POINCARÉ SERIES OF MULTIPLIER AND TEST IDEALS

JOSEP ÀLVAREZ MONTANER¹ AND LUIS NÚNEZ-BETANCOURT²

ABSTRACT. We prove the rationality of the Poincaré series of multiplier ideals in any dimension and thus extending the main results for surfaces of Galindo and Monserrat and Alberich-Carramiñana et al. Our results also hold for Poincaré series of test ideals. In order to do so, we introduce a theory of Hilbert functions indexed over \( \mathbb{R} \) which gives an unified treatment of both cases.

1. Introduction

Let \( A \) be a commutative Noetherian ring containing a field \( \mathbb{K} \). Assume that \( A \) is either local or graded with maximal ideal \( \mathfrak{m} \) and let \( \mathfrak{a} \) be an \( \mathfrak{m} \)-primary ideal. Depending on the characteristic of the base field we may find two parallel sets of invariants associated to the pair \((A, \mathfrak{a}^c)\) where \( c \) is a real parameter. In characteristic zero we have the theory of multiplier ideals which play a prominent role in birational geometry and are defined using resolution of singularities (see [Laz04] for more insight). In positive characteristic we may find the so-called test ideals which originated from the theory of tight closure [HH90, HY03] and are defined using the Frobenius endomorphism [BMS08, Sch11b, Bli13]. Despite its different origins, it is known that under some conditions on \( A \), the reduction mod \( p \) of a multiplier ideal is the corresponding test ideal [Smi00, Har01, HY03, Tak04, MS11, dFDTT15, CEMS18] (see also [ST12, BFS13]). Moreover, both theories share a lot of common properties which we summarize as saying that they form a filtration of \( \mathfrak{m} \)-primary ideals

\[
\mathcal{J} : \quad A \supseteq \mathcal{J}_1 \supseteq \mathcal{J}_2 \supseteq \ldots \supseteq \mathcal{J}_i \supseteq \ldots
\]

and the indices where there is an strict inequality is, under some assumptions on \( A \), a discrete set of rational numbers [Laz04, CEMS18, BMS08, TT08, KLZ09, BSTZ10, Sch11a, ST14].

The multiplicity of \( c \in \mathbb{R}_{>0} \) is defined as \( m(c) = \dim_\mathbb{K} (\mathcal{J}_{c-\varepsilon}/\mathcal{J}_c) \), for \( \varepsilon > 0 \) small enough [ELS04]. In order to gather the information given by these ideals and its multiplicities, we consider the Poincaré series of \( \mathcal{J} \)

\[
P_\mathcal{J}(T) = \sum_{c \in \mathbb{R}_{>0}} \dim_\mathbb{K} (\mathcal{J}_{c-\varepsilon}/\mathcal{J}_c) \ T^e.
\]

The natural question is whether this is a rational function, in the sense that it belongs to the field of fractional functions \( \mathbb{Q}(z) \) where the indeterminate \( z \) corresponds to a fractional power \( T^{1/e} \) for a suitable \( e \in \mathbb{N}_{>0} \).

Galindo and Monserrat [GM10] proved that this rationality property holds for multiplier ideals associated to simple \( \mathfrak{m} \)-primary ideals in a complex smooth surface and provided an explicit formula. These results were extended later on by Alberich-Carramiñana et al.

¹Partially supported by grants MTM2015-69135-P (MINECO/FEDER), 2017SGR-932 (AGAUR) and PID2019-103849GB-I00 (AEI/10.13039/501100011033).

²Partially supported by CONACYT Grant 284508 and Cátedras Marcos Moshinsky.
(see also \cite{AADG20}) to the case of multiplier ideals associated to any \( m \)-primary ideal in a complex surface with rational singularities. The techniques used in both cases rely on the theory of singularities in dimension two and, in particular, the fact that the data coming from the log-resolution of any ideal can be encoded in a combinatorial object such as the dual graph. In the case of simple ideals, the divisors corresponding to the star vertices of the graph measure the difference between a multiplier ideal and its preceding. In general one needs the notion of maximal jumping divisor \cite{AADG17} to account for this difference. The formula obtained for the Poincaré series is then described in terms of the excesses of these maximal jumping divisors. During the preparation of this manuscript, we learned that Pande \cite{Pan21} has extended these results to the case of smooth varieties in arbitrary dimension.

In this work, we show the rationality of the Poincaré series of multiplier ideals of \( m \)-primary ideals in any normal variety in arbitrary dimension (see Theorem 3.2 and Corollary 4.8 for the Cohen-Macaulay case). Furthermore, we also prove the rationality of the Poincaré series for test ideals of \( m \)-primary ideals in \( F \)-finite rings that are strongly \( F \)-regular in the punctured spectrum (see Theorem 3.8 and Corollary 4.9 for the Cohen-Macaulay case). As a particular case, we obtain the rationality of \( P(T) \) for ideals in normal surfaces in prime characteristic.

Our approach is completely algebraic, and it provides an unified proof of the rationality of the Poincaré series for both the multiplier and the test ideals in any dimension as long as we have discreteness of the jumping numbers and Skoda’s theorem. We point out that our main results does not require the rationality of the jumping numbers. Examples of non-rational jumping numbers of multiplier ideals exist by work of Urbinati \cite{Urb12}. The rationality of the Poincaré series in this case means that it belongs to the field of fractional functions \( \mathbb{Q}(T_{\alpha_1}, \ldots, T_{\alpha_s}) \), where \( \alpha_1, \ldots, \alpha_s \in \mathbb{R} \) is a finite set of jumping numbers.

To such purpose we develop a theory of Hilbert functions indexed over \( \mathbb{R} \) that should be of independent interest. More precisely, in Section 2 we develop the notion of \( \mathbb{R} \)-good \( a \)-filtrations associated to a finitely generated \( A \)-module which is an extension of the well-known theory of good \( a \)-filtrations. In this general framework we can define the multiplicity of any module in the filtration and the corresponding Poincaré series. The main result is Theorem 2.5 where we prove the rationality of such a series. In Section 3 we specialize our main result to the case of multiplier ideals and test ideals. We also extend to arbitrary dimension the notion of maximal jumping divisor (see Definition 3.3) and give a formula for the multiplicity (see Proposition 3.5). In Section 4 we provide a different approach to the theory of \( \mathbb{R} \)-good \( a \)-filtrations in the case of Cohen-Macaulay rings that gives a simpler formula for the Poincaré series (see Theorem 4.5). By comparing our results with the ones previously obtaining by geometric methods, we yield an algebraic formula for the excess associated to the maximal jumping divisor (see Proposition 4.12).

