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 Introduction to dynamical systems

 Introduction to flows on the line

 Fixed points and linear stability

 Solving equations with computer

Structure of the first part of the course



 Systems that evolve in time.

 Examples: 

• Pendulum clock

• Neuron

 Dynamical systems can be: 

• linear or nonlinear (harmonic 

oscillator – pendulum); 

• deterministic or stochastic; 

• low or high dimensional; 

• continuous time or discrete 

time.

What is a Dynamical System?

Time

Voltage

In this course: nonlinear systems (Nonlinear Dynamics)



• After a transient the systems settles 

down to equilibrium (rest state or 

“fixed point”).

• Keeps spiking in cycles (“limit 

cycle”).

• More complicated: aperiodic 

evolution (“chaos”).

Possible temporal evolution



 Mid-1600s: Ordinary differential equations 

(ODEs)

 Isaac Newton: studied planetary orbits and 

solved analytically the “two-body” problem (earth 

around the sun).

 Since then: a lot of effort for solving the “three-

body” problem (earth-sun-moon) – Impossible.

The beginning of the mathematical modelling of 

dynamical systems: Newtonian mechanics



 Henri Poincare (French mathematician). 

Instead of asking “which are the exact positions of planets 

(trajectories)?” 

he asked: “is the solar system stable for ever, or will planets 

eventually run away?”

 He developed a geometrical approach to solve the problem.

 Introduced the concept of “phase space”.

Late 1800s

x
y

z

 Poincaré recurrence theorem: certain systems will, 

after a sufficiently long but finite time, return to a 

state very close to the initial state. 

 He also had the intuition of the possibility of chaos.



Deterministic system: the initial conditions fully determine 

the future state.  

Deterministic chaotic system: there is no randomness but 

the system can be, in the long term, unpredictable.

Poincare: “The evolution of a deterministic system can 

be aperiodic, unpredictable, and strongly depends on the 

initial conditions”.

A problem in time series analysis: How to determine the 

prediction horizon? With what reliability?



 Computes allowed to experiment with equations.

 Huge advance in the field of “Dynamical Systems”.

 1960s: Eduard Lorenz (American mathematician 

and meteorologist at MIT): simple model of 

convection rolls in the atmosphere.

 Famous chaotic attractor.

1950s: First computer simulations



 Robert May (Australian, 1936): population biology

 "Simple mathematical models with very 

complicated dynamics“, Nature (1976).

The 1970s

 Difference equations (“iterated maps”), in spite of being 

simple and deterministic, can exhibit: stable points, 

stable cycles, and apparently random fluctuations. 

)(1 tt xfx 
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x(0,1), r(0,4)



The logistic map:
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The fixed point is the solution 

of: x = r x (1-x)  x = 1 – 1/r

)](1)[( )1( ixixrix 

r=2.8, Initial condition: x(1) = 0.2

Transient relaxation → long-term stability

Transient dynamics → oscillations

(regular or irregular)

x(0,1), r(0,4)



Bifurcation diagram: period-doubling (or subharmonic) 

route to chaos 
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r2-r1 r3-r2



In 1975, M. Feigenbaum (American 

mathematician and physicist 1944-

2019), using a small HP-65 calculator, 

discovered the scaling law of the 

bifurcation points of the Logistic map.

Order within chaos and a “hidden” law in the subharmonic 

route to chaos

HP-65 calculator: the 

first magnetic card-

programmable 

handheld calculator
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A universal law

Feigenbaum showed that the same behavior, with the 

same mathematical constant, occurs for a wide class of 

functions (functions with a quadratic máximum).

Very different systems (in chemistry, biology, physics, 

etc.) go to chaos in the same way, quantitatively.

Watch this short video for some very interesting examples: 

https://www.youtube.com/watch?v=ovJcsL7vyrk



Early experiments: a periodically modulated CO2 laser

14

Constant modulation frequency, increasing the modulation amplitude

Tredicce et al, Phys. Rev. A 34, 2073 (1986).



 Benoit Mandelbrot (Polish-born, French 

and American mathematician  1924-

2010): “self-similarity” and fractal 

objects: 

each part of the object is like the whole 

object but smaller.

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images.

The late 1970s



Cantor set (introduced by German mathematician Georg Cantor in 

1883): remove the middle third of a line segment and then repeat the 

process with the remaining shorter segments

Fractal structure: a part of the object resembles the hole object.

D=0.63



How to estimate the dimension of a fractal? 

