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Bulk detection of time-dependent topological transitions in quenched chiral models
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The topology of one-dimensional chiral systems is captured by the winding number of the Hamiltonian
eigenstates. Here we show that this invariant can be read out by measuring the mean chiral displacement of
a single-particle wave function that is connected to a fully localized one via a unitary and translation-invariant
map. Remarkably, this implies that the mean chiral displacement can detect the winding number even when
the underlying Hamiltonian is quenched between different topological phases. We confirm experimentally these
results in a quantum walk of structured light.
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I. INTRODUCTION

Topological systems are characterized by quantized and
global features, known as topological invariants, which are
robust to smooth perturbations [1]. Nonzero values of these
invariants underlie a variety of remarkable physical phenom-
ena [2], such as the quantization of transport properties in
quantum Hall systems [3–5] or the appearance of robust edge
states [6–8]. Promising applications in metrology, spintronics,
and quantum computation [9–13] fueled intense research in
materials exhibiting topological order [14], leading eventually
to the development of artificial topological systems in a vari-
ety of physical architectures (e.g., cold atom [15], photonic
[16,17], mechanical [18], and polariton [19] systems).

Topological phases can be classified and related to a spe-
cific topological invariant in terms of the system symmetries
and dimensionality [20,21]. The simulation and measurement
of topological insulators in different quantum simulators is a
very active field and different techniques allow one to char-
acterize the topology, relying on the detection of edge states
[22–25], center-of-mass anomalous displacements [26,27],
vortex dynamics in reciprocal space [28], interferometry
[29–31], surface scattering [32], time-of-flight measurements
[33], and the mean chiral displacement [34,35].

The investigation of these exotic systems also benefited
from the simulation of topological phases in simple and con-
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trollable quantum evolutions known as quantum walks (QWs)
[36]. Interestingly, quantum walks can be engineered so as to
host all topological phases of noninteracting systems in one
dimension (1D) and two dimensions (2D) [37], providing also
one of the simplest examples of periodically driven (Floquet)
systems [38–40]. Their study led to a number of theoretical
and experimental findings in the context of static and Floquet
topological physics, such as the discovery of Floquet anoma-
lous regime [22,25,34,41].

In this article, we focus on 1D systems with chiral sym-
metry, whose topological invariant is the winding number
[42,43]. Some of us showed in Refs. [34,35] that such invari-
ant can be accurately detected by measuring the mean chiral
displacement (MCD) of a single particle, provided that at a
given time this is fully localized on a single lattice site. This
method does not require any band filling or the application
of an external force, and as such it is extremely versatile
and has already found application in several experimental
scenarios [44–50]. Here we show that this scheme works
also for a much larger class of input states, which may be
delocalized over many lattice sites. We indeed demonstrate
that the input state can be any state that can be mapped to a
localized wave function via a unitary and translation-invariant
operator. Interestingly, such operator can also correspond to
the evolution operator associated with an Hamiltonian dif-
ferent from the instantaneous one. As a consequence, we
show that in a sudden dynamical transition between two
chiral topological phases, hereafter referred to as quench,
the mean chiral displacement signals the phase transition
and, in the long time limit, eventually tracks the value of
the winding number of the postquench Hamiltonian. After
deriving these results, which apply to generic 1D chiral
systems, we present an experiment validating our theory in
a photonic quantum walk that implements a Floquet chiral
model.
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II. ONE-DIMENSIONAL CHIRAL SYSTEMS

We consider a system possessing an external discrete de-
gree of freedom, for example, its position along a 1D lattice,
and an internal degree of freedom, representing the internal
state within a given unit cell. These are associated respectively
with Hilbert spaces He, spanned by the states |m〉 (m ∈ Z),
and Hi, spanned by D-dimensional vectors, where D is the
internal dimension. We assume translational invariance, so
that the Hamiltonian can be written as H = ∫ dq

2π
|q〉〈q|H(q),

where q is the quasimomentum defined in the Brillouin zone
(BZ) [−π, π [. The Hamiltonian exhibits chiral symmetry if
there exists an operator � which is local, squares to unity,
and anticommutes with H (i.e., it acts only on Hi, and it
satisfies �2 = 1 and �H = −H�). A prototypical example of
a chiral Hamiltonian is the Su-Schrieffer-Heeger model [51],
describing the electron effective dynamics in a polyacetylene
chain.

One-dimensional chiral systems can be characterized by a
topological invariant, called the winding number, that in the
reciprocal space reads

ν = Tr[�H−1∂qH] (1)

and may take arbitrary (positive or negative) integer values.
Here, the trace runs over both the 1D external degree of
freedom (BZ) and the D-dimensional internal space.

