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Abstract—Phase unwrapping is an integral part of multiple
algorithms with diverse applications. Detailed phase unwrapping
is also necessary for achieving high accuracy metric sensing
using laser feedback based self-mixing interferometry (SMI).
Among SMI specific phase unwrapping approaches, a technique
called Improved Phase Unwrapping Method (IPUM) provides
the highest accuracy. However, due to its complex, sequential,
and compute-intensive nature, this method requires a high
performance computing architecture, capable of scalable parallel
processing so that such a high accuracy algorithm can be
used for high bandwidth sensing applications. In this work, the
existing sequential IPUM C program is parallelized by using
hybrid OpenMP/MPI (Open Multi-Processing/Message Passing
Interface) parallel programming models and tested on Barcelona
Supercomputing Center Nord-III Supercomputer. The compu-
tational performance of the proposed parallel-hybrid IPUM
algorithm is compared with existing IPUM sequential code
by executing multi-core and uni-core processor architecture
respectively. While comparing the performance of sequential
IPUM with the parallel-hybrid IPUM algorithm on 16 nodes
of Nord-III supercomputer, the results show that the parallel-
hybrid algorithm gets 345.9x times performance improvement
as compared to IPUM’s standard, sequential implementation on
a single node system. The results show that the parallel-hybrid
version of IPUM gives a scalable performance for different target
velocities and a different number of processing cores.

I. INTRODUCTION

Phase unwrapping is an integral part of multiple algorithms
with applications such as fingerprint re-construction [1], syn-
thetic aperture radar (SAR) interferograms [2], magnetic field
mapping [3], 3D shape reconstruction [4], digital photo-
elasticity [5], imaging [6] etc. Accurate phase unwrapping is
also a fundamental requirement for high accuracy metric sens-
ing using self-mixing interferometry (SMI) or optical feedback
interferometry [7]. As opposed to conventional interferometry
techniques requiring high optical part count (e.g. mirrors,
beam-splitters, and external photo-detectors), SMI is attractive
for real-world applications due to self-aligned, low-cost and
compact nature of the SMI sensor (see Figure 1). SMI has been
thus demonstrated for vibration [8], [9], displacement [10],

[11], gas spectroscopy [12], embedded [13] and biomedical
applications [14] etc.

SMI based retrieval of remote target’s displacement, how-
ever, is not simple due to rich diversity in the shape, amplitude,
and hysteresis of SMI signals under variable optical feedback
coupling (see Figure 2). In this regard, various SMI phase
unwrapping methods have been proposed [15, 10, 16, 17, 18,
19, 20, 21, 22] with displacement retrieval accuracy ranging
from λ0/8 to λ0/60, where λ0 is laser’s wavelength. Among
these methods, the Improved Phase Unwrapping Method
(IPUM) [22] delivers the best performance.

However, this high accuracy algorithm is still not being used
for real-world, high bandwidth applications (such as mono-
lithic multi-channel laser array imaging [23] and measurement
of ultrasonic vibrations [24], etc.) due to its complex, compute-
intensive, sequential and time-consuming blocks involving
signal segmentation, max./min. searches, phase reconstruc-
tion, and iterative joint-estimation of key optical feedback
based parameters [22]. This then requires that a sequential
and compute-intensive algorithm such as IPUM needs to
be parallelized and then implemented on High Performance
Computing (HPC) platforms so that scalable performance and
high accuracy sensing can be achieved for real-world, high
bandwidth applications.

In this work, we present Open Multi-Processing (OpenMP)
and Message Passing Interface (MPI) based parallelized paral-
lel version of IPUM called parallel-hybrid IPUM and executed
on Barcelona Supercomputing Center Nord-III supercomputer.
The methodology of parallel-hybrid IPUM algorithm uses
earlier published sequential IPUM C program [22], find control
and computation by using Control Data Flow Graph (CDFG)
model, based on the CDFG distribute the algorithm into
multiple tasks, schedule the tasks on distributed processing
system using MPI programming environment and execute each
task on a shared memory multi-core processor system using
OpenMP. Performance, scalability, and portability have been
considered while programming the parallel-hybrid implemen-
tation of the IPUM algorithm. The results show that parallel
parallel-hybrid programming gives a scalable performance.
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The parallel-hybrid implementation of IPUM on distributed
systems shows 345.9x times performance improvement. The
results show that the parallel-hybrid IPUM algorithm gives
a scalable performance for different target velocities and the
different number of distributed nodes.

II. RELATED WORK

An SMI based real-time vibrometer was developed by Mag-
nani et al. [17] which was based on a digital signal processor
(DSP) card (F28335 by Texas Instruments) performing signal
acquisition at 1 M samples/s. The implemented algorithm then
estimated the optical feedback coupling condition and carried
out appropriate optical feedback regime specific SMI signal
elaboration.

