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= |ntroduction to phase oscillators

= Nonlinear oscillator: the Adler equation

= Entrainment and locking



Phase oscillator

0= f(0)

= Flow on a circle: a function that assigns a unique
velocity vector to each point on the circle.

f(8+2m) = f(6)

= Example: @ =sinf 0% = 1

6% =(



Linear oscillator: 9 =

EXAMPLE 4.2.1:

Two joggers, Speedy and Pokey, are running at a steady pace around a circular
track. It takes Speedy 7, seconds to run once around the track, whereas it takes
Pokey T, > T, seconds. Of course, Speedy will periodically overtake Pokey; how
long does it take for Speedy to lap Pokey once, assuming that they start together?

. __om (1)
lap W, — W, Tl Tz

= Two non-interacting oscillators
periodically go in and out of phase

" Beat frequency = 1/T ,,



Example of a phase oscillator
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Interacting oscillators

Figure 1.8. Two pendulum

clocks coupled through a
common support. The beam
to which the clocks are fixed
1s not rigid, but can vibrate
slightly, as indicated by the
arrows at the top of the
figure. This vibration 1s
caused by the motions of
both pendula; as a result the
two clocks “feel” the
presence of each other.

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization, a universal concept
in nonlinear science (Cambridge University Press 2001).



In phase vs out of phase
oscillation
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Figure 1.10. Possible synchronous regimes of two nearly identical clocks: they may

be synchronized almost in-phase (a), i.e.. with the phase difference ¢o — ¢ =~ 0, or
in anti-phase (b), when ¢ — ¢ =~ 7.



Example: Integrate (accumulate)
and fire oscillator
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Figure 2.13. Time course of the mechanical integrate-and-fire (accumulate-and-fire)
oscillator shown in Fig. 2.12. Water accumulates until it reaches the threshold level
shown by a dashed line (a), then the water level is quickly reset to zero. The resetting
corresponds to the pulse in the plot of the water outflow from the trap (b).




(a) (b)
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Figure 2.14. Schematic diagram of the van der Pol relaxation generator (a). The
voltage at the capacitor increases until it reaches a threshold value at which the tube

becomes conductive; then, the capacitor quickly discharges, the tube flashes, and a
short pulse of current through the tube is observed. Each oscillatory cycle thus

consists of epochs of accumulation and firing (b).

Other examples: heart beats, neuronal spikes
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An overdamped pendulum driven
by a constant torque

mL*0 + b0 + mgLsin@ =T —

= b very large: l

b0 +mgLsing =T D
= Dimension-less equation: |
b 6 =———sinf
mgl. mgl
_mgL I , ‘
T=— 1, y—@ 0 =y —sinf

0'=dé/dt



Nonlinear oscillator

9=w—a81n9 /\
a

= (Adler equation) Simple model for \/Ia

many nonlinear phase oscillators I | - 5
(neurons, circadian rhythms, over- ) /2
damped driven pendulum), etc.

Robert Adler (1913-2007) is best known as the co-inventor
of the television remote control using ultrasonic waves.
But in the 1940s, he and others at Zenith Corporation were
Interested in reducing the number of vacuum tubes in an
FM radio. The possibility that a locked oscillator might offer
a solution inspired his 1946 paper “A Study of Locking
Phenomena in Oscillators.”



0 = w —sinf

For |o|<1: simple model of an excitable system:
= With a small perturbation: fast return to the stable state

= But if the perturbation in larger than a threshold, then,
long “excursion” before returning to the stable state.



8=w-—asinB

:\/F /\

slow passage

through here
(bottleneck)
(@ a<o - bya=o () a>w
slow 0=rm/2

0O C



Fixed points when a> o

8=w-asiné

sin 8% = w/a cos f* = i\/ 1 —(w/a)’
= Linear stabllity:

f’(@*) = —aCcosf* = ia\h _ (CU/a)z

" The FP with cos 0*>0 is the stable one.



Oscillation period when a<

8=w—asind

2T 27 de 27:
T = _[d j -dide =j , T —
0 w-—asinf \/a)z_ag
T
2rn/w
a') a
a=0: uniform

oscillator T—oow when a—o:



Bottleneck

- T 2 i
a— @ T = =
N @ w/a)—a 4=

= Period grows to infinite as (a, — @)™

“critical slowing down”: early warning signal of a
critical transition ahead.

