Predicting Requested Flight Levels
with Machine Learning

Manuel Mateos, Ignacio Martin, Pedro Garcia,
Rubén Alcolea, Ricardo Herranz, Oliva G. Cantu-Ros
Nommon Solutions and Technologies
Madrid, Spain
nommon@nommon.es

Abstract— The objective of this paper is to present a machine
learning approach for the prediction of the Requested Flight
Level received during the pre-tactical phase of the Air Traffic
Flow and Capacity Management process. A set of machine
learning models are proposed in order to determine which
Requested Flight Level is the most likely to be filed by an
airspace user for a certain origin-destination pair. Results show
that the proposed system outperforms the pre-tactical traffic
forecasting approach currently used by the European Network
Manager in 60% of the 14,465 origin-destination pairs
considered in the study, reducing the error of the current
solution by 4.8%.
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l. INTRODUCTION

The goalof Air Traffic Flowand Capacity Management
(ATFCM) isto make airport and airspace capacity meet traffic
demand and, when capacity opportunities are exhausted,
optimise traffic flows to meet the available capacity, in a
seamless process that spans from strategic planning to
operations. In Europe, ATFCM is handled by the Network
Manager and comprises three phases: strategic planning covers
the planning phase between 18 months and 7 days before
operations; pre-tactical flowmanagementisapplied duringthe
six days priorto the day of operations; finally, tactical flow
management takes place in the day of operations.

In orderto detect demandandcapacity imbalances, the
Network Manager forecasts theexpected demand at a given
timeslot and for all possible airspace sectors (3D airspace
volumes) according to the information available at each
planninghorizon. Duringthe pre-tactical phase, when few or
no flight plans (FPLs) have been filed, the only flight
information available to the Network Manager aretheso-called
Flight Intentions (FIs), whichinclude the flightcall sign, the
airline, the origin and destination airports, the estimated
departure time, and aircraft model to be used. The information
about the lateral route and the Requested Flight Level (RFL) is
not available until Airspace Users (AUs) send their FPLs. To
estimatethis information, the Network Manager relies on the
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PREDICT tool, which is used to predict the FPL before it is
filed and provide the Network Manager Operations Centre
(NMOC) with the information required to ensure a correct
allocation of resources in coordination with Air Navigation
Service Providers (ANSPs). PREDICT generates traffic
forecasts according to the trajectories chosen by the same or
similar flight codes in the recent past, without taking advantage
of the information potentially encoded in historical FPLs and
trajectory data.

Recentwork hasexplored howto usethisinformation to
build machinelearning models for the prediction of the lateral
route during the pre-tactical phase ([1],[2],[3]). Some other
work has also applied machine learningmethods to predict the
completetrajectory (4D). Relevantexamplesare [4] and [5],
which consider wind and temperature as features for the
predictionofthe 4D trajectoryin the tactical phase, and [6],
which performs a short-term 4D trajectory prediction based on
the initial positionand velocity ofthe aircraft and the local
wind. On the other hand, data-based RFL prediction has
seldom beenspecifically addressed.

The predictionof RFL has usually beenstudied by means
of physical models that look foranoptimal trajectory (e.g., by
optimizing fuel consumption) ([7],[8],[9]). However, AUs do
not always request theoptimal flight level, either because it is
notavailable (e.g.,due to routerestrictions, ATC limitations,
etc.) orbecausetheydo not haveall the required information to
compute the optimal trajectory. Inthis paper we will focus on
developinga machinelearningapproach forthe prediction of
the RFL based on historical FPL data.

The rest of this paperis structured asfollows: Section 11
describes the proposed modellingapproachand the machine
learning models to be tested; Section Ill describes the
experiments designed to evaluate the performance of the
proposed models; Section 1V presents and discusses the main
results of the experiments; finally, Section Vsummarizes the

main conclusions of the study and discussesfuture steps.
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Il.  MACHINE LEARNING MODELS FOR RFL PREDICTION

A. Problem Statement

Although aircraft can fly at any altitude within their
performance range, Air Traffic Management (ATM) im poses
conditions on the allowed flying altitudes. Flight levels are
described by a number, which is the nominal altitude, or
pressure altitude, in hundredsof feet. ATM establishes rather
rigid rules to ensure vertical separation, which in practice
means thatmostintra-European flights require a single cruise
flight level at a very specific altitude. Consequently, the
predictionofthe RFLcan beseenasa supervised classification
problem, where classes are the potential RFLs each aircraftcan

fly.

