of Fabiola Cavaliere’s project on static

and dynamic global stiffness analysis for automotive pre-design, which aims at devising

a computational tool to guide the Body-in-White (phase were the final contours of the

car body are worked out) designer in the decision making, through the use of reduced

order modelling for linear static and dynamic analysis. This project is supervised by

professors and professionals from the UPC, the CIMNE, Swansea University, and SEAT.

These supervisors include the tutors of this TFM: Pedro Díez and Sergio Zlotnik.

This document will proceed as follows: First of all, the MOR methods will be explained

in detail with their appropriate notation, and then, we will explain how to create a

surrogate model from the results obtained from these methods, to solve a FEM problem

in a smaller dimension. Once this has been done, we will explain how the data needed

to carry out these tasks will be obtained. First, a FEM NASTRAN model, provided by the

LaCàN and representing the structure of a car, will be presented. Then, we will specify

the parameters that will be subject to variation, in order to define the amount of

simulations that will be required. From these results, a set of data will be obtained, and

it will be used to implement the MOR techniques. After having discussed the results

obtained from the dimensionality reduction methods, they will be used to create a

surrogate model according to what will have been explained, which will be tested with

a new simulation.

7

2 DIMENSIONALITY REDUCTION THROUGH PCA, POD AND

kPCA.

In this section, we will adequately introduce the dimensionality reduction methods that

will be used in this project.

As said before, the need for this models comes from the fact that current computational

resources can’t handle, in a reasonable amount of time, certain large scale simulations

that require multiple tries. Hence, in this section, we present several models that

respond to this demand, by reducing the size of the data of interest. This models have

several applications, from reducing the dimensions of the space of solutions for a certain

given problem in order to carry out the calculations, to reducing the size of a given data

set so that it can be more easily exploited for other analysis. The former will be

developed in section 3, where the conclusions from this section will be applied.

In this section, we will present three different methods, though two of them are

equivalent. First, the Principal Component Analysis (PCA) and the Proper Orthogonal

Decomposition (POD), which were already introduced in the introduction, and are

equivalent linear methods; then, the kernel-Principal Component Analysis (kPCA), which

is a non-linear method based on the PCA, with a few variations that need to be

considered. We will use a precise notation in order to characterize each method, and to

stablish their similarities and differences.

Though these models are capable of treating any sort of organized data, and the

notation will be general enough to represent this, it is important to note that, in this

document, a general “data” vector will always represent the displacement results of a

FEM model. Later, this will be explained in greater detail.

8

2.1 PCA and POD

The Principal Component Analysis (PCA) and the Proper Orthogonal Decomposition

(POD) are equivalent methods that aim at reducing the dimension of a set of data. The

idea behind them is to eliminate a possible correlation between the different sets of

data, through a conversion of the original variables into a set of linearly uncorrelated

variables.

As previously said, these methods were created and developed during the twentieth

century. Many equivalent methods were also created, and some of them will also be

discussed on this document, such as the Singular Value Decomposition (SVD). This is

because two main reasons: first, the SVD can be viewed as the reason why the PCA and

the POD are considered equivalent methods; second, because these transformations

help understand the logical evolution of the PCA into the so called kPCA, or kernel

Principal Component Analysis: an extension of the PCA when non-linearities need to be

taken into account.

The idea behind the PCA and the POD is quite simple, yet smart: Given a set of data, its

covariance matrix (or equivalent) is calculated and diagonalised. Diagonalising this

matrix carries out a change of basis, from correlated variables to uncorrelated variables.

Since the sample’s variability will be defined as the diagonal values of the matrix, the

largest eigenvalues will be able to represent a large part of the total variability. Hence,

a tolerance is stablished, in order to define the minimum number of orthogonal

variables that need to be taken into account to satisfy a given variability, and reduce the

dimension of the initial sample without losing valuable information.

In the following sections, the PCA and the POD will be properly explained using the

adequate mathematical notation, and the necessary considerations regarding the other

equivalent methods will be addressed. Then, the kPCA will be introduced, outlining the

differences with the first methods and its particularities. The following paragraphs are

based on [3], though further information can be found in [1], [2], [4] and [6].

9

2.1.1 DATA SET AND COVARIANCE MATRIX.

The data will be defined as follows: vectors 𝑥1, 𝑥2, … , 𝑥𝑛𝑠 ∈ ℝ𝑑 are 𝑛𝑠 samples of size

𝑑, usually with 𝑛𝑠 ≫ 𝑑 so that the set of vectors is representative of the random variable

that they represent. Then, this set of vectors is used to construct the following matrix:

𝑋 = [𝑥1 𝑥2 ⋯ 𝑥𝑛𝑠] (1)

Which is of size 𝑑 × 𝑛𝑠. The final objective of the PCA is to reduce the size 𝑑 to a size 𝑘,

with 𝑑 ≫ 𝑘, by eliminating the intrinsic correlation between sets of data.

Having defined 𝑋, the covariance matrix of the sample (as long as its mean value is zero)

is defined as:

𝐶 = 𝑋𝑋T = ∑ 𝑥𝑙(𝑥𝑙)T

𝑛𝑠

𝑙=1

(2)

Of size 𝑑 × 𝑑. In case the mean value of X is not zero, it can be easily transformed by

subtracting its mean to each one of the vectors 𝑥𝑖 forming the matrix. In any case, the

diagonalisation of C results in the following expression:

𝐶 = 𝑈Λ𝑈T (3)

Where Λ contains the eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑 ≥ 0 in its diagonal, and 𝑈 is

composed of the vectors 𝑈 = [𝑢1 𝑢2 ⋯ 𝑢𝑑], that describe an orthonormal basis in

ℝ𝑑. It is important to notice that, since the covariance matrix is diagonal in the new basis

𝑈, these variables are uncorrelated in this basis. Also, a vector 𝑥 in the original basis,

becomes 𝑧 = 𝑈T𝑥 in the new basis, and a matrix 𝑋 becomes 𝑍 = 𝑈T𝑋.

While the PCA follows this path, the POD (Proper Orthogonal Decomposition) proceeds

through a different matrix, defined as:

𝐺 = 𝑋T𝑋 = ∑(𝑥𝑙)T𝑥𝑙

𝑑

𝑙=1

(4)

In this case, G has a size of 𝑛𝑠 × 𝑛𝑠. Likewise, it can be diagonalised, obtaining the

resulting expression:

𝐺 = 𝑉Λ̃𝑉T (5)

10

With Λ̃ containing its eigenvalues, and 𝑉 = [𝑣1 𝑣2 ⋯ 𝑣𝑛𝑠], describing an

orthonormal basis, as 𝑈 did.

At this moment, it’s worth mentioning that the Singular Value Decomposition (SVD)

provides a decomposition of 𝑋 into the form 𝑋 = 𝑈Σ𝑉T, being U and V the matrices

previously defined, and Σ a diagonal 𝑑 × 𝑛𝑠 matrix that takes the following form:

Σ = [

𝜎1
 ⋱
 𝜎𝑑

0 ⋯ 0

0 … 0

]
(6)

In fact, the diagonalisation of C can be seen as a consequence of the SVD, as

𝐶 = 𝑋𝑋T = 𝑈Σ𝑉T𝑉ΣT𝑈T = 𝑈(ΣΣT)𝑈T (7)

given that V is a basis of orthonormal vectors. Therefore, Λ = ΣΣT, and its eigenvalues

𝜆𝑖 are 𝜆𝑖 = 𝜎𝑖
2. The same can be done for G, obtaining:

𝐺 = 𝑋T𝑋 = 𝑉(ΣTΣ)𝑉T (8)

Therefore, Λ̃ has d eigenvalues that aren’t equal to zero, which coincide with the

eigenvalues in Λ.

This shows how C and G are equivalent matrices, used in different dimensionality

reduction methods. While C is the matrix used in the PCA, the approach used for G will

be used in the kPCA, for reasons that will later be explained.

2.1.2 DIMENSIONALITY REDUCTION

Considering the PCA (though this can also be done with the results of the POD), once

the matrix C has been diagonalised, a value 𝜀 needs to be chosen to perform the

dimensionality reduction. Being the trace of Λ, or the sum of 𝜆𝑖, the total variance of the

sample, if the sum of a small number 𝑘 of 𝜆𝑖, with 𝑘 ≪ 𝑑, is already close to the total

sum of all the d eigenvalues, this means that these k dimensions contain a significant

amount of the total variability. Therefore, this value 𝜀 is chosen such that:

11

∑ 𝜆𝑖

𝑘

𝑖=1

≥ (1 − 𝜀) ∑ 𝜆𝑖

𝑑

𝑖=1

(9)

The dimensionality reduction is then performed by choosing the first k dimensions of

the diagonalised Λ matrix, and ignoring the 𝑘 + 1 to 𝑑 remaining dimensions. It is easy

to see how k depends on 𝜀, as the closer 𝜀 is to 1, the closer 𝑘 will be to 𝑑, while the

closer 𝜀 is to 1, the smaller 𝑘 will be, tending to 1.

Once 𝜀 has been defined, and 𝑘 calculated, a new matrix 𝑈∗ can be constructed from 𝑈,

neglecting 𝑢𝑖 vector for 𝑖 > 𝑘. Hence, 𝑈∗ = [𝑢1 𝑢2 ⋯ 𝑢𝑘] is a 𝑑 × 𝑘 matrix.