17Abarbanel et al, Reviews of Modern Physics 65, 1331 (1993).

Box counting:
(more latter)



Sierpiński triangle

18

Source: Wikipedia

D=1.585



Fractal objects: characterized by a “fractal” dimension 

that measures roughness.

Video: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180

Broccoli

D=2.66
Human lung

D=2.97

Coastline of 

Ireland

D=1.22

A lot of research is focused on detecting fractal behavior in 

observed data.

http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180


Application of fractal analysis

20

The fractal dimension of the blood vessels in the normal 

human retina is about 1.7 while it tends to increase with 

the level of diabetic retinopathy.

P. Amil et al., PLoS ONE 14, e0220132 (2019).



 Ilya Prigogine (Belgium, 

born in Moscow, Nobel Prize 

in Chemistry 1977).

 Studied thermodynamic 

systems far from equilibrium.

Spatio-temporal patterns: how “self-organization” emerges?

 Discovered that, in chemical systems, the interplay of 

(external) input of energy and dissipation can lead to 

“self-organized” patterns.



22Control parameter (mortality)



23

Model simulation showing the temporal transition from 

localized patterns to arcs and spirals.

Morocco

Phil. Trans. R. Soc. A 376 20180026 (2018)



Honey bees do a spire wave to 

scare away predators 

https://www.youtube.com/watc

h?v=Sp8tLPDMUyg

The study of spatio-temporal patterns has uncovered 

striking similarities in nature

24https://media.nature.com/original/nature-

assets/nature/journal/v555/n7698/extref/nature26001-sv6.mov

Rotating waves 

occur in the heart 

during ventricular 

fibrillation

Hurricane Maria 

(Wikipedia)



In the 80’s: can we observe chaos experimentally?



 Ott, Grebogi and Yorke (OGY) method (1990)

Unstable periodic orbits can be used for control: wisely 

chosen periodic kicks can maintain the system near the 

desired orbit.

 Pyragas method (1992)

Control by using a continuous self-controlling feedback

signal, whose intensity is practically zero when the system 

evolves close to the desired periodic orbit but increases 

when it drifts away.

Can we control a chaotic system?

E. Ott, C. Grebogi and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).

K. Pyragas, Physics Letters A 170, 421 (1992).



Experimental demonstration of control of optical chaos



Demonstration of delayed feedback control (Pyragas method)



The 1990s: synchronization of two chaotic systems

Unidirectional coupled 

Lorenz systems



In mid-1600s Christiaan Huygens (Dutch 

mathematician) noticed that two pendulum 

clocks mounted on a common board 

synchronized and swayed in opposite directions 

(in-phase also possible).

Actually, the first observation of synchronization was 

much earlier (mutual entrainment of two pendulum clocks)



Different types of synchronization

 Complete: y(t) = x(t) (identical systems) 

 Phase:  the phases of the oscillations are synchronized, but 

the amplitudes are not.

 Lag: y(t+) = x(t)

 Generalized:   y(t) = F(x(t-)) (F and  can depend on the

coupling strengths,  and )
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Unidirectional coupling: Bidirectional (mutual) coupling:

Another problem of time series analysis: 

How to detect synchronization? How to quantify it?



Experimental observation of synchronization of lasers



An example of phase synchronization: the 

abundances of the Lynx populations in six 

regions in Canada

33

B. Blasius et al, Nature 399, 354 (1999). 

The size of the 

populations oscillate 

regularly and periodically 

in phase, but with irregular 

and uncorrelated peaks.

Foodwebs (that represent the 

interactions of vegetation and 

populations of herbivores and 

predators) can display very 

complex oscillatory behaviors.



In the late 90s early 2000s: synchronization of a large 

number of coupled oscillators  

London Millennium Bridge Opening



Model of all-to-all coupled phase oscillators. 

K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      

With the order parameter:
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Kuramoto model

(Japanese physicist, 1975)

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)

All-to-all coupling



Synchronization transition as the 

coupling strength increases

Strogatz, Nature 2001

Strogatz and 

others, late 90’ 

Video: https://www.ted.com/talks/steven_strogatz_on_sync

https://www.ted.com/talks/steven_strogatz_on_sync


 Complicated systems (large sets of linear elements) are not 

complex.

 Complex systems: large number of elements, where the 

elements and/or their interactions are nonlinear.

 Main difference: the whole is not equal to the sum of the parts.

