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A B S T R A C T   

The aim of this work is to present a non-contact video-based method for respiratory rhythm extraction. The 
method makes use of a consumer-grade RGB camera, and it is based on computer vision algorithms to detect and 
track a custom pattern placed on the thorax of the subject. The respiratory signal is extracted by computing the 
changes in the position of the detected pattern through time. The method has been validated by comparing the 
extracted respiratory signal versus the one obtained with a reference method in adult population. The reference 
method was an inductive thorax plethysmography system (Respiband system from BioSignalsPlux™). 

21 healthy subjects were measured and four tests were performed for each subject. The respiratory signals and 
its respiratory cycles were extracted. To characterise the error, the respiratory cycles were assessed with: the 
Fisher intra-class correlation (ICC), mean absolute error (MAE), the mean absolute percentage error (MAPE) and 
four Bland-Altman plots were obtained. The results show a > 0.9 correlation for controlled respiration and >
0.85 for unconstrained respiration between the proposed method and the reference method, with low error 
results (MAPE < 4% for constrained respiration and < 6% for unconstrained respiration) and with a high 
sensitivity when detecting the respiratory cycles (> 94% in all cases). 

From the obtained results we can conclude that the proposed algorithm is adequate to acquire the respiratory 
signal for rhythm extraction, in real-time with a high performance when compared with the reference method, 
and that it could be applied to real-life situations.   

1. Introduction 

The analysis of the respiratory signal has been a topic for study in 
medical practice in the last century, with special relevance on detecting 
sleep disorders or respiratory related pathologies [1,2]. Nowadays the 
analysis of the respiratory signal has been expanded to other fields that 
differ from medical practice, such as detection of respiratory frequency 
during exercise [3] or even to assess the parasympathetic activity of the 
autonomous nervous system related to the breathing frequency [4]. 

Advanced driver-assistance systems (ADAS) have been also a 
persistent topic for the past few years. These systems have been designed 
to increase the safety on the roads; one example of these systems could 
be the drowsiness detection algorithms while driving. Those, are of an 
special interest as sleeping while driving has 17% average prevalence in 
Europe, 7% of which suffered a crash as a direct consequence of falling 
asleep while driving [5]. To assess this issue, multiple systems have been 
proposed to detect attention [6] or even try to assess drowsiness by the 
means of physiological variables such as EEG [7] or ECG [8]. Although 

all these examples have been designed to obtain and analyse these 
variables, none of them can be used in real life. Among their limitations, 
we find a dependence on devices that have to be placed on the driver, 
either in the head or chest (EEG and ECG), moreover both methods 
suffer from motion artefacts. Another issue is that the implemented al
gorithms are not suitable for the measurement environment, such as 
sudden movements of the subject or real-time performance. A new novel 
approach to detect drowsiness based on the acquisition and processing 
of physiological variables has been presented [9,10]. This method uses 
the respiratory signal to detect the drowsiness of the subject while 
driving, hence the algorithms can perform in real-life conditions. 

On the other hand, acquisition of physiological variables through 
non-contact methods have also been a recurring topic in the past few 
years. Nowadays, signals such as respiration or heart rate can be easily 
acquired with a wide variety of methods [11–13], comprising from ul
trasound systems [11] to more advanced Doppler radar-based methods 
[12]. 

More recently, acquisition methods based on consumer-grade 
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cameras have been proposed [14–18]. This methods comprise a wide 
variety of processing algorithms ranging from Eulerian Video Magnifi
cation [19] to colour intensity variation analysis or even Optical Flow 
approaches [20]. On the other hand, multiple studies can be found in the 
literature where there is a lack of validation of the obtained respiratory 
signal in terms of breath to breath error reporting. Nevertheless, just a 
few of them can actually work in real-time or be suitable to perform with 
real-life conditions. 

As an example, the methodology proposed in [14] can be used to 
obtain the physiological variables of multiple subjects, but as a limita
tion, it does not provide any breath to breath error assessment and it 
relies on a manual ROI selection for the algorithm to properly work. 
Another example of respiratory signal extraction is presented in [16], 
although this method does not require any ROI, as the algorithm uses the 
whole image to compute the Optical Flow in order to measure the res
piratory signal, may not be suitable to be used in a moving environment 
where the background is always changing. Moreover, the study does not 
report the error in terms of breath to breath analysis but as the mean 
respiratory rate in a 10 s window. Another example of non-contact 
method is [17], that uses an RGB-D camera (Microsoft Kinect) to 
obtain the respiratory signal. In this study, the ROI is obtained by the 
means of the pose-skeletal estimation given by the Kinect camera. One 
downside of the method proposed in [17], and although it can perform 
in real-time and the ROI is automatically obtained, is that it requires 
specialised hardware. 

The method proposed in [18], it performs in real-time and while the 
subject does not need to select a ROI as it is already preselected, as the 
subject needs to stand still in front of the camera any postural change 
will have a negative impact in the extracted respiratory signal. [15] 
requires a ROI to be selected by the subject before the algorithm can 
start to measure, this processing step could limit the use case inside a 
vehicle, as multiple subjects may need to recalibrate the ROI prior to 
driving. One novelty of the method in [15] lies on the breath to breath 
analysis of the method compared to a reference method. 

