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Abstract

This project aims at implementing the architecture proposed by a previous
work done in the university, in which different paths to implementing an active
noise cancelling system were attempted in simulation. The method chosen

consists in identifying the system between a workroom in the UPC library
and the outside of it, though in this thesis the experiment was done with a
box due to the covid-19 restrictions, and attempt to create a noise cancelling
system with low cost hardware with both feedforward and feedback (PID)
control through the tuning of said controllers using the parameters gotten in
the identification of the system. The result will be evaluated and improvement
proposals will be made.
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1 INTRODUCTION

1.1 AIM

This thesis is conceptualised as a continuation of a previous thesis, “Sound

monitoring and active noise cancelling at the campus library” [1]. In that

document, a theoretical analysis of the problem of active noise cancellation

and control in the campus library and possible solutions was made, as well as

a proposition for the architecture of those solutions. The aim of this thesis is to

put that architecture into practice in either the campus library or a simplified

version of it, by monitoring the noise level as well as implementing an active

noise cancellation system in a single board computer and reviewing the results.

Given the global health conditions, the library and travel has been severally

limited, and thus this project will be done in a smaller simulated environment

with a box meant to work as a stand in for the walls of the library room, and

see the viability of it, easily implementable in a different environment once the

process is prepared.
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1.2 SCOPE

• Familiarisation with the software and building of programs to read the

sound signals

• Processing the sound signals to identify the primary and secondary paths

• Controller tuning: feedback and feed-forward; application in simulation

and comparison

• Controller tuning: feedback and feed-forward; real and comparative

application

• Least mean squares adaptive filter, open loop application as feed forward

structure

• ANC application with both filters

• Conclusions

1.3 REQUIREMENTS

• The cost of the components should be kept to the minimum necessary

to guarantee a good noise cancellation.

• The processing unit should be fast enough to make the process causal.

• The data acquisition should be qualitative enough to provide relevant

measurements that can be used for advanced audio parameters calcula-

tion.

• The processing unit has to be able to connect to the used peripherals (e.g

microphone, loudspeaker).
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1.4 JUSTIFICATION OF THE NEED

In many public spaces, including but not limited to schools, libraries and hospi-

tals there is little sound isolation between rooms, and given the increasing need

for separation in all those spaces and the much needed ambiance difference

between rooms (for example between the work rooms, where conversation

is allowed to happen and the main hall, where silence is required). Passive

isolation, or what is commonly called sound isolation comes down to adding

an isolating agent to the walls, and sometimes to the ceiling and floor too, like

cork or sawdust. That process is very simple and it’s effective, but it has its

inconvenients. It usually does not allow for transparencies through the walls,

it takes space away and can be expensive. The alternative solution proposed in

this document is sound monitoring and active noise cancellation. It not only

allows for automatic noise control, the threshold for which can be manipulated

by the staff, but it also allows for an automated way to reduce the influence

of the noise coming from the room without suffering from many of the flaws

of the passive isolation alternative, becoming a very promising proposition.

Previous works on the topic have given satisfying results [2] [3].

6



2 BACKGROUND

In the UPC campus library in Terrassa, as well as many other libraries and

similar places of study, there’s the main hall where no chatter is allowed and

also study rooms, where groups can go and work together. A higher level of

sound is generated by groups talking inside the rooms, and it would be costly in

both space and money to sufficiently stop the noise from being heard outside

those rooms with a traditional passive isolation installation. A good application

of an active noise cancelling system, along with some noise monitoring and

warning can prove to be a much cheaper and less space consuming approach

to reducing the noise generated, making for a more modern and less bulky

library and freeing up some work for the librarians.
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2.1 NOISE MONITORING

The first approach to a solution would entail signaling the people inside the

room when their volume of speech is too high. In order to prioritise the sounds

that would bother human ears the most, an A weighting filter could be applied.

The A weighting filter gives priority to sound pressure levels or the loudness of

certain frequencies over others, allowing for lower frequency noises like the

moving of chairs to not bother the algorithm and making it more precise in

detecting human chatter[4].

In order for the A weighting algorithm to be implemented, the incoming

sound needs to be transformed from the time domain to the frequency domain

using the fast fourier transform, when in the frequency domain the A weighting

filter would be applied, following up with the inverse fourier transform to get

the volume response back in the time domain. After that point, the algorithm

would only need to signal with a led or a small sound when the room exceeded

the noise threshold.