Similarly to 𝑈, we can be interested in calculating the projection of a vector 𝑥 in the

subspace of 𝑈∗. This is given by the expression 𝑧∗ = 𝑈∗T𝑥, or 𝑍∗ = 𝑈∗T𝑋 in the case of

dealing with matrices. Here, 𝑍∗ would be a 𝑘 × 𝑛𝑠 matrix.

An important final consideration is how to carry out the backward mapping of a 𝑧∗

vector in the reduced subspace. Given that in the full dimension case, 𝑥 would be

calculated from a vector 𝑧 as 𝑥 = 𝑈𝑧, the following expression is proposed:

𝑥 = 𝑈𝑧 ≈ 𝑈∗𝑧∗ (10)

Or, in the case of matrices:

𝑋 = 𝑈𝑍 ≈ 𝑈∗𝑍∗ (11)

This is not an exact expression, and an error is produced, equal to 𝑋 − 𝑈∗𝑍∗. The closer

k is to d, the smaller this error will be, so the closer the tolerance 𝜀 is to 0, the closer the

error will be to 0.

A final remark that needs to be addressed is the fact that the computational cost of

diagonalising C and G are equivalent, even though their sizes are 𝑑 × 𝑑 and 𝑛𝑠 × 𝑛𝑠

respectively. Computing 𝑢𝑖 and 𝑣𝑖for 𝑖 = 1, … , 𝑑 is equivalent, and this is in fact at the

basis of the kPCA.

From the expression 𝐶𝑢𝑖 = 𝜆𝑖𝑢𝑖, 𝑢𝑖 can be defined as:

𝑢𝑖 =
1

𝜆𝑖
∑ (𝑥𝑙𝑥𝑙T

)

𝑛𝑠

𝑙=1

𝑢𝑖 = ∑
1

𝜆𝑖
(𝑥𝑙 T

𝑢𝑖) 𝑥𝑙

𝑛𝑠

𝑙=1

= ∑[B]𝑙𝑖𝑥
𝑙

𝑛𝑠

𝑙=1

(12)

12

With:

[B]𝑙𝑖 =
1

𝜆𝑖
𝑥𝑙T

𝑢𝑖 (13)

For 𝑖 = 1, … , 𝑑 and 𝑙 = 1, … , 𝑛𝑠. This matrix B coincides with the d first columns of

matrix V, such that [B]𝑙𝑖 = [𝑣𝑖]
𝑙
. This also implies that 𝑈∗ = 𝑋𝑉∗. Therefore, from the

expression 𝑧∗ = 𝑈∗T𝑥, and for 𝑖 = 1, … , 𝑘 we obtain:

[𝑧𝑗∗
]

𝑖
= (𝑢𝑖)

T
𝑥𝑗 = (∑[B]𝑙𝑖𝑥𝑙

𝑛𝑠

𝑙=1

)

T

𝑥𝑗 = ∑[B]𝑙𝑖((𝑥𝑙)T𝑥𝑗)

𝑛𝑠

𝑙=1

= [𝑉∗T𝐺]
𝑖𝑗

 (14)

Or, in matrix notation:

𝑍∗ = 𝑉∗T𝐺 (15)

Where 𝑉∗ is a 𝑘 × 𝑛𝑠 matrix. Then, in a similar fashion as (11), the backward mapping

can be rewritten as:

𝑋 ≈ 𝑈∗𝑍∗ = 𝑋𝑉∗𝑍∗ (16)

Which introduces a difficulty compared to (11), as the unknown X appears in both sides

of the equation. This is, in fact, one of the principal steps to overcome in the backward

mapping of the kPCA.

2.2 kPCA

The kernel Principal Component Analysis, or kPCA, is a dimensionality reduction

technique derived from the PCA. Its objective is the same, but it aims at overcoming one

of the main limitations of PCA, which is that many variables are actually characterized

by a non-linear manifold. In these cases, PCA and POD cannot give a proper answer, as

they are based on a linear transformation.

When this happens, the idea behind the kPCA is to apply a transformation Φ from ℝ𝑑

to ℝ𝐷, where D is a much larger dimension than d. This transformation must provide an

“untangling” of the data, so that, in this new dimension D, a linear low-dimension

manifold can be calculated through the traditional PCA method.

13

Therefore, the matrix of variables is, in this case:

𝑋 = [Φ(𝑥1) ⋯ Φ(𝑥𝑛𝑠)] = [𝑥1 ⋯ 𝑥𝑛𝑠] (17)

Which is a 𝐷 × 𝑛𝑠 matrix. Given the transformation Φ, 𝑋 is calculated, and from this

point, the PCA is applied. However, some difficulties arise from this method: first, an

adequate function Φ must be chosen; then, the dimension D could be so large that the

standard application of the PCA could require an unaffordable computational effort.

The first difficulty will be addressed in the following sections. The second one is easily

dealt with by proceeding with the G matrix, instead of using the C matrix. This is because,

in this case, C would be of size 𝐷 × 𝐷, while G would be of size 𝑛𝑠 × 𝑛𝑠. Usually, in these

cases, 𝑛𝑠 is smaller than D, so the computational effort required to calculate G becomes

smaller than the one required to calculate C, which is not the case in the PCA.

2.2.1. The kernel

Instead of defining a function Φ(·), such that [𝐺]
𝑖𝑗

= Φ(𝑥𝑖)
T

Φ(𝑥𝑗), the idea behind the

kernel is to introduce a bivariate symmetric form 𝜅(∙ , ∙) that defines 𝐺 as [𝐺]
𝑖𝑗

=

𝜅(𝑥𝑖 , 𝑥𝑗). An example of this type of function is the Gaussian kernel:

𝜅(𝑥𝑖 , 𝑥𝑗) = exp (−𝛽‖𝑥𝑖 − 𝑥𝑗‖
2

) (18)

However, many different kinds exist of kernels exist, the idea being to select the one

that provides the best results which is the lowest final dimension.

An important thing to take into account is that, before using the PCA, the matrix 𝐺 needs

to be centered, which is not guaranteed by a random transformation 𝜅(𝑥𝑖 , 𝑥𝑗). Once

this transformation is known, though, it’s easy to center the matrix through the

expression:

14

[𝐺̃]
𝑖𝑗

= 𝜅(𝑥𝑖 , 𝑥𝑗) −
1

𝑛𝑠
∑ 𝜅(𝑥𝑖 , 𝑥𝑙)

𝑛𝑠

𝑙=1

−
1

𝑛𝑠
∑ 𝜅(𝑥𝑚, 𝑥𝑗)

𝑛𝑠

𝑚=1

+
1

𝑛𝑠
2

∑ ∑ 𝜅(𝑥𝑙 , 𝑥𝑚)

𝑛𝑠

𝑚=1

𝑛𝑠

𝑙=1

 (19)

Which can be rewritten as:

𝐺̃ = 𝐺 −
1

𝑛𝑠
𝐺𝕀(𝑛𝑠×𝑛𝑠) −

1

𝑛𝑠
𝕀(𝑛𝑠×𝑛𝑠)𝐺 +

1

𝑛𝑠
2

𝕀(𝑛𝑠×𝑛𝑠)𝐺𝕀(𝑛𝑠×𝑛𝑠) (20)

Where 𝕀(𝑛𝑠×𝑛𝑠) is an 𝑛𝑠 × 𝑛𝑠 matrix composed solely of ones. This last expression

provides the centred matrix after a simple algebraic manipulation of matrix 𝐺.

2.2.2. Dimensionality reduction in the kPCA.

Once the matrix 𝐺̃ has been calculated, the idea behind the kPCA is to proceed as the

POD would. Therefore, this matrix is to be diagonalised as follows:

𝐺̃ = 𝑉Λ̃𝑉T (21)

With the matrix Λ̃ containing its eigenvalues, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛𝑠
≥ 0 in decreasing

order, and matrix 𝑉 its associated eigenvectors.

Following the procedure explained in the previous sections, a number of dimensions k

is defined, such that they collect a significant amount of the total variability, and then

the matrix 𝑉∗ is defined as a 𝑛𝑠 × 𝑘 matrix, comprised of the first k columns of matrix

𝑉. Hence, the 𝑘 × 𝑛𝑠 matrix 𝑍∗ of samples in the reduced spaces is defined as:

𝑍∗ = 𝑉∗T𝐺̃ (22)

Which is equivalent to (15). In the case of wanting to map a new element, 𝑥𝑛𝑒𝑤 ∈ ℝ𝑑,

that does not belong to the training set, we proceed by defining a vector 𝑔𝑛𝑒𝑤 such

that:

[𝑔𝑛𝑒𝑤]
𝑖

= 𝜅(𝑥𝑖 , 𝑥𝑛𝑒𝑤) (23)

15

Which will be centered through the expression:

𝑔̃𝑛𝑒𝑤 = 𝑔𝑛𝑒𝑤 − (
1

𝑛𝑠
𝕀(𝑛𝑠)

T𝑔𝑛𝑒𝑤) 𝕀(𝑛𝑠) −
1

𝑛𝑠
𝕀(𝑛𝑠×𝑛𝑠)𝑔𝑛𝑒𝑤

+ (
1

𝑛𝑠
2

𝕀(𝑛𝑠)
T𝐺𝕀(𝑛𝑠)) 𝕀(𝑛𝑠)

(24)

Where 𝕀(𝑛𝑠) is a vector containing 𝑛𝑠 elements, all equal to one. Finally, the mapping of

𝑥𝑛𝑒𝑤 into the reduced space is given by:

𝑧𝑛𝑒𝑤 = 𝑉∗T𝑔̃𝑛𝑒𝑤 (25)

2.2.3. Backward mapping.

 At this point, the question of the backward mapping rises once again. As mentioned

when discussing the backward mapping of the PCA, having only 𝑉∗ does not allow us to

obtain the pre-image 𝑥∗ of an element 𝑧∗, so a different strategy needs to be followed

to obtain it.

