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We study thermal properties of a trapped Bose-Bose mixture in a dilute regime using quantum

Monte Carlo methods. Our main aim is to investigate the dependen
e of the super�uid density

and the 
ondensate fra
tion on temperature, for the mixed and separated phases. To this end, we

use the di�usion Monte Carlo method, in the zero-temperature limit, and the path-integral Monte

Carlo method for �nite temperatures. The results obtained are 
ompared with solutions of the


oupled Gross-Pitaevskii equations for the mixture at zero temperature. We noti
e the existen
e of

an anisotropi
 super�uid density in some phase-separated mixtures. Our results also show that the

temperature evolution of the super�uid density and 
ondensate fra
tion is slightly di�erent, showing

noteworthy situations where the super�uid fra
tion is smaller than the 
ondensate fra
tion.

I. INTRODUCTION

Mixtures of quantum �uids o�er the possibility to

study e�e
ts arising from the intera
tion of their 
om-

ponents, mainly on fundamental phenomena su
h as su-

per�uidity and Bose-Einstein 
ondensation. The natu-

rally o

urring fermion-boson

3
He-

4
He mixture has for

many de
ades been the fo
us of su
h studies, sin
e nat-

urally o

urring bosoni
 mixtures were not available.

Mu
h more versatile have proven to be degenerate two-


omponent bosoni
 systems of ultra
old atoms, whi
h


an be a
hieved by trapping two hyper�ne 
omponents of

the same spe
ies [1�3℄, di�erent isotopes [4�6℄ or di�erent

elements [7�16℄. The possibility to 
hange both the in-

tera
tions of their 
omponents, by Feshba
h resonan
es,

and the dimensionality of the system has provided a very

ri
h lands
ape of physi
al phenomena.

Mixtures of repulsive ultra
old Bose gases in harmoni


traps 
an be 
reated in di�erent regimes, mixed or phase-

separated, depending on the inter- and intra-parti
le in-

tera
tions and the mass ratio of the 
omponents [17�21℄.

The phase separation 
an o

ur in two ways: by separa-

tion in two blobs or by one spe
ies being pushed further

from the 
enter and forming a shell around the other.

The extreme diluteness of the trapped gases enables a de-

s
ription of the interatomi
 intera
tions using only one

parameter, the s-wave s
attering length a. The mean-

�eld predi
tions for the mis
ibility agree rather well with

quantum Monte Carlo predi
tions, espe
ially when the

strength of the intera
tions is small [21℄, but the den-

sity pro�les 
an be quite di�erent. The existen
e of a

trap and the atom numbers 
an modify the mis
ibility


riteria [20℄. However, the 
hara
ter of the system (mis-


ible or phase separated) remains universal when one


onsiders systems with the same Gross-Pitaevskii s
aling

parameter Na/lho, with lho =
√

h̄/(mω) the os
illator

length [21℄.

In re
ent years, Bose-Bose mixtures with attra
tive in-

terspe
ies and repulsive intraspe
ies intera
tions have at-

tra
ted 
onsiderable interest, due to the theoreti
al pre-

di
tion [22℄ and posterior realization [23�25℄ of ultradi-

lute liquid droplets. The stability of these droplets is a

result of a deli
ate balan
e between mean-�eld and its

�rst perturbative 
orre
tion, the Lee-Huang-Yang term.

Re
ent studies show that even 
orre
tions to this term

are ne
essary to explain some experimental phenomena

and that the in
lusion of �nite e�e
tive ranges in the

theoreti
al analysis allows for a better understanding of

these droplets [26�32℄.

In the limit of zero temperature, single 
omponent

ultradilute alkali gases are nearly 100% 
ondensed and

the super�uidity a

ompanies Bose-Einstein 
ondensa-

tion (BEC). In the same limit, liquid

4
He is fully super-

�uid, but only around 7% of the atoms are 
ondensed [33℄

due to strong interparti
le intera
tions. In the �eld of


old atoms, it is experimentally possible to rea
h quan-

tum degenera
y for both 
omponents of either trapped

gases or quantum droplets. This enables investigation of

the e�e
ts of one super�uid on the other, as well as the

relationship of 
ondensate and super�uid fra
tions in the

limit of zero and �nite temperature.

