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Abstract

This thesis develops a large eddy simulation framework for engineering
applications using the finite element method. It focuses on the numerical
formulation, the wall modelling approach as well as the generation of tur-
bulent inflow conditions, with emphasis on incompressible flows.

A low-dissipation formulation is introduced that uses a non-incremental
fractional step method to stabilize the pressure and allow the use of finite
element pairs that do not satisfy the inf-sup condition, such as equal order
interpolation for velocity and pressure. This stabilization introduces an error
of O(δt,h2) (for linear elements) in the conservation of kinetic energy, while
the final scheme preserves momentum and angular momentum. Explicit
subgrid scale models are used for turbulent closure. Temporal discretization
is performed through an explicit, energy-conserving Runge Kutta scheme,
coupled with an eigenvalue-based time step estimator. The formulation is
compared with the Variational Multiscale method in three common bench-
mark cases: the decaying isotropic turbulence, the Taylor-Green vortex and
the turbulent channel flow at Reτ = 395, 950 and 2003, with favorable
results without any need for ad hoc tuning. The formulation is further
evaluated in the flow over a sphere and the flow around an Ahmed body.

A new approach is introduced for wall modelling in a finite element
context. Instead of the classical finite element method, where part of the
domain is omitted and the wall model accounts for it, the mesh extends
all the way to the wall, as is commonly done in finite differences and finite
volumes. The new approach is tested in a turbulent channel flow at Reτ =
2003, a neutrally stratified atmospheric boundary layer and the flow over a
wall-mounted hump, where it is shown to offer a great improvement over the
classical finite element method. In addition, preliminary work is presented
on a two-layer non-equilibrium wall model that uses time-averaging to filter
the excess Reynolds stresses. It is tested in a turbulent channel flow at
Reτ = 2003 with accurate results. Furthermore a method of synthesizing
turbulent inflow conditions through the diffusion process is compared with a
precursor method on the flow over a three-dimensional hill, providing results
of similar quality at significantly less computational cost.

Finally, the complete framework is evaluated on the flow around the
DrivAer model, a realistic car model developed to facilitate aerodynamic
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investigations of passenger vehicles, as well as the flow over the Bolund hill,
a hill whose geometry represents a scaled-down model of the typical wind
farm site. Good agreement with the reference data is achieved.
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Chapter 1

Introduction

1.1 Background

Turbulent phenomena can be observed all around us. The vast majority
of fluid flows that exist in nature are under the heavy influence of turbulence.
This is especially evident in engineering applications where quantities of
interest are directly related to the turbulent behavior of the flow. Looking
for example at offshore wind farms, the losses in generated power due to
the turbulent wakes of the turbines can reach up to 20%. It is, therefore,
of utmost importance to accurately predict the turbulent flows in order to
optimize the design of wind turbines and farms, resulting in bigger gains in
the harvested power.

For centuries the main means of investigating turbulent flows was through
experimental techniques. From the whirling arm of Benjamin Robins in the
early 18th century to the first wind tunnel devised by Frank Wenham in
1871, scientists and engineers have always sought to create elaborate experi-
mental devices in order to thoroughly study fluid mechanics. More recently,
however, and with the ever-increasing computational power available, the
numerical simulation of fluid flows has become more prevalent. Computa-
tional Fluid Dynamics (CFD) can provide a cheaper and often faster alter-
native to experiments for the study of turbulence and the optimization of
design processes.

The motion of viscous fluids is described by the Navier-Stokes equations.
For incompressible fluids of constant density they can be defined as:

∂tu + u · ∇u−∇ · (2νε(u)) +∇p = f (1.1)

∇ · u = 0 (1.2)

where ν is the kinematic viscosity, ε(u) is the velocity strain rate tensor
defined as ε(u) := 1

2

(
∇u +∇Tu

)
, and f is the vector of external body

forces.

1
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Since the Navier-Stokes equations can only be analytically solved for
very simple cases, they instead need to be solved numerically. In order to
achieve maximum accuracy in the solution of the Navier-Stokes equations, a
discretization fine enough to capture all the scales of the flow is needed. Such
a discretization can be very computationally demanding in highly turbulent
flows, considering that there is a wide spectrum of dynamically active scales,
which increases with the Reynolds number.

For a homogeneous and isotropic turbulent flow, the ratio between the
integral length scale and the Kolmogorov scale is:

L

η
= O

(
Re3/4

)
(1.3)

where the integral length scale L denotes the size of the most energetic eddies
of the flow and the Kolmogorov scale η signifies the size of the smallest
turbulent structures. For a cubic volume of edge L, this means that one
would need O

(
Re3

)
degrees of freedom for an accurate prediction of the

flow. Both spatial and temporal resolution requirements are included in this
estimate. It becomes immediately obvious that a computation that seeks
to resolve all the scales of motion in a fluid (Direct Numerical Simulation -
DNS) would be practically infeasible for flows of engineering interest (with
Reynolds numbers typically ranging between 106 and 109). Therefore, DNS
is limited to fairly simple flows at low Reynolds numbers for the foreseeable
future.

Considering all of the above, there arises a need to coarsen the parame-
ters and only directly solve fewer scales, for the computation to become fea-
sible. However, just resolving the scales above a certain size threshold and
neglecting the smaller ones will not yield accurate results, since there exists
a dynamic relationship between all the scales, i.e. the behavior of the smaller
scales has a direct effect on that of the larger ones. To combat this problem,
approaches that seek to reduce the computational requirements through the
use of empirical modelling to approximate turbulent effects have been de-
vised. The most common are Reynolds-Averaged Navier-Stokes (RANS)
methods and Large Eddy Simulations (LES).

In RANS methods the flow equations are time-averaged and, thus, only
the mean flow is resolved. Empirical models are used to account for the
effects of turbulence. These methods have found extensive use in industry,
since they are simple to use and result in significant savings in computa-
tional cost. A major downside of this approach is that most RANS models
are typically tuned with specific flows in mind and there is not a universal
model that will be able to handle all turbulent flows. Furthermore, it strug-
gles to accurately predict highly unsteady flow phenomena, such as those
encountered for example in aeroacoustics, as well as the intermittent nature
of turbulence. In order to partially alleviate that problem, unsteady RANS
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methods have been constructed that can also predict some low-frequency
modes apart from the mean flow.

