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We study thermal properties of a trapped Bose-Bose mixture in a dilute regime using quantum

Monte Carlo methods. Our main aim is to investigate the dependene of the super�uid density

and the ondensate fration on temperature, for the mixed and separated phases. To this end, we

use the di�usion Monte Carlo method, in the zero-temperature limit, and the path-integral Monte

Carlo method for �nite temperatures. The results obtained are ompared with solutions of the

oupled Gross-Pitaevskii equations for the mixture at zero temperature. We notie the existene of

an anisotropi super�uid density in some phase-separated mixtures. Our results also show that the

temperature evolution of the super�uid density and ondensate fration is slightly di�erent, showing

noteworthy situations where the super�uid fration is smaller than the ondensate fration.

I. INTRODUCTION

Mixtures of quantum �uids o�er the possibility to

study e�ets arising from the interation of their om-

ponents, mainly on fundamental phenomena suh as su-

per�uidity and Bose-Einstein ondensation. The natu-

rally ourring fermion-boson

3
He-

4
He mixture has for

many deades been the fous of suh studies, sine nat-

urally ourring bosoni mixtures were not available.

Muh more versatile have proven to be degenerate two-

omponent bosoni systems of ultraold atoms, whih

an be ahieved by trapping two hyper�ne omponents of

the same speies [1�3℄, di�erent isotopes [4�6℄ or di�erent

elements [7�16℄. The possibility to hange both the in-

terations of their omponents, by Feshbah resonanes,

and the dimensionality of the system has provided a very

rih landsape of physial phenomena.

Mixtures of repulsive ultraold Bose gases in harmoni

traps an be reated in di�erent regimes, mixed or phase-

separated, depending on the inter- and intra-partile in-

terations and the mass ratio of the omponents [17�21℄.

The phase separation an our in two ways: by separa-

tion in two blobs or by one speies being pushed further

from the enter and forming a shell around the other.

The extreme diluteness of the trapped gases enables a de-

sription of the interatomi interations using only one

parameter, the s-wave sattering length a. The mean-

�eld preditions for the misibility agree rather well with

quantum Monte Carlo preditions, espeially when the

strength of the interations is small [21℄, but the den-

sity pro�les an be quite di�erent. The existene of a

trap and the atom numbers an modify the misibility

riteria [20℄. However, the harater of the system (mis-

ible or phase separated) remains universal when one

onsiders systems with the same Gross-Pitaevskii saling

parameter Na/lho, with lho =
√

h̄/(mω) the osillator

length [21℄.

In reent years, Bose-Bose mixtures with attrative in-

terspeies and repulsive intraspeies interations have at-

trated onsiderable interest, due to the theoretial pre-

dition [22℄ and posterior realization [23�25℄ of ultradi-

lute liquid droplets. The stability of these droplets is a

result of a deliate balane between mean-�eld and its

�rst perturbative orretion, the Lee-Huang-Yang term.

Reent studies show that even orretions to this term

are neessary to explain some experimental phenomena

and that the inlusion of �nite e�etive ranges in the

theoretial analysis allows for a better understanding of

these droplets [26�32℄.

In the limit of zero temperature, single omponent

ultradilute alkali gases are nearly 100% ondensed and

the super�uidity aompanies Bose-Einstein ondensa-

tion (BEC). In the same limit, liquid

4
He is fully super-

�uid, but only around 7% of the atoms are ondensed [33℄

due to strong interpartile interations. In the �eld of

old atoms, it is experimentally possible to reah quan-

tum degeneray for both omponents of either trapped

gases or quantum droplets. This enables investigation of

the e�ets of one super�uid on the other, as well as the

relationship of ondensate and super�uid frations in the

limit of zero and �nite temperature.

