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Abstract— The objective of this paper is to present a machine 
learning approach for the prediction of the Requested Flight
Level received during the pre-tactical phase of the Air Traffic 
Flow and Capacity Management process. A set of machine 
learning models are proposed in order to determine which 
Requested Flight Level is the most likely to be filed by an 
airspace user for a certain origin-destination pair. Results show 
that the proposed system outperforms the pre-tactical traffic 
forecasting approach currently used by the European Network 
Manager in 60% of the 14,465 origin-destination pairs 
considered in the study, reducing the error of the current 
solution by 4.8%.
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machine learning.

I. INTRODUCTION

The goal of Air Traffic Flow and Capacity Management  
(ATFCM) is to make airport and airspace capacity meet traffic 
demand and, when capacity opportunities are exhausted, 
optimise traffic flows to meet the available capacity, in a 
seamless process that spans from strategic planning to 
operations. In Europe, ATFCM is handled by the Network 
Manager and comprises three phases: strategic planning covers 
the planning phase between 18 months and 7 days before 
operations; pre-tactical flow management is applied during the 
six days prior to the day of operations; finally , tactical f low 
management takes place in the day of operations.

In order to detect demand and capacity im balances, the 
Network Manager forecasts the expected demand  at  a  given  
timeslot and for all possible airspace sectors (3D airspace 
volumes) according to the information available at each 
planning horizon. During the pre-tactical phase, when f ew or 
no flight plans (FPLs) have been filed, the only flight
information available to the NetworkManager are the so-called 
Flight Intentions (FIs), which include the flight call sign , the 
airline, the origin and destination airports, the estimated 
departure time, and aircraftmodel to be used. The information 
about the lateral route and the Requested Flight Level (RFL) is 
not available until Airspace Users (AUs) send their FPLs. To  
estimatethis information, the Network Manager relies on  the 

PREDICT tool, which is used to predict the FPL before it is 
filed and provide the Network Manager Operations Centre 
(NMOC) with the information required to ensure a correct
allocation of resources in coordination with  Air Na vigat ion 
Service Providers (ANSPs). PREDICT generates traffic 
forecasts according to the trajectories chosen by the same or 
similar flight codes in the recent past, without taking advantage 
of the information potentially encoded in historical FPLs a nd  
trajectory data. 

Recent work has explored how to use this in f ormat ion  to 
build machine learning models for the prediction of the la teral 
route during the pre-tactical phase ([1],[2],[3]). Some other 
work has also applied machine learning methods to predict the
complete trajectory (4D). Relevant examples are [4 ] a nd [5 ],
which consider wind and temperature as features for the 
prediction of the 4D trajectory in the tactical phase , and [6],
which performs a short-term 4D trajectory prediction based on 
the initial position and velocity of the a ircraft  and  the local 
wind. On the other hand, data-based RFL prediction has 
seldom been specifically addressed.

The prediction of RFL has usually been studied by m eans 
of physical models that look for an optimal trajectory (e.g., by  
optimizingfuel consumption) ([7],[8],[9]). However, AUs do
not always request the optimal flight level, either because it  is 
not available (e.g., due to route restrictions, ATC lim itations,
etc.) or because they do not have all the required information to 
compute the optimal trajectory. In this paper we will focus on  
developing a machine learning approach for the prediction o f 
the RFL based on historical FPL data.

The rest of this paper is structured as follows: Sect ion  I I 
describes the proposed modelling approach and the machine 
learning models to be tested; Section III describes the 
experiments designed to evaluate the performance of the 
proposed models; Section IV presents and discusses the m ain 
results of the experiments; finally, Section Vsummarizes the 
main conclusions of the study and discusses future steps.



II. MACHINE LEARNING MODELS FOR RFL PREDICTION

A. Problem Statement
Although aircraft can fly at any altitude within their 

performance range, Air Traffic Management (ATM) im poses 
conditions on the allowed flying altitudes. Flight levels are 
described by a number, which is the nominal altitude, or 
pressure altitude, in hundreds of feet. ATM establishes rather
rigid rules to ensure vertical separation, which in practice 
means that most intra-European flights require a single cru ise 
flight level at a  very specific altitude. Consequently, the 
prediction of the RFL can be seen as a supervised classification 
problem, where classes are the potential RFLs each aircraft can 
fly.