Using SMI for vibrometry application, Melchionni et al.
[25] proposed an FPGA-based prototype. For this purpose,
a detailed analysis of the feedback loop was carried out to
achieve better performance under unstable optical feedback
conditions.

Zabit et al. [26] proposed a real-time SMI displacement
sensor for parasitic-motion-compensated displacement sensing
that is capable of retrieving correct remote target’s displace-
ment when in the presence of corruptive local motion. This
was achieved by coupling a solid-state accelerometer with the
SMI. Data-fusion between accelerometer and SMI sensor was
achieved in real-time by using a micro-controller by Analog
Devices called ADuC7020 and a DSP by Microchip called
dsPIC33FJ128GP.

Using SMI for flow measurement, Norgia et al. [27] demon-
strated a laser diode-based flow sensor, based on Doppler-shift
caused by fluid-flow. The prototype of the SMI based flow
sensor was based on a DSP model TMS320F28044 with a
sampling frequency of 6 MHz.

Cavedo et al. [28] developed an SMI based distance sensor
for the characterization of steel pipes. A 32-bit ARM Cortex-
M4 core operating at 72 MHz along with Micro-controller
STM32F303 was used for low-cost and fast system design.

Likewise, an FPGA-based real-time optical SM interfer-
ometer for speed and direction measurements was proposed
by Magnani et al. [29]. Altera DE0-nano FPGA board was
utilized for system development.

Based on four laser interferometers in a specific arrange-
ment, Ducourtieux et al. [30] developed a metrological atomic
force microscope for calibrations and dimensional measure-
ments. An FPGA-based controller along with an embedded
PXI controller was used to accomplish real-time control of
XYZ positions.

A high speed, real-time, laser displacement sensor was
developed by Ji et al. [31] by using a charge-coupled device. It
used a high-speed analog to digital converter with a conversion
rate up to 40 MHz, along with first-in-first-out (FIFO) and
digital signal processor. The intensity of light was controlled
by an adaptive technique to make the system suitable for
various specific target objects.

Lastly, using heterodyne interferometry, Wang [32] de-
signed an FPGA based prototype of high speed, 4-channel

phase-meter, capable of performing commercial phase mea-
surements. The system was designed and tested on the Altera
DE2 FPGA development board.

III. SMI AND IMPROVED PHASED UNWRAPPING METHOD

As already mentioned, Improved Phased Unwrapping
Method (IPUM) [22] is an advanced, high-accurate algorithm
capable of retrieving remote target displacement information
by processing the SM interferometric signal acquired through
the SM sensor of a remote target. This section is further cat-
egorized into two subsections the Self-Mixing Fundamentals
and the Working Principle of IPUM.

A. Self-Mixing Fundamentals

Self-Mixing (SM) laser sensor works on the principle of
optical feedback interferometry. The laser beam is generated
in the optical cavity and a portion of the laser light is
reflected back from the target surface and re-enters the active
laser package affecting the transmitted light by mixing with
the generated light. This Self-Mixing changes spectral and
optical laser properties, which can be detected at built-in
photodiode to capture the corresponding signal, known as the
SM signal [7]. This SMI signal can then be processed for
remote sensing purposes, as elaborated below. The deviations
in the optical output power (OOP) of the laser P(t) due to
optical feedback can be represented as:

P(t) = P0[1+m.cos(φF(t))] (1)

P0 is the transmitted power under no feedback condition,
and m represents the modulation index. φF(t) represents the
output phase of laser under feedback, given by Equation 2:

φF(t) = 2π
D(t)

λF(t)/2
(2)

Where D(t) represents the moving target displacement. The
emitted wavelength under feedback λF(t) is shown by the
equation known as excess phase equation 3:

φ0(t) = φF(t)+C sin[φF(t)+arctan(α)] (3)

α is the line-width enhancement factor and φ0(t) represents
output laser phase in no feedback condition, which can be
obtained by substituting λF(t) in the Equation 2 by λ0(t).
The optical feedback coupling factor C is represented by the
Equation 4:

C =
τD

τL
γ

√
1+α2κext (4)

Where τL and τD are the round trip times of the inside and
outside cavities respectively, whereas γ represents the coupling
efficiency, and κext linearly depend on the reflectiveness of the
target surface.

C value plays a fundamental role in SM interferometry and
determines the regime in which an SM sensor operates [7].
C < 1 describes the so-called weak feedback regime, where
equation 3 has a unique solution. 1 < C < 4.6 characterizes
the moderate optical feedback regime with multiple solutions
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Fig. 1. Block diagram of a basic Self-Mixing (SM) sensing set-up requiring only a laser diode package with its built-in photo-diode and a focusing lens.
A piezoelectric transducer (PZT) has been used as target. Variations in the optical output power of the laser diode P(t) are processed to retrieve the target
motion D(t)

Fig. 2. (a) Vibration of remote target (a piezoelectric transducer (PZT) acting
as reference senor with 2 nm resolution) with peak to peak amplitude of 5
micrometers, and corresponding SM interferometric signals acquired using
Sanyo DL7140 laser diode with λ = 785nm belonging to : (b) weak optical
feedback regime, (c) moderate optical feedback regime, and (d) strong optical
feedback regime.