The aim of this work is to present a non-contact method [21,22] to 
acquire the respiratory signal with the use of a consumer-grade camera. 
The proposed algorithm detects the thoraco-abdominal movements by 
the means of a custom-designed pattern placed on the chest of the 
subject. The algorithm has been designed to work in real-time as the 
extracted signal is intended, but not limited, to be used in the future for 
the detection of drowsiness [9,10] while driving. To validate the pro
posed method, the extracted signal has been compared with a com
mercial inductive plethysmography system (Respiband from 
BioSignalsPlux™ [23]) used as a reference method on a breath to breath 
basis. A car chair has been used to emulate a real cockpit as the final 
objective of this method is to acquire the respiratory signal while 
driving. Both reference method and video-feed from the camera have 
been acquired simultaneously with the same computer. 

Fig. 1. Flowchart of the proposed algorithm.  

M. Mateu-Mateus et al.                                                                                                                                                                                                                        



Biomedical Signal Processing and Control 66 (2021) 102443

3

2. Materials and methods 

2.1. Proposed algorithm 

Fig. 1 shows the full diagram of the proposed algorithm with all the 
steps and its relationships. In the diagram, three distinctive stages are 
defined: Pattern Detection, Feature Tracking and Signal Extraction. The 
algorithm was designed to perform in real-time, which implies that the 
execution time of the whole algorithm should not exceed the the time 
interval between two consecutive frames. The proposed algorithm was 
built based on OpenCV version 3.4. 

2.1.1. Reference image 
The generated pattern and the reference image used by the algorithm 

are presented in Fig. 2. The pattern consists on a series of vertical an 
horizontal lines, with three squares on the top and bottom of the image, 
respectively, to maximize the amount of features that can be extracted, 
as well as the contrast between lines and background. An example of the 
generated pattern is depicted in Fig. 2a. While the generated pattern has 
been designed to maximize features, number of corners present in the 
image and contrast between lines and background, as it is a computer 
generated image there is no “texture” on it, and provided that a printed 
pattern will be used on the subject (Fig. 2c), the computer generated 
pattern cannot be used as a reference image as it would produce less 
matching characteristics between the pattern located inside the scene 
and the reference image. A photography of the printed pattern on a black 
background has been taken to be used as a reference image, as it can be 
seen in Fig. 2b. This later image provides more information about the 
real texture (features and characteristics), as well as more similarities 
with the one used on the subject, than the computer generated one. 

Once the patterns are placed on the subject, as depicted in Fig. 2c, the 
algorithm can start the detection of the pattern inside the frame, 
tracking of the obtained features, and the posterior respiratory signal 
extraction. 

2.1.2. Pattern detection 
This section refers to the part of the proposed algorithm represented 

in the dotted region inside Fig. 1 comprised on: extracting the features of 
both reference image and frame, matching the features to obtain the 
locations of the patterns in the image, clustering the detected features so 
multiple patterns can be found inside one frame, and finally, performing 
an Homography [24] for each pattern (cluster of features) to guarantee 
that no false-positives are found. 

The feature extraction is done by the means of the ORB algorithm 
[25]. ORB (Oriented FAST and Rotated Brief) is an algorithm proposed 
by Rublee et al. and implemented in OpenCV, that extracts the most 
relevant features (characteristics of the image related to corners and 
texture) from both the reference pattern and the given frame. The use of 
this algorithm is justified as it has been proven reliable to rotations and 
illumination changes [25] in comparison to other feature extractors such 
as SIFT [26]. Moreover, its computing efficiency has been proven in 

different scenarios [25], making it ideal for real-time applications. The 
maximum number of extracted features are limited to 1000 for the frame 
and 400 for the reference image, this difference in extracted features is 
due to the difference in the size of the images, being the frame a 1080p 
image and the reference pattern a 108 × 108 px image. To perform the 
matching between the features of the reference image and the ones 
obtained from the frame, the FLANN matching algorithm [27,28] has 
been used. This algorithm uses the k-nearest neighbours [29] with an l2 
norm to match each feature obtained with the previous step, forming 
feature pairs. After this step the features that did not match the ones on 
the reference image are discarded. 

Once the matching features are extracted from the frame, and as it 
can be more than one pattern placed on top of the subject, a k-means 
algorithm [30,31] is applied to the features in order to extract the 
different feature clusters that belong to each pattern. The k-means 
clustering algorithm can be applied as the features that belong to one 
concrete pattern have a higher probability to be close to each other, 
while at the same time be far from other features that belong to other 
patterns. This step is crucial in order to discern the location of the 
different patterns inside the frame and to perform its posterior tracking, 
thus allowing multiple measuring points of the subject. 

After the clustering is applied, for each cluster an Homography al
gorithm [24] using RANSAC (Random Sample Consensus) [29,32] is 
used to find true pairs between the obtained features from the previous 
steps and the ones in the reference image. 