Acknowledgements: Part of this work was done during a research stay of the first author at CIMAT, Guanajuato supported by a Salvador de Maradiaga grant (ref. PRX 19/00405). He wants to thank the people at CIMAT for the warm welcome. We are grateful to Swaraj Pande for sharing a preliminary version of his work. We also acknowledge helpful discussions with Víctor González-Alonso and Martí Lahoz.
2. \( \mathbb{R} \)-good filtrations

Let \( A \) be a commutative Noetherian ring. Assume that \( A \) is either local or graded with maximal ideal \( \mathfrak{m} \) and let \( \mathfrak{a} \) be an \( \mathfrak{m} \)-primary ideal. The theory of \textit{good} \( \mathfrak{a} \)-filtrations gives an approach to the study of Hilbert functions that covers most of the classical results in an unified way. We start recalling briefly this notion but we refer to Rossi and Valla’s monograph [RV10] and the references therein for more insight.

Let \( M \) be a finitely generated \( A \)-module such that \( \lambda(M/\mathfrak{a}M) < \infty \), where \( \lambda(\cdot) \) denotes the length as \( A \)-module. A \textit{good} \( \mathfrak{a} \)-filtration on \( M \) is a decreasing filtration

\[
\mathcal{M} : \quad M = M_0 \supseteq M_1 \supseteq \cdots
\]

by \( A \)-submodules of \( M \) such that \( M_{j+1} = \mathfrak{a}M_j \) for \( j \gg 0 \) large enough. Under these premises we may consider the Hilbert and the Hilbert-Samuel function of \( M \) with respect to the filtration \( \mathcal{M} \) defined as

\[
H_M(j) := \lambda(M_j/M_{j+1}) \quad \text{and} \quad H^1_M(j) := \lambda(M/M_j)
\]

respectively. Moreover, we consider the Hilbert and the Hilbert-Samuel series

\[
HS_M(T) := \sum_{j \geq 0} \lambda(M_j/M_{j+1}) T^j \quad \text{and} \quad H^1_M(T) := \sum_{j \geq 0} \lambda(M/M_j) T^j.
\]

Notice that we have \( HS_M(T) = (1 - T)H^1_M(T) \). As a consequence of the Hilbert-Serre Theorem, we can express them as rational functions

\[
HS_M(T) = (1 - T)H^1_M(T) = (1 - T) \frac{h_M(T)}{(1 - T)^{d + 1}}
\]

where \( h_M(T) \in \mathbb{Z}[T] \) satisfies \( h_M(1) \neq 0 \) and \( d \) is the Krull dimension of \( M \). The polynomial \( h_M(T) \) is the \textit{h-polynomial} of \( M \).

The aim of this section is to extend the notion of good \( \mathfrak{a} \)-filtrations by allowing filtrations indexed over \( \mathbb{R} \) and thus mimicking properties satisfied by filtrations given by multiplier and test ideals.

**Definition 2.1.** Let \( M \) be a finitely generated \( A \)-module such that \( \lambda(M/\mathfrak{a}M) < \infty \). An \( \mathbb{R} \)-good \( \mathfrak{a} \)-filtration is a decreasing filtration \( \mathcal{M} := \{M_\alpha\}_{\alpha \geq 0} \) of submodules of \( M_0 = M \), indexed by a discrete set of positive real numbers such that \( M_{\alpha+1} = \mathfrak{a}M_\alpha \) for all \( \alpha > j \) with \( j \gg 0 \) large enough. We call it a \( \mathbb{Q} \)-good \( \mathfrak{a} \)-filtration when the set of indices is contained in \( \mathbb{Q} \).

Indeed, we may think of \( M \) as a filtration of submodules \( M_c \) indexed over \( \mathbb{R} \) for which there exist an increasing sequence of real numbers \( 0 < \alpha_1 < \alpha_2 < \ldots \) such that \( M_{\alpha_i} = M_c \supsetneq M_{\alpha_i+1} \) for any \( c \in [\alpha_i, \alpha_{i+1}) \). In particular we have a discrete filtration of submodules

\[
\mathcal{M} : \quad M \supsetneq M_{\alpha_1} \supsetneq M_{\alpha_2} \supsetneq \cdots \supsetneq M_{\alpha_i} \supsetneq \cdots
\]

and we say that the \( \alpha_i \) are the \textit{jumping numbers} of \( \mathcal{M} \). A crucial observation is that, once we fix an index \( c \in \mathbb{R} \), the filtration

\[
\mathcal{M}_c : \quad M_c \supsetneq M_{c+1} \supsetneq M_{c+2} \supsetneq \cdots
\]

is a good \( \mathfrak{a} \)-filtration.
Definition 2.2. Let $M := \{M_c\}_{c \geq 0}$ be an $\mathbb{R}$-good $\mathfrak{a}$-filtration. We define the multiplicity of $c \in \mathbb{R}_{>0}$ as

$$m(c) := \lambda(M_{c-\varepsilon}/M_c)$$

for $\varepsilon > 0$ small enough. With this definition, it is clear that $c$ is a jumping number if and only if $m(c) > 0$.

Definition 2.3. Let $M := \{M_c\}_{c \geq 0}$ be an $\mathbb{R}$-good $\mathfrak{a}$-filtration. We define the Poincaré series of $M$ as

$$P_M(T) = \sum_{c \in \mathbb{R}_{>0}} m(c) T^c.$$  

The question that we want to address is whether the Poincaré series is rational in the sense that it belongs to the field of fractional functions $\mathbb{Q}(T^{\alpha_1}, \ldots, T^{\alpha_s})$, where $\alpha_1, \ldots, \alpha_s \in \mathbb{R}$ is a finite set of jumping numbers. In the case of $\mathbb{Q}$-good $\mathfrak{a}$-filtrations, the rationality of the Poincaré series means that it belongs to the field of fractional functions $\mathbb{Q}(T^{1/e})$ where $e \in \mathbb{N}_{>0}$ is the least common multiple of the denominators of all the jumping numbers.

Proposition 2.4. Let $M := \{M_c\}_{c \geq 0}$ be an $\mathbb{R}$-good $\mathfrak{a}$-filtration. Given $c \in \mathbb{R}_{>0}$ we have that

$$\sum_{j \geq 0} m(c + j)T^j$$

is a rational function in $\mathbb{Q}(T)$.