Fig. 3. Block diagram of Improved Phase Unwrapping Method (IPUM) [22]

to equation 3, while C > 4.6 encompasses the strong feedback
regime with increasingly chaotic behavior for higher C values.
Using an SM sensor with Sanyo DL7140 laser diode with λ

= 785nm, Figure 2 (b) presents an experimentally acquired
SM signal corresponding to weak feedback regime with char-
acteristic quasi-sinusoidal fringes, Figure 2 (c) represents a

moderate optical feedback regime SM signal with saw-tooth
shaped fringes, while Figure 2 (d) represents a strong feedback
regime SM signal with hysteresis and fringe-loss [33].

Let us now summarize how remote target’s displacement
D(t) can be retrieved from P(t) by using IPUM which is based
on solution of Equations 1, 2, 3.

B. Working Principle of IPUM

The working principle of the IPUM algorithm is schema-
tized in Figure 3 [22] and explained below in detail.

First, global normalization of P(t) is done in order to
obtain P(t)/P0 in range of ±1 interval, then an arcos func-
tion is utilized to retrieve φF(t)modπ (Equation 1). Later, the
SMI signal fringe is identified. For fringe detection without
speckle [34, 35], a straightforward method based on derivative
[20] is enough. However, in the case of seackles, SM fringe
detection needs more advanced techniques e.g. customized
Wavelets [36], Hilbert Transform [37] or advance neural
networks [38]. The rough phase φF(t)modπ is then processed
through a piece-wise segmentation on identified peaks and
valleys from fringe locations. In parallel, a stair-case signal is
formed by using an integrator to continuously add or subtract
2π at each fringe location depending upon its direction.

This stair-case signal is added with Pacos signal to form a
rough phase φF .

This rough signal is then used in the joint estimation process
of finding the key parameters C and α = φF(t = 0)+arctan(α),
by using a bi-dimensional optimization routine on the excess
equation of phase in equation 3. An accurate estimation of
φ0(t) related to target displacement D(t) concludes the IPUM
algorithm.

IV. IPUM PROGRAMMING METHODOLOGY

In this section we discussed programming methodology of
sequential and parallel-hybrid IPUM algorithms. The section
is further subdivided into three subsections; the Sequential
IPUM, Parallel-Hybrid IPUM, and the Processing System.

A. Sequential IPUM

This section discusses the working principle of the sequen-
tial IPUM algorithm. The pseudo code of sequential IPUM has
13 function (T1 : T13) (shown in Figure 4), short description
of each function (T) is mentioned below:
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Begin 
Input: Pin    
Constant: FIR[coeffs] 
T1: For j ←  0: i-1 
     P[j] ←  Pin 

End T1 
Pmax, Pmin ←  0 
T2: For j ←  0: i-1 
      If P[j] > Pmax  
              Pmax ← P[j] 
       Else If P[j] < Pmin  
               Pmin ← P[j] 
       End If 
End T2 
T3: For j ←  0: i-1 
       Pnorm[j]← 2 ∗ �(P[j]−Pmin)