The idea behind the backward mapping in the kPCA is to compute the element 𝑥∗ as a

linear combination of the elements of the training set:

𝑥∗ = ∑ 𝑤𝑖𝑥
𝑖

𝑛𝑠

𝑖=1

 (26)

Then, the unknowns become the different 𝑤𝑖 weights. The criteria followed to calculate

them is to take into account the distance between the element of interest 𝑧∗, and the

already mapped elements 𝑧𝑖. This distance is easily computable as 𝑑𝑖 = ‖𝑧∗ − 𝑧𝑖‖, and

the weights will have to be inversely proportional to the value of the distance (the larger

the distance, the smaller the weight). Different relationships between distances and

weight may provide similar results, but also some discrepancies. Some examples would

be: 𝑤𝑖 = 1/𝑑𝑖, 𝑤𝑖 = 1/𝑑𝑖2
, or 𝑤𝑖 = exp(−𝑑𝑖).

A more precise method would be the following one: given the vector of unknown

weights 𝑤 = [𝑤1 ⋯ 𝑤𝑛𝑠]T, vector 𝑔∗ is computed as:

16

[𝑔∗]
𝑖

= 𝜅(𝑥𝑖 , 𝑥∗) = 𝜅 (𝑥𝑖 , ∑ 𝑤𝑗𝑥𝑗

𝑛𝑠

𝑗=1

)

(27)

And then it is centred as in equation (24), with 𝑔𝑛𝑒𝑤 = 𝑔∗, to obtain 𝑔̃∗.

Then, given the discrepancy function 𝒥(𝑤), as defined by:

𝒥(𝑤) = ‖𝑧∗ − 𝑉∗T𝑔̃∗(𝑤)‖
2

 (28)

The weights are calculated by minimising 𝒥(𝑤), so that:

𝑤 = arg
min

𝑤 ∈ ℝ𝑛𝑠
𝒥(𝑤) (29)

17

3 SURROGATE MODEL CONSTRUCTION THROUGH PCA

As previously said, one of the main objectives of implementing dimensionality reduction

methods in this project is the creation of surrogate models, in order to swiftly tackle

complex problems that would require big amounts of computational power in less time.

In this section, we will explain how this will be done through the results obtained by

applying the PCA method.

In this case, we are no longer dealing exclusively with sets of data. Now, the nature of

the problem needs to be considered, so, in this case, it is especially important to note

that we are dealing with a FEM model where the material behaviour is supposed to be

linear elasticity. Hence, the formulation presented in this section can only be applied to

this kind of problems.

The main objective of generating a surrogate model is to reduce the amount of variables

that are being computed on the problem. This will be done through the results of

applying the PCA to a set of data, that will then be exported to the actual equations that

govern the problem.

3.1 Linear elasticity in FEM

We will start by defining the formulation of the actual mechanical problem, without

getting into unnecessary details.

Considering a FEM model computed according to linear elasticity, after having defined

the geometry, the grid, the elements, the form functions, and the applied forces, the

problem will be reduced to the following expression:

𝑓 = 𝐾𝑥 (30)

18

Where:

- 𝑓 is the vector containing the forces applied at the nodes.

- 𝐾 is the stiffness matrix calculated from the geometric and material properties

of the model.

- 𝑥 is the displacement vector, which is the unknown that needs to be assessed.

In order to construct the surrogate model, both f and K will have to be calculated. The

idea behind this is to transform them into smaller matrices, so that the problem that will

be computed has less dimensions, and it’s less computationally expensive to solve.

Calculating f and K will be done, is this case, through the same software used to carry

out the necessary simulations, which is NASTRAN. Generating f and K is usually a general

feature of any FEM commercial software, though some work might need to be done to

generate them in the proper format.

3.2 Application of PCA results

Once f and K have been calculated, we need to apply the results obtained from applying

the PCA.

First of all, it is important to note that, in order to apply the PCA, a large set of data

needs to be available. As said in the introduction, this is a case of online vs. offline work:

A large amount of simulations will have to be carried out in advanced in order to

generate the set of data to apply the PCA. With these results, a surrogate model will be

generated, which will decrease the computational time of future simulations. Hence,

the need for this kind of models and the possibility of carrying out this large amount of

simulations beforehand need to be adequately assessed.

In this case, we will suppose that the results of a PCA analysis are available. This means

that, from a large set of results [𝑥1 𝑥2 ⋯ 𝑥𝑛𝑠] with 𝑥1, 𝑥2, … , 𝑥𝑛𝑠 ∈ ℝ𝑑

representing the displacements obtained from different parameter combinations, a

dimensionality reduction from d to k has been carried out in order to obtain a matrix 𝑈∗

that transforms a 𝑥∗ vector into a 𝑧∗, such that 𝑥∗ = 𝑈∗𝑧∗ (as given in equation (11).

19

This transformation is applicable to any vector x inside that respects the range of

parameters tested in [𝑥1 𝑥2 ⋯ 𝑥𝑛𝑠]. Hence, the main interest of carrying out the

PCA is obtaining the matrix 𝑈∗, and to be able to apply equation (11.

3.3 Surrogate model formulation

The construction of the surrogate model is based in the expressions presented before,

𝑓 = 𝐾𝑥 and 𝑥∗ = 𝑈∗𝑧∗. The first thing to note is that the latter is only valid for vectors

x’ that have been centred. As said in section 2.1.1, constructing matrix C requires the

matrix of data X used in the PCA to have its mean equal to zero. Considering 𝑥𝑚𝑒𝑎𝑛 to

be the mean value of all the data sets contained in X, x and x* are related as follows:

𝑥 = 𝑥∗ + 𝑥𝑚𝑒𝑎𝑛 (31)

If we apply this to 𝑓 = 𝐾𝑥, we obtain:

𝑓 = 𝐾(𝑥∗ + 𝑥𝑚𝑒𝑎𝑛) (32)

And from 𝑥∗ = 𝑈∗𝑧∗:

𝑓 = 𝐾(𝑈∗𝑧∗ + 𝑥𝑚𝑒𝑎𝑛) (33)

Be leaving the term with 𝑧∗ on the right, and multiplying the expression by 𝑈∗𝑇on the

left, we obtain:

𝑈∗𝑇(𝑓 − 𝐾𝑥𝑚𝑒𝑎𝑛) = 𝑈∗𝑇𝐾𝑈∗𝑧∗ (34)

Which becomes the reduced problem that will be solved, with 𝑧∗ as its unknown. Hence,

what first was a problem with d unknowns, has become a problem with k unknowns.

Instead of a 𝑑 × 𝑑 matrix K, a 𝑘 × 𝑘 matrix 𝑈∗𝑇𝐾𝑈∗ is present, and instead of a d size

vector f, we have a vector 𝑈∗𝑇(𝑓 − 𝐾𝑥𝑚𝑒𝑎𝑛) of size k.

20

4 DATA GENERATION

Up to this point, we’ve only presented the formulation of the POD, the PCA, and the

kPCA methods, and their role in the generation of a surrogate model for linear elasticity.

However, in order to apply them, a set of results is necessary.

In this sections, these results will be computed in the form of node displacements

through a FEM model. As said before, to solve the finite element problem, we will use

the NASTRAN software, which is commonly used in the LaCàN.

First of all, we will describe the NASTRAN model that will be used, which represents the

basic structure of a vehicle. The geometry, and its implementation in NASTRAN, will be

described in detail, because it’s here where all the parameters that characterize the

model will be defined (such as geometric properties, material properties...). This is

important because in order to apply the POD, the PCA, and the kPCA methods, several

sets of results, coming from models where certain parameters vary between each other,

are necessary. Hence, several possibilities for these parameters will be presented in this

section, and the final choice will be justified later.

Once the model itself has been defied, we will define the parameters that will be varied

between simulations. Indeed, each simulation in the data set used in the dimensionality

reduction techniques comes from a set of parameters that differs between simulations.

Hence, we will discuss the different possibilities and chose the best option.

4.1 NASTRAN model

When considering the NASTRAN model, several things will have to be defined. First of

all, the different considered geometries and the final choice will be presented. Then, the

loads and the stress state of the structure will be discussed, as well as certain

computational aspects. Finally, any particularity introduced by the fact that we will be

working with a FEM model will be commented. It is, in fact, in the finite element

21

characterisation of the problem, that the parameters that can be subject to variation

are introduced.

4.1.1. Geometrical model

In order to carry out the necessary calculations, a geometrical model, that then will be

divided into finite elements, is necessary. Two possible option were proposed from

existing models in the LaCàN, the first one being a simple representation of the overall

shape of the body in white state of a car, and the second one being a more precise

characterization of this same state, with more elements present. It was decided from

the beginning that the second option would be chosen for the following reasons: First,

it would provide better results than the simpler one, as it was a faithful representation

of the structure of interest; second, the computing time would also be closer to the real

one, which, taking into account that a large amount of simulations were going to be

carried out, would indicate how well optimised the code was, and if some improvements

were needed; third, a larger amount of elements increased the amount of possible

parameter that could be subject of analysis; and fourth, the development of the model

needed to be general enough to be adapted to any geometry, so the steps to be followed

in order to generate the necessary data were not dependent on the complexity of the

geometry. Hence, for these reasons, the second and more complex model was chosen.