Homography, as defined by Vincent et al. [24], is the projective 
transformation of the same feature between two images, the formal 
definition of homography can be seen in Eq. (1). 

x′ T Fx = 0
x′

= Hx
(1)  

where x′ T and x represent a pair of corresponding points on images x′

and x respectively, F is the fundamental matrix relating both points and 
H is the projective transform between the images x′ and x, if the images 
are of the same world point and plane as defined by Vincent et al. [24]. 

In order to show the basic operative of the RANSAC algorithm to find 
true pairs of features, three simplified steps are shown:  

1 The variance normalized correlation is applied between all feature 
pairs, if the correlation is sufficiently high, the pair is deemed 
candidate. 

2 From the candidate pairs, four points are selected and the Homog
raphy (Eq. (1)) is computed.  

3 If the l2 norm between Hx and x for a set of candidate pairs is below a 
certain threshold, the used features are selected as valid. 

A more detailed explanation of how the RANSAC algorithm is applied to 
each pair of features by Vincent et al., can be found in [24]. 

These algorithms are used to find true matches between pairs of 
features (reference image vs predicted pattern) in order to guarantee 
that all the features are completely bijective between each other and to 

Fig. 2. (a) Generated pattern, (b) reference image using the generated pattern, (c) pattern location on the subject. Figures (b) and (c) extracted from [22], Copyright 
Elsevier 2019, all rights reserved. 
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remove any possible outliers. This step is performed once for each 
cluster. As a result, each one of the obtained features corresponds to a 
unique characteristic (corner or texture) present in both the reference 
image and the pattern inside the scene. 

Finally, once all the clusters are analysed, the remaining features in 
each cluster are marked as features to track and passed on to the next 
section of the algorithm. 

2.1.3. Feature tracking 
Once the pattern features are located inside the frame and there are 

enough features to track, the next step is to compute the evolution of 
these features frame by frame. This tracking is performed by the means 
of the pyramidal implementation of the Kanade–Lucas–Tomasi (KLT) 
[20] optical flow algorithm. The optical flow is defined by Bouguet et al. 
as the estimated movement of an object inside a frame given two 
consecutive images. A more formal description of the algorithm, 
extracted from [20], can be found in Eq. (2) 

ε(d,A) =
∑wx

x=− wx

∑wy

y=− wy

(I(x + u) − J(Ax + d + u))2 (2)  

where ε(d,A) is the residual function to minimize in order to obtain the 
affine tracking (optical flow) represented as the vector d and the affine 
transformation defined as the matrix A for a given point u = [ux uy]

T 

represented in both images. I(x) and J(x) represent two consecutive 
values (pixels) from two consecutive frames I and J at the coordinates 
x = [x y]T. The integration region is defined by wx and wy. 

As it can be seen in Eq. (2), in order for this algorithm to work two 
consecutive frames are needed. After the detection stage the one that 
was originally used to locate the features and the next frame from the 
camera are used. For clarification, the original frame will be named 
frame1 and the next frame from the camera will be named frame2 from 
now on. 

The tracking algorithm and the feature verification have been 
extracted from the lk_track.py [33] example from the OpenCV library. 
The algorithm is implemented in the following way:  

1 First, the locations for each feature on frame2 are predicted with the 
KLT algorithm.  

2 The predicted locations are then used to compute a prediction of the 
original locations on frame1.  

3 The l2 norm between the original features and the predicted original 
features from the last step is computed. The features which computed 
norm exceeds 1 pixel are automatically discarded. This distance has 
been chosen empirically as it was the one that yielded better results.  

4 Finally, the features that were not discarded in the previous step, are 
then updated with the new location (frame2) and then used to 
compute the respiratory signal. 

Computing the distance between the original location and the pre
dicted one is crucial to guarantee the position of the different pattern 
features through the video feed [33], as this step prevents errors in the 
respiratory signal produced by these features “wandering” off the region 
of interest. 

It has to be noted that the tracking stage does not update the position 
of the whole pattern but the features in it, as the real position of the 
pattern is not necessary for the obtention of the respiratory signal. In the 
steps described in the next subsection, it can be seen how the tracked 
features are used instead of the pattern to obtain the respiratory signal. 

2.1.4. Signal extraction 
The respiratory signal is extracted from each pattern features by 

computing a centroid from the location of its features, and obtaining the 
distance from this centroid to the origin of the image (the upper left 
corner of the image). This centroid is computed by averaging the x and y 

coordinates for each feature as it can be seen in Eq. (3). 

xavg =
1
N

∑N

i=1
xi

yavg =
1
N

∑N

i=1
yi

(3)  

where N is the maximum number of features for each cluster, xavg is the 
averaged x component, yavg is the averaged y component. 

Once the centroid is computed, an l2 norm (Eq. (4)) is performed to 
obtain the distance between the centroid and the origin of coordinates. 