Large Eddy Simulations on the other hand perform a scale separation
between the large, energy-containing scales and the small, more universal
ones, by means of a low-pass filtering operation. The scales that are above
the filtering threshold can be adequately resolved on a relatively coarse grid,
while their interaction with the smaller scales is modelled. Since the small
scales are the most computationally expensive to resolve, this procedure
results in a significant reduction in the computational cost compared to
DNS, while still retaining great accuracy in the predictions.

1.2 Large Eddy Simulation

Scale separation is achieved by applying a low-pass filter to the velocity
field, such that the instantaneous velocity is decomposed to a filtered and a
residual component:

u(x) ≡ u(x) + u′(x) (1.4)

The filtering essentially applies a local spatial averaging over the filter
width ∆. Following Leonard [1], we can define u through the convolution:

u(x) =

∫ ∞
−∞

G(x− x′)u(x′)dx′ (1.5)

where G is a convolution kernel that depends on the type of the filter. Such
an explicit filter means that the filter width ∆ is not necessarily proportional
to the grid size h, allowing for a filter that is coarser than the grid. This type
of explicit filtering has the advantage of reducing numerical discretization
errors. It does, however, mean that more scales need to be modelled for the
same grid, thus increasing the modelling demands. Therefore, in practice,
the grid size is often used as the filter, resulting in what is commonly known
as implicit filtering. The latter approach is used in this work.

A schematic representation of the implicit filtering can be seen in Fig.
1.1, where the scales below the cutoff wave number k∆ = π/∆ are resolved,
while the rest of the scales are modelled. Here ∆ is directly related to the
grid size.

Applying the filtering procedure to equations 1.1 and 1.2 we obtain:

∂tu + u · ∇u−∇ · (2νε(u)) +∇p = f −∇ · τ (1.6)

∇ · u = 0 (1.7)

where the tensor
τ = uiuj − uiuj (1.8)

comes from the nonlinearity of the convection term. It expresses the effect
of the unresolved scales on the resolved ones. Since the original velocity
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k

E(k)

kΔ

resolved
modelled

Figure 1.1: Schematic representation of the implicit filtering operation. k∆

denotes the cutoff wave number, directly associated with the filter width ∆.

field u appears in Eq. 1.8, the tensor cannot be directly computed at the
discrete level and therefore needs to be modelled.

The classical way to address the modelling of tensor τ (which we will
refer to as the subgrid scale tensor) is through an explicit subgrid scale
model. Most of the current subgrid scale models rely on the concept of an
eddy viscosity νt, that relates the traceless part of the subgrid scale tensor T
to the strain tensor of the resolved velocity through the following expression:

ταij = τij −
1

3
δijτkk = −2νtεij (1.9)

The first such model to have been developed and still widely used is the
Smagorinsky model [2]. It calculates the eddy viscosity as:

νt = (Cs∆)2|ε| (1.10)

where ∆ denotes the filter width, |ε| =
√

2εijεij and Cs is the model con-
stant. A dynamic procedure was proposed by Germano et al. [3] and further
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enhanced by Lilly [4] and Meneveau et al. [5], where the model coefficient is
evaluated locally using an additional test filter (typically taken to be twice
∆), in order to better represent the local state of the flow. For more informa-
tion on the various subgrid scale models, the reader is referred to [6, 7]. In
this work the Vreman model [8], explained in detail in Section 2.3, is used
for turbulence closure. The low-dissipation formulation, presented in the
same section, makes use of explicit subgrid scale models and can therefore
be categorized as an explicit LES method.

An alternative approach to modelling the subgrid scales is to rely on
numerical dissipation to account for their effect on the resolved scales. This
type of approach was originally proposed by Boris et al. in [9]. They ad-
vocated that there should be no explicit filtering or subgrid scale model.
Instead both the filtering and the subgrid scale modelling are performed
implicitly by the numerics. This is achieved by using an appropriate nu-
merical method to solve the Navier-Stokes equations. The coarseness of
the grid leads to significant numerical stresses, that model the contribution
of the subgrid scales. Several methods have been developed following that
concept, with most of them falling under the non-oscillatory finite volume
(NFV) class of methods. A more detailed description of such methods can
be found in [10]. Here, we consider a residual-based Variational Multiscale
method that relies on a similar concept [11, 12, 13, 14, 15]. In this method,
the contribution of the subgrid scales is modelled through the numerical sta-
bilization used to stabilize the Galerkin finite element approximation. This
method is presented in Section 2.2. It is important to note that the scope
of this work (and Chapter 2 in particular) is not to provide a general com-
parison of the classical and implicit Large Eddy Simulations, but rather the
Variational Multiscale method, commonly used in the finite element com-
munity, with a new low-dissipation formulation.

Although LES is less computationally demanding than DNS, it is still
prohibitively expensive for wall-bounded flows at high Reynolds numbers.
The length scale of the energy-containing eddies is greatly reduced in the
near-wall region, which significantly increases the grid requirements in order
to resolve them. This leads to an exorbitant computational cost, comparable
to that of DNS. In an effort to alleviate this problem, wall modelling tech-
niques are instead used, where the near-wall turbulence is not resolved, but
is instead modelled. Additionally, since LES computes part of the turbulent
spectrum, inflow boundary conditions that possess characteristics of the in-
coming turbulence need to be prescribed. Imposing just the mean flow or
adding random perturbations is not successful, since a large upstream dis-
tance is required for the correct turbulent structures to develop, significantly
increasing the computational cost. Therefore, techniques for the generation
of turbulent inflow conditions are utilized. Both of these issues are addressed
in this work, with literature reviews presented in the respective chapters.
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1.3 State of the art review

The VMS framework was originally proposed by Hughes in [11], as a
means of designing finite element methods, that ensure stability in scenarios
where the standard Galerkin approximation is shown to falter. In a fluid
dynamics context, such scenarios occur in convection-dominated flows as
well as when finite element pairs that do not satisfy the inf-sup condition are
used. It was further established as a general framework for computational
mechanics in [12]. The framework relies on the concept of decomposing the
unknown into a finite element scale that is resolved, and a fine scale that
cannot be captured by the computational mesh and is instead approximated.
The latter is commonly referred to as subscale.