2000s to present: from chaotic systems to complex systems 

(a good meal is another example: it is much more than the sum of its ingredients)



Network science

S. Strogatz, Nature 2001

 Networks (or graphs) are used for mathematical modelling 

of complex systems.

 Complexity science: study of the emergent properties, not 

present in the individual elements.

 The challenge: to understand how 

the structure of the network and 

the dynamics of individual units 

determine the collective behavior.

 Applications

‒ Epidemics

‒ Rumor spreading

‒ Transport networks

‒ Financial crises

‒ Brain, physiology, etc.



 The problem was to devise a walk through the city that 

would cross each of those bridges once and only once. 

The start of Graph Theory: The Seven Bridges of Königsberg
(Prussia, now Russia) 

39

 By considering the number of odd/even links of each 

“node”, Leonhard Euler (Swiss mathematician) 

demonstrated in 1736 that is impossible. 

→ →

Source: Wikipedia



The SIR epidemic model (early 1900s)

In its simplest version the SIR model consists of three rate 

equations for:

 S(t): individuals not yet infected (susceptible). 

 I(t): infected individuals that are capable of spreading the 

disease to those susceptible. 

 R(t): individuals that have been infected and can’t be re-

infected nor transmit the infection to others (either due to 

immunization or due to death).

 N = S(t) + I(t) + R(t) constant.

Time

 The model predicts the 

existence of a threshold that 

separates grow from extinction.

Source: Wikipedia



 Immunity that lasts only a certain time interval (after which 

individuals are back in the susceptible group).

 Additional populations

- E: exposed people that could have been infected;

- C: susceptible people that are protected in a 

confinement compartment;

- Q: infected people in quarantine;

- B, D: births and deaths

- Etc.

 Many extensions of the model to take into account

diffusion in “networks”.

Many extensions of the SIR model

41

https://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/una-crisis-csmica-

798/cmo-modelizar-una-pandemia-

18561?utm_source=Facebook&utm_medium=Social&utm_campaign=fb+web

Pastor-Satorras et al, Rev. Mod. Phys. 87, 925 (2015)



A few examples of epidemic models

42

SIS: No long lasting immunity 

(example: cold).

MSIR: Babies have some initial immunity.

Some people might not recover and can be back to infectious or 

carry disease with symptoms (ex: tuberculosis).

For some infections there is an incubation period during which 

individuals have been infected but are not yet infectious.

Source: Wikipedia
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Example of transmission network of Covid-19

Source: Alison Hill, The math behind epidemics, 

https://physicstoday.scitation.org/doi/10.1063/PT.3.4614

Transmission network 

seeded by an 

unknown infected 

individual (blue) who 

attended a training 

course with other 

fitness instructors 

(purple). 

The fitness instructors 

spread the infection to 

students in their 

classes (red), to 

family (yellow), and to 

coworkers (green).



Different synchronization regimes can occur, depending on: 

 The coupling function (attractive / repulsive).

 The network topology (homogeneous / heterogeneous).

 The number of units (“crowd synchrony”)

 The properties of the individual units, in relation to the network:

• relation between the # of links an element has and the # of links the 

neighbors have.

• relation between the # of links that an element has and its properties.

 The synchronization transition can be gradual or explosive.

 Synchronized and unsynchronized oscillations can co-exist (“chimera 

states”).

 Bi-stability: the network can synchronize, depending on the initial conditions.

Revisiting the Kuramoto model

44
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Star (K+1 nodes)

Example: “Explosive” synchronization
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Random Scale free

1=K

i=1 i1

J. Zamora et al., Phys. Rev. Lett. 105, 264101 (2010). 

J. Gomez-Gardeñes et al., Phys. Rev. Lett. 106, 128701 (2011). 

I. Leyva et al, Phys. Rev. Lett. 108, 168702 (2012).

Fast oscillators have 

many links; slow 

oscillators only few links

Explosive sync. has been found in coupled 

lasers and in electronic circuits.



“Crowd synchrony”: the millennium footbridge starts to sway 

when packed with pedestrians that synchronize their steps.

46

Model the bridge as a weakly damped 

and driven harmonic oscillator:

The bridge’s movement alters each 

pedestrian’s gait:

S. Strogatz, Nature 438, 43 (2005).



Interactions between networks: interdependent networks

47

Source: Wikipedia

Time series analysis problems: how to predict a critical (or extreme) event in 

one network? (a failure of a link or a node) How will it affect other networks?



Multilayer networks

48

Kivela et al, J. Complex Netw. 2, 203 (2014).