Rawi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

avg + y2
avg

√
(4) 

In order to extract the respiratory signal from the pattern, the pattern 
must be placed on the chest of the subject. Then, the variations on the 
computed distance are proportional to the displacement of the thorax 
[13], hence proportional to the respiration of the subject. The concate
nation of this computed distance for each frame conforms the Raw 
Respiratory Signal as it can be seen in Fig. 3. 

Once a respiratory point is extracted, the algorithms loops back to 
receive a new frame from the camera, if there are enough features to 
track from the last iteration the algorithm continuously tracks these 
features and extracts a new point of the respiratory signal. If there are 
not enough features, the algorithm will perform a new pattern detection 
to extract new features from the given frame. 

The proposed architecture allows to perform the detection of the 
pattern inside the frame only when needed, for this reason the perfor
mance of the proposed method while extracting the respiratory signal is 
only limited by the tracking and extraction stage and not by the detec
tion of the features inside the frame. 

2.2. Setup 

The reference method used to validate the method is the RespiBand 
inductive plethysmographic system from BioSignalsPlux™ [23] (PLUX 
wireless biosignals S.A., Portugal), which is comprised on a thoracic 
band and a Bluetooth transmitter. This system acquires the respiration of 
the user by sensing the volumetric changes in the thorax by the means of 
an inductive band. The displacement is sampled at 40 Hz with a 12 bit 
ADC, then the signal is filtered with a 1st order analogue band-pass filter 
between 0.058 Hz and 0.9 Hz. The sampled signal is sent via a Bluetooth 
classic serial port to the computer. 

The consumer-grade camera used in the setup was the Logi
tech™C920 (Logitech International S.A., Switzerland). A consumer- 
grade camera was chosen for this experiment to ensure that the pro
posed method could work without the need of dedicated hardware. The 
camera was configured to acquire at 15 frames/s with a full HD reso
lution (1080p), although the camera could be configured to record at 30 
fps at full HD, preliminary tests showed a systematic drop of framerate 
which in return produced a respiratory signal that was not sampled at a 
regular frequency. This does not pose as a problem in real-life situations 
where the lost sample can be interpolated, but solving this issue eases 
the posterior comparison with the reference method. Also, automatic 
exposure was disabled and white balance was blocked in order to 
maintain the framerate constant. The field of view (FOV) of the camera 
is 74.42◦ × 43.30◦ (H x V). 

The light source used to illuminate the subjects was an LED bulb from 
the Verbatim manufacturer with reference 52130. The light has the 
following specifications: warm white colour (CCT: 3000 K), 6.5 W, lu
minous flux of 480 lm and a beam angle of 130◦. The light source was 
placed at 70 cm from the subject by the means of a parabolic light 
holder. 

In Fig. 4a, the disposition of the camera within the setup can be 
appreciated. The camera was placed approximately at 70 cm from the 
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subject as it can be seen in Fig. 4b. Three patterns were placed on top of 
the seatbelt and inside the field of view of the camera. The Respiband 
system was placed on the subject’s thorax below the chest. The location 
of the patterns and the Respiband system can be seen on Fig. 2c. 

Prior to any test, the lighting in the room was conditioned and both 
the exposition and white balance of the camera were fixed, to ensure the 
same level of illumination for each subject. Although the algorithm was 
conceived to run on real-time systems, to make the study more reliable 
and repeatable, and for the further analysis of the obtained signals, the 
video feed from the camera and the reference method were recorded 
using a laptop PC. Both signals were later synchronized using the 
timestamp of the PC. 

The used PC was an ASUS ROG gaming laptop with the following 
specifications: Intel i7-4710HQ, Nvidia GeForce GTX 850M and 8 GB of 
RAM. The OpenCV library was compiled without CUDA support, and 
only multithreading support with default settings was enabled. 

2.3. Measurement protocol 

Twenty-one healthy subjects with ages comprised between 20 years 
and 54 years (Mean: 26.6 years, SD: 6.8 years), with 10 of the subjects 
being female, with height comprised between 160 cm and 190 cm 
(Mean: 170.8 cm, SD: 7.4 cm) and chest perimeter comprised between 
74 cm and 110 cm (Mean: 88.4 cm, SD: 10.2 cm) volunteered for the 
study. Each subject gave their oral informed consent to freely participate 
in this study, and this study was performed in accordance with the 
principles of the Declaration of Helsinki [34]. All the measurements 
performed complied with the regulations of the Universitat Politècnica 
de Catalunya (UPC). 

Prior to performing the measurements, each subject was asked to put 
on the RespiBan system below the chest near the abdominal region and 
on top of the belly, to seat on the seat and to fasten the seatbelt placed on 
the setup and to remain as still as possible during the test. 

Each subject was asked to perform four tests. The test consisted on 
the subject breathing at a given frequency or with a given constraint, in 
two of the four tests the subject had to breath at 0.1 Hz and 0.3 Hz, and 
in the two remaining tests to breath freely and to read out loud a text. To 
aid the subject in the first two test (constant frequency) a custom visual 

aid was developed. The aid consisted on a moving bar with 1/3 of the 
period for inhaling and 2/3 of period for exhaling. Each test had a 
duration of 3 min with a 30 s pause between them. In total, the duration 
of the four tests for each subject was approximately 15 min. 