Figure 2.1: A weighting filter principle
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2.2 ACTIVE NOISE CANCELLATION

Active noise cancelling systems are already used in a variety of places in society,

including mechanical cars, planes and ear protectors. It is most effective when

used to reduce repetitive noise of low frequency, none of which will be the case

for this thesis, but it can still bring a significant reduction in noise levels in the

desired location.

Figure 2.2: ANC principle

The principle is quite simple. A microphone records the reference audio, in

this case it would be inside the room, then that audio is processed and inverted

to come out of a speaker, generating “anti noise”, and a second microphone

located at the target location will give feedback and try to correct the signal

sent from the speaker.

Figure 2.3: Overview of the process
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PRIMARY AND SECONDARY PATHS: In order to design the controller and work

with a simulation of the real process, two abstractions in the form of transfer

functions will be created. From the reference microphone to the error micro-

phone there’s a number of obstacles and conditions which alter the form of

the sound wave, acting like a filter. The difference between input and output

in that direction will be referred to as the primary path. Similarly, the way from

the speaker generating anti noise to the same error microphone will be called

the secondary path. The identification of both primary and secondary paths

will be necessary to design the feedback and feed forward controllers.

Figure 2.4: Primary and secondary paths

APPROACHES: There are two broad approaches to implementing a ANC appli-

cation.

• An adaptive filter can be used, ignoring the primary path and using the

input and output signals to correct the output signal making use of the

least mean squares algorithm. This approach gave unsatisfactory results

in the theoretical study of this problem in the theoretical analysis of it

[1].
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Figure 2.5: Adaptive filter approach

• The alternative solution, which gave better results is the Continuous

Transfer Functions approach, which consists in the identification of the

primary and secondary paths as high order transfer functions and the

design of a feed forward controller fittingly, consisting of the division

between those two transfer functions (-secondary path/primary path) as

well as a feedback PID controller, designed based on the structure of the

secondary path.

Figure 2.6: Transfer functions approach
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2.3 BLACKMAN-HARRIS WINDOWING

A window function is a mathematical function zero-valued outside a chosen

interval, symmetrical around the middle and usually near a maximum in the

middle. When another data sequence is multiplied by a window function, the

product is also zero valued outside the interval, in such a way that multiplying

a function by a window function gives a window sized look into that function.

In typical applications, the window functions used are non-negative, smooth,

"bell-shaped" curves.

Figure 2.7: Blackman-Harris windowing

The Blackman-Harris [5] variant is a generalization of the Hamming family,

produced by adding more shifted synchrony functions, meant to minimize

side-lobe levels. It has a bell shaped curve, and is meant to make the more

extreme sides of the function meet at zero, simplifying the sound signals thus

reducing the number of harmonics in the signal and preventing truncation for

the fourier transform, which requires the signal to be continuous and derivable.
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2.4 COMPLEX CURVE FITTING E.C. LEVI

Curve fitting is the process of constructing a line, a curve with its mathematical

function in order to best approximate a series of data points, similar to a linear

regression, the latter being used more often in finding statistical uncertainty. In

this thesis the use meant for curve fitting is approximating transfer functions

into their mathematical equations.

The Levi Method [6], also referred to as the least squares method, makes

the identification of the coefficients in a least squares sense, which allows

for the minimisation of the residual data points. The numerical difference

between the frequency response to be fitted and the model attempting to fit it

is represented as the error to be reduced.

It is possible to give further weight to certain data points in order to make

the function more closely approximate the frequency response, giving more

weight to peaks and valleys and taking weight away from abnormalities.

[6]

Figure 2.8: Example of curve fitting
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2.5 HARDWARE

The necessary hardware for the implementation of the system consists of:

THE PROCESSING CORE: The processing core will be responsible for receiving

the audio signal, processing it and sending the disturbance noise signal to

the speakers. It must have a good computing power, a competitive price and

high versatility. The dispositive chosen, as explained in [1], is the Raspberry

Pi 4 Model B board[11] for it’s competitive price (around 60 dollars) and the

specifications:

• Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @

1.5GHz

• 4GB LPDDR4-3200 SDRAM

• 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE Gigabit

Ethernet

• 2 USB 3.0 ports; 2 USB 2.0 ports.