These rules reduce the number of possible flight levels to  a 
few dozens in the majority of the cases, of which only  a  f ew 
are recurrently used.

Figure 1. Distribution of the number of different RFLs per OD pair

Figure 1 depicts how many origin-destination (OD) pairs in  
the 14,465 OD pairs considered in the study account  f or each 
value of different RFLs during the year 2018. The number o f 
OD pairs for which more than 15 different  RFLs a re used is 
relatively small. For most OD pairs, the number of RFLs is 
obviously lower. Figure 2 shows the example of the flights 
between Amsterdam-Schiphol and Rome-Fiumicino.

Figure 2- RFL distribution for the OD pair EHAM-LIRF

B. Machine Learning Models
According to the features considered, two different models 

have been developed:

Basic Model, which takes as inputs the time of the 
flight, the day of the week (i.e., Monday, Tuesday, 
etc.), the day of the year, the AU (airline), and the 
aircraft mass.

Enhanced Model, which is built on top o f  the Basic 
model by including weather and data on past 
regulations.

The rationale behind the Basic Model is sim ple: the tool 
currently used by the Network Manager, PREDICT, is ba sed  
on the weekly recurrence of FPLs. The idea behind the Basic 
Model is to leverage such weekly pat terns and enrich  them 
with additional information to increase the prediction 
capabilities of the resulting model. The attributes considered by 
the model are described below:

AU: one-hot encoding of the airline ICAO code.
Day of week: one-hot encoding of the day of the week 
when the flight takes place.

Hour: sine and cosine of the expected take-off t im e 
(ETOT) hour.

Day of the year: sine and cosine of the day of the 
year.

Aircraft mass: maximum take-off weight (MTOW) of 
the aircraft model.

Since there is no previous work that analyzes which 
machine learning algorithm is the most adequate for the 
proposed problem, the following classification algorithms were 
implemented and tested:

K-Nearest-Neighbours (KNN)
Multinomial logistic regression
Decision tree
Random Forest
Support Vector Machine (SVM)

The Enhanced Model is built by extending the Basic 
Model with some external variables that might influence AUs 
behaviour. Following the findings of previous work ([2], [4 ],
[5] and [6]), 4 types of external variables have been considered 
for this model:

Wind: it is measured as the average wind  pro jection 
along the flight path, estimated by computing the 
“along path” wind at specific points of each observed 
traffic flow. It may be positive (tailwind) o r negat ive 
(headwind), with the magnitude indicating the strength 
of the wind component along the flight path. Although 
it can sometimes have an influence on the RFL, in  the 
model described in this paper crosswind has been 
neglected and left for future research. 
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Convective phenomena probability: the average and 
maximum values of the relative humidity, convect ive 
available potential energy (CAPE) and k-index at each 
traffic flow are used as proxy variables of the 
probability of occurrence of a storm.

Past regulations: the regulations observed during the 
expected duration of the flight in the previous day, 
seven days before, and during the last 28 days are used
as an indicator of the expected congestion levels.

Local wind at airports: this is included to account for 
the fact that the selection of the most convenient 
trajectory might be affected by the airport runway
configuration.

Even though new predictive features can contribute to 
improving the prediction performance of the model, an 
excessive number of features could undermine the model 
training process and lead to overfitting issues. To avoid  these 
problems, Recursive Feature Elimination (RFE) has been used 
to automatically reduce the feature set  to  the m ost relevant  
features.

C. Benchmark Model: PREDICT
In order to evaluate the performance of the proposed 

models, their accuracy has been measured and compared 
against that of PREDICT, the tool currently used by the 
Network Manager. Although the tool is mentioned in numerous 
EUROCONTROL documents, its implementation details a re 
not publicly available. The functioning of PREDICT has thus 
been emulated following the information available f rom the 
Network Manager documentation [10] a nd  the indications 
from EUROCONTROL experts. For each flight, the following 
workflow is applied: (1) look for previous flights with the same 

call sign on the same day of the week. If this is no t  possib le, 
the flight operated by the same company at the closest time of 
the day is selected; (2) if no previous flight for the company is 
available, the same operation is repeated regardless of the 
company; (3) if no flight has met the previous requirements 
yet, the most recent FPL for the same OD pair is selected.