Proof. Recall that the Hilbert series $HS_{M_{c-\varepsilon}}^1(T)$ and $HS_{M_c}^1(T)$ associated to the good $\mathfrak{a}$-filtrations $M_{c-\varepsilon}$ and $M_c$ are rational functions. From the short exact sequence

$$0 \longrightarrow M_c/M_{c+j} \longrightarrow M_{c-\varepsilon}/M_{c+j} \longrightarrow M_{c-\varepsilon}/M_c \longrightarrow 0$$

we get

$$\sum_{j \geq 0} \lambda(M_{c-\varepsilon}/M_{c+j}) T^j = HS_{M_c}^1(T) + m(c)\frac{1}{1-T}.$$  

Analogously, from the short exact sequence

$$0 \longrightarrow M_{c-\varepsilon+j}/M_{c+j} \longrightarrow M_{c-\varepsilon}/M_{c+j} \longrightarrow M_{c-\varepsilon}/M_{c-\varepsilon+j} \longrightarrow 0$$

we get

$$\sum_{j \geq 0} m(c + j)T^j = \sum_{j \geq 0} \lambda(M_{c-\varepsilon}/M_{c+j}) T^j - HS_{M_{c-\varepsilon}}^1(T)$$

$$= m(c)\frac{1}{1-T} + HS_{M_c}^1(T) - HS_{M_{c-\varepsilon}}^1(T)$$

$$= m(c)\frac{1}{1-T} + h_{M_c}(T) - h_{M_{c-\varepsilon}}(T)$$

and thus it is a rational function. Here, $h_{M_c}(T)$ and $h_{M_{c-\varepsilon}}(T)$ are the $h$-polynomials of the good $\mathfrak{a}$-filtrations $M_{c-\varepsilon}$ and $M_c$ respectively. \qed
Theorem 2.5. Let $\mathcal{M} := \{M_c\}_{c \geq 0}$ be an $\mathbb{R}$-good $\mathfrak{a}$-filtration. Then, the Poincaré series $P_\mathcal{M}(T)$ is rational. Moreover we have

$$P_\mathcal{M}(T) = \sum_{c \in [0,1]} \left( \frac{m(c)}{1 - T} + \frac{h_{M_c}(T) - h_{M_{c-\varepsilon}}(T)}{(1 - T)^{d+1}} \right) T^c,$$

where $h_{M_c}(T)$ and $h_{M_{c-\varepsilon}}(T)$ are the $h$-polynomials of the good $\mathfrak{a}$-filtrations $M_{c-\varepsilon}$ and $M_c$ respectively.

Proof. We have

$$P_\mathcal{M}(T) = \sum_{c \in \mathbb{R}_{>0}} m(c) T^c = \sum_{c \in [0,1]} \left( \sum_{j \in \mathbb{Z}_{\geq 0}} m(c + j) T^j \right) T^c$$

and thus the result follows from Proposition 2.4. □

3. Poincaré series of multiplier and test ideals

In this section we turn our attention to the case where $A$ contains a field $\mathbb{K}$ and the $\mathbb{R}$-good $\mathfrak{a}$-filtration that we consider is given by a filtration of $\mathfrak{m}$-primary ideals

$$\mathcal{J} : A \supseteq \mathcal{J}_0 \supseteq \mathcal{J}_1 \supseteq \cdots \supseteq \mathcal{J}_i \supseteq \cdots$$

In this setting, the multiplicity of $c \in \mathbb{R}_{>0}$ is $m(c) = \dim_\mathbb{K}(\mathcal{J}_{c-\varepsilon}/\mathcal{J}_c)$, for $\varepsilon > 0$ small enough, and the Poincaré series of $\mathcal{J}$ is

$$P_\mathcal{J}(T) = \sum_{c \in \mathbb{R}_{>0}} \dim_\mathbb{K}(\mathcal{J}_{c-\varepsilon}/\mathcal{J}_c) T^c.$$

The aim of this section is to specialize the results we obtained in the previous section to the case of multiplier ideals and test ideals.

3.1. Multiplier ideals. Let $(A, \mathfrak{m})$ be a normal local ring containing an algebraically closed field $\mathbb{K}$ of characteristic zero and $\mathfrak{a} \subseteq A$ an ideal. Under these general assumptions we ensure the existence of canonical divisors $K_X$ on $X = \text{Spec} A$ which are not necessarily $\mathbb{Q}$-Cartier. Then we may find some effective boundary divisor $\Delta$ such that $K_X + \Delta$ is $\mathbb{Q}$-Cartier with index $m$ large enough. Now, given a log-resolution $\pi : X' \to X$ of the triple $(X, \Delta, \mathfrak{a})$ we pick a canonical divisor $K_X'$ in $X'$ such that $\pi_*(K_X') = K_X$ and let $F$ be an effective divisor such that $\mathfrak{a} \cdot \mathcal{O}_{X'} = \mathcal{O}_{X'}(-F)$.

The multiplier ideal associated to the triple $(X, \Delta, \mathfrak{a}^c)$ for some real number $c \in \mathbb{R}_{>0}$ is defined as

$$\mathcal{J}(X, \Delta, \mathfrak{a}^c) = \pi_* \mathcal{O}_{X'} \left( \left[ K_{X'} - \frac{1}{m} \pi^*(m(K_X + \Delta)) - cF \right] \right).$$

This construction allowed de Fernex and Hacon [dFH09] to define the multiplier ideal $\mathcal{J}(\mathfrak{a}^c)$ associated to $\mathfrak{a}$ and $c$ as the unique maximal element of the set of multiplier ideals $\mathcal{J}(X, \Delta, \mathfrak{a}^c)$ where $\Delta$ varies among all the effective divisors such that $K_X + \Delta$ is $\mathbb{Q}$-Cartier. The key point in their proof is the existence of such a divisor $\Delta$ that realizes the multiplier ideal as
\[ \mathcal{J}(\alpha^c) = \mathcal{J}(X, \Delta, \alpha^c). \] In this general framework we have that the local vanishing theorem still hold [dFEM14, Theorem 4.1.19]. Namely, for any \( c \in \mathbb{R}_{>0} \) we have

\[ R^1\pi_* \mathcal{O}_{X'} \left( \left[ K_{X'} - \frac{1}{m} \pi^* (m(K_X + \Delta)) - cF \right] \right) = 0. \]

**Remark 3.1.** If \( A \) is \( \mathbb{Q} \)-Gorenstein, the canonical module \( K_X \) is \( \mathbb{Q} \)-Cartier so no boundary \( \Delta \) is required in the definition of multiplier ideal. Namely we have

\[ \mathcal{J}(\alpha^c) = \pi_* \mathcal{O}_{X'} \left( \left[ K_{X'} - \frac{1}{m} \pi^* (mK_X) - cF \right] \right). \]

From its construction we have that the multiplier ideals form a filtration

\[ A \supseteq \mathcal{J}(\alpha^{a_1}) \supseteq \mathcal{J}(\alpha^{a_2}) \supseteq \ldots \supseteq \mathcal{J}(\alpha^{a_i}) \supseteq \ldots \]

and the \( \alpha_i \) where we have a strict inclusion of ideals are the jumping numbers of the ideal \( \alpha \).

Assume in addition that \( \alpha \) is an \( m \)-primary ideal and thus \( F \) is a divisor with exceptional support. Then any multiplier ideal \( \mathcal{J}(\alpha^c) \) is \( m \)-primary as well. To ensure that \( \mathcal{J}(\alpha^c) \) is a good \( \alpha \)-filtration we notice the following:

- **Discreteness:** If \( \alpha \) is \( m \)-primary, the number of multiplier ideals in any interval \([c_1, c_2]\) is smaller or equal than \( \dim \mathcal{J}(\alpha^{c_1})/\mathcal{J}(\alpha^{c_2}) \).