• Raspberry Pi standard 40 pin GPIO header (fully backwards compatible

with previous boards)

• Raspberry Pi standard 40 pin GPIO header (fully backwards compatible

with previous boards)

• 2-lane MIPI DSI display port

• 2-lane MIPI CSI camera port

• 4-pole stereo audio and composite video port

• H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)

• OpenGL ES 3.0 graphics

• Micro-SD card slot for loading operating system and data storage
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• 5V DC via USB-C connector (minimum 3A*)

• 5V DC via GPIO header (minimum 3A*)

• Power over Ethernet (PoE) enabled (requires separate PoE HAT)

• Operating temperature: 0 – 50 degrees C ambient

This will allow for high speed processing, the for USB entries will allow for

recording from two mics while using a keyboard and a mouse, it can access

internet to download updates and look up script examples, it has a good sound

card and it can run in a free operating system (Raspbian Linux distribution).

Initially, the processing core used was a simpler Raspberry 1 B, with access

to internet, ports and the same software, but much slower. It was inherited

from the student that proposed the architecture. An upgrade was required,

as the previous core was unable to simultaneously input and output audio of

any quality simultaneously without losing too much speed to make any ANC

process causal, except for a simple noise inverting program.

THE TWO MICROPHONES: The microphones used are two “Logitech USBDesk-

top Noise” each costs around 30 euros. No software installation is required.

It is very sensible, being able to pick up quiet speech from 30 cm away. It’s

tiltable, allowing for different positioning to receive sound. [10]

THE SPEAKERS: A standard set of desktop speaker should be sufficient for this

task. The speaker used is not produced anymore, the model is NGS SOUN-

BAND, and used to cost around 10 euros.
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2.6 SOFTWARE

The programming language used will be python. It’s a high level programming

language, very compact and with a lot of versatility, but not as fast as other

languages like C. It allows for all the calculations necessary with a variety of

libraries.

A fundamental part of this project is understanding how to read audio from

more than one source simultaneously, as well as being able to output the

processed audio at the same time. The python library pyaudio will be a useful

tool in that pursuit [12].

In order to read audio, the library requires the creation of a stream, which

will be able to interact with the audio input and output devices, reading and/or

writing a chunk of data, usually 4096 units. It needs to have a set of parameters

defined, the fundamental ones are the audio format, number of channels,

sample rate, amount of frames per buffer, index device and whether it will

input, output or both. By making use of those streams, sets of data can be read,

be processed instantly and saved in a list. With this same format, audio can be

sent to the output devices (speakers).

In order to read from two microphones simultaneously, two streams should

be created with different device indexes referring to each microphone. If the

objective of the project required perfectly simultaneous recording, that could

be achieved creating and coordinating two threads, but that would consume

a big amount of computing power, of which there is a limited supply. After

some testing, the conclusion has been reached that the simple superposition

of the streams is fast enough to be almost simultaneous, relieving the need for

separate threads. It is, however, possible to simultaneously read and write from

a single stream, speeding up the execution of the script. For the purposes of

this project, the parameters for audio reading and writing will be the standard

sample rate of 44100 Hz, which allows not to lose any useful information in

sampling and satisfies the Nyquist frequency criterion.

If a stream was reading audio and received a new reading request, the pro-

gram would stop automatically and print out an error. Fortunately, it’s possible
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Figure 2.9: simple audio reading program

to get around that inconvenience through the command "exceptiononoverflow

= False", which will allow those errors to be ignored and keep the program

running, if with some cuts. Luckily, with a chunk size of 4096 only 10 % of

a second worth of signal would be lost. This command is used in all noise

cancelling scripts created in this project. The audio enters the stream in the

form of a byte array, which can be translated into INT16 format, allowing for

manipulation of the data. It is possible to accumulate ("append") those signals,

and save them for conversion into an audio file at the end of the stream. Most

of those conversions are done through numpy, which allows for a large amount

of data conversions and operations.
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2.7 LIMITATIONS

The simple principle of noise cancellation is complicated by real world

factors.

• In an ideal environment, the sound would only flow in one direction, with

walls all around. The fact that this is in an open space, with static sound

of computers, or unrelated noises in the case of the library, complicates

the system reducing the sound cancelling qualities of the system.

• The microphones and the speaker, even though of decent quality, are

limited, the speakers set in particular.

• The system will react non linearly to different distances from the noise

source.