The method was first considered as a means of performing LES in [13],
and has since become highly popular within the finite element community.
An a priori scale separation through variational projection was utilized in
place of the traditional filtering procedure used in classical LES formula-
tions. In the proposed formulation the traditional Smagorinsky model acts
only on the small scales, allowing for consistency to be preserved in the
variational equation governing the large scales, since it does not contain any
modelling. The method was successfully applied to benchmark cases such as
the decaying isotropic turbulence and the turbulent channel flow [14, 15, 16].
Two different possibilities are explored for the eddy viscosity used in these
works: one that depends on the strain rate tensor of the large-scale veloc-
ity, named “large-small”, and one that depends on that of the small-scale
velocity, named “small-small”. Both approaches offered improved results
compared with the dynamic Smagorinsky model in a classical LES setting.
The effect of employing the dynamic Smagorinsky model on the small scales
was explored in [17, 18], where higher accuracy was achieved compared to
the static model. A different approach where the scale separation is extended
to obtain three scale groups was considered in [19, 20], where the unknown
is decomposed into the following: large resolved scales, small resolved scales
and unresolved scales. The turbulence model is then applied to the small
resolved scales. The three-scale VMS approach was extended to a mixed
finite element-finite volume framework in [21, 22] and tested in flows over
bluff bodies with good results. This type of approach will not be explored
in the context of this thesis. The reader is referred to the aforementioned
articles as well as [23] for a more detailed explanation.

A first mention of VMS as a fully implicit LES approach is encountered in
[24]. The author poses the question “how does the numerical method behave
as a physical model” as a point of further research, laying the ground for
the explicit subgrid scale model to be completely omitted in the formulation.
This idea was explored in detail by Calo in [25], albeit in a finite volume
context, as well as Hughes et al. [26] and Bazilevs et al. [27]. An alternative
approach to turbulence modelling, where the use of an eddy viscosity is
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avoided, was suggested. An analytical solution to the fine scale problem
is sought so that their effect on the coarse scales can be accounted for.
A residual-based approximation is used for the solution of the fine scales.
Different residual-based VMS methods can be derived, depending on the
exact treatment of the subscales. Instead of considering the subscales quasi-
static, the temporal derivative of the velocity subscales can be included in
the method, which leads to the so-called dynamic subscales [28]. Nonlinear
subscales are obtained by keeping the scale decomposition in the nonlinear
terms of the equations. Nonlinear scale splitting has shown to conserve
momentum globally [28]. Considering the subscale space to be L2-orthogonal
to the finite element space, proposed in [24, 29] has shown to allow for the
possibility of backscatter when combined with dynamic subscales [30, 31], as
well as produce numerical dissipation that is proportional to the molecular
one [32].

Extensive reviews on variational multiscale methods can be found in
[23, 33, 34, 35].

1.4 Scope of the thesis

The goal of this thesis is to develop a complete framework for performing
large eddy simulations of engineering applications, using the finite element
method, with emphasis on incompressible flows. This is achieved by focusing
on three different aspects:

Numerical formulation

The quality of computational simulations of fluid flows is highly dependent
on the numerical formulation of choice, especially in the case of LES, where
a significant portion of the turbulence is directly resolved, with only a weak
dependence on empirical modelling. Ideally, the numerical formulation needs
to: a) be able to offer accurate results without the need for ad hoc tuning
and b) be applicable (in terms of accuracy) for a wide variety of flows and
Reynolds numbers. A residual-based Variational Multiscale (VMS) method,
commonly used for large eddy simulations in the finite element community,
is assessed and a new formulation, that fulfills the above requirements, is
developed.

Wall modelling

As mentioned previously, performing wall-resolved LES in flows of industrial
interest can often incur a prohibitive computational cost. Therefore, build-
ing a framework that aims to be used in industrial applications must contain
wall-modelling techniques. An approach commonly used in finite elements
is evaluated and is shown to falter, which leads to the proposal of a new
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approach that significantly reduces the error in the predictions for velocity
and skin friction. Additionally, a non-equilibrium wall model is examined.

Inflow boundary conditions

Considering that the large scales of turbulence are directly resolved in LES,
the boundary conditions imposed at the inflow of the computational domain
cannot be laminar, but must instead contain information of the incoming
turbulence. Therefore, the generation of appropriate inflow conditions is
necessary. Several such techniques are examined and the best performing
one is selected with high focus on low computational cost and the simplicity
of implementation.

1.5 Computational framework

All the simulations presented in this thesis were performed using the
computational code Alya, developed in the Computer Applications in Sci-
ence and Engineering (CASE) department of the Barcelona Supercomput-
ing Center (BSC). Alya is a highly parallel finite element multiphysics code,
written in Fortran 90/95, optimized for large-scale computers, with a re-
ported scalability of up to 100.000 cores [36, 37]. The code is part of the
Unified European Application Benchmark Suite, provided in the Partnership
for Advanced Computing in Europe (PRACE) framework.

The code is structured into a kernel, which is responsible for the general
subroutines, solvers and parallelization, and different modules, where each
module represents different physics. In this work the Nastin module, which
solves the incompressible Navier-Stokes equations, has been predominantly
used. The code already contained important tools used in this thesis, such
as coupling structures. However, Alya is an ever-changing code, being si-
multaneously developed by a large number of people, which means that a
lot of effort is needed on a regular basis to adapt to the new status.

In-house scripts have been used for the generation of the computational
grids in simple geometries. For the more complex geometries, however,
commercial software has been used, namely ANSYS ICEM CFD and ANSA,
developed by BETA CAE Systems.