Pmax−Pmin
� − 1 

End T3 
T4: For j ←  0: i-1 
      φFmodπ[j]  ← arcos (Pnorm[j])   
End T4 
T5: For j ←  1: i-1 
       Pdiff[j] ← Pnorm[j] –Pnorm[j-1] 
End T5 
Constant: thpos ←  A,  thneg ← B   
Int K=0; 
T6: For j ←  0: i-1 
      IF Pdiff [j] < thneg 
            Fringe_val[k] ← -1   
            Fringe_loc[k] ← j   
            k← k+1 
      ELSE IF Pdiff [j] > thpos 
            Fringe_val[k] ← 1   
            Fringe_loc[k] ← j   
            k← k+1 
       End If 
End T6 
Constant: band ←  C,   
T7: For j ←  0: k 
     Fringe_amp[j] ←  0; 
     T7-1: For m ←Fringe_loc[j]– band : Fringe_loc[j] + band 
            IF P[m] > Fringe_amp[j] 
                  Fringe_amp[j] ←  P[m] 
                        Peak_loc[j] ←  m 
            End If 
      End T7-1 
      Fringe_amp[j] = 1; 
      T7-2: For m ←Fringe_loc[j]– band :Fringe_loc[j] + band 
            IF P[m] < Fringe_amp[j] 
                  Fringe_amp[j] ←  P[m] 
                        Valley_loc[j] ←  m 
            End If 
      End T7-2 
End T7 
T8: For j ←  0: k 
       IF Fringe_val[j] ← -1 
            T8-1: For m ←  Valley_loc[j] : Peak_loc[j] 
                   φFmodπ[m] ←  arcos(-1* P[m]) 
            End T8-1 
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       Else IF Fringe_val[j] ← 1 
            T8-2: For m ← Peak_loc[j] : Valley_loc[j] 
                  φFmodπ[m] ←  arcos(-1* P[m]) 
            End T8-2 
      End IF 
End T8 
Pstaircase[0] ← 0  
T9: For j ←  1: i-1 
     IF (φFmodπ[j] - φFmodπ[j-1]) >  π/2 )  
            Pstaircase[j] ← Pstaircase[j-1] -  π 
     Else IF (φFmodπ[j] - φFmodπ[j-1] < - π/2) 
             Pstaircase[j] ← Pstaircase[j-1] +  π 
     Else 
             Pstaircase[j] ← Pstaircase[j-1] 
    End IF 
End T9 
T10: For j ←  1: i-1 
    Φ� F[j] ← Pstaircase[j] + φFmodπ[j] 
End T10 
C_val ← Cstart,  α_val←  αstart 
T11: Loop Cind← 0: i1-1 
      T11-1: Loop αind← 0: i2-1 
           T11-1-1: Loop  j ←  0: i-1 
                Φ�0[j][Cind][αind] ← Φ�F[j] + Cval ∗ sin (Φ�F[j] + arctan(αval)) 
           End T11-1-1 
           T11-1-2: Loop  j ←  1: i-1 
                Φ�0_diff[j] ←      Φ�0[j][Cind][αind] −    Φ�0[j − 1][Cind][αind] 
           End T11-1-2 
             J[Cind][αind]    ←  0  
            T11-1-3: Loop  j ←  0: i-1 
                IF  j < i - coeffs+1      % filtering 
                      Accum = 0; 
                      T11-1-3-1: For  f ←  0: coeffs 
                            Accum = Accum + FIR[f] *  Φ�0_diff[j + f] 
                      End T11-1-3-1 
                       Φ�0_diff[j] ←   Accum  
                 Else 
                        Φ�0_diff[j] ←   0  
                  End IF  
             J[Cind][αind] ← J[Cind][αind] +  rms{ Φ�0diff[j]} 
           End T11-1-3 
        α_val ←  α_val + αstep 
    End T11-1 
   C_val ←  C_val + Cstep 
End T11 
Jmin ← Pmax,  Copt ← 0 , αopt ← 0 
T12: Loop Cind← 0: i1-1 
     T12-1: Loop2 αind ← 0: i2-1 
            IF J[Cind][αind]  <  Jmin  
               Jmin    ←  J[Cind][αind]   
               Copt ← Cind*Cstep,    αopt ← αind*αstep 
          End IF 
    End T12-1 
End T12  
T13: For j ← 0: i-1 
Output:           D[j] = λ0

4π
∗  Φ�0[j]�Copt��αopt� 

End T13 
END 

Fig. 4. Pseudo-code: Generic Sequential Improved Phased Unwrapping Method

T1: The algorithm starts processing by storing input data
sample vectors stored in local memory Pin.

T2: Identify max/min values of data using max/min search.
T3: Perform global normalization.

T4: Calculate arccosine of normalized data.
T5: Takes derivative of normalized data
T6: Threshold applied on derivative to detect ± fringes.
T7: Identify Peak/valley locations (shown Figure 3). It uses
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Begin 
Input: Pin    
Constant: FIR[coeffs] 
Pmax, Pmin ←  0 
T1: For j ←  0: i-1 
     P[j] ←  Pin 

      If P[j] > Pmax  
              Pmax ← P[j] 
       Else If P[j] < Pmin  
               Pmin ← P[j] 
       End If 
End T1 
Constant thpos ←  A,  thneg ← B, band← C 
Int k=0,  Pstaircase[0] ← 0  
T2: For j ←  0: i-1 
      Pnorm[j]← 2 ∗ �(𝑃𝑃[𝑛𝑛]−𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
� − 1 