In this paper, we study both super�uidity and Bose-

Einstein ondensation of trapped repulsive Bose-Bose

mixtures in an exat way using Quantum Monte Carlo

methods, at both zero and �nite temperature. Although

it would be very interesting to study attrative mixtures

as well, the large number of partiles required for real-

isti mixed droplets (> 104) makes their present study

from �rst priniples not feasible. The rest of the paper

is organized as follows. In Setion 2, we introdue the

hosen models and the theoretial methods used for the

study. Setion 3 reports, for three representative regimes,

results for the super�uid and ondensate frations as a

funtion of temperature. Finally, in Setion 4 we disuss

the main �ndings of our study.

II. MODEL AND METHOD

We investigated a balaned Bose-Bose mixture with

number of partiles N1 = N2 = N and masses m1 =
m2 = m, trapped in a three-dimensional harmoni on-

�nement with a ommon frequeny ω. The Hamiltonian
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of the system is

H = −
h̄2

2m

2N
∑

i=1

∇2
i +

1

2
mω2

2N
∑

i=1

r2i (1)

+
1

2

2
∑

α,β=1

N,N
∑

iα,jβ=1

V (α,β)(riαjβ ) ,

where V (α,β)(riαjβ ) is the interatomi potential between

speies α and β. We employed short-range interatomi

potentials in the form

V (α,β)(r) = u(α,β)

(

r
(α,β)
0

r

)10

. (2)

The parameters of the interation potential (u, r0) were
hosen to reprodue the desired sattering length. Given

these two parameters, there are numerous ways to on-

strut an interation potential for a given s-wave satter-

ing length. Partiularly, we hose r
(α,β)
0 = 1.5aαβ , where

aαβ is the sattering length in the αβ hannel, and nu-

merially solved the two-body Shrödinger equation to

�nd a orresponding strength of the potential u(α,β) [34℄.
In previous work it was veri�ed that, in the onditions

of the present simulations, the spei� shape of the in-

teration potential is not relevant beause we are in a

universal regime in terms of the gas parameter [21℄.

At zero temperature, we used the seond-order di�u-

sion Monte Carlo method (DMC), whih solves stohasti-

ally the Shrödinger equation written in imaginary time,

as desribed in Ref. [35℄. The trial wave funtion was

modeled as

Ψ(R) =

N1
∏

1=i<j

f (1,1)(rij)

N2
∏

1=i<j

f (2,2)(rij)

N1,N2
∏

i,j=1

f (1,2)(rij)

×

N1
∏

i=1

h(1)(ri)

N2
∏

j=1

h(2)(rj) , (3)

where R = {r1, . . . , rN}, h(i) is the one-body term,

due to the external harmoni potential, and f (α,β) is a

two-body Jastrow fator whih aounts for two-partile

orrelations. We hose f (α,β) to be a solution of the

two-body problem for a given potential, and h(α) =
exp(−r2/(2c2α)) (α = 1, 2), cα being a variational pa-

rameter. Spei� values of cα depend on the intera-

tion potential and, in all the ases, we found them to

be very lose to lho, with lho the orresponding har-

moni length, beause of the diluteness of the system.

In all the presented DMC results we used cα = lho. All

possible systemati errors, in partiular time-step and

population-size biases were thoroughly investigated and

redued below the statistial noise. The estimation of

observables whih do not ommute with the Hamilto-

nian was arried out using forward-walking pure estima-

tors [36℄ We used about 300 walkers and a time step of

around 10−3ma211/h̄
2
for shell and mixed regimes, and

10000 walkers for a two-blobs regime.