III. DATA AND EXPERIMENTAL DESIGN

A key condition for the proper training of machine learning 
models is the use of large datasets, especially when the feature 
space is large. For the experiments reported in this paper, we 
have used data from EUROCONTROL’s Demand Data 
Repository (DDR) [11]. In particular, data from AIRAC cycles 
1801 to 1813 have been used. Thesedata cover 52  weeks o f 
traffic, from which the first 48 weeks have been used  to t rain  
the models and the last 4 weeks for testing. 

Validation experiments have been conducted for a to tal o f  
14,465 OD pairs (practically the whole network). Model 
evaluation has beenundertaken using as p rimary  metric the 
accuracy of the system, which is computed a ccording to  t he 
following principles:

A flight is considered as correctly predicted when the 
predicted flight levelmatches the RFL.
For each OD pair, accuracy is defined as the number of 
correct guesses divided by the number of total flights.
The result of each OD pair is weighted by the number 
of flights in that OD pair.

IV. RESULTS

All five algorithms mentioned in Section I I.B have been
tested for both the Basic and the Enhanced models in a reduced 

Figure 3 - Accuracy of the Basic Model by OD pair

Each point represents 
one OD pair accuracy 

The size of the point 
represents the 
number of flights 
 
Blue: ML > PREDICT  

Red: ML < PREDICT  

Green: ML = PREDICT 
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set of OD pairs. Preliminary results show that the Random 
Forest algorithm provides slightly better results. Therefore,
hereinafter we only report the Random Forest results. 

A. Basic Model Results
The Basic Model was tested on a total of 14,465OD pa irs

extracted from the available dataset. From these OD pa irs, 
10,787 OD pairs (75.6%) resulted in a model, while the rest  
were discarded either because the number of fligh ts wa s too  
low to train a machine learning model or because they have 
only one class (i.e., all flights have the same RFL). Figure 3
summarizes the results of the experiment:

For 60.33% of the OD pairs, the model shows better 
performance than PREDICT.
For 30.11% of the OD pairs, the proposed model 
provides worse results than PREDICT.
For 9.56% of the OD pairs, the proposed model shows 
similar accuracy than PREDICT.

In global terms, this translates into an increase of accuracy
of 3.2%. If, for each OD pair, the best approximation was
selected, the increase in the accuracy of the result ing hybrid 
system would be around 8%. 

B. EnhancedModel Results

TABLE 1 – ACCURACY OF THE ENHANCED MODEL

OD pair PREDICT Basic Model Enhanced 
Model

EDDF-UUEE 0.605 0.685 0.741

EDDK-LTAI 0.440 0.360 0.320

EDDT-LEPA 0.519 0.541 0.526

EGLL-OMDB 0.568 0.498 0.540

EHAM-LIRF 0.381 0.422 0.471

LEPA-EDDT 0.598 0.591 0.705

LFPG-LGAV 0.465 0.496 0.574

LFPO-LPPT 0.503 0.523 0.530

LGAV-LFPG 0.504 0.579 0.653

LIRF-EHAM 0.567 0.580 0.482

LPPT-LFPO 0.531 0.622 0.646

LTAI-EDDK 0.422 0.356 0.356

OMDB-EGLL 0.422 0.468 0.489

UUEE-EDDF 0.578 0.566 0.572

Average 0.507 0.521 0.543

At the moment of writing this paper, the Enhanced Model 
is still under development, so it has only been tested for a small 
subset of OD pairs, selected according to two main  criteria: 
(1) data availability; and (2) ensuring a  variety o f OD pa irs 

with different characteristics (length, congestion, etc.). The 
following pairs have been selected:

Antalya – Cologne Bonn (LTAI-EDDK)
Berlin Tegel – Palma de Mallorca (EDDT-LEPA)
London Heathrow – Dubai (EGLL-OMDB)
Athens – Paris Charles de Gaulle (LGAV-LFPG)
Amsterdam Schiphol – Roma Fiumicino (EHAM-
LIRF)
Lisbon Portela – Paris Orly (LPPT-LFPO)
Moscow Sheremetyevo – Frankfurt (UUEE-EDDF)

The results obtained are presented in TABLE 1. For the OD 
pairs under study, the Enhanced Model provides a 7% increase 
of accuracy with respect to PREDICT.