The simulations were carried out on MareNostrum, one of the most
powerful supercomputers worldwide, hosted in BSC. It consists of 48 racks
with 3,456 compute nodes, where each node contains 48 processors, resulting
in a total of over 165.000 processors. Its peak performance is reported at
11.1 petaflops.
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1.6 Outline of the thesis

The structure of the thesis is as follows:

Following this introduction, the incompressible Navier-Stokes problem
is presented in Chapter 2. The two different formulations considered here
for the solution of the problem, namely the Variational Multiscale method
and a new low-dissipation formulation, are introduced. The formulations
are compared in a set of benchmark cases, namely the decaying isotropic
turbulence, the Taylor-Green vortex and the turbulent channel flow. A
reasoning for selecting the low-dissipation formulation is provided, and the
formulation is further evaluated in more complex cases, such as the flow over
a sphere and the Ahmed body. This chapter elaborates on the material in:

Lehmkuhl O., Houzeaux G., Owen H., Chrysokentis G., Rodriguez I. A low-
dissipation finite element scheme for scale resolving simulations of turbulent
flows. Under revision. Journal of Computational Physics.

Chapter 3 examines methods for the generation of turbulent inflow con-
ditions. The precursor method is presented, before an extensive review on
techniques for synthesizing turbulence is performed. The method of creat-
ing a synthetic inflow through the diffusion process is explained. The two
methods are compared in the prediction of the flow over a three-dimensional
hill.

Wall modelling techniques are explored in Chapter 4. An estimate for the
computational requirements of resolving the inner layer is provided, justify-
ing the need for modelling the near-wall region. In Section 4.2, the approach
commonly used for wall-modelled LES in finite elements is examined and is
shown to falter both theoretically and in practice. Instead the approach typ-
ically used in finite differences is adapted and is shown to provide significant
improvements. Additionally, techniques such as moving the LES/wall model
interface further away from the wall and time-averaging the wall model in-
put are examined. All the aforementioned methods are evaluated in a wide
range of flows, such as the turbulent channel flow, the neutrally stratified at-
mospheric boundary layer and the flow over a wall-mounted hump. Finally,
in Section 4.3, preliminary work on a two-layer non-equilibrium wall model
is presented. The model uses time-averaging in order to filter the excess
of Reynolds stresses, a common problem in this family of models. Results
from a turbulent channel flow are presented. This chapter elaborates on the
material in:

Owen H., Chrysokentis G., Avila M., Mira D., Houzeaux G., Cajas J. C.,
Lehmkuhl O. Wall-modeled large-eddy simulation in a finite element frame-
work. In review. Computers and Fluids.

The complete framework developed in the previous chapters is employed
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in real world applications in Chapter 5. More specifically two complex ge-
ometries are examined: a) the DrivAer model, a realistic car model devel-
oped in the Technical University of Munich to facilitate aerodynamic inves-
tigations of passenger vehicles and b) the Bolund hill, a hill located on a
peninsula close to the city of Roskilde, Denmark, whose shape represents a
scaled-down model of the typical wind farm site. This chapter elaborates
on the material in:

Lehmkuhl O., Chrysokentis G., Gomez S., Owen H. Large eddy simula-
tion for automotive aerodynamics with Alya. In Tenth International Con-
ference on Computational Fluid Dynamics (ICCFD10), Barcelona (Spain),
9-13 July 2018.

Finally, conclusions are drawn in Chapter 6 and recommendations for
future work are presented.



Chapter 2

Numerical formulations

2.1 The incompressible Navier-Stokes equations

The Navier-Stokes equations for a fluid moving in the domain Ω bounded
by Γ = ∂Ω during the time interval (t0, tf ) consist in finding the velocity u
and a kinematic pressure p such that:

∂tu + u · ∇u−∇ · (2νε(u)) +∇p = f in Ω× (t0, tf ) (2.1)

∇ · u = 0 in Ω× (t0, tf ) (2.2)

where ν is the kinematic viscosity, ε(u) is the velocity strain rate tensor
defined as ε(u) := 1

2

(
∇u +∇Tu

)
, and f is the vector of external body

forces. The Dirichlet condition consists in prescribing the velocity, while the
Neumann condition consists in prescribing the traction σ ·n, where σ is the
stress tensor such that σ = −pI + 2νε(u). Let ΓD and ΓN be the Dirichlet
and Neumann parts of the boundary Γ respectively, such that ΓD ∪ΓN = Γ
and ΓD ∩ ΓN = ∅. The boundary conditions consist in prescribing:

u = uD on ΓD × (t0, tf )

σ · n = 0 on ΓN × (t0, tf ).
(2.3)

Additionally, initial conditions:

u = u0 in Ω× {t0} , (2.4)

have to be appended to the problem.
In order to obtain the weak or variational formulation of the Navier-

Stokes equations (2.1) and (2.2), the spaces of vector functions VD =
H1
D(Ω), V0 = H1

0(Ω) and Q = L2(Ω)/R are introduced. As usual, L2(Ω)
is the space of square-integrable functions, H1(Ω) is a subspace of L2(Ω)
formed by functions whose derivatives also belong to L2(Ω), H1

D(Ω) is a
subspace of H1(Ω) that satisfies the Dirichlet boundary conditions on Γ,
H1

0 (Ω) is a subspace of H1(Ω) whose functions are zero on Γ and H1
D and

11



12 Chapter 2. Numerical formulations

H1
0 are their vector counterparts in a 2 or 3 dimensional space. (·, ·) indicates

the standard L2 inner product.
For the evolutionary case Vt ≡ L2(t0, tf ; VD) and Qt ≡ D′(t0, tf ;Q) are

introduced, where Lp(t0, tf ;X) is the space of time dependent functions in

a normed space X such that
∫ tf
0
||f ||pXdt <∞, 1 6 p <∞ and Qt consists of

mappings whoseQ-norm is a distribution in time. The weak form of problem
(2.1, 2.2) with the boundary conditions we have just defined is then: Find
u ∈ Vt, p ∈ Qt such that:

(∂tu, v) + (u · ∇u, v) + 2(νε(u), ε(v))− (p,∇ · v) + (q,∇ · u) = (f , v),
(2.5)

for all (v, q) ∈ V0 ×Q.
The space discretization is built with the finite element method. VDh ⊂

VD, V0h ⊂ V0 and Qh ⊂ Q are the discrete linear subspaces that approxi-
mate the respective continuous spaces. The same interpolation will be used
for both the velocity and the pressure. VDh incorporates the Dirichlet con-
ditions for the velocity components and Qh has one pressure fixed to zero if
the normal component of the velocity is prescribed on the whole boundary.
The space discretized problem reads: Find un+1

h ∈ VDh and pn+1 ∈ Qh,
such that:

(∂tuh, vh) + (uh · ∇uh, vh) + 2(νε(uh), ε(vh))

− (ph,∇ · vh) + (qh,∇ · uh) = (f , vh),
(2.6)

for all (vh, qh) ∈ V0h ×Qh, which constitutes the Galerkin Finite Element
(FE) approximation.

2.2 Variational Multiscale method

The Galerkin Finite Element approximation (Eq. 2.6) is known to face
numerical instabilities in convection-dominated flows, which is often the case
in high Reynolds numbers problems. Additionally, in order for the problem
to be well-posed, the pair Vh × Qh needs to satisfy the inf-sup condition
[38]. In an effort to solve convection-dominated problems and allow for finite
element pairs that do not satisfy the inf-sup condition, Hughes proposed the
Variational Multiscale method (VMS) in [11, 12], presented in this section.
The idea is to use variational projections and restrict modelling to just the
fine-scale equations.

Let us consider the direct-sum decomposition of spaces V and Q into
coarse and fine scales:

V = Vh + Ṽ,

Q = Qh + Q̃
(2.7)
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where the coarse scale (or FE) component is identified via the subscript h
and the fine scale (or subgrid) component is identified via the superscript
(∼).

Problem (2.5) can be rewritten as:

(∂tu, v) +Bα (u, p; v, q) = (f , v) (2.8)

where

Bα (u, p; v, q) = (α · ∇u, v) + ν (∇u,∇v)− (p,∇ · v) + (q,∇ · u)

and α is an advection velocity equal to α = uh for linear or α = uh + ũ for
non-linear scale splitting (cf. [28]). Substituting (2.7) into (2.8) we obtain:

(∂tuh, vh)+Bα (uh, ph; vh, qh)+(∂tũ, vh)+Bα (ũ, p̃; vh, qh) = (f , vh), (2.9)

for the FE component and

(∂tuh, ṽ) +Bα (uh, ph; ṽ, q̃) + (∂tũ, ṽ) +Bα (ũ, p̃; ṽ, q̃) = (f , ṽ), (2.10)

for the subgrid component, for all (vh, qh) ∈ Vh ×Qh and (ṽ, q̃) ∈ Ṽ × Q̃.
If we perform an integration by parts on (2.9) we obtain:

(∂tuh, vh) +Bα (uh, ph; vh, qh) + (∂tũ, vh)+

(ũ,L∗ (vh, qh))− (p̃,∇ · vh) = (f , vh),
(2.11)

where L∗ is the adjoint of the operator L, defined as:

L (vh, qh) = −ν∇2vh +α · ∇vh +∇qh
L∗ (vh, qh) = −ν∇2vh −α · ∇vh −∇qh

The convective form of the non-linear term has been used in the previ-
ous equations, which is probably the most frequent choice in computational
practice and here it is referred to as the non-conservative form. Using (2.2)
other forms of the non-linear term can be derived which are equivalent at
the continuous level but have different properties at the discrete level. The
skew-symmetric form:

Cskew(α, u, v) = (α · ∇u, v) +
1

2
(∇ ·α, u · v) (2.12)

has the advantage that it conserves kinetic energy at the discrete level and
is commonly used in numerical analysis and direct numerical simulations
(DNS) and large-eddy simulations (LES), where energy conservation pro-
vides enhanced results.
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Considering that the subgrid scale equations cannot be directly solved,
we approximate the values of the subscales through the following equations:

∂tũ +
1

τ1
ũ = P (Rm) (2.13)

1

τ2
p̃ = P (Rc) (2.14)

where

Rm = f − ∂tuh − L (uh, ph) (2.15)

Rc = −∇ · uh (2.16)

are the residuals of the momentum and continuity equations respectively,
and P is their projection onto the space of the subscales. Defining P = I
leads to the Algebraic Subgrid Scale (ASGS) method, whereas P = Π⊥h
results in the Orthogonal Subscale (OSS) method [24, 29], where the space
of the subscales is chosen to be orthogonal to the finite element space. Using
a heuristic Fourier analysis for the subscale problem [24], the stabilization
parameters τ1 and τ2 can be approximated as follows:

τ1 =

[
c1
ν

h2
+ c2
|α|
h

]−1

(2.17)

τ2 =
h2

c1τ1
= ν +

c2

c1
|α|h (2.18)

where c1 and c2 are algorithmic constants and h denotes the mesh size. It
must be noted that expressions where τ1 depends on the time-step δt are
also common in literature [28, 39, 40].

The subscales can be categorized into quasi-static or dynamic, depending
on whether the temporal derivative of the subscales in (2.13) is neglected
or not. Considering the subscales to be time-dependent has shown to offer
improved stability over the pressure without restrictions on the time-step
size as well as improved accuracy. It also allows for commutativity of the
space and time discretization [28, 41]. The subscales can also be classified
as linear or non-linear, depending on the definition of the advection velocity
α (where, as stated earlier, α = uh leads to linear and α = uh + ũ to
non-linear subscales). Nonlinear scale splitting is shown to lead to global
conservation of momentum [28].