These rules reduce the number of possible flightlevelsto a
fewdozensin the majority ofthecases, of which only a few
are recurrently used.
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Figure 1. Distribution of the number of different RFLs per OD pair

Figure 1 depicts how many origin-destination (OD) pairs in
the 14,465 0D pairs considered in the study account for each
value of different RFLs during the year 2018. The number of
OD pairs forwhich morethan 15different RFLs are used is
relatively small. For most OD pairs, the number of RFLs is
obviously lower. Figure 2 shows the example of the flights

between Amsterdam-Schipholand Rome-Fiumicino.
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Figure 2- RFL distribution for the OD pair EHAM-LIRF
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B. Machine Leaming Models
Accordingto thefeatures considered, two differentmodels
havebeendeveloped:

e Basic Model, which takes as inputs the time of the
flight, the day of the week (i.e., Monday, Tuesday,
etc.), the day of the year, the AU (airline), and the
aircraft mass.

o Enhanced Model, whichisbuilt ontop of the Basic
model by including weather and data on past
regulations.

Therationale behindthe Basic Modelissimple: the tool
currently used by the Network Manager, PREDICT, is based
on the weeklyrecurrence of FPLs. Theidea behind the Basic
Modelisto leverage suchweekly patterns and enrich them
with additional information to increase the prediction
capabilities of the resulting model. The attributes considered by
the modelaredescribed below:

e AU: one-hotencoding of the airline ICAO code.

e Day of week: one-hot encoding of the day of the week
when the flight takes place.

e Hour:sineandcosine oftheexpected take-off time
(ETOT) hour.

e Day of the year: sine and cosine of the day of the
year.

e Aircraft mass: maximum take-off weight (MTOW) of
the aircraft model.

Since there is no previous work that analyzes which
machine learning algorithm is the most adequate for the
proposed problem, the following classificationalgorithms were
implemented and tested:

e K-Nearest-Neighbours (KNN)

o Multinomial logistic regression
e Decision tree

e Random Forest

e SupportVector Machine (SVM)

The Enhanced Model is built by extending the Basic
Modelwith some external variables that might influence AUs
behaviour. Followingthe findings of previouswork ([2], [4],
[5]and [6]), 4 typesof external variables have been considered
forthismodel:

e Wind:it is measuredasthe averagewind projection
along the flight path, estimated by computing the
“alongpath” wind at specific points of eachobserved
traffic flow. It may be positive (tailwind) or negative
(headwind), with the magnitude indicating the strength
of the wind componentalongthe flight path. Although
it can sometimes haveaninfluenceon the RFL, in the
model described in this paper crosswind has been
neglectedand left for future research.
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e Convective phenomenaprobability: theaverage and
maximum values of the relative humidity, convective
available potential energy (CAPE) andk-indexateach
traffic flow are used as proxy variables of the
probability of occurrence of a storm.

e Pastregulations: theregulations observed during the
expected duration of the flight in the previous day,
seven days before, and during the last28 days areused

asan indicator of the expected congestion levels.

e Localwindatairports: thisisincluded toaccount for
the fact that the selection of the most convenient
trajectory might be affected by the airport runway

configuration.

Even though new predictive features can contribute to
improving the prediction performance of the model, an
excessive number of features could undermine the model
training process and leadto overfitting issues. To avoid these
problems, Recursive Feature Elimination (RFE) has beenused
to automatically reduce thefeatureset to the most relevant
features.