2.4. Signal processing 

Prior to the analysis of the acquired signals a normalization must be 
performed. The same procedures and methodologies used in [22,35] 
have been applied in this article (Fig. 5). The normalization steps taken 
in both signals were the following:  

1 The signals were interpolated at 40 Hz using a cubic spline, in order 
to homogenise the sample frequencies of both methods.  

2 A bandpass filter between 0.05 Hz and 1 Hz was applied to eliminate 
undesired components and to remove possible base-line drifts in the 
signal. The applied filter was a digital zero-phase 2nd order bidi
rectional Butterworth filter.  

3 A moving median filter [36] was applied to the signal to remove 
peaks induced by the previous stage, produced by transitory periods 
due to the rapid involuntary movements of the subject (that do not 
trigger the pattern detection stage). The window of the filter was set 
to three seconds, this length was proven enough to smooth the signal, 
and at the same time shorter than an average breath cycle. The 
resultant signal was obtained by subtracting the median filtered 
signal to the original signal. 

4 Finally, to compress the signal between 1 and -1 a non-linear func
tion was applied [37] as described in Eq. (5). 

Sn[n] = arctan
S[n]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

i=1
(S[i]− S)2

N− 1

√

⋅
̅̅̅
2

√
(5)  

where Sn[n] is the discrete normalized respiratory signal, S[n] is the raw 
respiratory signal after re-sampling and filtering and S is the mean of 
S[n]. 

Fig. 3. Fragment of a raw respiratory signal obtained with the proposed method. The y label “Au” stands for Arbitrary units.  

Fig. 4. (a) represents the position of the camera in the setup, (b) shows the actual setup. Figure (b) extracted from: [22], Copyright Elsevier 2019, all rights reserved.  
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2.5. Error characterization 

To characterize the error between the signal obtained from the 
proposed method and the one from the reference method, the respira
tory cycle series (RC) has been computed for each measurement method. 
The methodologies used are the ones described in [35]. Each RC series 
was obtained using the following steps:  

1 First, both respiratory signals were aligned using the intra-class 
Fisher correlation (ICC) [38] iterating around one period. Using 
one period ensures that both signals are perfectly aligned between 
each other. 

2 The first 10 s of each signal were cropped to avoid the initial tran
sitory of the filters.  

3 The percentile 65 was computed from the respiratory signal to obtain 
a threshold.  

4 The previous threshold was used to detect intersections with positive 
slopes in the respiratory signal.  

5 From the detected slopes, the time between positive slopes was 
computed to obtain the length of each respiratory cycle, hence the 
RC series. 

To assess the accuracy of the respiratory cycle detection, a cycle-to- 
cycle comparison has been performed using the following statistical 
methods: mean absolute error (MAE) (6), mean absolute percentage of 
error (MAPE) (7) and the standard deviation of the error (SDE) (8). The 
intra-class Fisher correlation (ICC) has also been computed between the 
respiratory signal from the two studied methods. 

ek[i] = Sk[i] − Gk[i]

MAEk =
1
N

∑N

i=1
|ek[i]|

(6) 

MAPEk =
1
N

∑N
i=1|ek[i]|

1
N

∑N
i=1Gk[i]

⋅100 (7) 

ek =
1
N

∑N

i=1
ek[i]

SDEk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

i=1
(ek[i] − ek)

2

N − 1

√ (8)  

where S[i] represents the RC series obtained from the proposed method, 
and G[i] represents the RC series obtained from the reference method, N 
represents the total number of breath cycles per subject and k is the 
analysed subject. 

To verify that the comparison between RC series has accurate results, 
and to evaluate the performance of the cycle detection on both the 
proposed method and the reference method, a confusion matrix has been 
computed with the following parameters:  

1 True Positive (TP): number of breath cycles which have been 
detected in the respiratory signals on both the proposed method and 
the reference method.  

2 False Positive (FP): number of breath cycles which have been 
detected in the respiratory signal on the proposed method, but have 
not been detected on the reference method.  

3 False Negative (FN): number of breath cycles which have been 
detected in the respiratory signal on the reference method but have 
not been detected on the proposed method.  

4 Sensitivity (SEN): ratio between TP and TP + FN.  
5 Predictability of positive value (PPV): coefficient between TP and TP 

+ FP. 

Finally a Bland–Altman [39] plot has been computed for all the tests, 
the magnitudes being compared are: all the respiratory cycles from the 
proposed method versus the ones obtained from the reference method, 
without making any distinction between subjects. The Bland–Altman 
plots have been computed using the methodology described in [39], 
where the x axis contains the mean of the cycles of proposed method and 
the reference method, while the y axis contains the cycles of the pro
posed method minus the cycles of the reference method. The limits of 
agreement have been computed as d ± 1.96s, where d represents the 
difference between the cycles from the proposed method and the cycles 
from the reference method, d represents the mean of the differences and 
s represents the standard deviation of the differences. 