- **Skoda’s theorem** [dFH09, Corollary 5.7]: For any \( c > \dim A \) we have \( \mathcal{J}(\alpha^c) = \alpha \cdot \mathcal{J}(\alpha^{c-1}) \).

There are cases where the jumping numbers are not rational as shown by Urbinati [Urb12]. Known cases where the jumping numbers form a discrete set of rational numbers and thus the filtration \( \mathcal{J} = \{ \mathcal{J}(\alpha^c) \}_{c \geq 0} \) is a \( \mathbb{Q} \)-good \( \alpha \)-filtration are:

- \( X \) is \( \mathbb{Q} \)-Gorenstein.
- The symbolic Rees algebra \( \mathcal{R}(-(K_X + \Delta)) := \bigoplus_{n \geq 0} \mathcal{O}_X(-n(K_X + \Delta)) \) is finitely generated [CEMS18, Remark 2.26].

**Theorem 3.2.** Let \((A, \mathfrak{m})\) be a normal local ring of dimension \( d \) containing an algebraically closed field \( \mathbb{K} \) of characteristic zero, \( \alpha \subseteq A \) an \( m \)-primary ideal and let \( \mathcal{J} := \{ \mathcal{J}(\alpha^c) \}_{c \geq 0} \) be the filtration given by multiplier ideals. Then, the Poincaré series \( P_\mathcal{J}(T) \) is rational. Indeed, we have

\[ P_\mathcal{J}(T) = \sum_{c \in (0,1]} \left( \frac{m(c)}{1 - T} + \frac{h_\mathcal{J}(\alpha^c)(T) - h_\mathcal{J}(\alpha^{c-1})(T)}{(1 - T)^{d+1}} \right) T^c, \]

where \( h_\mathcal{J}(\alpha^c)(T) \) is the \( h \)-polynomial associated to the multiplier ideal \( \mathcal{J}(\alpha^c) \).

**Proof.** The result follows from Theorem 2.5. \( \square \)

When \( A \) is the local ring at a rational singularity of a surface, Alberich-Carramiñana et al. [AADG17, Theorem 4.1] gave a precise formula for the multiplicity \( m(c) \) of any given \( c \in \mathbb{R}_{>0} \), and consequently an explicit description of the Poincaré series. We may follow the same approach to get a partial extension of their formula.
**Definition 3.3.** Let \((X, \Delta, a^c)\) be a triple. The *maximal jumping divisor* associated to \(c \in \mathbb{R}_{>0}\) is
\[
H_c = \left[ K_{X'} - \frac{1}{m} \pi^*(m(K_X + \Delta)) - (c - \varepsilon)F \right] - \left[ K_{X'} - \frac{1}{m} \pi^*(m(K_X + \Delta)) - cF \right]
\]
where \(\varepsilon\) is small enough.

**Remark 3.4.** Denote \(K_{X'} - \frac{1}{m} \pi^*(m(K_X + \Delta)) = \sum_i k_i E_i\) and \(F = \sum_i e_i E_i\), where the \(E_i\)'s are the exceptional components of \(\pi\). Then \(H_c\) can be defined as the reduced divisor whose components are the \(E_i\) such that \(k_i - ce_i \in \mathbb{Z}\). In particular we have \(H_c = H_{c+1}\) for all \(c \in \mathbb{R}_{>0}\).

**Proposition 3.5.** Let \((X, \Delta, a^c)\) be a triple. Then, the multiplicity of \(c \in \mathbb{R}_{>0}\) is
\[
m(c) = h^0 \left( H_c, \mathcal{O}_{H_c} \left( \left[ K_{X'} - \frac{1}{m} \pi^*(m(K_X + \Delta)) - cF \right] + H_c \right) \right)
\]

*Proof.* To avoid heavy notation, let \(K_\pi := K_{X'} - \frac{1}{m} \pi^*(m(K_X + \Delta))\). Consider the short exact sequence
\[
0 \rightarrow \mathcal{O}_{X'} \left( \left[ K_\pi - cF \right] \right) \rightarrow \mathcal{O}_{X'} \left( \left[ K_\pi - cF \right] + H_c \right) \rightarrow \mathcal{O}_{H_c} \left( \left[ K_\pi - cF \right] + H_c \right) \rightarrow 0
\]
Pushing it forward to \(X\) and applying local vanishing for multiplier ideals we get the short exact sequence
\[
0 \rightarrow \pi_* \mathcal{O}_{X'} \left( \left[ K_\pi - cF \right] \right) \rightarrow \pi_* \mathcal{O}_{X'} \left( \left[ K_\pi - cF \right] + H_c \right) \rightarrow H^0 \left( H_c, \mathcal{O}_{H_c} \left( \left[ K_\pi - cF \right] + H_c \right) \right) \otimes \mathbb{K}_O \rightarrow 0
\]
or equivalently
\[
0 \rightarrow J(a^c) \rightarrow J(a^{(c-\varepsilon)}) \rightarrow h^0 \left( H_c, \mathcal{O}_{H_c} \left( \left[ K_\pi - cF \right] + H_c \right) \right) \otimes \mathbb{K}_O \rightarrow 0
\]
Therefore the multiplicity of \(c\) is just \(m(c) = h^0 \left( H_c, \mathcal{O}_{H_c} \left( \left[ K_\pi - cF \right] + H_c \right) \right)\). \(\square\)

**Question 3.6.** The key ingredient for the explicit formula of the Poincaré series of multiplier ideals in dimension 2 given by Alberich-Carramiñana et al. [AADG17] is that the multiplicities satisfy \(m(c + k) - m(c) = k \rho_c\), where \(\rho_c := -F \cdot H_c\) are the *excesses* associated to the maximal jumping divisor \(H_c\). Pande [Pan21] proved that \(m(c + j)\) is a polynomial function in \(j\) of degree less than \(d\) in the case of smooth varieties in arbitrary dimension \(d\). These results motivate the following question regarding multiplicities for \(m\)-primary ideals in normal rings. Is there a polynomial expression in terms of \(j\) for
\[
m(c + j) - m(c) = h^0 \left( H_c, \mathcal{O}_{H_c} \left( \left[ K_\pi - cF \right] + H_c + jF \right) \right) - h^0 \left( H_c, \mathcal{O}_{H_c} \left( \left[ K_\pi - cF \right] + H_c \right) \right)?
\]

### 3.2. Test ideals

Let \(A\) be a commutative Noetherian ring containing a field \(\mathbb{K}\) of characteristic \(p > 0\). The theory of test ideals has its origins in the work of Hochster and Huneke on tight closure [HH90]. In the case of \(A\) being a regular ring, Hara and Yoshida [HY03] extended the notion of test ideals to pairs \((A, a^c)\) where \(a \subseteq A\) is an ideal. Their construction has been generalized in subsequent works [BMS08, BMS09, TT08, BSTZ10, Sch11b, Bli13] using the theory of Cartier operators.