In order to understand the impact of the algorithmic constants c1 and
c2, we first need to derive the expression for the numerical dissipation in-
troduced by the formulation. The energy balance statement for the finite
element component, when dynamic subscales are used, can be obtained by
substituting vh = uh and qh = ph in Eq. 2.11:

1

2
dt||uh||2 + ν||∇uh||2 + (α · ∇uh, uh)

+
[

(∂tũ, uh) + (ũ,L∗ (uh, ph))− (p̃,∇ · uh)
]

= (f , uh)
(2.19)
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where ||·|| denotes the L2 norm. The expression in brackets in Eq. 2.19
corresponds to the energy transfer from the finite element scales to the
subscales, which is equivalent to the numerical dissipation of the method
εnum. Rewriting Eq. 2.13 and 2.14 as:

ũ = τ1 (P (Rm)− ∂tũ)

p̃ = τ2P (Rc)

and substituting them into the bracketed expression, using also Eq. 2.15
and 2.16, leads to:

εnum = (∂tũ, uh)− (τ1∂tũ,L∗ (uh, ph))− (τ1∂tuh,L∗ (uh, ph))

− (τ1L (uh, ph) ,L∗ (uh, ph)) + τ2||P∇ · uh||2
(2.20)

where the last two terms are positive and, therefore, dissipative, excluding
the viscous contribution. It can, thus, be seen that increasing either τ1 or
τ2 generally results in a more dissipative behavior. Using the expressions
from Eq. 2.17 and 2.18, we can observe that larger values of c1 lead to lower
τ1 and τ2 (or, equivalently, lower dissipation), while increasing c2 results in
reduced τ1 but increased τ2. It is also important to note that the first three
terms can be negative, allowing for the possibility of predicting backscatter
effects [30, 31].

Typically, the values considered for the algorithmic constants are c1 = 4
and c2 = 2 (see for example [29, 30]). Recently, Colomés et al. [42] examined
the influence of the algorithmic constants on the numerical dissipation of the
formulation. It is pointed out that τ2 is not necessary for the stabilization
of the pressure, and can therefore be taken equal to zero. In other words,
we can consider p ≈ ph, with the pressure subscale being p̃ ≈ 0. This choice,
which leads to a less dissipative method, is seen to offer improved accuracy
in the results. Similar behavior is observed when the value of c1 is increased
to c1 = 12 [43, 44]. This is consistent with the behavior observed in our
numerical experiments, and, therefore, the values c1 = 12 and τ2 = 0 have
been used in this chapter. However, the situation is not as clear in regards to
the value of the constant c2. In fact, different values of the constant perform
better in different types of flows. To that end, we consider both c2 = 2 and
c2 = 8 in the numerical problems examined in this chapter. It should also be
noted that the numerical dissipation of the formulation directly depends on
the element size h, through Eq. 2.17 and Eq. 2.18. The specification of h is
not trivial for anisotropic elements. Nevertheless, in the numerical examples
of this chapter, the minimum size characterizing an element is used, with
the aim of reducing the numerical dissipation.

Backward differencing schemes are used for the time discretization of
equations (2.11) and (2.13). More specifically a second order backward
differentiation formula (BDF2) is used to discretize equation (2.11):

∂tu
n+1
h =

3un+1
h − 4unh + un−1

h

2δt
, (2.21)
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while a first order backward differentiation formula (also known as Backward
Euler method) is used in equation (2.13) in the case of dynamic subscales:

∂tu
n+1
h =

un+1
h − unh
δt

, (2.22)

where δt denotes the time step. As seen in Eq. 2.21 and 2.22, this temporal
scheme is implicit, since the solution depends on the unknown at the current
time step. Implicit schemes are known to have unconditional stability at
large values of the time step, however they require an iterative method for
the solution of the linear system, leading to a higher computational cost per
time step.

It is important to note at this point, that the formulation presented
above can be classified as an implicit large-eddy simulation method since it
relies on numerical dissipation to model the effect of the subscales, without
introducing any turbulent viscosity to the continuous problem. It can be
shown that, when the OSS method is used in conjunction with dynamic and
non-linear subscales, it produces a numerical dissipation that is proportional
to the molecular one [32] and it offers the possibility of predicting backscatter
[30, 31]. Therefore, the OSS method with dynamic and non-linear subscales
has been used in the examples presented in this chapter. Additionally, the
skew-symmetric form of the convective term (2.12) has been used in order
to conserve kinetic energy at the discrete level.

2.3 Low-Dissipation formulation

In the context of this thesis, where the LES framework aims to be appli-
cable over a wide range of engineering flows (e.g. aeronautics, combustion,
fluid-structure interaction), the formulation needs to be simple to implement
and use without depending on a plethora of parameters. It can be argued
that the Variational Multiscale method presented in the previous section
does not necessarily meet the aforementioned criteria. The amount of dif-
ferent options in regards to the treatment of the subscales, as well as the de-
pendence of the numerical dissipation on algorithmic constants, significantly
increase the complexity of the method and its implementation. Addition-
ally, stabilization mechanisms associated with a numerical dissipation might
add a non-physical damping mechanism to the discretized equations [45, 46].
Although this damping might be accepted in laminar or time-average flows,
it might interfere with the energy cascade in turbulent flows. To that end, a
new formulation is proposed. The formulation offers low numerical dissipa-
tion by construction, with a physical subgrid scale model accounting for the
effect of the unresolved scales. It relies on a simple fractional step scheme
to stabilize the pressure, making it straightforward to implement.

Recently, Charnyi et al. [47] presented a new formulation in the finite ele-
ment context that preserves energy at the inviscid limit, momentum, angular
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momentum, enstrophy in two-dimensions, helicity and vorticity without the
strong enforcement of the divergence constraint. They tested their formu-
lation using mixed finite elements in laminar two- and three-dimensional
flows and proved that none of the commonly used formulations conserves
energy, momentum and angular momentum. Following Charnyi et al. [47]
work, an extension of the conservative formulation to equal order finite ele-
ments for use in turbulent flows is presented. A non-incremental fractional
step method is used to stabilize the pressure, whereas for the explicit time
integration of the set of discrete equations, the energy conserving explicit
Runge-Kutta method recently proposed by Cappuano et al. [48] is combined
with an eigenvalue-based time-step estimator [49].