III. MEAN CHIRAL DISPLACEMENT AFTER A QUENCH

As first demonstrated in Refs. [34,35], the winding of an
arbitrary noninteracting 1D chiral model may be conveniently
captured by a measurement of the mean chiral displacement,

C(t ) =
∑

j

〈ψ j (t )|�X |ψ j (t )〉, (2)

where X is the position operator (acting as X |m〉 = m|m〉),
and {|ψ j (t )〉} ( j = 1, . . . ,D) is a set of states such that
|ψ j (t = 0)〉 = |0〉 ⊗ |φ j〉, i.e., which at time t = 0 are com-
pletely localized on the central unit cell of the lattice, and
whose internal states φ j form a complete basis of the unit cell
[52]. In the long time limit, one finds C(t → ∞) → ν.

Here we generalize these findings by showing that the
final result is independent from the early dynamics, provided
that this is translation invariant. In particular, this covers the
possibility of studying sudden quenches during the evolution.
To be specific, let us consider that between time 0 and time
tc > 0 the evolution is governed by a translation-invariant
Hamiltonian H1. We stress here that H1 does not need to be
chiral. At time tc, a sudden quench is applied to the system,
and at later times the evolution is governed by the chiral
Hamiltonian H2. An initially localized state |ψ j (t = 0)〉 =
|0〉 ⊗ |φ j〉 will evolve as

|ψ j (t )〉 = V2V1|ψ j (t = 0)〉 =
∫

dq

2π
V2(q)V1(q)|φ j〉, (3)

where we have introduced the evolution operators
V2 = ∫ dq

2π
|q〉〈q|V2(q) = e−i(t−tc )θ (t−tc )H2 , and V1 = ∫ dq

2π
|q〉

〈q|V1(q) = e−itθ (t )θ (tc−t )H1 , with θ (t ) the Heaviside function
and h̄ = 1. Since the position operator X acts as i∂q in Fourier

space, the MCD at time t is

C =
∑

j

∫
dq

2π
〈φ j |V†

1V
†
2 � i∂q(V2V1)|φ j〉. (4)

To proceed, we use ∂q(V2V1) = (∂qV2)V1 + V2(∂qV1) and
V †

2 � = �V2 (which holds for chiral Hamiltonians). Further-
more, since

∑
j is effectively a trace over the internal space,

we use the cyclic property of the trace and the fact that
V1V†

1 = 1, and immediately obtain

C =
∑

j

∫
dq

2π
〈φ j |V†

2 � (i∂qV2) + V†
1 � V2

2 (i∂qV1)|φ j〉. (5)

The first operator V†
2 � (i∂qV2) is identical to the one dis-

cussed in Refs. [34,35], and in those works it was shown
that it yields a contribution which converges asymptotically
to the winding number. To proceed further, as we are mainly
interested in the behavior of the MCD at long times, we
will restrict ourselves to t > tc, such that only V2 is time
dependent. We notice that V2

2 = e−2i(t−tc )θ (t−tc )H2(q), where
H2(q) is the quasimomentum space representation of H2. The
second operator in the integrand of Eq. (5) therefore generates
contributions of the form

∫
dq f (q)ei t g(q), with f and g being

smooth functions of q. These are rapidly oscillating terms
with amplitude ∼1/

√
t and zero mean, as guaranteed by the

stationary phase formula [53]. In conclusion, we obtain

C t
tc= ν + O

(
1√
t

)
, (6)

where ν is the winding number of the chiral Hamiltonian
H2 generating the dynamics after the quench. Equation (6) is
the main finding of this paper. Although deceivingly simple,
this has a series of remarkable consequences. A first one is
the convergence of the MCD to the winding number of the
Hamiltonian of an initially localized state on any cell of the
lattice (as may be seen by taking V1 to be an instantaneous
translation). A second one is the possibility of using the MCD
as a topological marker even in the presence of multiple
quenches during the evolution.

Let us now numerically illustrate our finding by two con-
crete examples of quenches, based on tight-binding models
introduced in Ref. [35]. First, we consider the tight-binding
model SSH4 sketched in Fig. 1(a), which has internal dimen-
sion D = 4. For times 0 < t < tc, we include in the Hamilto-
nian H1 a staggering term, which explicitly breaks the chiral
symmetry. The MCD signal therefore rapidly oscillates and
settles around a nonquantized value. At time tc, we remove
the chiral-breaking term, and soon after the MCD signal is
observed to converge to an integer value, which corresponds
to the winding number of the model. In a second example, we
analyze the SSH-LR sketched in Fig. 1(b). This is a variant
of the SSH model which includes longer ranged tunnelings,
and admits values of the winding number larger than 1. Here
we quench the Hamiltonian twice, and after each quench the
MCD is shown to converge smoothly to the expected winding
number within that phase.