In this paper, we study both super�uidity and Bose-

Einstein 
ondensation of trapped repulsive Bose-Bose

mixtures in an exa
t way using Quantum Monte Carlo

methods, at both zero and �nite temperature. Although

it would be very interesting to study attra
tive mixtures

as well, the large number of parti
les required for real-

isti
 mixed droplets (> 104) makes their present study

from �rst prin
iples not feasible. The rest of the paper

is organized as follows. In Se
tion 2, we introdu
e the


hosen models and the theoreti
al methods used for the

study. Se
tion 3 reports, for three representative regimes,

results for the super�uid and 
ondensate fra
tions as a

fun
tion of temperature. Finally, in Se
tion 4 we dis
uss

the main �ndings of our study.

II. MODEL AND METHOD

We investigated a balan
ed Bose-Bose mixture with

number of parti
les N1 = N2 = N and masses m1 =
m2 = m, trapped in a three-dimensional harmoni
 
on-

�nement with a 
ommon frequen
y ω. The Hamiltonian
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of the system is

H = −
h̄2

2m

2N
∑

i=1

∇2
i +

1

2
mω2

2N
∑

i=1

r2i (1)

+
1

2

2
∑

α,β=1

N,N
∑

iα,jβ=1

V (α,β)(riαjβ ) ,

where V (α,β)(riαjβ ) is the interatomi
 potential between

spe
ies α and β. We employed short-range interatomi


potentials in the form

V (α,β)(r) = u(α,β)

(

r
(α,β)
0

r

)10

. (2)

The parameters of the intera
tion potential (u, r0) were

hosen to reprodu
e the desired s
attering length. Given

these two parameters, there are numerous ways to 
on-

stru
t an intera
tion potential for a given s-wave s
atter-

ing length. Parti
ularly, we 
hose r
(α,β)
0 = 1.5aαβ , where

aαβ is the s
attering length in the αβ 
hannel, and nu-

meri
ally solved the two-body S
hrödinger equation to

�nd a 
orresponding strength of the potential u(α,β) [34℄.
In previous work it was veri�ed that, in the 
onditions

of the present simulations, the spe
i�
 shape of the in-

tera
tion potential is not relevant be
ause we are in a

universal regime in terms of the gas parameter [21℄.

At zero temperature, we used the se
ond-order di�u-

sion Monte Carlo method (DMC), whi
h solves sto
hasti-


ally the S
hrödinger equation written in imaginary time,

as des
ribed in Ref. [35℄. The trial wave fun
tion was

modeled as

Ψ(R) =

N1
∏

1=i<j

f (1,1)(rij)

N2
∏

1=i<j

f (2,2)(rij)

N1,N2
∏

i,j=1

f (1,2)(rij)

×

N1
∏

i=1

h(1)(ri)

N2
∏

j=1

h(2)(rj) , (3)

where R = {r1, . . . , rN}, h(i) is the one-body term,

due to the external harmoni
 potential, and f (α,β) is a

two-body Jastrow fa
tor whi
h a

ounts for two-parti
le


orrelations. We 
hose f (α,β) to be a solution of the

two-body problem for a given potential, and h(α) =
exp(−r2/(2c2α)) (α = 1, 2), cα being a variational pa-

rameter. Spe
i�
 values of cα depend on the intera
-

tion potential and, in all the 
ases, we found them to

be very 
lose to lho, with lho the 
orresponding har-

moni
 length, be
ause of the diluteness of the system.

In all the presented DMC results we used cα = lho. All

possible systemati
 errors, in parti
ular time-step and

population-size biases were thoroughly investigated and

redu
ed below the statisti
al noise. The estimation of

observables whi
h do not 
ommute with the Hamilto-

nian was 
arried out using forward-walking pure estima-

tors [36℄ We used about 300 walkers and a time step of

around 10−3ma211/h̄
2
for shell and mixed regimes, and

10000 walkers for a two-blobs regime.

We also 
ompared our DMC results with the solutions

of 
oupled Gross-Pitaevskii equations for quantum mix-

tures [17℄,

ih̄
∂φ1(r, t)

∂t
=

(

−
h̄2

2m
∇2 +

1

2
mω2r2 + g11|φ1(r, t)|

2

+g12|φ2(r, t)|
2

)

φ1(r, t) , (4)

ih̄
∂φ2(r, t)

∂t
=

(

−
h̄2

2m
∇2 +

1

2
mω2r2 + g22|φ2(r, t)|

2

+g12|φ1(r, t)|
2

)

φ2(r, t) , (5)

where

gij =
2πh̄2aij

µ
= 2πh̄2aij

(

m−1
i +m−1

j

)