Let us consider the matrix form of the momentum and continuity equa-
tions:

M∂tU + K(U)U + GP = Rm, (2.23)

DU = Rc, (2.24)

where U, P are the arrays of the nodal unknowns for u and p respectively.
If we denote the node indexes with superscripts a, b, the space indexes with
subscripts i, j and the standard shape functions of node a with Na, the
components of the matrices involved in the previous equations are:

Mab
ij =

(
N b,Na

)
δij , (2.25)

K
(
Un+1

)
= KCONV(U) + KVISC(U), (2.26)

KVISC

(
Un+1

)ab
ij

=
(
νε
(
N b
)

, ε (Na)
)
δij , (2.27)

KCONV

(
Un+1

)ab
ij

=
(
uh · ∇N b,Na

)
δij +

(
∂iN

bujh,Na
)

+(
(∇ · uh)N b,Na

)
δij −

1

2

(
∂iu

j
hN

b,Na
)

,
(2.28)

Gab
i = −

(
N b, ∂iN

a
)

, (2.29)

Dab
j =

(
∂jN

b,Na
)

, (2.30)

where δij is the Kronecker δ. ujh is used to denote component j of vector uh.
The energy, momentum and angular momentum conserving (EMAC)

form of the convective term, recently proposed in [47], has been introduced
in Eq. 2.28:

Cemac(u) = 2u · ε(u) + (∇ · u)u− 1

2
∇|u|2, (2.31)
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which, as its name indicates, additionally conserves linear and angular mo-
mentum at the discrete level even if the conservation of mass is enforced
only weakly like in the case of stabilizing the continuity equation.

In the aforementioned publication, the last term of Eq. 2.31 was ab-
sorbed in the pressure by redefining the pressure as p∗ := p− 1

2 |u|
2 which, in

physical terms, has no meaning. We have rather chosen to include it explic-
itly in the formulation, to avoid having to implement non-physical Neumann
conditions at outflow boundaries. With this choice, Eq. 2.3 coincides with
the natural condition of the weak formulation (Eq. 2.5).

The matrices are obtained by grouping together the left indexes in the
previous expressions (a and possibly i) and the right indexes in the previous
expressions (b and possibly j). The vectors Rc and Rm include terms coming
from the application of the Dirichlet boundary conditions and the latter also
includes the contribution from the volumetric forces.

Since an explicit time discretization is used, the mass matrix is lumped
to avoid the solution of a linear system for the velocity as is usually done
for explicit schemes in the finite element context. From now onwards M will
refer to the lumped mass matrix.

The momentum equation can be rewritten as:

M∂tU = F−GP (2.32)

defining

F = −KU + Rm. (2.33)

Starting from equations 2.24 and 2.32, time discretization using an ex-
plicit Runge-Kutta scheme and imposition of a divergence-free constraint
with a fractional step scheme [50] implies solving the following equations:

Ui,∗ = Un + δtM−1
i∑

j=1

αijF
j , (2.34)

DM−1G
(
Φi
)

=
1

ciδt

(
DUi,∗ − Rc

)
, (2.35)

Ui = Ui,∗ − ciδtM−1G
(
Φi
)

, (2.36)

for substeps i = 2, s (for the first substep, U1 = Un) and finally obtaining
the unknowns at the new step from:

Un+1,∗ = Un + δtM−1
s∑
i=1

biF
i, (2.37)

DM−1G
(
Φn+1

)
=

1

δt

(
DUn+1,∗ − Rc

)
, (2.38)
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Un+1 = Un+1,∗ − δtM−1G
(
Φn+1

)
, (2.39)

where αij , bi and ci =
∑

j αij are the coefficients of the Runge-Kutta scheme,
δt is the time-step size and the pseudo-pressure, Φ, is a first order approxi-
mation to the pressure:

Φ = P +O(δt). (2.40)

In spite of this approximation, the accuracy in the velocity is not affected
and it depends on the accuracy of the Runge-Kutta used. If one is interested
in obtaining pressure with the same temporal accuracy as the velocity, an
additional Poisson equation needs to be solved [51]. This is not explored
here.

Explicit Runge-Kutta schemes do not conserve energy [51], [48]. Classi-
cal explicit Runge-Kutta of order p 6 4, with s stages, introduces an error
in the energy conservation of order

∆E

∆t
= O (δtq) ,

such that p = s = q. Here p and q denote the order of accuracy on the
solution and the conservation of kinetic energy respectively, while s refers
to the number of stages of the Runge-Kutta scheme. Alternative schemes
which increase q at the expense of p for a certain s are presented in [48].
The present work uses the 3p5q(4) scheme proposed in [48]. The Butcher
tableau for this 4-stage scheme is:

0 0

c3 − 1

4c3 − 3

c3 − 1

4c3 − 3
0

c3 c3 −
(2c3 − 1)(4c3 − 3)

2(c3 − 1)

(2c3 − 1)(4c3 − 3)

2(c3 − 1)
0

1 − (2c3 − 1)2

2(c3 − 1)(4c3 − 3)

6c2
3 − 8c3 + 3

2(c3 − 1)(2c3 − 1)

c3 − 1

(2c3 − 1)(4c3 − 3)
0

1

12(c3 − 1)

(4c3 − 3)2

12(c3 − 1)(2c3 − 1)
− 1

12(c3 − 1)(2c3 − 1)

4c3 − 3

12(c3 − 1)

where c3 = 1/4 has been selected, following the recommendation in [48].
The efficient self-adaptive strategy for the explicit time-integration of

Navier-Stokes equations proposed by Trias & Lehmkuhl [49] is adapted here
to finite elements and the Runge-Kutta method. Unlike the conventional
explicit integration schemes, it is not based on a standard CFL condition.
Instead, the eigenvalues of the dynamical system are analytically bounded
and the linear stability domain of the time-integration scheme is adapted in
order to maximize the time-step.