• For active noise cancelling to be achievable, the program needs to out-

put sound at least as fast as the time sound takes to travel the distance

between the reference and error microphones. Failing that, the program

would just overlap with the original sound, generating a louder overall

signal, and would only be able to reduce low frequency narrow band

noises. The original processing unit was dropped because of this.
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3 IDENTIFICATION OF THE SYSTEM

Given the current global health conditions and safety measures, the experimen-

tal work has been done in a smaller simplified environment. The experiments

will be done with a box to act as the walls of a room, with points for every

dispositive set so that the dispositives always go in the same place. The set

up will be the same as it would have been in the library, be it smaller, with the

noise signal at a point inside the box, the reference microphone next to it, the

speakers meant to send a disturbance noise out of the box, disposed in the

direction of the error microphone, and the error microphone itself, which will

be further away directed to the sound signals. If the dispositives remain the

same, the system to study should be constant.

Figure 3.1: Experimental setup

The transfer functions approach requires the identification of the transfer

function of the primary and secondary path. For that purpose, the audio will

be acquired from the raspberry and processed with matlab. The functions will

be windowed, translated in the frequency domain, then the transfer function

will be identified and converted into a mathematical one that closely resembles
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the original one. Those high order transfer functions will allow for the design

of a controller.

3.1 PRIMARY PATH IDENTIFICATION

Figure 3.2: Audio reading system layout

In order to be able to design a fitting controller both the primary and the

secondary paths need to be identified. The audio files necessary to identify the

primary path (the transfer function between two microphones) are obtained

by means of reading the input of both microphones at a time while playing

a “talking noise” audio file from the speakers placed in the noise source. The

transfer function, referred to as H(jw), will be the one to come out of the divi-

sion between the two signals, the one to come out of the reference microphone,

U(jw), and the one to come out of the error microphone, Y(jw).

H( j w) = Y ( j w)

U ( j w)
(3.1)

The python program used to record from two microphones hardly difeers

from the example, recording 60 seconds of audio from both micropones simul-

taneously, thus needing two strings, saving all the recorded data in two lists

and finally sending them in different wave files. The device indexes are two and
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three because the board is configured in such a way that the first microphone

added is considered the device number two.

Figure 3.3: audio recording program
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Figure 3.4: microphone amplitudes

In order to find the transfer function, a frequency domain identification

procedure is required using the Blackman-Harris window and applying the

fast fourier transform [5]. As explained before, the fourier transform function

requires a continuous and derivable signal, and the Blackman Harris, in this

case used as a matlab function, reduces the number of points in which the

signal has any kind of discontinuity.

Getting rid of anomalies and focusing in on the relevant frequencies the

difference between the two signals can be seen 3.6. As expected, the higher

frequencies are more easily absorbed by the walls, making them more prevalent

in the reference microphone than in the error microphone.

In order to find the transfer function, the signals are divided. To simplify the

function and eliminate anomalies, only one in twelve signals are taken. The

function is robust enough to not be undefined by this procedure.

Using the simplified version of the transfer function, the invfreqs function

from matlab is used, based on the works of E.C.Levy on Complex Curve fitting

[6], explained before. For this project, it is required that the functions are also

stable, which is requirable through the use of it.

This function, given the source signal, the order in which it has to be approx-
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Figure 3.5: Microphone amplitudes in frequency spectrum

Figure 3.6: Microphone signals in relevant frequencies

imated and the weights of different points in the signal, does a mathematical

approximation of it of varying accuracy depending on the input. The best

approach to finding the best fitting function is giving the peaks and valleys a

higher weight, to find the anomalous signals and weight them at zero and to try

a combiantion of different weights and different numbers of poles and zeros.
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Figure 3.7: Primary path transfer function

The function has to be as small as possible. A video is linked with a number of

attempts [9]. Some examples of non well fitting functions are added 3.8 3.9.

Figure 3.8: Weights vector

Figure 3.9: primary path curveffiting with order 3, 12
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Figure 3.10: primary path curveffiting with order 6, 9

The chosen function to approximate this signal is one with sixteen poles and

six zeroes. it approximates the original signal very closely on the most relevant

points 3.11.

Figure 3.11: definitive primary path transfer function, orders 6, 16

Numer ator = 6.741e31s6 −1.519e35s5 +3.362e39s4 −3.746e42s3 +4.853e46s2 −
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2.213e49s +2.165e53

Denomi nator = s16+6844S15+9.558e07s14+5.559e11s13+3.92e15S12+1.924e19s11+
9.016e22S10+3.677e26s9+1.273e30s8+4.193e33s7+1.129e37s6+2.853e40s5+6.142e43s4+
1.072e47s3 +1.871e50s2 +1.717e53s +2.439e56

Figure 3.12: step response primary path transfer function
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3.2 SECONDARY PATH IDENTIFICATION

In order to find the transfer function for this path, a multisine function is

simultaneously sent through the anti noise source speakers and recorded by

the error microphone, and the signals are compared.