(6)

are the intera
tion strengths. These equations were

solved simultaneously by imaginary time propagation of

ψ = (φ1, φ2)

ψ(t+∆t) = e−H∆tψ(t) , (7)

where a Trotter de
omposition of the O(∆t3) for the time

evolution operator was used [37℄,

e−H∆t = e−∆tV (r)/2e−h̄∆t∇2/(2m)e−∆tV (r′)/2 +O(∆t3) ,
(8)

V = (V1, V2) being the potential a
ting on ea
h of the


omponents,

V1 =
1

2
mω2r2 + g11|φ1|

2 + g12|φ2|
2, (9)

V2 =
1

2
mω2r2 + g22|φ2|

2 + g12|φ1|
2 . (10)

Along the time evolution, the kineti
 energy propagator

e−h̄∆t∇2/(2m)
was evaluated in Fourier spa
e by means of

the fast Fourier transform.

At �nite temperature, we 
arried out simulations using

the path integral Monte Carlo (PIMC) method in
luding

the worm algorithm to better sample the permutation

spa
e [38, 39℄. This is an exa
t method if the number

of terms of every path M (beads) is large enough to ob-

serve the 
onvergen
e guaranteed by the Trotter theo-

rem. In our simulations, we got 
onvergen
e working

in a range of imaginary-time steps between 0.00036 and

0.001 (0.5h̄ω)−1
.

The super�uid fra
tion of ea
h 
omponent, as a fun
-

tion of temperature, was estimated in PIMC using the

area estimator [40℄,

ρS
ρ0

= 1−
I

IC
=

2m〈A2
z〉

βλIC
, (11)

where λ = h̄2

2m and A = 1
2

∑N
i=1

∑M
j=1 ri,j × ri,j+1,. In

Eq. (11), I is the moment of inertia of the system, with
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FIG. 1. Sket
h of the two axes around whi
h the super�uid

fra
tion is 
al
ulated, for the two separated 
omponents B1

and B2. CM1 (CM2) stands for the 
enter-of-mass of 
ompo-

nent 1 (2) and CM stands for the total 
enter-of-mass.

respe
t to a given rotation axis, and Ic is its 
lassi
al

value. The z 
omponent of A 
an be understood as a

proje
tion area of all polymers onto a plane perpendi
ular

to the rotation axis. In order to 
al
ulate the super�uid

fra
tion of ea
h 
omponent (11) in the trapped mixture,

the moment of inertia I was 
al
ulated with respe
t to

axis passing through the 
enter of mass. Two di�erent

axes were used, as shown in Fig. 1, where it is assumed

that the 
enters of mass of the two spe
ies are separated.

The Bose-Einstein 
ondensation in the trapped system

was studied by 
al
ulating and diagonalizing the one-

body density matrix of ea
h 
omponent, in terms of the

natural orbitals [41�43℄. The 
ondensate fra
tion was ob-

tained as the eigenvalue 
orresponding to the orbital with

the highest o

upation.

III. RESULTS

Bose-Bose mixtures have a very ri
h phase diagram

driven by the interplay between the strength of the three

di�erent pair intera
tions. We have 
hosen to study three

representative points in the phase spa
e, that were previ-

ously explored at zero temperature [21℄ and are thus ex-

pe
ted to 
orrespond to two blobs, mixed and shell phase.

A

ording to the mean �eld approa
h [20℄, an adimen-

sional parameter ∆ = g11g22/g
2
12−1 
lassi�es the regime

of phase separation (∆ < 0) and mis
ibility (∆ > 0) in a

homogeneous system at T = 0. At �nite temperatures, a

homogeneous mixture 
an phase separate even for ∆ > 0
due to the e�e
ts of Bose-Einstein 
ondensation [47℄. In

a harmoni
ally trapped Bose mixture [20, 21℄, the 
om-

plete phase diagram at T = 0 is additionally 
hara
-

terized by the trapping length and number of parti
les.