We also ompared our DMC results with the solutions

of oupled Gross-Pitaevskii equations for quantum mix-

tures [17℄,

ih̄
∂φ1(r, t)

∂t
=

(

−
h̄2

2m
∇2 +

1

2
mω2r2 + g11|φ1(r, t)|

2

+g12|φ2(r, t)|
2

)

φ1(r, t) , (4)

ih̄
∂φ2(r, t)

∂t
=

(

−
h̄2

2m
∇2 +

1

2
mω2r2 + g22|φ2(r, t)|

2

+g12|φ1(r, t)|
2

)

φ2(r, t) , (5)

where

gij =
2πh̄2aij

µ
= 2πh̄2aij

(

m−1
i +m−1

j

)

(6)

are the interation strengths. These equations were

solved simultaneously by imaginary time propagation of

ψ = (φ1, φ2)

ψ(t+∆t) = e−H∆tψ(t) , (7)

where a Trotter deomposition of the O(∆t3) for the time

evolution operator was used [37℄,

e−H∆t = e−∆tV (r)/2e−h̄∆t∇2/(2m)e−∆tV (r′)/2 +O(∆t3) ,
(8)

V = (V1, V2) being the potential ating on eah of the

omponents,

V1 =
1

2
mω2r2 + g11|φ1|

2 + g12|φ2|
2, (9)

V2 =
1

2
mω2r2 + g22|φ2|

2 + g12|φ1|
2 . (10)

Along the time evolution, the kineti energy propagator

e−h̄∆t∇2/(2m)
was evaluated in Fourier spae by means of

the fast Fourier transform.

At �nite temperature, we arried out simulations using

the path integral Monte Carlo (PIMC) method inluding

the worm algorithm to better sample the permutation

spae [38, 39℄. This is an exat method if the number

of terms of every path M (beads) is large enough to ob-

serve the onvergene guaranteed by the Trotter theo-

rem. In our simulations, we got onvergene working

in a range of imaginary-time steps between 0.00036 and

0.001 (0.5h̄ω)−1
.

The super�uid fration of eah omponent, as a fun-

tion of temperature, was estimated in PIMC using the

area estimator [40℄,

ρS
ρ0

= 1−
I

IC
=

2m〈A2
z〉

βλIC
, (11)

where λ = h̄2

2m and A = 1
2

∑N
i=1

∑M
j=1 ri,j × ri,j+1,. In

Eq. (11), I is the moment of inertia of the system, with
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FIG. 1. Sketh of the two axes around whih the super�uid

fration is alulated, for the two separated omponents B1

and B2. CM1 (CM2) stands for the enter-of-mass of ompo-

nent 1 (2) and CM stands for the total enter-of-mass.

respet to a given rotation axis, and Ic is its lassial

value. The z omponent of A an be understood as a

projetion area of all polymers onto a plane perpendiular

to the rotation axis. In order to alulate the super�uid

fration of eah omponent (11) in the trapped mixture,

the moment of inertia I was alulated with respet to

axis passing through the enter of mass. Two di�erent

axes were used, as shown in Fig. 1, where it is assumed

that the enters of mass of the two speies are separated.

The Bose-Einstein ondensation in the trapped system

was studied by alulating and diagonalizing the one-

body density matrix of eah omponent, in terms of the

natural orbitals [41�43℄. The ondensate fration was ob-

tained as the eigenvalue orresponding to the orbital with

the highest oupation.

III. RESULTS

Bose-Bose mixtures have a very rih phase diagram

driven by the interplay between the strength of the three

di�erent pair interations. We have hosen to study three

representative points in the phase spae, that were previ-

ously explored at zero temperature [21℄ and are thus ex-

peted to orrespond to two blobs, mixed and shell phase.

Aording to the mean �eld approah [20℄, an adimen-

sional parameter ∆ = g11g22/g
2
12−1 lassi�es the regime

of phase separation (∆ < 0) and misibility (∆ > 0) in a

homogeneous system at T = 0. At �nite temperatures, a

homogeneous mixture an phase separate even for ∆ > 0
due to the e�ets of Bose-Einstein ondensation [47℄. In

a harmonially trapped Bose mixture [20, 21℄, the om-

plete phase diagram at T = 0 is additionally hara-

terized by the trapping length and number of partiles.