Figure 4.1 shows the model in question. As displayed in the image, the model represents

a generic car structure, where structural elements are represented. Usually, elements

will be connected to each other by means of welding, riveting, clinching, etc. However,

these details are not the subject of study of this project; hence, they are not

represented.

The metallic elements of the model are made of steel sheets, each one with their own

width. It should also be noted that the structure is symmetrical with respect to its

longitudinal, vertical plane.

22

Figure 4.1: Geometry of the car model

4.1.2. Loads

Different kinds of loading states could be considered when carrying out the analysis,

especially if we consider how important dynamic analysis are in this kind of structures,

whether it be vibration analysis or crash analysis.

In this case, however, time dependant solutions are considered unnecessarily complex:

first, because our main objective is to obtain a set of results composed of displacements,

which can be obtained from a simpler, static analysis; and second, because the

rheological behaviour of the materials would have to be considered, which would

introduce non-linearity in the actual material behaviour. For these reasons, a static

analysis is performed.

The loading state that will be tested in all simulations will be one of torsion. It has been

chosen for practical reasons, since other projects in the LaCàN are already studying

these kind of loads, and hence synergies between projects could be of interest.

23

In order to represent this, forces will be applied at both longitudinal extremes of the

structure. At each end, two forces will be applied on two different nodes in the same

transversal plane. This forces will have the same value, but different direction, therefore

generating a moment. The moment generated in each extreme will be of the same

value, but of opposite directions; hence, the structure will be globally in equilibrium, but

a torsion loading state will be induced on the structure. A representation of this loads is

represented in Figure 4.2.

Figure 4.2: Representation of the forces applied to the model.

It’s important to notice that the loads applied will not vary between simulations: Both

their value, and their application point will remain constant all throughout the set of

simulations, because we are interested in the effect of varying geometric and material

characteristics of the model.

A final important remark regarding the degrees of freedom of the structure needs to be

addressed. As stated before, we are simulating the body in white state of a car, and,

contrary to most civil engineering structures, no clear point or surface has clear

restraints on its displacement and rotation. In this case, the concept of inertia relief is

introduced: when dealing with unconstrained structures, NASTRAN provides this option

in order to carry out static analysis on them. The idea behind it is to introduce constant

accelerations, in a rigid body state, to balance externally applied forces. It is a really

24

useful tool used in car, aeronautic, and other engineering branches where dynamic

analysis is common. In this case, it will be performed directly by NASTRAN. Further

remarks about this technique will be provided when implementing the surrogate model.

4.1.3. FEM IN NASTRAN

Once the geometry and the loads have been defined, the next step is to translate this to

a finite element model, where the actual computing will be carried out.

The main elements to consider are nodes and elements, with the latter introducing

many other variables that will be discussed in this section.

First of all, nodes define the main geometry of the structure, as they are an essential

component of the definition of the elements. In NASTRAN, they are defined as shown in

Table 4.1:

Table 4.1: Grid definition in NASTRAN [7]

In our case, the set of grid points is composed of 3856 elements. The results will be

obtained as displacements in each one of these points, with six degrees of freedom

associated to each one, representing three displacement coordinates (one for each

axis), and three rotations (one around each axis).

25

Regarding the elements, many could be considered, and NASTRAN offers a wide range

to choose from, as shown in Table 4.2:

Table 4.2: FEM elements in NASTRAN [7]

As shown in Table 4.2, each element is associated to a certain structural element (or

physical behaviour). The main reasoning behind these categories is the hierarchy of

dimensions behind structural elements, given that, for example, beams can be studied

as 1D elements, and membranes as 2D elements. Hence, simplifications that reduce

computing time without compromising the results can be introduced. In our case, the

model is composed, mainly, of 2D elements, specially CQUAD4 elements, though some

CTRIA3 elements are also present. A few 1D elements, such as CBAR, are also part of the

model, but they are a minority, and we will focus on de 2D ones. This kind of

combination of elements does not pose any kind of problem to the computation.

Regarding surface elements, CQUAD4 elements are defined as shown in Table 4.3, while

CTRIA3 elements are defined as shown in Table 4.4:

26

Table 4.3: CQUAD4 elements definition [7]

Table 4.4: CTRIA3 elements definition [7]

From these tables, the main point that needs to be developed is the third property,

“PID”. In our case, it is defined as a PSHELL property, which as stated by MSC Software

guide on NASTRAN, “defines the membrane, bending, transverse shear, and coupling

properties of thin plate and shell elements”. These properties are introduced into the

code as shown in Table 4.5:

27

Table 4.5: PSHELL property definition [7]

Two final properties need to be addressed from this table. First of all, “T”, which

represents the material thickness, and is one of the main candidates to being varied in

order to produce the set of results. Then, MID1, which associates a material to the

element. A generic example of concrete is shown in Table 4.6, where it can be seen that

an ID is associated to each material, as well of a set of typical parameter (elastic

modulus, shear modulus, Poisson modulus...). In our case, a possibility would be to vary

the elastic modulus.

Table 4.6: Material definition [7]

4.2 Definition of parameters and data generation

Once the geometry of the model has been presented, as well as the loading state that

will be simulated, and the implementation of these decision on NASTRAN, we will

28

discuss the parameters that will be changed in each simulation, in order to obtain the

data set that we need to perform dimensionality reduction methods. We have pointed

out some of this parameters as we described the implementation of finite elements on

NASTRAN, but the final decision needs to be explained in more detail.

The possible parameters that can be varied are those that represent material and

geometrical properties. However, it needs to be pointed out first that it is not possible

to vary the actual mesh due to several reasons: First of all, we made clear that we won’t

vary the point of application of any of the forces, as the stress state of each simulation

would be different. This stresses represent forces imposed onto the model, so it’s not

really logical to vary them, since the objective of developing this project is to facilitate

the decision making process. In finite element models, forces are applied on nodes, so

the nodes where forces are applied need to be constant throughout the simulations.

Furthermore, the results are obtained as displacements and rotations of nodes, and, in

order to be able to compare these results between different simulations, they need to

refer to the same point in space. For these reasons, no variation of the mesh is

considered.

Regarding geometrical properties, this leaves us with only those that can be modified

after the mesh is defined. For example, the length of certain elements could not be

changed. This brings us to the definition of PSHELL properties; as it can be seen in Table

4.5, the main geometric parameter than can be considered to vary in this case is the

thickness of each element, which is represented by the letter T. This seems a plausible

parameter, first, because it does not interfere with the grid definition, but also because

the structural parts of the model are composed of thin steel plates, whose thickness can

be chosen in order to optimize certain properties, as several possible thicknesses are

offered by the industry. Hence, since some decision will have to be taken regarding this

parameter for each structural part, it is considered the best parameter for this project.

Another possibility would be the variation of certain material properties of the model,

but this idea was finally discarded. No large variety of materials were used in the model,

and the only parameter that offered interesting possibilities was the elastic modulus.

Still, only two parameters could be varied, and even then, a smaller variety of actual

possible values could have been considered. This contrasts with the parameter

29

described previously, as each structural element had its own thickness, and the industry

offered a wider range of possibilities.

It was decided that a certain number of structural parts would have its thickness vary

during the simulations, that a certain amount of values for each thickness would be

considered, and that, among these values, all possible combinations would be

considered. This last point (considering all possible combinations) means that an

excessive number of elements or thickness values could exponentially increase the

computing time required to obtain all the results. Therefore, it was considered that only

the thickness of three elements would vary.

Having taken this decision, it was decided that two out of the three structural elements

chosen to vary would have a symmetric counterpart. These were the top lateral element

of the car (PSHELL value of 8 and 1008) and its connection to the base and the boot

(PSHELL value of 20 and 1020). The last element connects both the other two were the

cabin joins the boot (PSHELL value of 29). Figure 4.3 shows these structural elements in

the model:

Figure 4.3: Elements 8, 1008, 20, 1020, and 29 in the model.

30

5 ANALYSIS OF POD AND kPCA RESULTS

In this section, we will describe the results obtained from implementation of the POD

and the kPCA techniques over a large set of data, obtained from NASTRAN simulations

based on the model described in the previous sections.

Both the POD and the kPCA will be implemented in five different cases, with five

different sets of data. The main objective of these simulations, besides assessing the

overall performance of the model, is to study the effects of different computational

model parameters. In this case, when we refer these parameters, we are not talking

about things such as the thickness of the steel plates or the elastic modulus of the

material, since describing the effect of the variability of these two examples could be

one of the inherent objectives of dimensionality reduction methods. What we mean, by

computational model parameters, are those parameters inherent to the numerical

model, that need to be adequately chosen so that the computed results are precise.

The parameters that will be tested between the different POD and kPCA

implementations will be those describing the sample of data. Since one of the main

requirements of carrying out these dimensionality reduction techniques is to generate

a large amount of data through simulations, we will focus on assessing the effect of

varying it. Hence, five different implementations will be carried out, each one

considering a different amount of simulations.

In order to be able to compare the different results, each case will have to be consistent

with one another. The implementations of the POD and the kPCA methods will be as

follows:

- For all simulation and all considered elements (8 and 1008, 20 and 1020, and 29),

a single range of thicknesses will be chosen, which will be from 0,1 mm to 2,1

mm. This range has been chosen, first of all, because average values of plate

thickness of the considered structural elements are close to 1 mm, and because

significant non-linear effects will appear when values are closer to zero. The

31

range of values was finally extended up to 2,1 mm to have the average value of

1 mm close to the centre of the considered range.