C. Benchmark Model: PREDICT

In order to evaluate the performance of the proposed
models, their accuracy has been measured and compared
against that of PREDICT, the tool currently used by the
Network Manager. Although thetool is mentioned in numerous
EUROCONTROL documents, itsimplementationdetails are
not publicly available. Thefunctioningof PREDICThas thus
been emulated following the informationavailable from the
Network Manager documentation[10] and the indications
from EUROCONTROL experts. Foreachflight, thefollowing
workflowisapplied: (1) look for previous flightswith the same

accuracy ML model
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callsign on the same day ofthe week. If thisis not possible,
the flight operated by thesame company attheclosesttime of
the dayisselected; (2) if no previous flightfor the company is
available, the same operation is repeated regardless of the
company; (3) if no flight has mettheprevious requirements
yet, the mostrecent FPL forthe same OD pair is selected.

I1l.  DATA AND EXPERIMENTAL DESIGN

A key condition for the proper training of machine learning
models is the use of large datasets, especially when thefeature
space is large. Forthe experimentsreported in this paper, we
have used data from EUROCONTROL’s Demand Data
Repository (DDR) [11]. In particular, data from AIRAC cycles
1801to1813have beenused. Thesedatacover 52 weeks of
traffic, fromwhich the first 48 weeks havebeenused to train

the models andthe last4 weeksfor testing.

Validationexperiments have beenconductedforatotal of
14,465 OD pairs (practically the whole network). Model
evaluationhas beenundertakenusingas primary metric the
accuracy of thesystem, whichis computed according to the
following principles:

o Aflightis considered as correctly predicted when the
predicted flight level matchesthe RFL.

e Foreach ODpair,accuracyisdefined asthe number of
correct guesses divided by the number of total flights.

e Theresultof eachOD pairis weighted by thenumber
of flightsin thatOD pair.

V. RESULTS

All five algorithms mentionedin Section I'1.B have been
tested for both the Basic and the Enhanced models in a reduced
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Figure 3 - Accuracy of the Basic Model by OD pair
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set of OD pairs. Preliminary results show that the Random
Forest algorithm provides slightly better results. Therefore,
hereinafter we only report the Random Forest results.

A. Basic Model Results

The Basic Modelwastested on atotal of 14,4650D pairs
extracted fromthe available dataset. From these OD pairs,
10,787 OD pairs (75.6%) resulted in a model, while the rest
were discarded either because the number of flights was too
low to train a machine learningmodel orbecause they have
only oneclass (i.e.,allflightshave thesameRFL). Figure 3
summarizes theresults of the experiment:

e For60.33%of the OD pairs, themodel shows better
performance than PREDICT.

e For 30.11% of the OD pairs, the proposed model
provides worseresultsthan PREDICT.

e For9.56% of the OD pairs, the proposed model shows
similaraccuracy than PREDICT.

In globalterms, this translatesinto anincrease ofaccuracy
of 3.2%. If, for each OD pair, the best approximation was
selected, the increase in theaccuracy of the resulting hybrid

with different characteristics (length, congestion, etc.). The
following pairs have been selected:

e Antalya— CologneBonn(LTAI-EDDK)

e Berlin Tegel-Palmade Mallorca (EDDT-LEPA)
e London Heathrow — Dubai (EGLL-OMDB)

e Athens-—Paris Charles de Gaulle (LGAV-LFPG)

e Amsterdam Schiphol — Roma Fiumicino (EHAM-
LIRF)

e Lisbon Portela— Paris Orly (LPPT-LFPO)
e Moscow Sheremetyevo — Frankfurt (UUEE-EDDF)

The results obtainedarepresented in TABLE 1. Forthe OD
pairsunder study, the Enhanced Model provides a 7%increase

of accuracy with respectto PREDICT.

In orderto provide amore detailedanalysisonthe kind of
variables usedin the modelofeachOD pair, the number of
variables of each type are displayed in TABLE 2.