The boundaries between the three observed regimes (two

blobs, mixed and shell) are not well de�ned, and here

we only studied representative points of the phase dia-

gram. Aording to T = 0 results [20, 21℄, two blobs

are expeted to our with interation strengths ratios

g12/g22 = 3 and g11/g12 = 0.33 (∆ = −0.89), mixed

phase at g12/g22 = 0.33 and g11/g12 = 3 (∆ = 8), and
shell phase at g12/g22 = 3 and g11/g12 = 1.7 (∆ =
−0.43). Those oordinates orrespond to the points A, F,
and G in Ref. 21, respetively. Our system is omposed

of N1 = N2 = 50 atoms, and in all three ases we took

m1 = m2 = m. In a previous study [21℄, it was shown

that this on�guration is in the universal regime, where

the results do not depend on the details of the intera-

tion potential but only on the sattering lengths. This

was onluded by performing DMC alulations with two

interatomi potentials whih shared the same value of the

s-wave sattering length: i) a 10-6 Lennard-Jones-like po-

tential [44℄ , and ii) a hard-ore potential. In this work,

instead of performing alulations with a hard-ore po-

tential, we hose a purely repulsive ∼ 1/r10 potential

to model the interation in all three hannels beause it

was more suitable for the employed implementation of the

PIMC method. The parameters of the potential were ad-

justed so that the two-body bound state is not supported.

Additionally, it was shown that the shape of the density

pro�les remained the same, with just the norm hang-

ing aordingly, when the alulations were performed

for N = 200 and 400 atoms, provided that N1a11/lho,
N1a12/lho, N2a12/lho and N2a22/lho are kept �xed. This
saling allows omparison of theoretial preditions with

experimental results without simulating diretly large-N
systems using time-onsuming QMC methods. In fat,

this universality emerges from the Gross-Pitaevskii equa-

tions (Eqs. 4 and 5) when they are written in length, en-

ergy, and time sales given by lho =
√

h̄/(mω), h̄2/(ml2ho)
and τ = ml2ho/h̄, respetively

i
∂φ̃1(r̃, t̃)

∂t̃
=

(

−
∇̃2

2
+

1

2
r̃2 +

4πN1a11
lho

|φ̃1(r̃, t̃)|
2

+
4πN2a12
lho

|φ̃2(r̃, t̃)|
2

)

φ̃1(r̃, t̃) , (12)

i
∂φ̃2(r̃, t̃)

∂t̃
=

(

−
∇̃2

2
+

1

2
r̃2 +

4πN2a22
lho

|φ̃2(r̃, t̃)|
2

+
4πN1a12
lho

|φ̃1(r̃, t̃)|
2

)

φ̃2(r̃, t̃) , (13)

where φ̃1 and φ̃2 are normalized aording to

∫

d3r̃|φ̃i|
2 =

1 (i = 1, 2). Notie that the universality is reovered

when �xing the ratios g12/g22, g11/g12 and N1a11/lho
sine in our study m1 = m2 and N1 = N2.

In the following, we present our results for eah of the

hosen regimes.

III.1. Mixed Regime

The density pro�les of both speies are presented in

Fig. 2, both at zero temperature, from DMC and GP al-

ulations and at �nite temperatures, from PIMC. Tem-

peratures are given in units h̄ω/2. The pro�les of both
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TABLE I. Parameters orresponding to the mixed, two-blobs,

and shell phase points analyzed (N1 = N2 = 50). Parti-

les are trapped with harmoni on�nement of length lho =
√

h̄/(mω) (note that we use m1 = m2 = m). We also re-

port ∆ = g11g22/g
2

12 − 1 and δg/g, where g =
√
g11g22 and

δg =
√
g11g22 − g12.