Closely following the demonstration in Ref. [35] it can
be further shown that, when D = 2, chiral symmetry ensures
that the MCD is equal to twice the expectation value of the
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FIG. 1. MCD dynamics on simple models. (a) SSH4 model with
chiral symmetry broken before tc = 20/a, and restored after that
[tunnelings: a = b = c = d

2 , staggering: β = a θ (tc − t )]. (b) SSH-
LR model quenched from ν = 0 to 1 to 2 [tunnelings: a = b, c = 0,
and d/a is quenched from 0.5, to −0.5, to 1.5 at times tc,1 = 20/a
and tc,2 = 60/a]. In both panels, the thick line is a moving average of
the underlying data over a window of duration 10/a, which removes
the fast oscillations.

operator �X over a single arbitrary state localized within a
single unit cell at t = 0. Similarly for D > 2 the trace over
the internal space may be replaced by twice the sum over the
D/2 states from a single sublattice, provided the operator V1

does not mix sublattices.

IV. QUENCHES IN A PHOTONIC QUANTUM WALK

We verify our theoretical findings in a 1D chiral quan-
tum walk, realized by engineering light propagation through
a sequence of suitably patterned birefringent optical ele-
ments [27,54]. Specifically, as described in greater details
in Ref. [27], we encode position states |m〉 (of the particle
undergoing the QW) into Gaussian optical modes carrying a
quantized amount of transverse wave vector m
k⊥. We keep
the lattice spacing 
k⊥ � kz, where kz is the longitudinal
component of the wave vector, so that these modes remain
confined along the z axis. Coin states (that is the internal
degree of freedom) instead are mapped into left and right
circular polarizations, referred to as {|L〉, |R〉}. At each time
step t [55], the system evolution is determined by a combina-
tion of two transformations: a unitary operator W performing
a rotation of the polarization state only and a translation
operator T [54]. We implement W by using a quarter wave
plate (QWP) oriented with its fast axis parallel to the optical
table. In the basis of circular polarizations, we have

W = 1√
2

(
1 i
i 1

)
. (7)

The translation operator T is implemented by liquid-crystal
polarization gratings, referred to as g-plates [27], whose action
is described by the operator

T (δ) ≡
(

cos(δ/2) i sin(δ/2)t̂
i sin(δ/2)t̂† cos(δ/2)

)
, (8)

where t̂/t̂† are, respectively, the (polarization-independent)
left and right translation operators, acting as t̂ |m〉 = |m − 1〉

FIG. 2. Quantum walk winding numbers: (a) Dependence of the
winding number on the parameter δ for protocols U and Ũ , as
indicated in the legend. [(b), (c)] On the Poincaré sphere, we plot
eigenstates n(q) of the evolution operator U , in two cases δ = π

and δ = π/4, which have windings 1 and 0, respectively. These
states are positioned on a single plane, perpendicular to the vector
v� (� = v� · σ).

and t̂†|m〉 = |m + 1〉, and δ is the plate optical retardation,
which can be tuned by a voltage applied to the cell [56].

A quantum walk is defined in terms of the operator U
describing the evolution of a single time step. In our exper-
iments, we consider the two protocols U (δ) = T (δ)W and
Ũ (δ) = √

T (δ)W
√

T (δ). Both feature chiral symmetry, with
their winding number ν depending on δ as shown in the phase
diagrams in Fig. 2(a) [34]. In Figs. 2(b) and 2(c), we plot the
eigenstates n(q) of protocol U , in two illustrative cases with
δ = π and δ = π/4. Vectors ±v� individuate the eigenstates
of the chiral symmetry operator � that we refer to as |+〉 and
|−〉, respectively.

These QWs are simulated in the setup sketched in Fig. 3(a).
A laser-light beam (wavelength λ = 632 nm) with beam waist
ω0 � 5 mm propagates through a sequence of QWPs and
g-plates, arranged so as to realize either protocol U or Ũ .

FIG. 3. Experimental setup and chiral probability distributions.
(a) In our experiment, the input beam is prepared with a polarizer
(P), and then it performs a QW generated by either U or Ũ (see main
text). Finally, the chiral polarization components are analyzed with
a QWP (W) and a polarizer, and the light intensity is recorded on
a camera (C) placed in the focal plane of a lens (L). (b) Represen-
tative intensity distribution recorded by the camera. (c) Probability
distributions P−(m) for a QW with a quench (at the fifth step; see the
red dashed line) from the chiral protocol U (π ) to the chiral protocol
U (2π/5). Experimental results (left) are compared to numerical
simulations (right).
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Before entering the QW setup, the optical field corresponds to
the spatial mode |m = 0〉, thus realizing the localized initial
conditions given in the definition of the MCD [see Eq. (2)].
A polarizer guarantees that its polarization is horizontal. At
the exit of the walk, a QWP and a polarizer, both mounted on
rotating mounts, allow us to analyze individual polarization
components associated with |+〉 and |−〉. After the polariza-
tion analysis stage, we place a lens and a camera to record
light intensity in the focal plane. Here, the field intensity
distribution features spatially separated Gaussian spots, each
corresponding to a mode |m〉 [see Fig. 3(b)]. The overlap
between the modes in the lens focal plane can be adjusted
by tuning the spatial period of the gratings �. Choosing
� � ω0 = 5 mm is sufficient to make this overlap negligible
[27]. Recorded intensity patterns are processed to extract
the particle probability distributions P±(m) associated with
chiral polarization states |±〉, respectively [see Fig. 3(c)]. We
measure these distributions at each time step t , we compute
the mean value of their difference, and we obtain the MCD
defined in Eq. (2):