In order to provide a more detailed analysis on the k ind of 
variables used in the model of each OD pa ir, the number o f  
variables of each type are displayed in TABLE 2.

TABLE 2 - NUMBER OF CONSIDERED VARIABLE BY TYPE

OD pair Wind Convective
events

Past 
Regulations Local wind

EDDF-UUEE 4 6 0 2

EDDK-LTAI 3 7 0 2
EDDT-LEPA 4 5 1 3

EGLL-OMDB 2 7 0 3
EHAM-LIRF 1 7 0 4

LEPA-EDDT 1 8 0 4

LFPG-LGAV 3 7 0 2
LFPO-LPPT 3 6 0 3

LGAV-LFPG 1 7 0 4

LIRF-EHAM 3 5 0 4
LPPT-LFPO 3 5 0 4

LTAI-EDDK 1 9 0 2
OMDB-EGLL 2 7 1 2

UUEE-EDDF 3 7 0 2

The main observations from the table are the following:

RFE leads to pickingdifferent variables f or ea ch OD 
pair.
Local wind variables seem to be relevant in most cases, 
in particular for the destination airport.
Convective event variables are also relevant  in  every 
OD pair. It is worth noting that these variables 
represent more than half of the RFE-selected variables 
for almost every pair. The most important of these 
features is the k-index.
On-route wind seems to be relevant in general terms, 
although the effect is more relevant in certainpairs.
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Regulation basedvariables appear to be less relevant as 
they seldom are selected for the model.

C. Requested Flight Level versus optimal Flight Level
Finally, we have studied how close the RFL predicted with  

the machine learning approach is from the optimal RFL. To  
this end, the vertical profile of each flight has been sim ulated 
using the DYNAMO tool, developed by the Technical 
University of Catalonia [7], and the accuracy of both 
approaches has been compared.

While the optimal RFL (calculated using DYNAMO) only  
corresponds to the actual RFL in 10%of the cases, the Basic 
Model achieves an accuracy of 60%. Moreover, the average 
distance to the actual RFL records is higher for the 
optimization-based approach (3,240ft) than for the machine 
learning approach (1,580ft).

V. CONCLUSIONS AND NEXT STEPS

In this paper we have proposed and compared two machine 
learning models for RFL prediction: a Basic Model, based on a 
reduced set of features (time of the flight, day of the week, day 
of the year, airline, aircraft mass), and a n Enhanced  Model, 
which incorporates a number of additional variables a imed a t 
capturing the influence of wind, convective phenomena, 
congestion, and airport runway configuration. 

When tested at the level of the full European network, t he 
Basic Modelhas proven its ability to outperform the accuracy 
of the current Network Manager solution by 3.2%. The 
Enhanced Model has been tested on a reduced number o f OD 
pairs, showing promising results that outperform the Basic 
Model.

The following research questions have been ident ified a s 
interesting for future research:

Explore if the magnitude of the error (distance between 
failed prediction and actual RFL) has a ny im pact  on 
the demand or, on the contrary, all failed p redictions 
have a similar impact.
Investigate the applicability of the Enhanced Model to  
the entire network and the resulting prediction 
accuracy.
Explore the inclusion of new features, such as 
crosswind or the proximity of the route to a severe 
weather event, in the Enhanced model.
Develop algorithms for the automatic selection o f the 
most accurate algorithm for each OD pair.
Explore the feasibility of developing models covering 
several OD pairs, instead of training a single model for 
each one of them.
Integrate these results with previous work on route 
prediction in order to compute demand indicators a nd 

evaluate Demand and Capacity Balancing (DCB) 
problems.
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