      φFmodπ[j]  ← arcos(Pnorm[j]) 
      If n>0 then 
             Pdiff[j] ← Pnorm[j] –Pnorm[j-1] 
             IF Pdiff [j] < thneg 
                     Fringe_val[k] ← -1 
                     Fringe_loc[k] ← j 
             Else IF Pdiff [j] > thpos 
                     Fringe_val[k] ← 1 
                     Fringe_loc[k] ← j 
             End If 
             Fringe_amp[k] ←  0; 
             T2-1: For m ←Fringe_loc[k]–band:Fringe_loc[k] + band 
                        IF P[m] > Fringe_amp[k] 
                                  Fringe_amp[k] ←  P[m] 
                                  Peak_loc[k] ←  m 
                        End If 
             End T2-1 
                Fringe_amp[k] = 1; 
             T2-2: For m ←Fringe_loc[k]–band:Fringe_loc[k] + band 
                         IF P[m] < Fringe_amp[k] 
                                  Fringe_amp[k] ←  P[m] 
                                  Valley_loc[k] ←  m 
                        End If 
             End T2-2 
             IF Fringe_val[k] ← -1 
                        T2-3: For m ←  Valley_loc[j] : Peak_loc[j] 
                                        φFmodπ[m] ←  arcos(-1* P[m]) 
                        End T2-3 
              Else IF Fringe_val[k] ← 1 
                        T2-4: For m ← Peak_loc[j] : Valley_loc[j] 
                                        φFmodπ[m] ←  arcos(-1* P[m]) 
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                           End T2-4 
                End IF 
                 K ←  k+1 
                IF (φFmodπ[j] - φFmodπ[j-1]) >  π/2 )  
                         Pstaircase[j] ← Pstaircase[j-1] -  π 
                Else IF (φFmodπ[j] - φFmodπ[j-1] < - π/2) 
                         Pstaircase[j] ← Pstaircase[j-1] +  π 
                Else 
                         Pstaircase[j] ← Pstaircase[j-1] 
               End IF 
               Pstair[j] ← 2π*Fringes[j] +  Pstair[j-1] 
               Φ� F[j] ← Pstair[j] + φFmodπ[j] 
         End If 
End T2 
C_val ← Cstart,  α_val←  αstart, Jmii ←  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,  Copt ← 0 , αopt ← 0 
T3: Loop Cind← 0: i1-1 
      T3-1: Loop αind← 0: i2-1 
       J[Cind][αind]    ←  0  
           T3-1-1: Loop  j ←  0: i-1          
      𝛷𝛷�0[𝑗𝑗][𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖][𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖] ← Φ�F[𝑗𝑗] + 𝐶𝐶_𝑣𝑣𝑣𝑣𝑣𝑣 ∗ sin(Φ�F[𝑗𝑗] + arctan(𝛼𝛼_𝑣𝑣𝑣𝑣𝑣𝑣)) 
            If n >0 then 
                 𝛷𝛷�0_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑[𝑗𝑗] ←      𝛷𝛷�0[𝑗𝑗][𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖][𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖]−    𝛷𝛷�0[𝑗𝑗 − 1][𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖][𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖]        
                    IF  j < i - coeffs+1      % filtering 
                         Accum = 0; 
                         T3-1-1-1: For  f ←  0: coeffs 
                            Accum = Accum + FIR[f] *  𝛷𝛷�0_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑[𝑗𝑗 + 𝑓𝑓] 
                        End LT3-1-1-1 
                        𝛷𝛷�0_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑[𝑗𝑗] ←   Accum  
                   Else 
                        𝛷𝛷�0_𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑[𝑗𝑗] ←   0  
                   End IF 
               𝐽𝐽[𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖][𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖] ← 𝐽𝐽[𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖][𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖] +  𝑟𝑟𝑟𝑟𝑟𝑟{ 𝛷𝛷�0𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑[𝑗𝑗]}} 
            End If                
          End T3-1-1 
          IF J[Cind][αind]  <  Jmin then  
              Jmin    ←  J[Cind][αind]   
             Copt  ← Cind*Cstep,    αopt ← αind*αstep 
         End IF 
         α_val ←  α_val + αstep 
    End T3-1 
   C_val ←  C_val + Cstep 
End T3 
T4: For j ← 0: i-1 
Output:                            D[j] = λ0

4π
∗  Φ�0[𝑗𝑗]�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜��𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜� 

End T4 
END 

Fig. 5. Pseudo-code: Parallel-Hybrid Improved Phased Unwrapping Method

two conditional branches (T7-1 and T7-2) identify the
peak- and valley-locations.

T8: Local phase inversion correction is performed using
piecewise segmentation around each detected fringe
(having two branches T8-1 and T8-2) leading to φFmodπ .

T9: Implement staircase signal formation block, which is
based on derivative of φFmodπ followed by addition of
± π .

T10: Provide rough phase φF retrieval.
T11: Performs joint estimation of C and α parameters (shown

in Figure 3). The function solves excess phase equa-
tion 3 for different values of C and α . It generates

instantaneous RMS power by taking derivative of phase
equation solution and applies low pass filtering that
removes undesired high-frequency components, and then
calculate the RMS resulting in J[Cind ][αind ]. Complex
function having multiple nested loops and conditional
branches. T11-1-1 performs the solution of phase equa-
tion operation, and T11-1-2 performs the operation of
derivative of solution from the previous operation, while
T11-1-3 performs the operation of filtering of the deriva-
tive signal followed by instantaneous power calculation
J[Cind ][αind ].