Assume that \(A\) is \(F\)-finite. Then, the *test ideal* \(\tau(a^c)\) associated to \(a\) and some real number \(c \in \mathbb{R}_{>0}\) is the smallest nonzero ideal which is compatible with any Cartier operator.
\( \phi \in \bigoplus_{c \geq 0} \text{Hom}_A(F^e_* A, A) \cdot F^e_* a^{[q^c]} \), where \( F^e_* \) is the Frobenius functor. In this situation we also have a filtration
\[
A \not\supseteq \tau(a^{\alpha_1}) \not\supseteq \tau(a^{\alpha_2}) \not\supseteq \ldots \not\supseteq \tau(a^{\alpha_i}) \not\supseteq \ldots
\]
and the \( \alpha_i \) where we have a strict inclusion of ideals are called the \( F \)-jumping numbers of the ideal \( a \).

We now give a sufficient condition to have that \( \tau(a^c) \) is \( m \)-primary.

**Lemma 3.7.** Let \( (A, m) \) be a local \( F \)-finite Noetherian ring containing a field \( K \) of characteristic \( p > 0 \) and let \( a \subseteq A \) be an \( m \)-primary ideal. Assume that \( A_p \) is a strongly \( F \)-regular ring for all prime ideals \( p \neq m \). Then, the test ideals \( \tau(a^c) \) are \( m \)-primary or \( A \).

**Proof.** Since test ideals localize [Bli13, Proposition 3.2], we have that \( \tau(a^c)_p = \tau(a^c_p) = \tau(A^c_p) = \tau(A_p) = A_p \) for all prime ideals \( p \neq m \), because \( A_p \) is strongly \( F \)-regular. Therefore \( \text{rad}(\tau(a^c)) \supseteq m \) \( \square \).

Under these extra assumptions we have that \( \tau = \{\tau(a^c)\}_{c \geq 0} \) is an \( \mathbb{R} \)-good \( a \)-filtration:

- **Discreteness:** If \( a \) is \( m \)-primary and \( A \) is strongly \( F \)-regular in the punctured spectrum, the number of test ideals in any interval \([c_1, c_2]\) is smaller or equal than \( \dim_K \tau(a^{c_1})/\tau(a^{c_2}) \).
- **Skoda’s theorem** [Bli13, HT04, ST14]: For any \( c > \dim A \) we have \( \tau(a^c) = a \cdot \tau(a^{c-1}) \).

Known cases where the \( F \)-jumping numbers form a discrete set of rational numbers and thus the filtration \( \tau = \{\tau(a^c)\}_{c \geq 0} \) is a \( \mathbb{Q} \)-good \( a \)-filtration are:

- \( (A, m) \) is an \( F \)-finite, normal \( \mathbb{Q} \)-Gorenstein local domain [BMS08, TT08, KLZ09, BSTZ10, Sch11a, ST14].
- \( A \) is an \( F \)-finite ring which is a direct summand of a regular ring [AHN17].

**Theorem 3.8.** Let \( (A, m) \) be an \( F \)-finite local ring of dimension \( d \) containing a field \( K \) of characteristic \( p > 0 \) and let \( a \) be an \( m \)-primary ideal. Assume that \( A_p \) is a strongly \( F \)-regular ring for all prime ideals \( p \neq m \). Let \( \tau = \{\tau(a^c)\}_{c \geq 0} \) be the filtration given by test ideals. Then, the Poincaré series \( P_\tau(T) \) is rational. Indeed, we have
\[
P_\tau(T) = \sum_{c \in [0, 1]} \left( \frac{m(c)}{1 - T} + \frac{h_\tau(a^c)(T) - h_\tau(a^{c-1})(T)}{(1 - T)^{d+1}} \right) T^c
\]
where \( h_\tau(a^c)(T) \) is the \( h \)-polynomial associated to the test ideal \( \tau(a^c) \).

**Proof.** The result follows from Theorem 2.5. \( \square \)

Motivated by the case of multiplier ideals [GM10, AADG17, Pan21], we would like to have a precise description of the multiplicities of \( F \)-jumping numbers since it would yield a more explicit formula for the Poincaré series. More precisely we ask the following

**Question 3.9.** Is the multiplicity of test ideals of \( m \)-primary ideals in a strongly \( F \)-regular ring, \( m(c + j) \), a polynomial function in \( j \) of degree less than \( d \)?
4. **Poincaré series in Cohen-Macaulay rings**

Let \((A, \mathfrak{m}, \mathbb{K})\) be a Cohen-Macaulay local ring of dimension \(d\). Let \(a\) be an \(\mathfrak{m}\)-primary ideal generated by a regular sequence \(f_1, \ldots, f_d\). Let \(\mathcal{J} = \{ J_c \}_{c \geq 0}\) be an \(\mathbb{R}\)-good \(a\)-filtration of \(\mathfrak{m}\)-primary ideals satisfying Skoda’s theorem so \(J_c = a^c J_{c-1}\) for all \(c > d\). The Poincaré series of \(\mathcal{J}\) is

\[
P_{\mathcal{J}}(T) = \sum_{c \in \mathbb{R}_{>0}} m(c) T^c = \sum_{c \in (0,1]} \left( \sum_{j \geq 0} m(c+j) T^j \right) T^c
\]

and zooming in the summands we have

\[
\sum_{j \geq 0} m(c+j) T^j = m(c)+m(c+1)T+\cdots+m(c+d-2)T^{d-2}+T^{d-1} \sum_{j \geq 0} \lambda(a^j J_{d-1}^{c} / a^{j} J_{d-1}) T^j
\]

The aim of this section is to work towards finding a more explicit formula for the Poincaré series in Cohen-Macaulay rings, especially in the case that \(\mathcal{J}\) is a filtration of multiplier or test ideals where we require that \(\mathbb{K}\) is an infinite field. Namely, let \((A, \mathfrak{m})\) be a local Noetherian ring containing an infinite field \(\mathbb{K}\) and let \(a\) be any \(\mathfrak{m}\)-primary ideal. Every minimal reduction of \(a\) can be generated by a superficial sequence of length equal to the analytical spread of \(a\) [HS06, Theorem 8.6.3]. Since \(a\) is \(\mathfrak{m}\)-primary, \(\ell(a) = \dim(A)\). If \(A\) is Cohen-Macaulay this superficial sequence is indeed a regular sequence. Therefore we have \(\overline{a} = (f_1, \ldots, f_d)\), where \((\cdot)\) denotes the integral closure. Multiplier ideals and test ideal are invariant up to integral closure so we may assume that \(a\) is generated by a regular sequence.