Facebook

Twitter

Linkedin



Summary

 Dynamical systems allow to 

‒ understand low-dimensional systems, 

‒ uncover “order within chaos”, 

‒ uncover universal features

‒ control chaotic behavior.

 Complexity “network” science: understanding emerging 

phenomena in large sets of interacting units.

 Dynamical systems and complexity science are 

interdisciplinary research fields with many applications.



Exercise 1: analyze the logistic map

50

Parameter r

x(i)

)](1)[( )1( ixixrix 

 For r=3.5, 

calculate the 10 

values, x(i) with 

i=1…10, that 

follow x(0)=0.2. 

Plot x(i) vs. i

 Plot the 

bifurcation 

diagram for r in 

the interval 

(3.5,4)

 Estimate 

=(r2-r1)/(r3-r2)
r2-r1 r3-r2



 Introduction to dynamical systems

 Introduction to flows on the line 

 Solving equations with computer

 Fixed points and linear stability

Outline



 Continuous time: differential equations

• Ordinary differential equations (ODEs). 

Example: damped oscillator

• Partial differential equations (PDEs). 

Example: heat equation

 Discrete time: difference equations or “iterated 

maps”. Example: the logistic map

Types of dynamical systems

x(i+1)=r x(i)[1-x(i)]



ODEs can be written as first-order differential equations 

 First example: harmonic oscillator



 Second example: pendulum







Trajectory in the phase space

 Given the initial conditions, x1(0) and x2(0), 

we predict the evolution of the system by 

solving the equations: x1(t) and x2(t).

 x1(t) and x2(t) are solutions of the equations.

 The evolution of 

the system can be 

represented as a 

trajectory in the 

phase space.

 two-dimensional 

(2D) dynamical 

system. Key argument (Poincare): find out 

how the trajectories look like, without 

solving the equations explicitly.



 f(x) linear: in the function f, x appears to first order only 

(no x2, x1x2, sin(x) etc.). Then, the behavior can be 

understood from the sum of its parts.

 f(x) nonlinear: superposition principle fails!

Classification of dynamical systems 

described by ODEs (I/II) 

 Example of linear system: harmonic oscillator

In the right-hand-side x1

and x2 appear to first 

power (no products etc.)



 Example of nonlinear system: pendulum





Classification of dynamical systems 

described by ODEs (II/II) 

 =0: deterministic.

 0: stochastic (real life) –simplest case: additive 

dynamical noise.
 x: vector with few variables (n<4): low dimensional.

 x: vector with many variables: high dimensional.

 f  does not depend on time: autonomous system.

 f  depends on time: non-autonomous system.



 Three-dimensional system: to predict the evolution 

we need to know the present state (t, x, dx/dt).

Example of non-autonomous 

system: a forced oscillator

 Can also be written as first-order ODE





 A one-dimensional autonomous dynamical 

system described by a first-order ordinary 

differential equation

 x 

 f does not depend on time

So…what is a “flow on the line”?



Harmonic

oscillator

Pendulum

• Heat

equation,

• Maxwell 

equations

• Schrodinger

equation

RC circuit

Logistic

population

grow

• Navier-

Stokes 

(turbulence)

N=1 N=2 N=3 N>>1 N= (PDEs

DDEs)

Linear

Nonlinear
• Forced

oscillator

• Lorentz

model

• Kuramoto 

phase

oscillators

Summarizing

Number of variables

“flow on the line”
PDEs=partial differential eqs.

DDEs=delay differential eqs.



 Introduction to dynamical systems

 Introduction to flows on the line 

 Solving equations with computer

 Fixed points and linear stability

Outline



Numerical integration of an ordinary differential equation

)(xfx  )(xf
dt

dx
 dtxfdx )(

))(( 01001 ttxfxx 

))(()( 010011 ttxfxxtx 

))(()( 121122 ttxfxxtx 

)()( 0112 ttttdt 
dt dt

dtxfxx nnn )(1 

dttt  01

dttdttt 2012 

ndtttn  0

dtxfxx )( 001  dtxfxx )( 112 

Euler first order (dx, dt small):

. . .

. . .

0101   ; ttdtxxdx 



 Integrate analytically with the initial condition x(0)=1. 

Which is the value of x(1)?

 Use Euler formula with dt=1 to estimate x(1).