The boundaries between the three observed regimes (two

blobs, mixed and shell) are not well de�ned, and here

we only studied representative points of the phase dia-

gram. A

ording to T = 0 results [20, 21℄, two blobs

are expe
ted to o

ur with intera
tion strengths ratios

g12/g22 = 3 and g11/g12 = 0.33 (∆ = −0.89), mixed

phase at g12/g22 = 0.33 and g11/g12 = 3 (∆ = 8), and
shell phase at g12/g22 = 3 and g11/g12 = 1.7 (∆ =
−0.43). Those 
oordinates 
orrespond to the points A, F,
and G in Ref. 21, respe
tively. Our system is 
omposed

of N1 = N2 = 50 atoms, and in all three 
ases we took

m1 = m2 = m. In a previous study [21℄, it was shown

that this 
on�guration is in the universal regime, where

the results do not depend on the details of the intera
-

tion potential but only on the s
attering lengths. This

was 
on
luded by performing DMC 
al
ulations with two

interatomi
 potentials whi
h shared the same value of the

s-wave s
attering length: i) a 10-6 Lennard-Jones-like po-

tential [44℄ , and ii) a hard-
ore potential. In this work,

instead of performing 
al
ulations with a hard-
ore po-

tential, we 
hose a purely repulsive ∼ 1/r10 potential

to model the intera
tion in all three 
hannels be
ause it

was more suitable for the employed implementation of the

PIMC method. The parameters of the potential were ad-

justed so that the two-body bound state is not supported.

Additionally, it was shown that the shape of the density

pro�les remained the same, with just the norm 
hang-

ing a

ordingly, when the 
al
ulations were performed

for N = 200 and 400 atoms, provided that N1a11/lho,
N1a12/lho, N2a12/lho and N2a22/lho are kept �xed. This
s
aling allows 
omparison of theoreti
al predi
tions with

experimental results without simulating dire
tly large-N
systems using time-
onsuming QMC methods. In fa
t,

this universality emerges from the Gross-Pitaevskii equa-

tions (Eqs. 4 and 5) when they are written in length, en-

ergy, and time s
ales given by lho =
√

h̄/(mω), h̄2/(ml2ho)
and τ = ml2ho/h̄, respe
tively

i
∂φ̃1(r̃, t̃)

∂t̃
=

(

−
∇̃2

2
+

1

2
r̃2 +

4πN1a11
lho

|φ̃1(r̃, t̃)|
2

+
4πN2a12
lho

|φ̃2(r̃, t̃)|
2

)

φ̃1(r̃, t̃) , (12)

i
∂φ̃2(r̃, t̃)

∂t̃
=

(

−
∇̃2

2
+

1

2
r̃2 +

4πN2a22
lho

|φ̃2(r̃, t̃)|
2

+
4πN1a12
lho

|φ̃1(r̃, t̃)|
2

)

φ̃2(r̃, t̃) , (13)

where φ̃1 and φ̃2 are normalized a

ording to

∫

d3r̃|φ̃i|
2 =

1 (i = 1, 2). Noti
e that the universality is re
overed

when �xing the ratios g12/g22, g11/g12 and N1a11/lho
sin
e in our study m1 = m2 and N1 = N2.

In the following, we present our results for ea
h of the


hosen regimes.

III.1. Mixed Regime

The density pro�les of both spe
ies are presented in

Fig. 2, both at zero temperature, from DMC and GP 
al-


ulations and at �nite temperatures, from PIMC. Tem-

peratures are given in units h̄ω/2. The pro�les of both
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TABLE I. Parameters 
orresponding to the mixed, two-blobs,

and shell phase points analyzed (N1 = N2 = 50). Parti-


les are trapped with harmoni
 
on�nement of length lho =
√

h̄/(mω) (note that we use m1 = m2 = m). We also re-

port ∆ = g11g22/g
2

12 − 1 and δg/g, where g =
√
g11g22 and

δg =
√
g11g22 − g12.

g11
g12

g12
g22

∆ δg/g N1a11

lho

N2a22

lho

N1a12

lho

Mixed regime 3 0.33 8 0.67 5 5 1.67

Two blobs 0.33 3 -0.89 -2 5 5 15

Shell 1.7 3 -0.43 -0.33 5 0.98 2.94

spe
ies 
oin
ide within the statisti
al errorbars, as ex-

pe
ted. GP predi
ts a slightly narrower distribution than

DMC. For the temperature T = 0.7 PIMC and DMC

results 
oin
ide within errorbars, while with the rise of

temperature the pro�le be
omes wider. The natural or-

bital with ma
ros
opi
 o

upation for T = 0.7 
oin
ides

with the 
orresponding density pro�le.
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 1.2

 1.4

 0  1  2  3  4

ρ(
r
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(u
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o
f 

l h
o
−

3
)

r (units of lho)

T = 8.0

T = 5.0

T = 3.5

T = 2.0

T = 0.7

DMC

GP

NO

FIG. 2. Density pro�les for spe
ies 1 (B1) (dashed lines)

and spe
ies 2 (B2) (solid lines) 
entered at the minimum of

the external potential in the mixed regime (parameters given

in Table III). The temperature is given in units of h̄ω/2.
The results at �nite temperatures are obtained by PIMC. NO

represents the natural orbital for T = 0.7.