- In order to decide the amount of values that will be given to the thickness of the

plates in each case, it has been decided to choose a constant increment between

values in each case. For example, with an increment of 0,1, the values chosen

would be:

[0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1]

- The implementation of each different case of POD and kPCA will be based in

thickness values characterized by different increments. In each case, all elements

(8 and 1008, 20 and 1020, and 29) will take the same possible amount of values.

The increment in the first implementation will be of 0.2; in the second one, of

0.4; in the third one, of 0.5; in the fourth one, of 1.0; and in the fifth one, of 2.0.

This means that 11 values of thicknesses will be considered in the first

implementation, 6 in the second one, 5 in the third one, 3 in the fourth one, and

2 in the fifth one. This is summed up in Table 5.2. This increments have been

chosen because they guarantee that the limits of the range of thicknesses (0.1

and 2.1) are both included in all cases, and because they represent five different

densities of values in this range.

- In order to define the number of simulations carried out for each

implementation of these methods, it has been decided to consider all possible

combinations of thicknesses between elements. Since we are considering three

different structural elements, the amount of simulations will be of n3, where n is

the number of possible thicknesses considered for each one of the three

elements. This is also represented in Table 5.2.

In order to illustrate this, the example of the fourth implementation will be explained.

As previously said, we will take an increment of 1.0 in this case, and considering a range

from 0.1 to 2.1, the possible thickness values for each structural element are three:

[0.1 1.1 2.1]

Since three thicknesses values are considered in this case, a total of 𝑛3 = 33 = 27

combinations of values will be considered. Each combination of this parameters will be

32

used to carry out a simulation, that will result in a different displacement vector that will

be used in the POD and the kPCA. The combination of parameters used in each of the

27 simulations are represented in Table 5.1.

TABLE 5.1: Parameters associated to all 27 simulations for the fourth case of POD and kPCA
implementation.

Simulation 1 (0.1 0.1 0.1) Simulation 15 (1.1 1.1 2.1)

Simulation 2 (0.1 0.1 1.1) Simulation 16 (1.1 2.1 0.1)

Simulation 3 (0.1 0.1 2.1) Simulation 17 (1.1 2.1 1.1)

Simulation 4 (0.1 1.1 0.1) Simulation 18 (1.1 2.1 2.1)

Simulation 5 (0.1 1.1 1.1) Simulation 19 (2.1 0.1 0.1)

Simulation 6 (0.1 1.1 2.1) Simulation 20 (2.1 0.1 1.1)

Simulation 7 (0.1 2.1 0.1) Simulation 21 (2.1 0.1 2.1)

Simulation 8 (0.1 2.1 1.1) Simulation 22 (2.1 1.1 0.1)

Simulation 9 (0.1 2.1 2.1) Simulation 23 (2.1 1.1 1.1)

Simulation 10 (1.1 0.1 0.1) Simulation 24 (2.1 1.1 2.1)

Simulation 11 (1.1 0.1 1.1) Simulation 25 (2.1 2.1 0.1)

Simulation 12 (1.1 0.1 2.1) Simulation 26 (2.1 2.1 1.1)

Simulation 13 (1.1 1.1 0.1) Simulation 27 (2.1 2.1 2.1)

Simulation 14 (1.1 1.1 1.1)

Even though we wanted to test the effect of an increment of 0,1, it has been deemed

too computationally expensive: by choosing an increment of 0,1, a total amount of

213 = 9261 simulations would have been needed, which was estimated to take close

to 5 days of available computing time. Not only that, but performing the dimensionality

reduction through the kPCA method requires, as said before, a set of matrix

multiplications and diagonalisations of 𝑛3 complexity, where n is the size of the matrices.

In this case, the size of the matrix would be the number of simulations, so we would be

dealing with 9261 x 9261 matrices. For reference, other tries with 1000 x 1000 matrices

have required more than two hours to finish, so it has been decided to choose an

increment of 0,2 as the smallest increment considered for the simulations.

33

All these parameters that characterize each simulation have been summed up in Table

5.2:

Table 5.2: Summary of parameters used in each implementation case of the POD and kPCA.

Implementation
case

Increment
Number of
thickness

values

Number of
simulations

Thickness values

1 0,2 11 1331
[0,1 0,3 0,5 0,7
0,9 1,1 1,3 1,5 1,7
1,9 2,1]

2 0,4 6 216
[0,1 0,5 0,9 1,3
1,7 2,1]

3 0,5 5 125
[0,1 0,6 1,1 1,6
2,1]

4 1,0 3 27 [0,1 1,1 2,1]

5 2,0 2 8 [0,1 2,1]

Another thing that needs to be addressed is the criterion followed to define the

tolerance used to carry out the dimensionality reduction (equation (9). As said before,

the idea behind this analysis is to reduce the dimension of the problem, so that it can be

easily recalculated for other values of certain inputs. In our case, since we are using the

thicknesses of the three materials that we are considering, it is logical to think that the

problem can be simplified to a three dimensions problem.

Following this reasoning, it has been decided to define a tolerance such that the three

first eigenvalues in the kPCA method, representing variabilities, are considered. The

kPCA has been chosen, because it will offer more precise results than the POD. From

these three values, their overall weight on the total variability will be extrapolated to

the POD method, so that we can properly compare a linear approach and a non-linear

approach to the problem. What we will obtain is that, for a certain tolerance that

reduces the dimension of the problem to three in the case of the kPCA, the POD will

reduce this dimension to a certain number higher than 3. The closer it is to three, the

more effective a linear method is.

In order to do so, a different approach from the one proposed in the previous section

needs to be considered. The idea that we propose is the following:

34

First of all, the POD and the kPCA methods will have to be carried out until the

diagonalisation of G and 𝐺̃ respectively (considering the notation of section 2). These

matrices contain the eigenvalues that represent how the variability of the problem is

distributed in independent variables. Therefore, since we are interested in representing

the kPCA with three dimension (as this is the number of parameters that we made vary),

the first three eigenvalues will be summed, and the tolerance will be calculated as the

quotient of this value over the sum of all the eigenvalues that form matrix 𝐺̃ , such that:

tol = ∑ 𝜆𝑖
𝑘𝑃𝐶𝐴

3

𝑖=1

∑ 𝜆𝑗
𝑘𝑃𝐶𝐴

𝑛𝑠

𝑗=1

⁄ (35)

Once this tolerance has been defined, the same method proposed earlier to calculate

the dimensionality reduction through the POD will be used. Through this method, we

will be able to compare the dimensionality reduction provided by the kPCA and the POD

for the same reliability.

5.1 Implementation case 1

The first set of results is obtained by following the procedure described previously, with

the parameters shown in Table 5.3:

Table 5.3: Implementation case 1 parameters.

Simulation Increment
Number of
thickness

values

Number of
simulations

Thickness values

1

0,2

11

1331

[0,1 0,3 0,5 0,7 0,9
1,1 1,3 1,5 1,7 1,9
2,1]

- kPCA

The results obtained regarding the kPCA method are shown in Figure 5.1. The values

shown are those of the 40 first eigenvalues of matrix Λ̃.

35

Figure 5.1: First 40 eigenvalues obtained in the kPCA.

The total variability contained in matrix Λ̃, is the following:

∑ 𝜆𝑗
𝑘𝑃𝐶𝐴

1331

𝑗=1

= 1528938,85

From this value, we can obtain the tolerance that we will consider to carry out the POD

analysis. Table 5.3 shows the values of the first three eigenvalues, their sum, the total

variability, and the tolerance.

Table 5.3: First three eigenvalues, sum, total variability, and tolerance

𝜆1
𝑘𝑃𝐶𝐴 1522425,9

𝜆2
𝑘𝑃𝐶𝐴 6434,5799

𝜆3
𝑘𝑃𝐶𝐴 21,908616

𝜆1
𝑘𝑃𝐶𝐴 + 𝜆2

𝑘𝑃𝐶𝐴 + 𝜆3
𝑘𝑃𝐶𝐴 1528914,6

Total variability (kPCA) 1528938,9

Tolerance 0,9999841

- POD

With these values, we can evaluate the data according to the POD method. In this case

Figure 5.2 shows the first 40 eigenvalues of matrix Λ̃.

36

Figure 5.2: First 40 eigenvalues obtained in the POD.

The total variability contained in Λ̃ is the following:

∑ 𝜆𝑗
𝑃𝑂𝐷

1331

𝑗=1

= 7,21496758 × 10−4

From these values, the dimensionality reduction can be performed. Table 5.4 shows the

tolerance that needs to be considered to establish the same conditions as in the kPCA

method, the total variability of the POD method, the minimum variability that needs to

be considered according to the tolerance, and the number of dimensions that will result

from the dimensionality reduction.

Table 5.4: Tolerance, total variability, required variability, and resulting number of dimensions.

Tolerance 0,9999841

Total variability (POD) 7,2149675 E-04

Minimum variability 7,2148530 E-04

Dimensions 15

Finally, Table 5.5 shows the minimum variability imposed by the tolerance, the

variability of the first dimensions that respects this tolerance, and their sum, which

demonstrate that the tolerance is satisfied:

37

Table 5.5: Minimum variability, eigenvalue of all first 15 dimensions, and sum.