Figure 3.13: Audio reading system layout

The program used for this process is a little more complicated. It requires

two streams, but one of them is an output stream, which will allow to write the

audio file "crest16.wav" with a multisine wave one chunk at a time. However,

this program is run with the Raspberry Pi 1 board, and it is impossible to get

any quality of sound without increasing the chunk to this kind of number,

which impacts negatively the speed of both the reading and the writing.

Both streams are put in a loop and made to read and write the same amount

of frames simultaneously. The data of both is saved in wav files in order to

compare them later.
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Figure 3.14: multisinus reading and writing python script

The signals are of very different amplitudes, as one comes from a micro-

phone and the other from a .wav audio file. The original signal as shown in

3.15 in blue is the original one.The signal in orange, taken by the microphone,

is much more irregular. 3.16 It has been recorded with the raspberry 1, and

serious latency issues are evident, as the board is trying to output and input

audio simultaneously. It also records in irregular chunks of data, getting over-

whelmed at times. When translated in the frequency domain, those issues will
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be mitigated but not erased.

Figure 3.15: Multisine signals in time domain

Figure 3.16: microphone signal zoom

The comparison is done in a frequency spectrum, using the discrete fourier

transform, and blackman-harris windowing [7] is applied again. To avoid low

level static noise, only the peaks are taken into account for the comparison, as

shown in 3.17.

The resulting signals are similar in the way the amplitudes appear in the

selected frequencies,suggesting an improvement from the signals in time do-

main, though the higher frequencies are clearly mitigated in the microphone

signal. In order to find the transfer function of the secondary path, the orignial

signal will be divided by the microphone signal, resulting in the signal shown

in figure 3.20.
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Figure 3.17: Multisine signal in frequency domain

Figure 3.18: original multisine signal in frequency domain in selected frequen-
cies

The same curve fitting matlab function is applied in order to find the mathe-

matical approximation of the transfer function. The final result is a transfer

function with 11 zeros and 12 poles.
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Figure 3.19: microphone multisine signal in frequency domain in selected fre-
quencies

Figure 3.20: transfer signal in frequency domain in selected frequencies

Numer ator = 3351s11−5.144e07s10+7.322e14s9+6.692e18s8+5.615e25s7+1.855e30s6+
1.752e36s5 +1.022e41s4 +1.842e46s3 +1.713e51s2 +8.304e54s +2.122e60

Denomi nator = s12+2.625e04s11+2.472e11s10+5.84e15s9+2.289e22s8+4.688e26s7+
9.698e32s6 +1.601e37s5 +1.825e43s4 +2.014e47s3 +1.21e53s2 +3.423e56s +4.116e60
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Figure 3.21: secondary path transfer function approximation

Figure 3.22: step response

The transfer function will be used in both controller identifications, and its

correct performance will be vital.
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4 CONTROLLER TUNING

4.1 FEED FORWARD CONTROLLER

In order to tune the feed forward controller, the inverse of the primary path

transfer function is divided with the secondary path transfer function. This

results in a stable transfer function with 6 zeros and 16 poles.

Numer ator =−6.741e31s6 +1.519e35s5 −3.362e39s4 +3.746e42s3 −4.853e46s2 +
2.213e49s −2.165e53

Denomi nator = s16+6844s15+9.558e07s14+5.559e11s13+3.92e15s12+1.924e19s11+
9.016e22s10+3.677e26s9+1.273e30s8+4.193e33s7+1.129e37s6+2.853e40s5+6.142e43s4+
1.072e47s3 +1.871e50s2 +1.717e53s +2.439e56

Figure 4.1: feed forward controller step response
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4.2 FEED BACK CONTROLLER

There are several methods to tune the PID response of the secondary controller,

but the one used in this project is the PID autotuning open loop simulink tool.

It requires to set up a system such that the PID feeds a constant into the

autotuning block, the block in turn gives output to the transfer function meant

to be the plant of the system (the secondary path in this case) and if activated,

at the end of the tuning it will provide the parameters for the PID controller

depending on different configurable parameters inside the block itself, which

are type, form, domain, sample time, and method.