12: Performs minimization routine on J[Cind ][αind ] enabling
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Dataset[samp] 
samp = Pin

fn = Max/Min 
Detection 

iter = samp

br = 2, opr = 1

fn = Global 

Normalization

iter = samp

opr = 3

Three Dimensional 
samp * Citer * αiter

fn = Optimization 

Procedure

iter = samp * Citer * αiter
opr = 1 + samp * Citer* 

αiter * Coeffs 
opr = 4

fn = Instantaneous Phase 
iter = samp * Citer * αiter

 opr = 2

fn = ϕ ̂0(t)
iter = samp * Citer *αiter 

opr = 12

fn = Pacos 
iter = band 

br = 2 
opr = 3

fn = Peak/ Valley 
Detection

iter = band * band
br = 2, opr = 2

fn = Piecewise 

Segmentation 
iter = samp 

opr = 4

fn = Fringe Detector

iter = samp

br = 2

opr = 10

fn = ϕF(t)= Pacos + 

Staircase Signal

iter = samp

opr = 4

fn = Staircase Signal 

Formation

iter = samp

br = 3

opr = 3

D(t)

Fig. 6. Control Data Flow Data Graph of IPUM: Presenting Tasks/Functions, Iterations, Branches and Operations.

C and α estimation.
T13: Retrieves the desired target displacement D(t) using

Equation 2.

B. Parallel-hybrid IPUM

The pseudo-code of parallel-hybrid IPUM is shown in
Figure 5. Thorough understanding of major functions, their
iterations, branches and operations of generic pseudo-code has
helped to reduce complexity, functions, branches, and itera-
tions. It was observed that pipe-lining was possible in some
major functions to reduce the complexity and iterative nature
of the algorithm. Parallel-hybrid IPUM pseudo code uses 4
functions (T1: T4), details of each function are mentioned
below.
T1: The parallel-hybrid IPUM algorithm starts performing

parallel max/min operations on incoming data, eliminat-
ing the need for separate function having iterations for
the operation of max/min detection and normalization.
Unlike sequential IPUM, only two consecutive samples
are used (at a time) to take the derivative. This improves
the input data pipelining delay. Furthermore, threshold
and fringe detection operations also do not require a
complete vector for processing.

T2: Peak/valley location identification operation and local
phase inversion correction operation are performed on
individual fringes rather than waiting for the identifica-
tion of all fringes. Staircase signal formation operation
and rough phase retrieval are also pipelined inside the
function T2, as these require only two samples of data
at a time, rather than the complete data vector to start
their processing.

T3: Performs pipelined implementation of a joint estimation
of C and α . Branch T3-1 provide different combinations
of C and α values for the operation of the solution of
phase equation (Equation 3). The derivative operation

is pipelined with the phase equation solution. The op-
eration of filtering of the derivative signal is also now
performed in a pipelined manner with derivative opera-
tion leading to the instantaneous power calculation (T3-
1-1-1). The minimization replaces instantaneous power
calculations of all the values of C and α and iterative
minimization routine with a simple if-else branch inside
the function T3. Which compares the current value of
instantaneous powers J[Cind ][αind ] after each iteration
to estimate optimum C and value. This replacement
not only reduces the complexity but also makes the
algorithm more suitable for real-time parallelized im-
plementation due to reduction and subsequent unrolling
of iterative functions.

T4: It provides the estimation of target displacement by
using the optimized C and α values, thereby concluding
the processing steps.

C. Parallel-Hybrid IPUM Programming

The parallel-hybrid structure of IPUM uses Control Data
Flow Graph (CDFG) to identify the available parallelism
IPUM. The CDFG performs the partitioning of the IPUM
algorithm and generates smaller tasks/functions. Each task has
data dependencies and cannot be portioned more. Later each
task is assigned a data link and links all the tasks together.
Each task The CDFG of IPUM algorithm is shown in the
Figure 6 representing the processing and control details. The
parallel-hybrid program of IPUM takes the CDFG and parti-
tioned into tasks/functions. Each task is further divided into
iterations (iter), branches (br) and operations (opr). The itera-
tions define the data intensity, branches and operations present
the control complexity and computation respectively for each
task. The IPUM takes an input data set and after performing
processing it stores the output in a 3D data structure. Each
task (shown in the Figure 6) can be processed independently



7

on a processor core of a multi-core system. The complexity
of IPUM can be seen from its CDFG (Figure 6), each
graph (arrow) represents data-flow and data-dependencies. The
IPUM algorithm requires 5 thousand operations to process
a 16-bit sample, therefore its operational intensity (Floating
Point Operations per Second / Byte) (FLOPS/B) would be
(5×103FLOPS/2Byte) 2.5×103 FLOPS/B.