Minimum variability 7,21497E-04

𝜆1
𝑃𝑂𝐷 5,59E-04

𝜆2
𝑃𝑂𝐷 4,77E-05

𝜆3
𝑃𝑂𝐷 7,91E-06

𝜆4
𝑃𝑂𝐷 3,64E-06

𝜆5
𝑃𝑂𝐷 1,83E-06

𝜆6
𝑃𝑂𝐷 3,43E-07

𝜆7
𝑃𝑂𝐷 2,84E-07

𝜆8
𝑃𝑂𝐷 2,19E-07

𝜆9
𝑃𝑂𝐷 6,08E-08

𝜆10
𝑃𝑂𝐷 4,65E-08

𝜆11
𝑃𝑂𝐷 3,04E-08

𝜆12
𝑃𝑂𝐷 1,37E-08

𝜆13
𝑃𝑂𝐷 1,00E-08

𝜆14
𝑃𝑂𝐷 1,83E-06

𝜆15
𝑃𝑂𝐷 7,53E-09

TOTAL 7,21486E-04

5.2 Implementation case 2

The first set of results is obtained by following the procedure described previously, with

the parameters shown in Table 5.6.

Table 5.6: Implementation case 2 parameters

Simulation Increment
Number of

thickness values
Number of
simulations

Thickness values

2 0,4 6 216
[0,1 0,5 0,9 1,3
1,7 2,1]

- kPCA

The results obtained regarding the kPCA method are shown in Figure 5.3. The values

shown are those of the 40 first eigenvalues of matrix Λ̃.

38

Figure 5.3: First 40 eigenvalues obtained in the kPCA.

The total variability contained in matrix Λ̃, is the following:

∑ 𝜆𝑗
𝑘𝑃𝐶𝐴

216

𝑗=1

= 37354,7533

From this value, we can obtain the tolerance that we will consider to carry out the POD

analysis. Table 5.7 shows the values of the first three eigenvalues, their sum, the total

variability, and the tolerance as a percentage.

Table 5.7: First three eigenvalues, sum, total variability, and tolerance

𝜆1
𝑘𝑃𝐶𝐴 37014,443

𝜆2
𝑘𝑃𝐶𝐴 336,56018

𝜆3
𝑘𝑃𝐶𝐴 2,5946967

𝜆1
𝑘𝑃𝐶𝐴 + 𝜆2

𝑘𝑃𝐶𝐴 + 𝜆3
𝑘𝑃𝐶𝐴 37353,597

Total variability (kPCA) 37354,753

Tolerance 0,9999691

- POD

With these values, we can evaluate the data according to the POD method. In this case

Figure 5.4 shows the first 40 eigenvalues of matrix Λ̃.

39

Figure 5.4: First 40 eigenvalues obtained in the POD.

The total variability contained in Λ̃ is the following:

∑ 𝜆𝑗
𝑃𝑂𝐷

216

𝑗=1

= 1,72320795 × 10−4

From these values, the dimensionality reduction can be performed. Table 5.8 shows the

tolerance that needs to be considered to establish the same conditions as in the kPCA

method, the total variability of the POD method, the minimum variability that needs to

be considered according to the tolerance, and the number of dimensions that will result

from the dimensionality reduction.

Table 5.8: Tolerance, total variability, required variability, and resulting number of dimensions.

Tolerance 0,9999691

Total variability (POD) 1,7232079 E-04

Minimum variability 1,7232066 E-04

Dimensions 12

Finally, Table 5.9 shows the minimum variability imposed by the tolerance, the

variability of the first dimensions that respects this tolerance, and their sum, which

demonstrate that the tolerance is satisfied:

40

Table 5.9: Minimum variability, eigenvalue of all first 12 dimensions, and sum.

Minimum variability 1,72321E-04

𝜆1
𝑃𝑂𝐷 1,58E-04

𝜆2
𝑃𝑂𝐷 1,12E-05

𝜆3
𝑃𝑂𝐷 1,77E-06

𝜆4
𝑃𝑂𝐷 6,79E-07

𝜆5
𝑃𝑂𝐷 3,37E-07

𝜆6
𝑃𝑂𝐷 9,47E-08

𝜆7
𝑃𝑂𝐷 4,81E-08

𝜆8
𝑃𝑂𝐷 2,58E-08

𝜆9
𝑃𝑂𝐷 1,14E-08

𝜆10
𝑃𝑂𝐷 7,70E-09

𝜆11
𝑃𝑂𝐷 5,18E-09

𝜆12
𝑃𝑂𝐷 2,86E-09

TOTAL 1,72326E-04

5.3 Implementation case 3

The first set of results is obtained by following the procedure described previously, with

the parameters shown in Table 5.10.

Table 5.10: Implementation case 3 parameters.

Simulation Increment
Number of

thickness values
Number of
simulations

Thickness values

3 0,5 5 125
[0,1 0,6 1,1 1,6
2,1]

- kPCA

The results obtained regarding the kPCA method are shown in Figure 5.5. The values

shown are those of the 40 first eigenvalues of matrix Λ̃.

41

Figure 5.5: First 40 eigenvalues obtained in the kPCA.

The total variability contained in matrix Λ̃, is the following:

∑ 𝜆𝑗
𝑘𝑃𝐶𝐴

125

𝑗=1

= 11997,1029

From this value, we can obtain the tolerance that we will consider to carry out the POD

analysis. Table 5.11 shows the values of the first three eigenvalues, their sum, the total

variability, and the tolerance as a percentage.

Table 5.11: First three eigenvalues, sum, total variability, and tolerance

𝜆1
𝑘𝑃𝐶𝐴 11850,180

𝜆2
𝑘𝑃𝐶𝐴 145,36712

𝜆3
𝑘𝑃𝐶𝐴 1,0658626

𝜆1
𝑘𝑃𝐶𝐴 + 𝜆2

𝑘𝑃𝐶𝐴 + 𝜆3
𝑘𝑃𝐶𝐴 11996,613

Total variability (kPCA) 11997,103

Tolerance 0,9999592

- POD

With these values, we can evaluate the data according to the POD method. In this case

Figure 5.6 shows the first 40 eigenvalues of matrix Λ̃.

42

Figure 5.6: First 40 eigenvalues obtained in the POD.

The total variability contained in Λ̃ is the following:

∑ 𝜆𝑗
𝑃𝑂𝐷

125

𝑗=1

= 1,14764421 × 10−4

From these values, the dimensionality reduction can be performed. Table 5.12 shows

the tolerance that needs to be considered to establish the same conditions as in the

kPCA method, the total variability of the POD method, the minimum variability that

needs to be considered according to the tolerance, and the number of dimensions that

will result from the dimensionality reduction.

Table 5.12: Tolerance, total variability, required variability, and resulting number of dimensions.

Tolerance 0,9999592

Total variability (POD) 1,1476442 E-04

Minimum variability 1,1476387 E-04

Dimensions 11

Finally, Table 5.13 shows the minimum variability imposed by the tolerance, the

variability of the first dimensions that respects this tolerance, and their sum, which

demonstrate that the tolerance is satisfied:

43

Table 5.13: Minimum variability, eigenvalue of all first 11 dimensions, and sum.

Minimum variability 1,14764E-04

𝜆1
𝑃𝑂𝐷 1,05E-04

𝜆2
𝑃𝑂𝐷 7,44E-06

𝜆3
𝑃𝑂𝐷 1,16E-06

𝜆4
𝑃𝑂𝐷 3,98E-07

𝜆5
𝑃𝑂𝐷 1,92E-07

𝜆6
𝑃𝑂𝐷 6,76E-08

𝜆7
𝑃𝑂𝐷 2,66E-08

𝜆8
𝑃𝑂𝐷 1,36E-08

𝜆9
𝑃𝑂𝐷 5,29E-09

𝜆10
𝑃𝑂𝐷 4,80E-09

𝜆11
𝑃𝑂𝐷 2,91E-09

TOTAL 1,14769E-04

5.4 Implementation case 4

The first set of results is obtained by following the procedure described previously, with

the parameters shown in Table 5.14.

Table 5.14: Implementation case 4 parameters.

Simulation Increment
Number of thickness

values
Number of
simulations

Thickness
values

4 1,0 3 27 [0,1 1,1 2,1]

- kPCA

The results obtained regarding the kPCA method are shown in Figure 5.7. The values

shown are those of all 27 eigenvalues of matrix Λ̃.

44

Figure 5.7: All 27 eigenvalues obtained in the kPCA.

The total variability contained in matrix Λ̃, is the following:

∑ 𝜆𝑗
𝑘𝑃𝐶𝐴

27

𝑗=1

= 443,140617

From this value, we can obtain the tolerance that we will consider to carry out the POD

analysis. Table 5.15 shows the values of the first three eigenvalues, their sum, the total

variability, and the tolerance as a percentage.

Table 5.15: First three eigenvalues, sum, total variability, and tolerance

𝜆1
𝑘𝑃𝐶𝐴 420,24517

𝜆2
𝑘𝑃𝐶𝐴 13,744422

𝜆3
𝑘𝑃𝐶𝐴 0,1109157

𝜆1
𝑘𝑃𝐶𝐴 + 𝜆2

𝑘𝑃𝐶𝐴 + 𝜆3
𝑘𝑃𝐶𝐴 443,10051

Total variability (kPCA) 443,14062

Tolerance 0,9999095

- POD

With these values, we can evaluate the data according to the POD method. In this case

Figure 5.8 shows all 27 eigenvalues of matrix Λ̃.

45

Figure 5.8: All 27 eigenvalues obtained in the POD.