Figure 4.2: PID autotune layout

The type used in this project will be a PI controller, as the derivative action

tends to get descontrolated if the input is too variable, which is the case. The

form used is parallel, the sample time 0.02, the approximate number of 1024

size chunks to be read in a second, it is done in time domain and with the

forward euler integrator method.
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Figure 4.3: my PID autotune layout

The resulting PI controller has a KP parameter of 0.4548 and a KI parameter

of 1 s−1.
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5 SIMULATION

Before implementing the obtained results into the building of a program for

the raspberry pi, it will be tested in a simulated environment using the Matlab

tool Simulink. The sound signal of people talking, used in the identification of

the primary path is introduced and filtered through the primary and secondary

paths in the same way it would be in the real world, and then the controllers

are implemented.

Figure 5.1: simulation of non controlled noise

The controllers are implemented, the feed forward controller coming from

the sound signal and the feedback controller coming from the result of the

previous iteration. The sum of the resulting signals, processed through the

secondary path as it would be in the real world is added to the original sound

signal, reducing the overall sound level.
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Figure 5.2: simulation of controlled noise

As can be seen in 5.3 , the results are satisfactory, with the blue signal rep-

resenting the sound filtered through the primary path and the orange one

being the reduced sound, reduced by the action of the controllers. The average

resulting amplitude in the error microphone sound is reduced to a 35% of the

original.

Kp Ki(s−1) Reduction(%)

0.4548 1 65
0.4548*2 1 73

0.4548 10 64
0.4548*0.5 1 63
0.4548*0.5 10 62

Different parameters of KP and KI for the PI controller have been tried in

order to ensure the responsivity of the controller within the system.
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Figure 5.3: results of the simulation

The different stable KP and KI parameters can still be tried in the real system.
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6 IMPLEMENTATION OF THE SYSTEM

As explained before, the system is implemented in a raspberry pi 4 B through a

python program, with the help of several libraries.

The system is tried as it was set up, with the reference microphone inside

the box, working as the room, and the error microphone and speakers in the

same position as in the identification, outside the box.

Figure 6.1: implementation layout

As explained previously, the processing core used initially is a Raspberry Pi

1. This board worked well for the first path identification, dubiously for the

secondary path identification but proved unusable in the implementation of

the desired system.

Various speeding up effects have been tried, including:

• Limiting the number of streams: Each stream addition adds load to the
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program. Uniting input and output in a single stream takes computing

weight off the program. This is kept in the final program.

• Adding different strings for different streams: It is possible to record using

strings, that is dividing the program into separate lines of code, each

one doing different functions simultaneously. In this case, strings were

created for each microphone. This approach, while good for speeding

up microphone recording, had a set of problems. The streams rarely

communicated between each other, and in the event that they did it was

once in about six loops, making the output repeat itself until it got an

input change. It is possible to make strings wait for each other, but that

slowed down the process worse than having them together in one loop.

• Reducing the program to solely feedforward or feedback: that gave a

significant improvement but at cost of half the system.

• Increasing the chunk size: this increased the quality but reduced the

speed, making the feedback unusable.

• Reducing the number of calculations: the feed forward controller, be-

ing a order 16 transfer function slowed down the process, and it was

significantly simplified. This is kept in the definitive program

The conclusion achieved is that the first board is only able to run a simplified

feedforward inverter script with any quality and possibility of audio cancella-

tion. 6.2

At this point, the decision was made that a better processing core was needed.

The raspberry Pi 4, with much better processing speed proved to be able to run

the system much better.
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Figure 6.2: simple inverting program
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6.1 PYTHON PROGRAM

This section contains a brief explaination of the way the active noise cancelling

program operates.

The program is built with two streams, one with both input and output, that

will take care of the reference microphone and the speakers, and the other one

only for input. The sample rate is 44100Hz, as explained before, and the chunk

is reduced to 1024

The program is built with two streams, one with both input and output, that

will take care of the reference microphone and the speakers, and the other one

only for input. The sample rate is 44100Hz, as explained before, and the chunk

is reduced to 1024, allowing for a fast reaction from the feedback controller.

The KP and KI are declared as found previously. Two lists are also declared.

It has been attempted to use python libraries to implement the controllers

in a more straightforward manner. However, they require an input of a single

value per time and measuring the array of data given by a chunk is not possible

for them. It is also not viable to get the chunk size to one, as that would require

the program to start reading, processing and writing sound commands 44100

times per second.