The parallel-hybrid IPUM program takes the benefits of
both OpenMP and MPI programming models. The MPI model
takes the main program and performs parallelization at the top
level by converting the main algorithm into multiple processes.
The MPI processes control the data of each task/function
and transfer it to multiple nodes (distrusted memory multi-
core processing systems). The MPI processes run the tasks
concurrently on multiple nodes by providing communication
between them. The implementation of parallel IPUM uses a
parallel-hybrid (OpenMP/MPI) programming model approach.
The MPI programming model schedule the IPUM tasks by
using MPI processes (MPI1 to MPI7) on different processing
nodes. Each node has shared memory system architecture that
can run a task on multiple parallel processing cores. A single
process executes multiple tasks on shared memory processing
core using OpenMP. To perform fine-grain parallelism on
a single node OpenMP programming model is used. The
OpenMP takes a single task and executes on a shared memory
multi-core processing system.

D. Processing System

In this section, we describe the Nord-III supercomputer
system architecture that is used to execute the parallel-hybrid
IPUM algorithm. Nord-III is an intel sandy bridge proces-
sors based supercomputer system having idataplex compute
racks interconnected by using InfiniBand interconnection and
utilizes SUSE Linux Operating System. The parallel-hybrid
processing system uses 16 nodes of Nord-III, each node
is equipped with 16 Intel processing cores working at a
frequency of 2.6 GHz.

V. RESULTS AND DISCUSSION

In this section, the performance and scalability of the
proposed parallel-hybrid IPUM algorithm are measured by
executing it on a different number of cores and nodes of Nord-
III supercomputer. (Discussed in Section IV-D). The section is
further subdivided into four subsections; experimental setup,
accuracy, performance comparison and scalability.

A. Experimental Setup

The Interferometry Systems are experimentally tested for
the IPUM algorithm by using the experimental laboratory
setup shown in Figure 7. The target (Figure 7 (a)) is mounted
on a mechanical wave driver PASCO SF-9324 having a
frequency range of 0.1 Hz to 5 kHz. The function generator
is used to excite the target at a frequency of 80 Hz with a
peak to peak amplitude of 5 µm. To obtain the SM signal,
a Hitachi HL6501MG laser diode is used (shown in Figure 7
(c)) having an emission wavelength of 658 µm, the threshold

TABLE I
SEQUENTIAL IPUM’S PROCESSING TIME AS A FUNCTION OF REMOTE

TARGET’S VELOCITY (LEADING TO DIFFERENT NUMBER OF INPUT
DATA-SETS (SAMPLES/SECOND))

vt(t) meter/sec 10x10−6 100x10−6 1x10−3 10x10−3 100x10−3

Input Samples 400 4 × 103 40× 103 400× 103 4× 106

Time (sec) 0.026 .286 2.98 30.6 320.8

current of 75 mA and with the optical output power of 35 mW.
An oscilloscope is attached to the sensor electronic circuitry
to observe the generated SM signal.

The displacement retrieval results are compared from a
reference commercial piezoelectric (PZT) sensor from Physik
Instrument (P753.2CD) having 2nm accuracy. Displacement
retrieval for a target motion of 80 Hz and its comparison with
the reference PZT sensor is shown in Figure 8. Figures 8 (a)
and (b) show the SM signal and retrieved target displacement
using the PZT sensor respectively. Figures 8 (c) and (d) show
the displacement retrieval using the IPUM algorithm and its
error comparison with the PZT sensor. The IPUM retrieves the
target displacement with an RMS error of 10.2 nm. The error
is calculated by taking the difference of retrieved displacement
using IPUM (shown in Figure 8 (c)) and reference PZT sensor
displacement (Figure 8 (b)).

B. IPUM Performance in case of High Bandwidth Sensing
Applications

To measure the performance of the sequential and parallel-
hybrid versions of IPUM as a function of remote target’s
velocity vt(t), the following strategy is used. Assume for the
sake of simplicity that the SM laser sensor uses a laser diode
with a wavelength (λ ) of 1 µm. As 20 samples per fringe
are at-least required to accurately detect a fringe [39], so the
SM signal’s sampling rate needs to be at-least 40 samples
per second to accurately measure vt(t) = λm/s = 1µm/s.
Consequently, performance of algorithm in processing SM
signals corresponding to vt(t) of 10 µm/s, 100 µm/s, 1 mm/s,
10 mm/s and 100 mm/s, the systems require 400, 4K, 40K,
400K and 4M samples per second respectively. Likewise,