3. Results 

3.1. Signals 

Fig. 6 shows an example of the comparison between a processed 
respiratory signal obtained with the reference method and the one ob
tained with the proposed method, in the same figure it can also be seen a 
comparison of the respiratory cycles obtained from the reference 
method and the ones obtained from the proposed method. 

3.2. Performance 

3.2.1. Computational cost 
The computational cost of the algorithm was obtained by computing 

the timings of the Pattern Detection stage and the combined Feature 
Tracking and Signal Extraction stage. The results obtained were (Mean 
± SD): for the Pattern Detection stage the computing time was 254.7 ±
2.8 ms and for the combined Feature Tracking and Signal Extraction 
stage the computing time was 12.4 ± 0.54 ms, this last time can be 
translated into a maximum of 80 frames/s at 1080p on the tracking 
stage. 

3.2.2. Statistics 
In order to clarify the following tables and figures, a naming 

convention has been adopted which renames the respiration test at 0.1 
Hz as “0.1 Hz”, the test at 0.3 Hz as “0.3 Hz”, the free breathing test as 
“Free” and finally, the test in which the subject was asked to read out 
loud a text as “Reading”. 

Table 1 shows the results obtained after characterizing the error 
between methods for each one of the four tests. Given the correlation 

Fig. 5. Normalized version of the raw signal fragment in Fig. 3.  
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between signals, it can be seen that the 0.1 Hz test was the one pre
senting a highest correlation (0.945) and the Reading test had the lowest 
one (0.85). The MAE and SDE results show that the 0.3 Hz test presented 
the lowest mean and standard deviation error and 0.1 Hz presented the 
highest. Finally, the MAPE results showed that the 0.1 Hz test was the 
one with highest accuracy and Reading had the lowest. The interactions 
between 0.1 Hz, 0.3 Hz, Free and Reading had been assessed by 
computing the paired t-test for all possible combinations, the only 
relevant results were for the 0.3 Hz versus the others where the t-test 
showed significant differences (p < 0.05), all the other results showed 
non-significant differences. 

Table 2 summarizes the aggregated confusion matrix for all the 
subjects for each test. The SEN results showed that all tests had a 
sensitivity greater than 90% being the lowest the Reading test with a 
94.02%. The PPV results show that: for 0.1 Hz, 0.3 Hz and Free the PPV 
was greater than 95% being only the Reading test was the one below 
90%. 

Fig. 7 contains four Bland–Altman plots comparing all the respira
tory cycles (RC) obtained from the reference method with the ones from 
the proposed method for each one of the four tests, where no distinction 
between subjects has been made. As it can be seen in Table 3 the 0.1 Hz 
test was the one with the highest mean error and both Reading and 0.3 
Hz tests presented the lowest. Analysing the standard deviation of the 
differences the 0.1 Hz test presented the highest deviation and the 0.3 Hz 
test presented the lowest, agreeing with the results shown in Table 1. 

4. Discussion 

In this study, an algorithm to extract the respiratory signal from a 
subject using a consumer-grade camera has been presented. The pro
posed algorithm performs (in its tracking stage) up to 80 fps, which 
makes it feasible to be used in real-life environments and in real-time 
situations. As it can be seen in Fig. 6 the respiratory signal extracted 
from the proposed algorithm presents a high agreement with the refer
ence method. 

Taking into account the results in Table 1, the controlled respiration 
tests (0.1 Hz and 0.3 Hz) showed a higher correlation than the uncon
trolled tests for the ICC between signals, this could be due to involuntary 
movements of the subject which produces artefacts and reduces the 
correlation between signals. In the case of Reading, this could also be 
explained by the changes induced in the respiratory signal produced by 
the subject reading out loud a text. 

Although there was a high correlation between methods, the corre
lation alone does not give information about how good the proposed 
method is, and how close are the detected cycles to the ones detected 
from the reference method. For this reason the MAE, SDE and MAPE of 
the respiratory cycles has also been computed. 

Relative to the MAE results: the 0.3 Hz test was the one that showed 
the lowest mean and standard deviation, this can be explained as the 0.3 
Hz has shorter respiratory cycles than the other tests, therefore the error 
in the estimation of the respiratory cycles is lower if compared with the 
other methods, hence reducing the mean and standard deviation of the 
error. The 0.1 Hz test was the one that showed the highest mean and 
standard deviation. This test was also the one with the longest respira
tory cycles (in Table 2 it can be seen that 0.1 Hz has 350 instead of the 
1040 cycles of 0.3 Hz, but both had practically the same FP and FN), this 
implies that any misalignment between the RC signals produces a higher 
error (mean and standard deviation) than when the cycles are short. For 
the Free and Reading test, the MAE results were practically the same 
being the SD of the Free test the highest, this can be explained if it is 
taken into consideration that both tests have approximately the same 
cycle length. 

For the SDE results, the 0.3 Hz test had the lowest SD and 0.1 Hz was 
the one with the highest. This results have the same interpretation as 
before, the tests which had shorter cycles presented lower errors. For 
both MAE and SDE all tests had a mean and standard deviation below 
0.5 s which is a fairly low error. 