The loop, meant to play the number of times required by the chunk size and

the sample rate each second, about 43, hosts all the audio readings, writings

and calculations. Firstly, the two microphones are read simultaneously, and

then each is processed through their respective controller, feedforward for the

reference microphone and feedback for the error microphone.

Given the fact that specific PID and Transfer function libraries were discarded

for the building of the controllers, they are implemented in a discrete fashion,

taking in chunks of data instead of individual data points. That is why the

lists are built, not only can they be used to save the recorded audio, they are

necessary for the PID controller to take into account previous measures. The

feed forward controller has been simplified to the independent factor, and all

that is required is for the data to be converted into the int 16 format, before

and after the calculations, as the multiplication turns the number into a float.
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Figure 6.3: First half of the definitive ANC program

The feedback controller is built as seen in figure 6.5 , except the derivative

part, which is 0 in our system. It requires the same conversions as the previous

one, but it also requires to save the previous iteration of the PID action.
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Figure 6.4: Second half of the definitive ANC program

Figure 6.5: PID discretisation principle

The program can be downlaoded and used free of charge from GitHub[13]
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6.2 RESULTS

In order to evaluate the performance of the system, the cancelling noise pro-

gram is run during ten seconds with a constant sine wave of different fre-

quencies coming from the “noise” generating speakers inside the box. The

frequencies chosen are 400, 500, 700 and 1000Hz. Two programs have been

run alongside the standard active noise cancelling one. Those two new pro-

grams run only one of the two functions, feedback or feedforward. This gives

the advantage of processing faster, and also separating their actions, giving

a better understanding of the system. A table is shown giving the reduction

in percentage and decibels of different configurations for signals in different

frequency ranges, with a positive % reduction and a negative decibel number

meaning a reduction in the noise . The signals that produce reduction are

highlited in green.

Figure 6.6: Table of results

The results are very variable, with the feedback+feedforward script giving

the most consistent value, the only feedback one being consistently wrong

and the feedforward giving decent results but lacking consistency. As can be

seen in the figures, the reduction is also inconsistent with time, with peaks and

valleys, and specially the 400 hz one giving very good value and a sign of better

reduction over time.
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Figure 6.7: Signals 400 and 500 Hz

The figures included show the microphone reading without any noise con-

trolling system in place in blue, and the altered sound in orange.
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Figure 6.8: Signals 400 and 500 Hz

In order to test the system, the PI implementation with the best results (K P =
0.4548∗2,K I = 10s−1) is implemented in the same manner as the previous

experimental procedure.
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Figure 6.9: Table of results

Figure 6.10: Signals 400 and 500 Hz
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This procedure seems to create a positive feedback loop more often, making

it worse than the original one.

Figure 6.11: Signals 700 and 1000 Hz

As seen in the previous experiments, a reduction in the PID parameters is

in order. The proposed parameters for the next iteration consists of simply

halving the original parameters.
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Figure 6.12: Table of results

Figure 6.13: Signals 400 and 500 Hz
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Figure 6.14: Signals 700 and 1000 Hz

The best results come from the initial parameters with both feed forward

and feedback, that gave positive results in all frequencies except 1000Hz, and

the feed forward, that gave positive results except for the 700 Hz frequency

signal,though there is still a lot of space for experimentation.

Even in the better cases, the reduction does not reach the level of the throret-

ical program. That is to be expected, as the theoretical program ran with a

better implementation of the feed forward controller, with no overlap and no

background noise.

In conclusion, much experimentation can still be made and the results in

certain frequencies look very promising.
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7 CONCLUSIONS

During the length of this project, the architecture for the active noise cancelling

system from a different room has been put into practice. That required the

identification of the system through the primary and the secondary path, the

identification of the transfer functions of those paths, and the tuning of the

controllers by the use of those transfer functions.

The limits of the Raspberry Pi 1 as far as Active Noise Reduction goes have

been tested and reached, making it a great opportunity for learning new ways

to speed up the process that have been implemented in the definitive program.

The application of the controllers has given very promising results in the sim-

ulations, though in practice the system has given much more mixed results,

with very respectable noise reductions in certain frequency ranges and being

completely counterproductive in others.

These results open up a lot of work to improve the reduction. A lot of im-

provement could come too from toying around with the parameters and the

results of the final system, and a new identification of the system with the

faster board could bring substantial improvements. The aim of this thesis has

been reached, with the system being implemented and giving (be it variably)

positive results with the proposed relatively low-cost equipment.
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