Fig. 7. SMI Laboratory Setup: (a) PASCO SF-9324 Mechanical Shaker Used
as Moving Target (b) DL7140 Laser Diode Based Sensor Electronics Circuitry
(c) DL7140 Based Laser Sensor Mounted on Mechanical Shaker
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Fig. 8. Experimental Results: (a) Experimentally Acquired SM Signal (b)
Displacement Measured by the Reference PZT Sensor (c) Displacement
Retrieval from the IPUM Algorithm (d) IPUM Error With Respect to the
Reference PZT Sensor

TABLE II
PARALLEL-HYBRID IPUM: EXECUTION TIME (IN SECONDS) AGAINST

DIFFERENT NUMBER OF PROCESSING CORES OF A NODE

Number of Cores 1 2 4 8 12 16
Time (sec) 320.5 161.5 83.3 43.29 29.17 22.1

for accurate estimations of coupling factor C and linewidth
enhancement factor α , higher values of iterations of C iter
and α iter of 200 and 100, respectively are used.

The parallel-hybrid and sequential IPUM algorithms are
tested on 400 MegaByte of dataset stored in external memory.
During execution time, the algorithm takes different input
samples. Table II shows the averaged time while executing
the input sample data (shown in Table I). Table I shows the
execution time of the sequential IPUM algorithm on a uni-
core of a node for a different number of the input sample.
The results show the sequential IPUM algorithm is compute-
intensive and its performance requirements increase with the
increased input number of samples.

TABLE III
PARALLEL-HYBRID IPUM ALGORITHM SCALABLITY: EXECUTION TIME

AGAINST DIFFERENT NUMBER OF DISTRIBUTED NODES

Nodes 1 2 4 8 16 32
Execution Time (Sec) 22.1 11.9 6.38 3.21 1.66 0.98

C. Performance Comparison and Scalability of Parallel-
hybrid IPUM

In this experiment, the performance of the parallel-hybrid
IPUM algorithm is measured by executing it on a different
number of processing cores of Nord-III Supercomputer (dis-
cussed in Section IV-D) and then compared with sequential
IPUM algorithm. The parallel-hybrid and sequential IPUM
algorithms are tested on 400 MegaByte of dataset stored
in external memory. During the experiments, we mention
the average time taken by the parallel-hybrid and sequential
algorithms to execute 100 copies of each having 4 Mega
samples of data. The algorithms use C iter and α iter of 200
and 100, respectively.

Table II shows performance improvement while executing
4 Mega samples of input data on a different number of

processing cores. The average time includes local, shared
memory and external memories read/write, processing and
interprocess communication time of shared memory system.
The results show that the sequential IPUM algorithm on a
uni-core system takes 2780 seconds. When compared to the
performance of parallel-hybrid IPUM against the sequential
IPUM algorithm, the results show that parallel-hybrid IPUM
on 2, 4, 8, 12 and 16 cores improve 1.9, 3.8, 7.2, 11, and
14.54 times performance respectively.

The scalability of the parallel-hybrid IPUM algorithm is
measured by running the algorithm on a different number
of nodes.The execution time of the Parallel-IPUM includes
processing time on multiple processing cores, memory read-
/write and MPI communications time between the distributed
processing system. Table III shows that the execution time of
parallel-hybrid IPUM reduces with an increase in the number
of distribution nodes. The results show that parallel-hybrid
IPUM is highly scalable and can perform load balancing.
The parallel-hybrid IPUM on a distributed system manages
processing resources and allocates more processing cores
to the compute-intensive IPUM tasks. While comparing the
execution time of parallel-hybrid on uni-node with 2, 4, 8,
16 and 32 multi-node execution, the results show that the
algorithm achieves 1.84, 3.6, 6.85, 13.2, and 23.78-times
performance improvement respectively. The results confirm
that the parallel-hybrid on multi-node gives 345.9x times
performance improvement against the sequential IPUM.

VI. CONCLUSION

In this work, we have implemented a parallel hybrid
version of the phase retrieval algorithm called parallel-
hybrid IPUM and executed it on a supercomputing system.
The existing sequential IPUM C program has been paral-
lelized by using parallel-hybrid OpenMP/MPI (Open Multi-
Processing/Message Passing Interface) parallel programming
models and executed on Nord-III supercomputing system.
The implementation involves a thorough understanding and
segmentation of the compute-intensive parts of the algorithm
leading to their pipelining, parallelizing, and mapping on mul-
tiple cores of the distributed computing system architecture.
To validate the performance and scalability of parallel-hybrid
IPUM, the algorithm is tested on multiple distributed nodes of
Nord-III Supercomputer of Barcelona Supercomputing Center.
While executing parallel-hybrid IPUM on a different number
of processing cores the algorithm achieves up to 345.9x
times performance improvement. This shows that the parallel-
hybrid version of IPUM gives a scalable high performance for
different target velocities.
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