**Setup 4.1.** Let \((A, \mathfrak{m}, \mathbb{K})\) be a Cohen-Macaulay local ring of dimension \(d\). Let \(J \subseteq A\) be an \(\mathfrak{m}\)-primary ideal and \(a = (f_1, \ldots, f_d)\) a parameter ideal. Consider a free resolution

\[
\cdots \longrightarrow A^{\beta_2} \longrightarrow A^{\beta_1} \longrightarrow A \longrightarrow A/a^j \longrightarrow 0,
\]

where \(\beta_1 = \binom{j+(d-1)}{d-1}\) is the number of generators of \(a^j\). After tensoring with \(A/J\), we get

\[
\cdots \longrightarrow (A/J)^{\beta_2} \longrightarrow (A/J)^{\beta_1} \longrightarrow A/J \longrightarrow A/(a^j + J) \longrightarrow 0,
\]

The morphisms \(\varphi_j^j\) and \(\varphi_j^j\) plays a role in what follows. If the ideal \(J\) is clear from the context we simply denote \(\varphi_j\) and \(\phi_j\). Notice also that \(\phi_j = 0\) for \(j = 0\).

**Lemma 4.1.** Let \((A, \mathfrak{m}, \mathbb{K})\) be a Cohen-Macaulay local ring of dimension \(d\). Let \(J \subseteq A\) be an \(\mathfrak{m}\)-primary ideal and \(a = (f_1, \ldots, f_d)\) a parameter ideal. Then, for every \(j \in \mathbb{Z}_{>0}\) we have

\[
\lambda(J/a^j J) = \lambda(A/a^j) - \lambda(\Im \phi_j) + (\beta_1 - 1) \lambda(A/J)
\]

where \(\beta_1 = \binom{j+(d-1)}{d-1}\).

**Proof.** From the short exact sequence, \(0 \rightarrow J \rightarrow A \rightarrow A/J \rightarrow 0\), we have the induced long exact sequence

\[
0 \rightarrow \text{Tor}^1_A(A/a^j, A/J) \rightarrow J/a^j J \rightarrow A/a^j \rightarrow A/(a^j + J) \rightarrow 0.
\]
Following Notation 4.1 we have $\operatorname{Tor}_1^A(A/a^j, A/J) = \ker \phi_j / \operatorname{Im} \phi_j$ and $A/(a^j + J) = (A/J)/\operatorname{Im} \phi_j$. Then,

$$\lambda(J/a^jJ) = \lambda(A/a^jJ) + \lambda(\operatorname{Tor}_1^A(A/a^j, A/J)) - \lambda(A/(a^j + J))$$

$$= \lambda(A/a^jJ) + [\lambda(\ker \phi_j) - \lambda(\operatorname{Im} \phi_j)] - [\lambda(A/J) - \lambda(\operatorname{Im} \phi_j)]$$

$$= \lambda(A/a^jJ) - \lambda(\operatorname{Im} \phi_j) - \lambda(A/J) + [\lambda(\ker \phi_j) + \lambda(\operatorname{Im} \phi_j)]$$

$$= \lambda(A/a^jJ) - \lambda(\operatorname{Im} \phi_j) - \lambda(A/J) + \lambda((A/J)^{\beta_1})$$

$$= \lambda(A/a^jJ) - \lambda(\operatorname{Im} \phi_j) - \lambda(A/J) + \beta_1 \lambda(A/J)$$

$$= \lambda(A/a^jJ) - \lambda(\operatorname{Im} \phi_j) + (\beta_1 - 1) \lambda(A/J)$$

\[ \square \]

**Lemma 4.2.** Let $(A, m, K)$ be a Cohen-Macaulay local ring of dimension $d$. Let $J \subseteq K \subseteq A$ be $m$-primary ideals and $a = (f_1, \cdots, f_d)$ a parameter ideal. Then,

$$\sum_{j \geq 0} \lambda(a^j K/a^jJ)T^j = \frac{\lambda(K/J)}{(1 - T)^d} + \sum_{j \geq 1} [\lambda(\operatorname{Im} \phi^K_j) - \lambda(\operatorname{Im} \phi^J_j)]T^j.$$

**Proof.** From the short exact sequences

$$0 \to a^j K/a^jJ \to K/a^jJ \to K/a^jK \to 0, \quad 0 \to J/a^jJ \to K/a^jJ \to K/J \to 0$$

we get $\lambda(a^j K/a^jJ) = \lambda(K/J) + \lambda(J/a^jJ) - \lambda(K/a^jK)$. Thus, applying Lemma 4.1 to the ideals $J$ and $K$, we get

$$\lambda(a^j K/a^jJ) = \lambda(K/J) + [\lambda(A/a^jJ) - \lambda(\operatorname{Im} \phi^J_j)] + (\beta_1 - 1) \lambda(A/J)$$

$$- [\lambda(A/a^jJ) - \lambda(\operatorname{Im} \phi^K_j)] + (\beta_1 - 1) \lambda(A/K)$$

$$= \lambda(K/J) + (\beta_1 - 1) (\lambda(A/J) - \lambda(A/K)) + [\lambda(\operatorname{Im} \phi^K_j) - \lambda(\operatorname{Im} \phi^J_j)]$$

$$= \beta_1 \lambda(K/J) + [\lambda(\operatorname{Im} \phi^K_j) - \lambda(\operatorname{Im} \phi^J_j)],$$

where $\beta_1 = \binom{j+(d-1)}{d-1}$. Then the result follows since $\sum_{j \geq 0} (\binom{j+(d-1)}{d-1})T^j = \frac{1}{(1 - T)^d}$. \[ \square \]

In order to get some control on $\lambda(\operatorname{Im} \phi_j)$ we use the following result of Kodiyalam [Kod93, Theorem 2] in the form that we need in the present work.

**Proposition 4.3.** Let $(A, m, K)$ be a local ring of dimension $d$ and let $a, J$ be $m$-primary ideals. Then, for all $i \geq 0$, the function $\lambda(\operatorname{Tor}_1^A(A/a^i, A/J))$ is a polynomial of degree $d - 1$ for $j \gg 0$ large enough.

Using the additivity of the function $\lambda$ and the fact that Tor modules are the homology modules of the complex (2), we get

**Corollary 4.4.** Under Setup 4.1, the function $\lambda(\operatorname{Im} \phi^J_j)$ is a polynomial of degree $d - 1$ for $j \gg 0$ large enough.