The MAPE results for 0.1 Hz and 0.3 Hz tests were very similar to 
each other, being 0.1 Hz test the one with the lowest mean (high accu
racy). The Free and Reading test on the other hand, presented a higher 
mean and SD due to the more turbulent nature of the respiratory signal 
on such tests, being the Reading test the one with the highest error. It can 
also be appreciated that the MAPE results showed a higher error when 

Fig. 6. Comparison between respiratory signals and computed respiratory cycles obtained with the reference method (Dashed) and the proposed method.  

Table 1 
Correlation between methods, Mean ± Standard Deviation of MAE, MAPE and 
SDE.  

Test Corr. Signal (ICC) MAE [s] MAPE [%] SDE [s] 

0.1 Hz 0.945 0.331 ± 0.209  3.319 ± 2.342  0.461 ± 0.289  
0.3 Hz 0.931 0.123 ± 0.046  3.532 ± 1.286  0.179 ± 0.071  
Free 0.867 0.27 ± 0.282  4.638 ± 2.691  0.359 ± 0.368  

Reading 0.850 0.275 ± 0.168  5.627 ± 1.918  0.418 ± 0.274   

Table 2 
Confusion elements, sensitivity and predictability of positive value.  

Test TP FP FN SEN [%] PPV [%] 

0.1 Hz 350 7 12 96.69 98.04 
0.3 Hz 1040 5 13 98.77 99.52 
Free 817 31 40 95.33 96.34 

Reading 818 95 52 94.02 89.59  
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the correlation between signals was low and showed a lower error when 
the correlation was high, this can be explained if it is taken into account 
that the MAPE is penalized by the same factors as the correlation. 
Finally, it is important to remark that all tests are below 10% of mean 
MAPE error. 

To assess the error when computing the cycles from the respiratory 
signal, in Table 2 the results for the SEN and PPV are shown. The test 
with the lowest SEN result was the Reading test, this can be interpreted 
as when the subjects were reading out loud a text every subject had their 
own way of breathing, in other words, this translates in different arte
facts for each subject which in return increases the total number of FN 
cycles detected. If the SEN values for the Free and Reading tests are 
compared, it can be appreciated that both have practically the same 
number of TP, but for the reasons explained above, the Reading test 
almost doubles the amount of FP, having a significant increase in FN. As 
for the 0.1 Hz test the SEN is 96.69%, this can be explained by the low 
number of TP compared with the rest of the tests. Finally the 0.3 Hz test 
is the one with the highest SEN value (up to 98.77%). From the SEN 
results it can be inferred that in the worst case scenario (Reading), with 
the proposed algorithm more than 90% of Sensitivity can be achieved 
when detecting cycles from the extracted respiratory signal. 

For the PPV results, the Reading test is the one with the lowest value, 
this can be due to the same reasons as why SEN results are low for this 
particular test. For the rest of the tests the PPV results are greater than 
95% which implies a very accurate cycle detection for the proposed 
method in comparison with the reference method. 

The Bland–Altman results in Fig. 7 and in Table 3 showed that: for all 
the tests the mean is practically zero being the highest 9 ms for the 0.1 
Hz test. Regarding the constant frequency tests, it can be appreciated 
that the 0.3 Hz test presents lower limits of agreement with the cycles 
concentrated in a narrower interval in both axis if compared with the 0.1 
Hz test. being the latter the one with the highest SD (534 ms), which can 
be explained taking into consideration that a low number of Avg. Cycles 
induces more variability to this particular test. The results for the con
stant breathing test agree with the ones presented in Table 1, where the 
0.3 Hz test also presents a lower MAE and SDE results than the 0.1 Hz 
test. Regarding the Free and Reading tests, both present a higher 
dispersion than the constant breathing tests, being the limits of agree
ment comparable between them with the Reading presenting more SD 
than the Free test as it can be seen in Table 3. Finally, no bias error can be 
appreciated in any case, and a high agreement between the reference 
method and the proposed method can be found for all tests. 

In order to compare the proposed algorithm with the one proposed 
by Massaroni et al. [15], the results in this study have been adapted to 

the metrics of breaths/min presented in [15], the results are shown in 
Table 4. The only results that can be compared are the ones from the 
Free test as [15] does not use controlled respiratory frequencies. 

The mean MAE results obtained for the Free test are 0.862 breaths/ 
min, if compared with the best results in [15] (0.55 breaths/min) the 
obtained results are slightly worse, but if compared with their worst 
results (1.53 breaths/min) the ones presented in this study are better. 
For the Bland–Altman (BA), the proposed algorithm has a mean and std 
of 0.026 ± 1.425 breaths/min for the differences in the Free test, while 
[15] shows − 0.03 ± 1.78 breaths/min for the best result and − 0.06 ±

2.08 breaths/min for the worst result. The proposed algorithm, if taking 
into account the MAE and BA results, performs slightly better in terms of 
breath to breath detection than the one presented in [15]. 