TABLE 2 - NUMBER OF CONSIDERED VARIABLE BY TYPE

0 :
systemwould be around 8%. 1 Wind Coer:I\;encttSlve RegEIa::ions Local wind
B. Enhanced Model Results
EDDF-UUEE 4 6 0 2
TABLE 1 - ACCURACY OF THE ENHANCED MODEL EDDK-LTAI 3 7 0 2
EDDT-LEPA 4 5 1 3
. . Enhanced
OD pair PREDICT | Basic Model Model EGLL-OMDB 5 7 0 3
EDDF-UUEE 0.605 0.685 0.741 EHAM-LIRF 1 ’ 0 4
EDDK-LTAI 0.440 0.360 0.320 LEPA-EDDT ! 8 0 4
EDDT-LEPA 0.519 0.541 0.526 LFPG-LGAV 3 ! 0 2
LFPO-LPPT 3 6 0 3
EGLL-OMDB 0.568 0.498 0.540
LGAV-LFPG 1 7 0 4
EHAM-LIRF 0.381 0.422 0.471 LIRF-EHAM 3 : 0 P
LEPA-EDDT 0.598 0.591 0.705 LPPT-LEPO 3 5 0 4
LFPG-LGAV 0.465 0.496 0.574 LTAI-EDDK 1 9 0 2
LFPO-LPPT 0.503 0.523 0.530 OMDB-EGLL 2 7 1 2
LGAV-LFPG 0.504 0.579 0.653 UUEE-EDDF 3 I 0 2
LIRF-EHAM 0.567 0.580 0.482 . . .
The main observations from the table are the following:
LPPT-LFPO 0.531 0.622 0.646 o .
e RFEleadsto pickingdifferent variables for each OD
LTAI-EDDK 0.422 0.356 0.356 pair.
OMDB-EGLL 0.422 0.468 0.489 e Localwind variables seemto be relevantin most cases,
UUEE-EDDE 0578 0566 0572 in particular for the destinationairport.
" o e EE e Convectiveeventvariables are also relevant in every
verage : ; ; OD pair. It is worth noting that these variables

At the momentof writing this paper, the Enhanced Model
is still under development, so it hasonly beentested fora small
subset of OD pairs, selectedaccordingto two main criteria:
(1) dataavailability;and (2) ensuringa variety of OD pairs
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representmore than half of the RFE-selected variables
for almost every pair. The most important of these
featuresisthe k-index.

On-route windseemsto be relevantin general terms,
althoughtheeffect ismorerelevantin certain pairs.
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e Regulationbased variables appearto be less relevant as
they seldom areselected for the model.

C. Requested FlightLevelversus optimal Flight Level

Finally, we have studied how close the RFL predicted with
the machinelearningapproach isfromthe optimal RFL. To
thisend, the vertical profile of each flight has been simulated
using the DYNAMO tool, developed by the Technical
University of Catalonia [7], and the accuracy of both
approaches has been compared.

While the optimal RFL (calculated using DYNAMO) only
correspondstothe actual RFL in 10%of the cases, the Basic
Modelachievesan accuracy of 60%. Moreover, the average
distance to the actual RFL records is higher for the
optimization-based approach (3,240 ft) thanfor the machine
learningapproach (1,580ft).

V. CONCLUSIONS AND NEXT STEPS

In this paper we have proposed and compared two machine
learningmodels for RFL prediction: a Basic Model, basedona
reducedset of features(time of the flight, day of theweek, day
of the year, airline, aircraftmass),and an Enhanced Model,
which incorporatesa number of additional variables aimed at
capturing the influence of wind, convective phenomena,
congestion, and airport runway configuration.

When tested atthe level of thefull Europeannetwork, the
Basic Model hasprovenitsability to outperform the accuracy
of the current Network Manager solution by 3.2%. The
Enhanced Modelhas beentestedona reducednumber of OD
pairs, showing promising results that outperform the Basic
Model.

The followingresearch questions have beenidentified as
interesting for future research:

e Explore if the magnitude of the error (distance between
failed predictionandactual RFL) has any impact on
the demandor, on thecontrary, all failed predictions
havea similarimpact.

e Investigatetheapplicability ofthe Enhanced Model to
the entire network and the resulting prediction
accuracy.

e Explore the inclusion of new features, such as
crosswind or the proximity of the route to a severe
weather event, in the Enhanced model.

e Develop algorithms for theautomatic selection of the
most accuratealgorithmforeach OD pair.

e Explorethefeasibility of developingmodels covering
several OD pairs, instead of training a single model for
each one ofthem.

e Integrate these results with previous work on route
predictionin orderto compute demand indicators and
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evaluate Demand and Capacity Balancing (DCB)
problems.
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