The main result of this section is the following
Theorem 4.5. Let \((A, \mathfrak{m}, \mathbb{K})\) be a Cohen-Macaulay local ring of dimension \(d\). Let \(\mathfrak{a} = (f_1, \ldots, f_d)\) be a parameter ideal and \(\mathcal{J} = \{\mathcal{J}_c\}_{c \geq 0}\) an \(\mathbb{R}\)-good \(\mathfrak{a}\)-filtration of \(\mathfrak{m}\)-primary ideals satisfying \(\mathcal{J}_c = \mathfrak{a}^c \mathcal{J}_{c-1}\) for all \(c > d\). Then, there exists \(\alpha_1, \ldots, \alpha_d \in \mathbb{Z}\) and \(p(T) \in \mathbb{Z}[T]\) such that

\[
P_{\mathcal{J}}(T) = \sum_{c \in \{0, 1\}} \left( m(c) + \cdots + m(c + d - 2) T^{d-2} + \frac{m(c + d - 1) T^{d-1}}{(1 - T)^d} \right. \\
+ \left. T^d \left( \frac{\alpha_d}{(1 - T)^d} + \cdots + \frac{\alpha_1}{(1 - T)} + p(T) \right) \right) T^c.
\]

Proof. We have

\[
\sum_{j \geq 0} m(c+j) T^j = m(c) + m(c+1) T + \cdots + m(c+d-2) T^{d-2} + m(c+d-1) T^{d-1} \sum_{j \geq 0} \lambda(\mathfrak{a}^{j+c+d-1-\varepsilon}/\mathfrak{a}^j \mathcal{J}_{c+d-1}) T^j
\]

so applying Lemma 4.2 with \(K = \mathcal{J}_{c+d-1-\varepsilon}\) and \(J = \mathcal{J}_{c+d-1}\) we get

\[
P_{\mathcal{J}}(T) = \sum_{c \in \{0, 1\}} \left( m(c) + \cdots + m(c + d - 2) T^{d-2} + \frac{m(c + d - 1) T^{d-1}}{(1 - T)^d} \right. \\
+ \left. T^{d-1} \sum_{j \geq 1} [\lambda(\text{Im} \, \phi_{j+c+d-1-\varepsilon}) - \lambda(\text{Im} \, \phi_{j+c+d-1})] T^j \right) T^c.
\]

Using Corollary 4.4 we have that for \(j \gg 0\) large enough \(\lambda(\text{Im} \, \phi_{j+c+d-1-\varepsilon}) - \lambda(\text{Im} \, \phi_{j+c+d-1})\) is a polynomial of degree \(d-1\) that can be written as

\[
\alpha_d \left( \frac{(j - 1) + d - 1}{d - 1} \right) + \cdots + \alpha_3 \left( \frac{(j - 1) + 2}{2} \right) + \alpha_2 j + \alpha_1
\]

Therefore, there exists \(k \in \mathbb{Z}_{>0}\) such that

\[
T^{d-1} \sum_{j \geq 1} [\lambda(\text{Im} \, \phi_{j+c+d-1-\varepsilon}) - \lambda(\text{Im} \, \phi_{j+c+d-1})] T^j =
\]

\[
= T^d \left( q(T) + \sum_{j \geq k} \left[ \alpha_d \left( \frac{(j - 1) + d - 1}{d - 1} \right) + \cdots + \alpha_3 \left( \frac{(j - 1) + 2}{2} \right) + \alpha_2 j + \alpha_1 \right] T^{j-1} \right)
\]

\[
= T^d \left( q(T) + \left( \frac{\alpha_d}{(1 - T)^d} - q_d(T) \right) + \cdots + \left( \frac{\alpha_1}{(1 - T)} - q_1(T) \right) \right)
\]

where \(q(T), q_d(T), \ldots, q_1(T) \in \mathbb{Z}(T)\) have degree \(\leq k - 2\) and the result follows after taking \(p(T) = q(T) - q_d(T) - \cdots - q_1(T)\). \(\square\)

The following result is a direct consequence of Theorem 4.5.
Corollary 4.6. Let \((A, \mathfrak{m}, \mathbb{K})\) be a Cohen-Macaulay local ring of dimension \(d\). Let \(a = (f_1, \ldots, f_d)\) be a parameter ideal and \(J = \{J_c\}_{c \geq 0}\) an \(R\)-good \(a\)-filtration of \(m\)-primary ideals satisfying \(J_c = aJ_{c-1}\) for all \(c > d\). Then, the function \(m(c + j)\) is a polynomial function on \(j\) of degree less than \(d\) for \(j \gg 0\) large enough.

Remark 4.7. In the case of multiplier ideals in a smooth variety, Pande proved that this result holds for all \(j\) [Pan21, Theorem 3.2].

Now we also specialize Theorem 4.5 to the case of multiplier and test ideals.

Corollary 4.8. Suppose \((A, \mathfrak{m}, \mathbb{K})\) is a normal Cohen-Macaulay local ring of dimension \(d\) over an algebraically closed field of characteristic zero, \(a \subseteq A\) is any \(m\)-primary ideal and \(J := \{J(a^c)\}_{c \geq 0}\) is the filtration given by multiplier ideals. Then,

\[
P_J(T) = \sum_{c \in (0, 1]} \left( m(c) + \cdots + m(c + d - 2)T^{d-2} + \frac{m(c + d - 1)T^{d-1}}{(1 - T)^d} \right. \\
+ T^d \left( \frac{\alpha_d}{(1 - T)^d} + \cdots + \frac{\alpha_1}{(1 - T)} + p(T) \right) \left. \right) T^c.
\]

Proof. For every \(m\)-primary ideal \(a\) there exist a parameter ideal with the same integral closure. Since the multiplier ideals are the same for an ideal and its integral closure [Laz04, Variation 9.6.39] (see also [dFH09, Corollary 5.7]), the result follow from Theorem 4.5.

Corollary 4.9. Suppose that \((A, \mathfrak{m}, \mathbb{K})\) is an \(F\)-finite Cohen-Macaulay local domain of dimension \(d\) over an infinite field of characteristic \(p > 0\), \(A_p\) is a strongly \(F\)-regular ring for all prime ideals \(p \neq m\), \(a\) is any \(m\)-primary ideal and \(\tau = \{\tau(a^c)\}_{c \geq 0}\) is the filtration given by test ideals. Then,

\[
P_\tau(T) = \sum_{c \in (0, 1]} \left( m(c) + \cdots + m(c + d - 2)T^{d-2} + \frac{m(c + d - 1)T^{d-1}}{(1 - T)^d} \right. \\
+ T^d \left( \frac{\alpha_d}{(1 - T)^d} + \cdots + \frac{\alpha_1}{(1 - T)} + p(T) \right) \left. \right) T^c.
\]

Proof. For every \(m\)-primary ideal \(a\) there exist a parameter ideal with the same integral closure, because \(\mathbb{K}\) is infinite. Since the test ideals are the same for an ideal and its integral closure [HT04, Proof of Theorem 4.1] (see also [BMS08, Lemma 2.27]), the result follow from Theorem 4.5.