The total variability contained in Λ̃ is the following:

∑ 𝜆𝑗
𝑃𝑂𝐷

27

𝑗=1

= 0,37920209 × 10−4

From these values, the dimensionality reduction can be performed. Table 5.16 shows

the tolerance that needs to be considered to establish the same conditions as in the

kPCA method, the total variability of the POD method, the minimum variability that

needs to be considered according to the tolerance, and the number of dimensions that

will result from the dimensionality reduction.

Table 5.16: Tolerance, total variability, required variability, and resulting number of dimensions.

Tolerance 0,999909

Total variability (POD) 3,792021 E-05

Minimum variability 3,791976 E-05

Dimensions 8

Finally, Table 5.17 shows the minimum variability imposed by the tolerance, the

variability of the first dimensions that respects this tolerance, and their sum, which

demonstrate that the tolerance is satisfied:

46

Table 5.17: Minimum variability, eigenvalue of all first 8 dimensions, and sum.

Minimum variability 3,7920E-05

𝜆1
𝑃𝑂𝐷 3,49E-05

𝜆2
𝑃𝑂𝐷 2,48E-06

𝜆3
𝑃𝑂𝐷 3,67E-07

𝜆4
𝑃𝑂𝐷 8,25E-08

𝜆5
𝑃𝑂𝐷 3,03E-08

𝜆6
𝑃𝑂𝐷 2,00E-08

𝜆7
𝑃𝑂𝐷 4,92E-09

𝜆8
𝑃𝑂𝐷 3,01E-09

TOTAL 3,7923E-05

5.5 Implementation case 5

The first set of results is obtained by following the procedure described previously, with

the parameters shown in Table 5.18.

Table 5.18: Implementation case 5 parameters.

Simulation Increment Number of thickness
values

Number of
simulations

Thickness
values

5 2,0 2 8 [0,1 2,1]

- kPCA

The results obtained regarding the kPCA method are shown in FIGURE 5.9. The values

shown are those of all 8 eigenvalues of matrix Λ̃.

FIGURE 5.9: All 8 eigenvalues obtained in the kPCA.

The total variability contained in matrix Λ̃, is the following:

∑ 𝜆𝑗
𝑘𝑃𝐶𝐴

8

𝑗=1

= 23,5509772

47

From this value, we can obtain the tolerance that we will consider to carry out the POD

analysis. Table 6.15 shows the values of the first three eigenvalues, their sum, the total

variability, and the tolerance as a percentage.

Table 5.19: First three eigenvalues, sum, total variability, and tolerance.

𝜆1
𝑘𝑃𝐶𝐴 22,027106

𝜆2
𝑘𝑃𝐶𝐴 1,5013435

𝜆3
𝑘𝑃𝐶𝐴 0,0204047

𝜆1
𝑘𝑃𝐶𝐴 + 𝜆2

𝑘𝑃𝐶𝐴 + 𝜆3
𝑘𝑃𝐶𝐴 23,548854

Total variability (kPCA) 23,550977

Tolerance 0,9999098

- POD

With these values, we can evaluate the data according to the POD method. In this case

Figure 5.10 shows the 8 eigenvalues of matrix Λ̃.

Figure 5.10: All 8 eigenvalues obtained in the POD.

The total variability contained in Λ̃ is the following:

∑ 𝜆𝑗
𝑃𝑂𝐷

8

𝑗=1

= 0,1547119516 × 10−4

From these values, the dimensionality reduction can be performed. Table 6.16 shows

the tolerance that needs to be considered to establish the same conditions as in the

kPCA method, the total variability of the POD method, the minimum variability that

needs to be considered according to the tolerance, and the number of dimensions that

will result from the dimensionality reduction.

Table 5.20: Tolerance, total variability, required variability, and resulting number of dimensions.

Tolerance 0,999910

Total variability (POD) 1,547119 E-05

Minimum variability 1,546980 E-05

Dimensions 5

48

Finally, Table 5.21 shows the minimum variability imposed by the tolerance, the

variability of the first dimensions that respects this tolerance, and their sum, which

demonstrate that the tolerance is satisfied:

Table 5.21: Minimum variability, eigenvalue of all first 5 dimensions, and sum.

Minimum variability
1,54698E-05

𝜆1
𝑃𝑂𝐷

1,43E-05

𝜆2
𝑃𝑂𝐷

1,04E-06

𝜆3
𝑃𝑂𝐷

1,51E-07

𝜆4
𝑃𝑂𝐷

2,45E-08

𝜆5
𝑃𝑂𝐷

2,73E-09

TOTAL
1,54702E-05

5.6 Results comparison

Once the results have been presented, we will discuss and compare them in order to

extract information regarding the tested parameters, and the effectiveness of each set

of simulations.

Different elements will be discussed. First of all, as previously said, we are interested in

defining the tolerance, in each case, as the percentage that ensures that the

dimensionality reduction in the kPCA results in three dimensions, as this is the number

of elements that will have their thickness vary. Therefore, we will study if this parameter

changes significantly between the five different cases.

Then, we will assess how the dimensionality reduction performs when compared to the

number of simulations computed, or the number of thicknesses tested, in each case.

49

- Tolerance for three kPCA eigenvalues

Regarding the weight of the overall variation represented by the three first eigenvalues

obtained by the kPCA method, their value will be compared as a percentage of the total

variance. This is because the eigenvalues are not normalized, and the obtained result

varies between cases, so we need to use a normalized variable, relative to each case, to

compare between them.

The obtained results are shown in Table 5.22:

Table 5.22: Tolerance of the three first kPCA eigenvalues for each implementation case.

Implementation case Tolerance

1 0,9999841

2 0,9999691

3 0,9999592

4 0,9999095

5 0,9999098

As shown, this values are really similar. This shows how only three variables are able of

representing almost all of the variability of the problem. Regarding its overall evolution

between simulations, we see that it remains fairly constant between all five cases,

decreasing from the first one to the fourth one, until it stabilizes.

It’s important to consider that the fifth case is based on only 8 simulations, which implies

that from 8 eigenvalues, 3 will be taken. Since this is the case, the relative weight of one

eigenvalue will be higher than in the other cases, where 27, 125, 216 and 1331

eigenvalues were available. Hence, it’s not surprising to see that the result from the fifth

simulation vary with respect of the overall behaviour of the other cases. This is shown

at the first two point on Figure 5.11:

50

Figure 5.11: Tolerance of the three first kPCA eigenvalues vs. Number of simulations

Regarding the overall behaviour when the number of simulations increase, we see that

the tolerance increases rapidly up to the 200 simulations, where it begins to stabilize. It

is expected that an implementation of the kPCA with a larger number of simulations (for

example, with an increment of 0,1 in each element’s thickness, which would result in

9261 simulations) would result in a tolerance close to that of the first implementation

case.

- Dimensionality reduction in POD

The performance of the dimensionality reduction of the POD method with respect to

the tolerance stablished by the kPCA method will be assessed next. These results are

shown in Table 5.23:

Table 5.23: POD dimensionality reduction of each implementation case.

Implementation case Dimensions after POD reduction

1 15

2 12

3 11

4 8

5 5

0,9999

0,99991

0,99992

0,99993

0,99994

0,99995

0,99996

0,99997

0,99998

0,99999

0 200 400 600 800 1000 1200 1400

To
le

ra
n

ce

Number of simulations

Number of simulations vs. Tolerance

51

In this case, it’s clear that the number of dimensions reduces with the thickness

increment considered. It’s especially interesting to compare the thickness increment to

the number of dimensions obtained by the POD, as shown in Figure 5.12:

Figure 5.12: Plotting of increment of the implementation case vs the POD dimensions.

It’s important to consider that in this figure, the implementation case 1 is the one closest

to 0, as it has the smallest thickness increment between its original parameters.

In this case, a logarithmic approach is really successful: Considering the function 𝑦 =

𝑚 log(𝑥) + 𝑛, a linear regressing by square minimums can be performed. Table 5.24

shows the value of m and n, and Figure 5.13 shows how this function fits the values.

Table 5.24: m and n parameters of the linear regression.

m -10,0205

n 7,998

0

2

4

6

8

10

12

14

16

0 0,5 1 1,5 2 2,5

D
im

en
si

o
n

s

Thickness increment

Simulation's Thickness increment vs. Dimensions

52

Figure 5.13: Logarithmic fitting of Figure 5.12 points.

It’s important to note, however, that while the logarithmic is continuous, the number of

dimensions obtained by the POD is an integer, which means that this approach can never

be exact. Still, it provides a really well fitted approximation.

0

2

4

6

8

10

12

14

16

0 0,5 1 1,5 2 2,5

D
im

en
si

o
n

s

Thickness increment

Simulation's Thickness Increment vs. Dimensions

53

6 SURROGATE MODEL IMPLEMENTATION

In this section, the results of the implementation of the surrogate model will be

presented and discussed. As said in section 3, this model is based on equations (30) and

(11). This results in (34):

𝑈∗𝑇(𝑓 − 𝐾𝑥𝑚𝑒𝑎𝑛) = 𝑈∗𝑇𝐾𝑈∗𝑧∗

Where the only unknown is 𝑧∗. K is the stiffness matrix of the model, and f is the vector

of applied loads, and matrix 𝑈∗ is obtained from the application of the PCA method.

It has been decided to use the dimensionality reduction results from the implementation

case 2, which was the result of 216 different simulations. As stated in section 5.2, the

implementation case 2 is capable of reducing the number of dimensions to 12.

Considering the case of the PCA instead of the POD (they offer equivalent results), and

that the model consisted of 3857 nodes with six degrees of freedom each, this means

that these 12 dimensions are the resulting reduction of an initial set of 23142

dimensions.