g11
g12

g12
g22

∆ δg/g N1a11

lho

N2a22

lho

N1a12

lho

Mixed regime 3 0.33 8 0.67 5 5 1.67

Two blobs 0.33 3 -0.89 -2 5 5 15

Shell 1.7 3 -0.43 -0.33 5 0.98 2.94

speies oinide within the statistial errorbars, as ex-

peted. GP predits a slightly narrower distribution than

DMC. For the temperature T = 0.7 PIMC and DMC

results oinide within errorbars, while with the rise of

temperature the pro�le beomes wider. The natural or-

bital with marosopi oupation for T = 0.7 oinides

with the orresponding density pro�le.
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FIG. 2. Density pro�les for speies 1 (B1) (dashed lines)

and speies 2 (B2) (solid lines) entered at the minimum of

the external potential in the mixed regime (parameters given

in Table III). The temperature is given in units of h̄ω/2.
The results at �nite temperatures are obtained by PIMC. NO

represents the natural orbital for T = 0.7.

Fig. 3 reports the super�uid and ondensate frations

as a funtion of temperature for both omponents B1 and

B2. In the limit of zero temperature, the super�uid fra-

tion is one, while the ondensate fration is slightly lower

due to the interations. With the inrease of tempera-

ture both frations derease reahing zero simultaneously.

The observed deay of the ondensate fration is signi�-

antly di�erent from the one for an ideal Bose gas [45℄, in

the same onditions as the mixture, due to the depletion

indued by dynami orrelations. Interestingly, around

T = 3 the ondensate fration beomes slightly larger

than the super�uid fration. We veri�ed that this feature

also happens for a single speies in the same onditions,

and that it disappears progressively when the strength of

the interation inreases. The unusual regime in whih

the ondensate fration is larger than the super�uid fra-
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FIG. 3. Super�uid and ondensate fration as a funtion of

temperature for B1 and B2 in the mixed regime (parameters

given in Table III). The solid thin line stands for the onden-

sate fration for an ideal on�ned Bose gas. Temperature is

given in units h̄ω/2.

tion was previously predited in onditions of very strong

disorder [46℄.

III.2. Separated regime: two blobs

In this separated regime, the two speies appear as

forming a two blob struture [21℄. The density pro�les,

estimated from the enter of the harmoni well, are pre-

sented in Fig. 4. Both the results at T = 0.5 and 0.7

are within the errorbars equal to the zero-temperature

DMC pro�les and demonstrate separation in two blobs.

With the inrease of temperature, the blobs inreasingly

mix. At low temperatures, GP pro�les do not fully math

with QMC ones. As both QMC methods fully apture

many-body orrelations, the disagreement in the density

pro�les originates from quantum �utuations, whih are

relevant sine we obtain inner densities ρ1a
3
11 ≃ 10

−3
.

Sine in the regime of two blobs, the LHY term is imag-

inary [22, 48℄, the QMC approah stands as a favorable

method to investigate beyond mean-�eld e�ets in this

phase. Additionally, in Fig. 5 we report the density pro-

�les and natural orbitals estimated from the enter of

mass of eah omponent. Both density pro�les remain

nearly unhanged up to T = 2, and then start to spread.

The marosopially oupied natural orbital follows the

density pro�le exept at short distanes, r < 1.5. Due to

the separation of the enters of masses of the two speies,

the axis up to whih super�uid estimator is alulated

using the area estimator is important. In Fig. 6, we re-

port the super�uid and ondensate frations as a fun-

tion of temperature for both omponents B1 i B2. For

the super�uid fration two results are given: SF whih

represents rotation around the axis whih passes through

both omponents' enter of mass and SF2 whih passes

through the total enter of mass and is perpendiular to

the previous axis, as shown in Fig. 1. It is worth notiing
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FIG. 4. Density pro�les in the two-blobs phase (parameters

given in Table III) for B1 (dashed) and B2 (solid) estimated

from the minimum of the harmoni potential.
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FIG. 5. Density pro�les in the two-blobs phase (parameters

given in Table III) for B1 (dashed) and B2 (solid) estimated

from the enter of mass of eah omponent.

that this separated phase shows an anisotropi super-

�uid response, feature already observed for instane in

in Helium drops with impurities [49, 50℄. In the limit

of zero temperature, SF goes to one while SF2 is signif-

iantly lower, below 0.5, whih an be explained by the

drag produed by the other omponent. In this same

limit, the ondensate fration is in between the two su-

per�uid values, around 0.85, whih is lower than in the

ase of the mixed regime. As the temperature inreases,

after a ertain temperature, the ondensate fration be-

omes larger than both super�uid frations, just like in

the mixed regime.