Remark 4.10. Let \((A, \mathfrak{m}, \mathbb{K})\) be an \(F\)-finite normal local ring of dimension 2 over an infinite field of characteristic \(p > 0\). Then the condition of being strongly \(F\)-regular in the punctured spectrum and being Cohen-Macaulay is automatically satisfied.
\( P_j(T) = \sum_{c \in \{0,1\}} \left( m(c) + \frac{m(c+1)T}{(1-T)^2} + T^2 \left( \frac{\alpha_2}{(1-T)^2} + \frac{\alpha_1}{(1-T)} + p(T) \right) \right) T^c. \)

We see that, at least for the case of multiplier ideals in a complex surface with a rational singularity, this formula is much simpler. To do so we compare our formula with the one obtained in that case.

Theorem 4.11 ([AADG17, Theorem 6.1]). Let \((A, \mathfrak{m})\) be the local ring of a complex surface with a rational singularity, \(\mathfrak{a} \subseteq A\) an \(\mathfrak{m}\)-primary ideal and let \(J := \{J(\mathfrak{a}^c)\}_{c \geq 0}\) be the filtration given by multiplier ideals. Then

\[
P_j(T) = \sum_{c \in \{0,1\}} \left( m(c) + \frac{\rho_c T}{1-T} \right) T^c
\]

where \(\rho_c := -F \cdot H_c\) is the excess associated to the maximal jumping divisor \(H_c\).

If we compare both formulas we observe

\[
P_j(T) = \sum_{c \in \{0,1\}} \left( m(c) + \frac{(m(c+1) - 2m(c))T + m(c)T^2}{(1-T)^2} + T^2 \left( \frac{\alpha_2}{(1-T)^2} + \frac{\alpha_1}{(1-T)} + p(T) \right) \right) T^c.
\]

and we conclude that \(m(c) = -\alpha_2, \alpha_1 = 0\) and \(p(T) = 0\). If we take a closer look to these conditions we obtain a reformulation of [AADG17, Proposition 4.5] which, in particular, gives an algebraic formula for the excesses.

Proposition 4.12. Let \((A, \mathfrak{m})\) be the local ring of a complex surface with a rational singularity, \(\mathfrak{a} \subseteq A\) an \(\mathfrak{m}\)-primary ideal and let \(J := \{J(\mathfrak{a}^c)\}_{c \geq 0}\) be the filtration given by multiplier ideals. Then,

\[
\rho_c = \frac{1}{j} \left( \lambda(\text{Tor}_2^A(\mathfrak{a}^j, \mathfrak{a}/\mathfrak{j}(\mathfrak{a}^{c+1}))) - \lambda(\text{Tor}_2^A(\mathfrak{a}^j, \mathfrak{a}/\mathfrak{j}(\mathfrak{a}^{c+1-\varepsilon}))) \right)
\]

for every \(j \geq 1\), where is the excess associated to the maximal jumping divisor \(H_c\). In particular,

\[
m(c + j) - m(c) = \lambda(\text{Tor}_2^A(\mathfrak{a}^j, \mathfrak{a}/\mathfrak{j}(\mathfrak{a}^{c+1}))) - \lambda(\text{Tor}_2^A(\mathfrak{a}^j, \mathfrak{a}/\mathfrak{j}(\mathfrak{a}^{c+1-\varepsilon})))
\]

for every \(j \geq 1\).

Proof. First recall that the morphisms \(\phi_j^j\) in Setup 4.1 for an \(\mathfrak{m}\)-primary ideal \(J \subseteq A\) are

\[
0 \longrightarrow (A/J)^j \longrightarrow (A/J)^{j+1} \longrightarrow (A/J) \longrightarrow A/(\mathfrak{a}^j + J) \longrightarrow 0,
\]

and thus \(\lambda(\text{Im} \phi_j^j) = \lambda((A/J)^j) - \lambda(\ker \phi_j^j) = j\lambda(A/J) - \lambda(\text{Tor}_2^A(\mathfrak{a}^j, A/J)).\)

For simplicity we denote \(\lambda_j^{c+1}\) and \(\lambda_j^{c+1-\varepsilon}\) when we refer to \(\lambda(\text{Im} \phi_j^j)\) with \(J\) being the multiplier ideals \(J(\mathfrak{a}^{c+1})\) and \(J(\mathfrak{a}^{c+1-\varepsilon})\) respectively. Then, as in the proof of Theorem 4.5,
we have
\[ \sum_{j \geq 1} |\lambda_j^{c+1} - \lambda_j^c|T^{j-1} = q(T) + \left( \frac{\alpha_2}{(1 - T)^2} - q_2(T) \right) + \left( \frac{\alpha_1}{1 - T} - q_1(T) \right) \]
where, for some \( k \gg 0 \),
\[ q(T) = (\lambda_1^{c+1} - \lambda_1^c) + (\lambda_2^{c+1} - \lambda_2^c) + \cdots + (\lambda_{k-1}^{c+1} - \lambda_{k-1}^c)T^{k-2}. \]
\[ q_2(T) = \alpha_2 (1 + 2T + \cdots + (k-1)T^{k-2}). \]
\[ q_1(T) = \alpha_1 (1 + T + \cdots + T^{k-2}). \]

Since \( \alpha_1 = 0 \), \( \alpha_2 = -m(c) \) and
\[ 0 = p(T) = (\lambda_1^{c+1} - \lambda_1^c + m(c)) + (\lambda_2^{c+1} - \lambda_2^c + 2m(c))T + \cdots + (\lambda_{k-1}^{c+1} - \lambda_{k-1}^c + (k-1)m(c))T^{k-2} \]
we get for \( j = 1, \ldots, k-1 \)
\[ jm(c) = \lambda_j^{c+1} - \lambda_j^c = jm(A/\mathbb{J}(a^{c+1})) - \lambda(T_{\mathbb{J}}^A(A/a^i, A/\mathbb{J}(a^{c+1}))) \]
\[ - j\lambda(A/\mathbb{J}(a^{c+1})) + \lambda(T_{\mathbb{J}}^A(A/a^i, A/\mathbb{J}(a^{c+1})))) \]
\[ = jm(c + 1) + \lambda(T_{\mathbb{J}}^A(A/a^i, A/\mathbb{J}(a^{c+1})))) - \lambda(T_{\mathbb{J}}^A(A/a^i, A/\mathbb{J}(a^{c+1})))) \]
Therefore
\[ j\rho_c = \lambda(T_{\mathbb{J}}^A(A/a^i, A/\mathbb{J}(a^{c+1})))) - \lambda(T_{\mathbb{J}}^A(A/a^i, A/\mathbb{J}(a^{c+1})))) \]
The same formula also holds for \( j \geq k \) since we have
\[ \lambda_j^{c+1} - \lambda_j^c = \alpha_2 j = -m(c)j. \]

\[ \square \]

**References**


Departament de Matemàtiques, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona 08028, Spain

*E-mail address*: josep.alvarez@upc.edu

Centro de Investigación en Matemáticas, Guanajuato, Gto., México

*E-mail address*: luisnub@cimat.mx