On the other hand, f and K need to be obtained from the FEM software that’s being used

(NASTRAN, in our case). However, it is important to note the effect of the inertia relief

that was commented in section 4.1.2. The model itself didn’t have any constraints

because of it, because NASTRAN would automatically apply it. However, this is not the

case once the matrix K and the force vector f are extracted from the software, and since

matrix 𝑈∗ was constructed with results that did take that into account, K and f need to

be accordingly modified.

Hence, first of all, the vector f will have to be modified in order to apply the inertia relief.

This is done by considering that the applied force generates a rigid body motion and a

relative response. The idea is to modify f in order to balance its applied forces, so that

only a relative motion is generated. In order to do so, the mass matrix M is also needed,

but it is obtained from NASTRAN by the same means as K. As before, when we first

54

introduced the concept, we won’t go much into detail, but it’s important to note that

some constraints must be introduced to perform the inertia relief because they are

necessary in order to carry out the calculation. In any case, FEM softwares usually

provide explanations on its notation and how to implement it; we personally

recommend Abaqus’ approach.

Once this has been done, a new vector f’ will be obtained. The final part will be to take

into account the degrees of freedom of the structure in question, by removing six

columns and/or rows from the vectors and matrices of the problem. This is due to the

fact that, if not, matrix K will be singular. In this case, six degrees of freedom will have

to be removed (one for each displacement direction and rotation direction), so in the

final problem, K will be a 23136 × 23136 matrix, U* a 23136 × 12, and f’ a vector

with 23136 components.

From these matrices and vectors, the reduced vector 𝑧∗ is computed. If we were

interested in computing the associated displacement vector 𝑥∗, we could do this

through the following equation:

𝑥∗ = 𝑈∗𝑧∗ + 𝑥𝑚𝑒𝑎𝑛

Where 𝑥𝑚𝑒𝑎𝑛 is the mean of all displacement vectors used in the computation of 𝑈∗

through the PCA. It’s important to take it into account because the results obtained by

𝑈∗𝑧∗ are centred according to the matrix of data used in the PCA, so 𝑈∗𝑧∗ cannot be

directly compared to the actual results of a simulation.

6.1 Analysis of results

To check the validity of the surrogate model, the computation of the results obtained

from the trio of thicknesses [1.0 1.0 1,0] has been performed. Hence, 𝐾 will be

extracted from a Nastran models that takes this thicknesses into account for the PSHELL

elements 8 and 1008, 20 and 1020, and 29.

55

The results will be analysed in the form of error between the surrogate model

calculations and the official results obtained by NASTRAN, since the results itself are

displacement vectors of 23142 elements.

The first results to compare will be the relative displacement between the points where

the forces are applied in the front of the car, as shown in Figure 4.2. These values

correspond to elements 3 and 9 from the displacement vectors. The error is defined as

follows:

𝜀1 =
abs[(𝑥∗(3) − 𝑥∗(9)) − (𝑥𝑁𝑎𝑠𝑡𝑟𝑎𝑛(3) − 𝑥𝑁𝑎𝑠𝑡𝑟𝑎𝑛(9))]

abs[𝑥𝑁𝑎𝑠𝑡𝑟𝑎𝑛(3) − 𝑥𝑁𝑎𝑠𝑡𝑟𝑎𝑛(9)]

Where abs(·) represents the absolute value. The value obtained is the following:

𝜀1 0.0069

Then, the overall displacement vectors will be compared through the following error:

𝜀2 =
‖𝑥∗ − 𝑥𝑁𝑎𝑠𝑡𝑟𝑎𝑛‖

‖𝑥𝑁𝑎𝑠𝑡𝑟𝑎𝑛‖

Where ‖·‖ represents the norm of the vector, or the square root of the sum of the

squares of its elements. The error between the displacement computed from the

surrogate model, and the displacement computed from NASTRAN, is the following:

𝜀2 0.0569

We think that a few considerations need to be taken into account when analysing these

results:

First of all, the method used to apply the inertia relief does not coincide in both cases

(NASTRAN and surrogate model). While our method is based on manually introducing

some boundary conditions, NASTRAN proceeds through what it calls “Automated Inertia

Relief Analysis” (AIRA), which does not require constraints because it carries out the

stabilization based on characteristics of the model itself. This means that an error will

always be introduced in our surrogate model due to this difference in methodology,

56

since the boundary conditions considered in the second case are unknown, and cannot

be replicated.

In fact, the implementation of the inertia relief so that in coincides with the one carried

out by NASTRAN is one of the main challenges to obtain successful results in the

surrogate model. Still, matrix 𝑈∗ has the interesting property of having been generated

with a set of results where the inertia relief has been applied, which means that, in the

end, the results are projected into a space of solutions. Though this helps with obtaining

a realistic result, it also might interfere with the calibration of the boundary conditions

for the inertia relief. In our case, this hasn’t been a problem because the calibration has

been carried out through the solution of f=Kx.

Still, though 𝜀2 seems to be larger than 𝜀1, this is because of a few points that tend to

increase the overall error. In fact, when considering relative displacements from a given

point as in 𝜀1, around 90% of the cases present an error smaller than 1%, and only 5 of

all 23141 cases present an error of 5% or larger.

57

7 CONCLUSION

Reduced computing models are certainly a reliable approach to numerical simulation,

offering a simpler implementation and faster results. With the development and

popularisation of portable devices such as tablets and smartphones, new possibilities

regarding the online construction of surrogate models for offline implementations are

becoming a possibility.

In this document, we have presented the implementation of the PCA, POD, and kPCA

model order reduction methods in the context of automotive structures, as well as the

construction of a reduced, linear elasticity model through the results obtained from

these methods.

The data needed in order to carry out the implementation of these different techniques

has been obtained through the software NASTRAN. It has been used to generate sets of

FEM displacement results associated to different sets of geometric parameters. Though

it has been really useful to obtain reliable solutions, it has also introduced several

challenges. Nevertheless, this would have been the case for the use any available

commercial software.

The POD and the PCA methods have been compared to the kPCA in order to assess the

differences between linear and non-linear approaches. Though the dimensionality

reduction introduced by the kPCA is more effective, the POD and the PCA can offer the

same reliability for a slightly larger number of dimensions (section 5.6). This is especially

true for smaller numbers of data; however, it’s important to note that, in this document,

the selected parameters have only been three, which would not be the case in models

with a broader application range. More possible parameters would largely increase the

number of simulations (i.e., data sets) required to perform these techniques, and hence,

its computational cost would also augment. Still, the logarithmic behaviour of the results

presented in section 5.6 should also be applicable to larger cases, and offer valuable

information on the calibration the two tested methods. The final decision, however,

should consider the required tolerance of the dimensionality reduction, and the

58

computational time available for the implementation of the model order reduction

technique: larger tolerances and a non-linear approach will require a longer

implementation time, but might later reduce the time required to use the obtained

results in other models.

Regarding the construction of the surrogate model, results shown in section 6 show the

validity of its implementation. Still, frictions between the implementation of the inertia

relief in NASTRAN and in our case have been detected, so a smaller error could possibly

be attained. We believe that changing NASTRAN’s automatic approach to one

considering a set of degrees of freedom would be the easiest solution, though this would

require the construction of a new set of data to perform the MOR techniques from the

beginning. Furthermore, the automatic implementation of the intertia relief could

respond to other needs not related to this project. Hence, if its manual implementation

is not possible, we believe that the calibration of the inertia relief should not be

performed using the surrogate model, because, since the set of results used in the

dimensionality reduction consists of reliable NASTRAN solutions, the projection over this

space could generate a small error even when the actual results are not correct.

Overall, the differences between different implementation cases of the POD and the

kPCA have been assessed, and its results have been used in order to prove the validity

of a surrogate model to tackle linear elasticity in automotive structures. However, this

approach could also be easily implemented in civil engineering structures, where linear

elastic analysis is used is most cases. In conclusion, the construction of surrogate models

for any case of linear elastic solid mechanics can provide reliable results through simpler

and faster models.

59

8 REFERENCES

[1] Benner, P.; Gugercin, S.; Willcox, K. (2015) A Survey of Projection – Based Model

Reduction Methods for Parametric Dynamical Systems. SIAM Review 57, no. 4

(January 2015): 483 – 531. Society for Industrial and Applied Mathematics.

[2] González, D.; Aguado, J. V.; Cueto, E.; Abisset – Chavanne, E.; Chinesta, F. (2016)

kPCA – Based Parametric Solutions Within the PGD Framework. CIMNE.

Barcelona. Spain.

[3] García – González, A.; Huerta, A.; Zlotnik, S.; Díez, P. (2020). A kernet Principal

Component Analysis (kPCA) digest with a new backward mapping (pre-image

reconstruction) strategy. Universitat Politècnica de Catalunya – BarcelonaTech.

Barcelona. Spain.

[4] Izenman, A. I. (2013) Modern Multivariate Statistical Techniques. Regression,

Classification, and Manifold Learning. Springer. New York.

[5] Jolliffe, I.T. (2002). Principal Component Analysis. Springer. New York.

[6] Kerschen, G.; Golinval, J.; Vakakis, A. F.; Bergman L. A. (2004) The Method of

Proper Orthogonal Decomposition for Dynamical Characterization and Order

Reduction of Mechanical Systems: An Overview. University of Liège. Liège.

Belgium.

[7] MSC Software. (2018) MSC Nastran 2018. Getting Started Guide. Newport Beach,

USA.