III.3. Separated regime: shell

In this ase, the mixture is also separated in two parts

but now there is spherial symmetry with respet to the

trap enter; one speies oupies the inner part and the

other forms a spherial shell surrounding the inner one.
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FIG. 6. Super�uid and ondensate frations as a funtion of

temperature for B1 and B2 in the two-blobs phase (parame-

ters given in Table III).

The density pro�les of the mixture in this regime are pre-

sented in Fig. 7. The agreement between GP and QMC

solutions at zero temperature is only qualitative. As in

the two-blob on�guration, this is most likely to our

due to quantum �utuations, sine here the peak density

is ρ1a
3
11 ≃ 5 × 10

−3
, beyond the limit of appliability of

the mean-�eld theory. Speies 1 (B1) remains well in the

outer shell up to temperatures T ≃ 2 and then it starts

to partially mix with the inner speies 2 (B2). The dom-

inant natural orbital for the B1 omponent is lose to the

density pro�le at low temperature, while the one for B2

is more peaked at small distanes.
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FIG. 7. Density pro�les in the shell phase (parameters given

in Table III) for B1 (dashed) and B2 (solid) estimated from

the minimum of the harmoni potential. Notie the di�erent

sale for the two omponents, ρB1
/ρB2

= 7.

In Fig 8, we report the super�uid and ondensate fra-

tions as a funtion of temperature for both omponents

B1 and B2. All reah one in the limit of zero temperature,

but the values for the omponent whih is preferably in

the outer shell (B1) derease faster with the temperature,

showing a wide regime with a super�uid and ondensate
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frations smaller than those for the inner speies. Again,

one observes that at temperatures approahing the rit-

ial one the ondensate fration beomes larger than the

super�uid fration, partiularly for the inner omponent.
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FIG. 8. Super�uid and ondensate fration as a funtion of

temperature for B1 and B2 in the shell phase (parameters

given in Table III).

IV. SUMMARY AND CONCLUSIONS

Super�uidity and Bose-Einstein ondensation of repul-

sive Bose-Bose mixtures have been explored in the three

phases whih they manifest. We observed agreement be-

tween DMC and PIMC results at low temperatures, giv-

ing us on�dene that all possible biases have been elim-

inated. In both the mixed and the shell regimes, and in

the limit of zero temperature, the super�uid fration, es-

timated with the area estimator is one, while in the two-

blobs regime it depends on the axis with respet to whih

the rotation is onsidered. It is below 0.5 when alulated

with respet to an axis whih is perpendiular to the line

passing through two enters of mass. Therefore, the two-

blobs phase shows an anisotropi super�uid response due

to the form in whih the system separates. Anisotropy

in the super�uid fration has already been predited in

dipolar gases, where it is aused by the anisotropi har-

ater of the interatomi potential [51℄, as well as in doped

Helium lusters [49, 50℄.

Interestingly, the ondensate fration, whih is typi-

ally lower than the super�uid fration, beomes larger

than ρs/ρ0 when T inreases. The di�erene between

both magnitudes is, in all ases, most pronouned around

T = 3.5 and then it diminishes as both super�uid and

ondensate fration drop to zero, around T = 8. This ef-

fet is also observed in a single speies simulation with the

same interpartile interation strength; if it is inreased

the rossing of ondensate and super�uid fration disap-

pears. We do not expet that our results depend on the

model of the interation potential, as they are obtained

in the regime whih was previously estimated as univer-

sal [21℄.
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