Fig. 3 reports the super�uid and 
ondensate fra
tions

as a fun
tion of temperature for both 
omponents B1 and

B2. In the limit of zero temperature, the super�uid fra
-

tion is one, while the 
ondensate fra
tion is slightly lower

due to the intera
tions. With the in
rease of tempera-

ture both fra
tions de
rease rea
hing zero simultaneously.

The observed de
ay of the 
ondensate fra
tion is signi�-


antly di�erent from the one for an ideal Bose gas [45℄, in

the same 
onditions as the mixture, due to the depletion

indu
ed by dynami
 
orrelations. Interestingly, around

T = 3 the 
ondensate fra
tion be
omes slightly larger

than the super�uid fra
tion. We veri�ed that this feature

also happens for a single spe
ies in the same 
onditions,

and that it disappears progressively when the strength of

the intera
tion in
reases. The unusual regime in whi
h

the 
ondensate fra
tion is larger than the super�uid fra
-

0.0
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 0.2

 0.4

 0.6

 0.8

 1.2

 0  1  2  3  4  5  6  7  8

−

ρ S
/ρ

0
 a

n
d

  
N

0
/N

T (units of 0.5hω)

N
0
/N, ideal Bose gas 50

ρ
S
/ρ

0
, B1

ρ
S
/ρ

0
, B2

N
0
/N, B1

N
0
/N, B2

FIG. 3. Super�uid and 
ondensate fra
tion as a fun
tion of

temperature for B1 and B2 in the mixed regime (parameters

given in Table III). The solid thin line stands for the 
onden-

sate fra
tion for an ideal 
on�ned Bose gas. Temperature is

given in units h̄ω/2.

tion was previously predi
ted in 
onditions of very strong

disorder [46℄.

III.2. Separated regime: two blobs

In this separated regime, the two spe
ies appear as

forming a two blob stru
ture [21℄. The density pro�les,

estimated from the 
enter of the harmoni
 well, are pre-

sented in Fig. 4. Both the results at T = 0.5 and 0.7

are within the errorbars equal to the zero-temperature

DMC pro�les and demonstrate separation in two blobs.

With the in
rease of temperature, the blobs in
reasingly

mix. At low temperatures, GP pro�les do not fully mat
h

with QMC ones. As both QMC methods fully 
apture

many-body 
orrelations, the disagreement in the density

pro�les originates from quantum �u
tuations, whi
h are

relevant sin
e we obtain inner densities ρ1a
3
11 ≃ 10

−3
.

Sin
e in the regime of two blobs, the LHY term is imag-

inary [22, 48℄, the QMC approa
h stands as a favorable

method to investigate beyond mean-�eld e�e
ts in this

phase. Additionally, in Fig. 5 we report the density pro-

�les and natural orbitals estimated from the 
enter of

mass of ea
h 
omponent. Both density pro�les remain

nearly un
hanged up to T = 2, and then start to spread.

The ma
ros
opi
ally o

upied natural orbital follows the

density pro�le ex
ept at short distan
es, r < 1.5. Due to

the separation of the 
enters of masses of the two spe
ies,

the axis up to whi
h super�uid estimator is 
al
ulated

using the area estimator is important. In Fig. 6, we re-

port the super�uid and 
ondensate fra
tions as a fun
-

tion of temperature for both 
omponents B1 i B2. For

the super�uid fra
tion two results are given: SF whi
h

represents rotation around the axis whi
h passes through

both 
omponents' 
enter of mass and SF2 whi
h passes

through the total 
enter of mass and is perpendi
ular to

the previous axis, as shown in Fig. 1. It is worth noti
ing
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FIG. 4. Density pro�les in the two-blobs phase (parameters

given in Table III) for B1 (dashed) and B2 (solid) estimated

from the minimum of the harmoni
 potential.
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FIG. 5. Density pro�les in the two-blobs phase (parameters

given in Table III) for B1 (dashed) and B2 (solid) estimated

from the 
enter of mass of ea
h 
omponent.

that this separated phase shows an anisotropi
 super-

�uid response, feature already observed for instan
e in

in Helium drops with impurities [49, 50℄. In the limit

of zero temperature, SF goes to one while SF2 is signif-

i
antly lower, below 0.5, whi
h 
an be explained by the

drag produ
ed by the other 
omponent. In this same

limit, the 
ondensate fra
tion is in between the two su-

per�uid values, around 0.85, whi
h is lower than in the


ase of the mixed regime. As the temperature in
reases,

after a 
ertain temperature, the 
ondensate fra
tion be-


omes larger than both super�uid fra
tions, just like in

the mixed regime.