 Repeat for dt=0.1, 0.01, 0.001, 0.0001, complete the table, 

and plot (in log-log scale) the error vs. dt

Exercise 2: test the accuracy of the Euler formula

dtxfxx nnn )(1 

xx 

ndtttn  0



Instead of using the derivative only at the 

left end of the time interval between tn
and tn+1, we use an “average” derivative:

Improved (second order) Euler method

)(xfx  dtxfxx nnn )(1 

This is the basis of the “Runge Kutta” method.



“Runge Kutta” method

Source: Wikipedia



 Introduction to dynamical systems

 Introduction to flows on the line 

 Solving equations with computer

 Fixed points and linear stability

Outline



Example

 Starting from x0=/4, what is the long-term behavior (what 

happens when t?)

 And for any arbitrary condition xo?

 We look at the “phase portrait”: geometrically, picture of all 

possible trajectories (without solving the ODE analytically).

 Imagine: x is the position of an imaginary particle restricted to 

move in the line, and dx/dt is its velocity.

Analytical Solution:



Imaginary particle moving in the horizontal axis

x0 =/4

x0 arbitrary

Flow to the right when

Flow to the left when

“Fixed points”

Two types of FPs: stable & unstable



Fixed points

Fixed points = equilibrium solutions

 Stable (attractor or sink): nearby 

trajectories are attracted

 and -

 Unstable: nearby trajectories are 

repelled

0 and  2



 Find the fixed points and classify their stability

Example 1



Example 2



 N(t): size of the population of the species at time t

Example 3: population model for single species (e.g. bacteria)

 Simplest model (Thomas Malthus 1798): no migration, 

births and deaths are proportional to the size of the 

population

Exponential grow!



More realistic model: the logistic equation

 If N>K the population decreases

 If N<K the population increases

 To account for limited food (Verhulst 1838):

 The carrying capacity of a biological species in an 

environment is the maximum population size of the species 

that the environment can sustain indefinitely, given the food, 

habitat, water, etc.

 K = “carrying capacity”



How does a population approaches the carrying capacity?

 Good model only for simple

organisms that live in constant 

environments.

 Exponential or sigmoid approach.



How is the evolution of the human population?

Source: wikipedia

Hyperbolic grow !

Technological advance

→ increase in the carrying 

capacity of land for people 

→ demographic growth 

→ more people 

→ more potential inventors 

→ acceleration of 

technological advance

→ accelerating growth of 

the carrying capacity…



the perturbation  grows exponentially 

Linearization near a fixed point

the perturbation  decays exponentially 

Second-order terms can not be neglected and a 

nonlinear stability analysis is needed.

Bifurcation (more latter)

Characteristic time-scale

The slope f’(x*) at the fixed point determines the stability

 = tiny perturbation

Taylor expansion



 Linear stability of the fixed points of 

Example 1

 Stable:  and -

 Unstable: 0,  2



 Logistic equation

Example 2

The two fixed points have 

the same characteristic 

time-scale:





Good agreement with controlled population experiments



Lack of oscillations

General observation: only 

sigmoidal or exponential 

behavior, the approach is 

monotonic, no oscillations

Strong damping

(over damped limit)

Analogy:

To observe oscillations we need 

to keep the second derivative 
(weak damping).



Stability of the fixed point x* when f ’(x*)=0?

In all these systems:

When f’(x*) = 0 

nothing can be 

concluded 

from the 

linearization 

but these plots 

allow to see 

what goes on.



Potentials

V(t) decreases along the trajectory.

 Example:

Two stable fixed points: x=1; x=-1

(Bistability). 



 Flows on the line = first-order ODE: dx/dt = f(x)

 Fixed point solutions: f(x*) =0

• stable if f´(x*) <0 

• unstable if f´(x*) >0

• neutral (bifurcation point) if f´(x*) = 0

 There are no transient oscillations and there are no 

periodic solutions; the approach to a fixed point is 

monotonic (sigmoidal or exponential).

Summary



a) Calculate the fixed points and their linear  stability.

b) Demonstrate that when a=b the analytical solution of                              is

where c is a constant that depends on the initial condition.

c) Integrate the equation numerically and compare the numerical and analytical 

solutions.
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 Is a mathematical model for a time 

series: a sigmoid function that 

describes a process whose growth 

is slowest at the start (t=-) and at 

the end of the process.

 It describes:

‒ How tumors grow.

‒ The sales of mobile phones (costs are 

initially high, then there is a period of 

rapid growth, followed by saturation).

The solution of the previous 

exercise is a particular case of 

the Gompertz function:

ctbeaetx )(

Source: Wikipedia
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