The main differences between this study and the one presented in 
[15], is the lack of performance in real time and the ability to compute 
the region of interest (ROI) automatically, as [15] relies on prior in
formation given by the subject to compute the ROI in order to extract the 
respiratory signal. 

A comparison of the proposed method and other methods in the 
literature regarding the aforementioned parameters and if the study 
computes the breath to breath cycles are shown in Table 5. This table 
serves as an overview of the different novelties and limitations of the 
aforementioned methods compared with the proposed method. 

There were several limitations to this study, being the first the 
number of subjects that participated on the study. Not all the subjects 
could be included due to errors during the acquisition stage or due to 
errors on the signal extraction stage, only 21 subjects of the 23 that 
participated in the study could be used. The two subjects that were 
discarded had less than one minute of valid signal due to continuous 
excessive movement of the subject, which continuously triggered the 
pattern detection stage due to loss of features, during the tests. 

The second limitation was that all the tests were performed in a very 
controlled environment, for this reason it cannot be assured that the 
proposed algorithm would have the same performance in light changing 
conditions or in environments that present external vibrations as present 
inside a vehicle, which certainly will affect the results of the tracking 
stage. To assess this limitation, the proposed method will be tested in 

Fig. 7. Bland–Altman of the computed periods for each frequency. The central dashed line for each plot represents the mean of the points, the two upper and lower 
dashed line represent the confidence interval given by the mean ± the 95% of the standard deviation of the points, finally the dashed grey line represents the zero- 
mean line. 

Table 3 
Mean ± SD of the differences in the Bland–Altman plot in Fig. 7  

0.1 Hz [ms] 0.3 Hz [ms] Free [ms] Reading [ms] 

9 ± 534  0± 189  1 ± 364  0 ± 431   

Table 4 
Mean ± standard deviation of MAE, MAPE, SDE and BA differences in breaths/ 
min (bpm).  

Test MAE [bpm] MAPE [%] SDE [bpm] BA diff [bpm] 

0.1 Hz 0.518 ±
1.582  

6.129 ±
14.574  

1.518 ±
5.828  

0.405 ± 6.690  

0.3 Hz 0.629 ± 0.24  3.626 ± 1.395  0.946 ± 0.42  − 0.029 ±
1.0167  

Free 0.862 ±
0.793  

5.984 ± 5.874  1.268 ±
1.216  

0.026 ± 1.425  

Reading 1.279 ±
0.488  

8.111 ± 3.585  2.526 ±
1.305  

0.135 ± 2.832   

M. Mateu-Mateus et al.                                                                                                                                                                                                                        



Biomedical Signal Processing and Control 66 (2021) 102443

9

demanding environments which include external vibrations and light 
changing conditions. 

5. Conclusion 

A new non-contact video-based method to acquire respiratory signals 
using a consumer-grade camera has been presented. The proposed al
gorithm consists on detecting a known pattern inside the FOV of the 
camera, once the pattern is detected a tracking stage updates the loca
tion of the pattern for each frame. The respiratory signal is extracted 
from the location of each pattern forming the respiratory signal. The 
algorithm has been validated (21 subjects under four different breathing 
frequencies) using an inductive plethysmography system as a reference 
method. The results showed a high correlation between the proposed 
method and the reference method (≥ 0.85), with low error results (MAE 
< 0.34 s) and with a high sensitivity (SEN ≥ 94%) when detecting res
piratory cycles. 

In this article it has been proven that the proposed algorithm ac
quires the respiratory signal with high performance when compared 
with a reference method, and that it could be applied to real-life situa
tions. As a future work, because the proposed method is built based on 
the OpenCV library, it can be potentially used on other hardware plat
forms. For this reason, the performance of the proposed method will be 
assessed in embedded devices to broaden the field of application i.e in 
applications regarding sleep apnoea studies or ICU monitoring. More
over, as the proposed method has only been tested with healthy subjects, 
further studies will need to be performed to characterise the perfor
mance of the method in the presence of different respiratory conditions, 
while also broadening the number and variety of measured subjects. 
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William Freeman, Eulerian video magnification for revealing subtle changes in the 
world, ACM Trans. Graphics 31 (4) (2012), https://doi.org/10.1145/ 
2185520.2185561. 

[20] Jean-Yves Bouguet, Pyramidal Implementation of the Affine Lucas Kanade Feature 
Tracker Description of the Algorithm, Technical report, Intel Corporation, 2001. 
http://robots.stanford.edu/cs223b04/algo_affine_tracking.pdf. 

[21] Mireya Fernandez Chimeno, Juan Ramos Castro, Miguel Angel García Gonzalez, 
Federico Guede Fernandez, Marc Mateu Mateus, Noelia Rodriguez Iba nez, Bernat 
Bas Pujols, Jose Maria Alvarez Gomez, Respiratory Signal Extraction, 2018 https:// 
patentscope.wipo.int/search/en/detail.jsf?docId=WO2018121861. WO/2018/ 
121861. 

[22] M. Mateu-Mateus, F. Guede-Fernández, V. Ferrer-Mileo, M.A. García-González, 
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