C(t ) =
∑

m

2 m[P+(m, t ) − P−(m, t )]. (9)

As discussed above, in our QW (having a unit cell with D =
2), the sum in Eq. (2) can be replaced by a single measure-
ment, considering an arbitrary input state localized on a single
unit cell at t = 0. In our experiments, the polarization state of
the light beam at the QW entrance is (|L〉 + |R〉)/

√
2, that is

a horizontal polarization. The first experimental validation of
Eq. (6) is obtained by using the first five steps of our platform
to implement the nonchiral protocol T (3π/4)S, where
S = σx is the operator associated with a half wave plate. The
remaining part of the setup is arranged so as to perform eight
steps of the QW U (π ). The results are shown in Fig. 4(a). We
observe that after few time steps the MCD oscillates around
ν, with an amplitude getting smaller as t increases.

Finally, we perform experiments to study quenches be-
tween different topological phases of both U and Ũ protocols.
In Figs. 4(b)–4(d), we show the evolution of the MCD in
QWs where at the sixth step the value of δ has changed.
In doing so, the system evolves under evolution operators
associated with different winding numbers (see the figure
caption for more details). All the experimental data correctly
reproduce the oscillating behavior featured by theoretical sim-
ulations, showing that in a quench architecture the detection
of the MCD allows one to monitor the winding number,
faithfully signaling dynamical phase transitions. Error bars are
the mean standard error (MSE) obtained from a set of four
repeated measurements, each experiment being performed by
realigning all plates in the QW setup. A few experimental
points are more than three standard deviations away from
values simulated numerically. This is ascribed to the presence
of imperfections, such as defects in our plates, that induce
deviations which are systematic and hence not taken into ac-
count in our experimental estimate of statistical uncertainties.
The number of QW steps performed in this experiment was
mainly limited by the number of liquid-crystal plates at our
disposal, yet it was sufficient to provide a clean experimental
demonstration of our main finding, contained in Eq. (6). In
principle, one could reach a larger number of steps, provided

FIG. 4. MCD in quenched QWs. MCD in quantum walks gov-
erned by protocol V1 from steps 1 to 5 and by protocol V2 from steps
6 to 13. The winding number ν of each protocol is shown with red
lines. (a) V1 = T (3π/4)S is nonchiral (therefore its winding is not
defined), V2 = U (π ). (b) V1 = U (π ), V2 = U (2π/5). (c) To study
quenches between nontrivial phases, we chose here V1 = Ũ (7π/4)
and V2 = Ũ (π ), having winding numbers 2 and 1, respectively.
(d) Initial and final evolutions are swapped with respect to panel
(c). In all plots, experimental data (orange dots) are compared with
theoretical simulations (blue squares). In panels (c) and (d), an
extra plate implementing the operator T [(δ2 − δ1)/2] was inserted
between the fifth and sixth steps.

that the condition m
k⊥ � kz holds true for each mode |m〉.
In our case, practical issues were the limited transmittance
of the liquid-crystal plates, which can be improved with
dedicated antireflection coatings, and the additional relative
phase shifts accumulated by different modes during free-
space propagation. These could be eliminated by introducing
suitable imaging systems between consecutive steps. Further
details can be found in Ref. [27].

V. CONCLUSIONS AND OUTLOOKS

We have shown that the mean chiral displacement is a
powerful tool to probe the topology of chiral 1D systems
whose initial state is connected to a localized one via a unitary
and translation-invariant transformation. As such, the MCD
can be used as a topological marker in experiments where
the underlying Hamiltonian is suddenly quenched between
different topological phases, like those studying topological
systems out of equilibrium and dynamical topological phase
transitions [57–59]. Remarkably, we showed that the MCD al-
ways performs damped oscillations around the winding num-
ber of the instantaneous Hamiltonian. In the future, it would
be interesting to apply similar ideas to systems with higher di-
mensional internal states and to nonunitary processes [60–62].
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