=" Generic feature at a saddle-node bifurcation

0
0 Tbottleneck /
_ \/ ] /

\

bottleneck
due to ghost




Exercise 9
8=w—asinb

= Solve Adler’'s equation with ®=1, a=0.99 and 6(0)==/2

= With =1, calculate the average oscillation period for
different values of “a” and compare with the analytical
expression 2

y L
Jo? —a*

= With o=1/sqrt(2), calculate the trajectory for an arbitrary
Initial condition.
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Synchronous rhythmic flashing of fireflies

Strogatz
video

Figure 1| Fireflies, fireflies burning bright. In the forests of the night,
certain species of firefly flash in perfect synchrony — here Pteroptyx
malaccae in a mangrove apple tree in Malaysia. Kaka ef al.* and
Mancoff et al.’ show that the same principle can be applied to
oscillators at the nanoscale.


http://www.ted.com/talks/steven_strogatz_on_sync

Model
(Ermentrout and Rinzel 1984)

= There is a external periodic stimulus with frequency Q:

O =L
Response of a firefly (0) to the stimulus (€2): if the
stimulus is ahead on the firefly cycle, the firefly tries
to “speed up” to synchronize;
= But if the firefly is flashing too early, then “slows down’

0=+ Asin(© - 9)

" If®isahead 6 [0 <O - 6 <r] then sin(® - 8)>0 and
the firefly “speeds up” [d6/dt > ]

= The parameter A measures the capacity of the firefly
to adapt its flashing frequency.



Analysis

$=0-0  $=0-6 =Q-0-Asing

. . Q-
= Dimensionless model: T=Af, U= 0

detuning parameter

¢"=p—sing ¢’ =do/dr
(Adler equation)

¢’ Is the derivative with respect to t, dimensionless time.



7N\

(a) =0 (b) O<u<l (c)y u>1

= The fireflyand = The fireflyand ® Thefirefly and

the stimulus the stimulus are the stimulus are
flash phase locked unlocked:
simultaneously (entrainment); phase drift

there Is a stable
and constant
phase difference



¢'=p—sing

range of
Q- entrainment
= e -~} -
u A f | T T Q
0 w-A w w+A

Entrainment is possible only if the frequency of the
external stimulus, Q, is close to the firefly frequency, o

\ / - time

| |
~




Interpretation in terms of the potential V

¢'=p—sing

= Small detuning

= Large detuning

_Zv
¢'= a4

(a)

V(¢) = —up—Ccosg

(b)
q)_qjcjl
time
(b)
[b_q)c 1 / dl
e
time



Arnold tongues

If the external frequency Q is not close to the firefly
frequency, o, then, a different type of
synchronization is possible: the firefly can fire m
pulses each n pulses of the external signal.

nw = meL2
o 21 11 233 12 123
------- AR BB
| / \ / | H\\/ |
\v’ V| ..

mﬂl /2 u')ﬂ 30}:3 /2 2&}0 3m,



Experimental observation of entrainment?
In many systems! Here is an example from our lab.

BS
Natural feedback-induced dynamics,
LD :;;0 """""""" N without external forcing signal
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Questions:

= Can we entrain the optical pulses to a small-amplitude electric periodic
signal that modulates the laser current?

= Which modulation waveform is best for obtaining regular optical pulses?

= How can we detect and gquantify the regularity of the timing of the pulses?



It Is a popular system, many previous experimental studies

PHYSICAL REVIEW E. VOLUME 63. 066218

Dynamics of periodically forced semiconductor laser with optical feedback

Jorge Manuel Mendez,! R. Laje,! M. Giudici,%, J. Aliaga.! and G. B. Mindlin!
lDepnrmmenm de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
Pabellon I, CP 1428, Buenos Aires, Argentina
Institut Non-lineaire de Nice, Route des Lucioles 1361, 06560 Valbonne, France
(Received 16 June 2000; published 25 May 2001)
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Dynamics induced by small-amplitude sinusoidal
modulation of the laser current: noisy locking

Modulation
Frequency
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T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, C. Masoller,
“Effects of periodic forcing on the temporally correlated spikes of a
semiconductor laser with feedback”, Optics Express 23, 5571 (2015).




Locking “plateaus”

Mean inter-spike-interval
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Why no 1:1 locking plateau?
Ongoing research question.

T. Sorrentino et al., Optics Express 23, 5571 (2015).
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Summary

= A vector field on a circle is a rule that assigns a
uniaue velocity vector to each point on the circle

0=1©O) f(O+2m)=f(0)

gy 9 — @ —asin@ simple model to describe phase-
locking of a nonlinear oscillator

to an external periodic signal.

= |n the phase-locked state, the oscillator maintains
a constant phase difference relative to the signal.

= An oscillator can be locked to an external periodic
signal if the frequencies are sufficiently similar.
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