III.3. Separated regime: shell

In this 
ase, the mixture is also separated in two parts

but now there is spheri
al symmetry with respe
t to the

trap 
enter; one spe
ies o

upies the inner part and the

other forms a spheri
al shell surrounding the inner one.
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FIG. 6. Super�uid and 
ondensate fra
tions as a fun
tion of

temperature for B1 and B2 in the two-blobs phase (parame-

ters given in Table III).

The density pro�les of the mixture in this regime are pre-

sented in Fig. 7. The agreement between GP and QMC

solutions at zero temperature is only qualitative. As in

the two-blob 
on�guration, this is most likely to o

ur

due to quantum �u
tuations, sin
e here the peak density

is ρ1a
3
11 ≃ 5 × 10

−3
, beyond the limit of appli
ability of

the mean-�eld theory. Spe
ies 1 (B1) remains well in the

outer shell up to temperatures T ≃ 2 and then it starts

to partially mix with the inner spe
ies 2 (B2). The dom-

inant natural orbital for the B1 
omponent is 
lose to the

density pro�le at low temperature, while the one for B2

is more peaked at small distan
es.
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FIG. 7. Density pro�les in the shell phase (parameters given

in Table III) for B1 (dashed) and B2 (solid) estimated from

the minimum of the harmoni
 potential. Noti
e the di�erent

s
ale for the two 
omponents, ρB1
/ρB2

= 7.

In Fig 8, we report the super�uid and 
ondensate fra
-

tions as a fun
tion of temperature for both 
omponents

B1 and B2. All rea
h one in the limit of zero temperature,

but the values for the 
omponent whi
h is preferably in

the outer shell (B1) de
rease faster with the temperature,

showing a wide regime with a super�uid and 
ondensate
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fra
tions smaller than those for the inner spe
ies. Again,

one observes that at temperatures approa
hing the 
rit-

i
al one the 
ondensate fra
tion be
omes larger than the

super�uid fra
tion, parti
ularly for the inner 
omponent.
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FIG. 8. Super�uid and 
ondensate fra
tion as a fun
tion of

temperature for B1 and B2 in the shell phase (parameters

given in Table III).

IV. SUMMARY AND CONCLUSIONS

Super�uidity and Bose-Einstein 
ondensation of repul-

sive Bose-Bose mixtures have been explored in the three

phases whi
h they manifest. We observed agreement be-

tween DMC and PIMC results at low temperatures, giv-

ing us 
on�den
e that all possible biases have been elim-

inated. In both the mixed and the shell regimes, and in

the limit of zero temperature, the super�uid fra
tion, es-

timated with the area estimator is one, while in the two-

blobs regime it depends on the axis with respe
t to whi
h

the rotation is 
onsidered. It is below 0.5 when 
al
ulated

with respe
t to an axis whi
h is perpendi
ular to the line

passing through two 
enters of mass. Therefore, the two-

blobs phase shows an anisotropi
 super�uid response due

to the form in whi
h the system separates. Anisotropy

in the super�uid fra
tion has already been predi
ted in

dipolar gases, where it is 
aused by the anisotropi
 
har-

a
ter of the interatomi
 potential [51℄, as well as in doped

Helium 
lusters [49, 50℄.

Interestingly, the 
ondensate fra
tion, whi
h is typi-


ally lower than the super�uid fra
tion, be
omes larger

than ρs/ρ0 when T in
reases. The di�eren
e between

both magnitudes is, in all 
ases, most pronoun
ed around

T = 3.5 and then it diminishes as both super�uid and


ondensate fra
tion drop to zero, around T = 8. This ef-

fe
t is also observed in a single spe
ies simulation with the

same interparti
le intera
tion strength; if it is in
reased

the 
rossing of 
ondensate and super�uid fra
tion disap-

pears. We do not expe
t that our results depend on the

model of the intera
tion potential, as they are obtained

in the regime whi
h was previously estimated as univer-

sal [21℄.
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