Following the original work of Trias & Lehmkuhl [49], the eigenvalues
of the dynamical system can be approximated using the discrete properties
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of the matrices KCONV and KVISC (i.e., KCONV = −KT
CONV and KVISC =

KT
VISC). Therefore, by means of the Geshgorin circle theorem one can find

the following expression for the bounding eigenvalues:

|λKCONV
k | 6

∑
i 6=j
|KCONV (Un)ij | (2.41)

|λKVISC
k | 6 2KVISC (Un)ii (2.42)

In order to approximate the KVISC and KCONV matrices, one can use
expressions 2.27 and 2.28 respectively at the gravity center of each element at
the beginning of the time step n+1, with the velocity values of the previous
time step n. Then, using a numerical solution for the region of absolute
stability of an explicit Runge-Kutta with p = 3,

|R(z)| = |1 + z +
z2

2
+
z3

6
| = eiϕ (2.43)

and evaluating the phase angle as:

ϕ =
π

2
− atan

 max
(
λKVISC
k

)
max

(
λKCONV
k

)
 (2.44)

the optimal δtopt (ϕ) is obtained. A safety factor of Cδt = 0.9 is adopted for
all the simulations in this chapter; therefore, the simulation time step for
n+ 1 is defined as δt = Cδtδtopt (ϕ).

The use of the discrete Laplacian DM−1G, is relatively expensive even
if a diagonal mass matrix is used. Therefore, when continuous pressure
interpolations are used, it is usually approximated as:

DM−1G ≈ L, with components Lab = −
(
∇Na,∇N b

)
. (2.45)

Moreover, this approximation introduces a stabilizing effect for the pres-
sure that allows to use finite element pairs that do not satisfy the inf-sup
condition [52], such as equal order interpolation for velocity and pressure
used in this work (known as collocated schemes in the finite volume and
finite difference communities). As shown by Codina [52], the approximation
introduces a stabilizing term of the form δtBΦ where B = DM−1G− L. In
Codina & Blasco [53] it is shown that approximation 2.45 introduces an
error of the same order as the pressure interpolation

(
O
(
hk+1

))
, where k is

the degree of the finite element shape functions and h is the element size,
and thus it does not deteriorate the accuracy of the finite element approx-
imation. The equations for the pseudo-pressure 2.35 and 2.38 are replaced
by:

L(Φi) =
1

ciδt
DUi,∗, (2.46)
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L(Φn+1) =
1

δt
DUn+1,∗. (2.47)

Starting from Eq. 2.36

Ui,∗ = Ui + ciδtM
−1G(Φi) (2.48)

is obtained, which can be introduced in Eq. 2.35 to end up with:

DUi + ciδtBΦi = Rc. (2.49)

For time step n+ 1, from Eq. 2.39 and 2.47,

DUn+1 + δtBΦn+1 = Rc (2.50)

is obtained. The second term in the left hand side of Eq. 2.49 and 2.50 is
the perturbation to the incompressibility constraint introduced by replacing
the discrete Laplacian with a continuous one.

In order to obtain an equation for the evolution of the kinetic energy one
can take vh = uh and qh = ph in Eq. 2.6 or, equivalently, premultiply Eq.
2.23 by UT and Eq. 2.24 by PT and add both equations. In the case of the
Runge-Kutta scheme, ΦT is used instead of PT . The perturbation to the
incompressibility constraint introduced by replacing the discrete Laplacian

with a continuous one results in a dissipation ciδt
(
Φi
)T

BΦi at each substep

and a dissipation δt
(
Φn+1

)T
BΦn+1 at the new time step. The error in the

conservation of kinetic energy introduced by the approximation is then of
O
(
δt,hk+1

)
. In the case of linear finite elements (k = 1), this coincides with

the error obtained for finite volumes using a collocated scheme in [54], [55].
Finally, the explicit low-dissipation formulation implementation is sum-

marized in the following algorithm:
The Vreman model [8] is used for modelling the subgrid stress term re-

sulting from the spatial filtering of the Navier-Stokes equations. It calculates
the turbulent eddy viscosity through the following expression:

νt = c

√
Bβ

αijαij
(2.51)

where

αij = ∂iuj =
∂uj
∂xi

(2.52)

is the resolved velocity gradient tensor and

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 (2.53)

is the second invariant of tensor

βij = ∆2
kαkiαkj . (2.54)
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Algorithm 1 Low-dissipation formulation algorithm
t = t0;
while t 6 tf do

Evaluate the new δt = Cδtδtopt (ϕ) using equations 2.41-2.44
t = t+ δt;
i = 2;
U1 = Un;
while i 6 s do

Evaluate Ui,∗ using equation 2.34
Evaluate Φi solving equation 2.35
Evaluate Ui by means of equation 2.36
i = i+ 1;

end while
Evaluate Un+1,∗ using equation 2.37
Evaluate Φn+1 solving equation 2.38
Evaluate Un+1 by means of equation 2.39

end while

Finally ∆ denotes the filter width and c is the constant model, chosen to
be c = 0.1 in the examples presented here, following the recommendation
by the author for complex cases. Here, the filter width is equal to the cubic
root of the element volume ∆ = 3

√
Velem.

2.4 Comparison between the formulations

Having presented the two formulations, it is important to perform some
comparative tests and justify our choice for the more complex problems
presented in the later chapters. To that end, tests in three very common
benchmark cases are performed: 1) the Decaying Isotropic Turbulence (DIT)
case, 2) the Taylor-Green Vortex (TGV) case and 3) the Turbulent Channel
Flow (TCF). The low-dissipation formulation is denoted by “LD method”
in the results presented in this section.

2.4.1 Decaying Isotropic Turbulence

This fundamental benchmark case analyzes the evolution of the homoge-
neous decaying isotropic turbulence at Re = 4.209×105. Through this case,
the capability of the formulation to predict the energy cascade is evaluated.
The computational domain consists of a cube with a side length of 2π and
periodic boundary conditions on each direction. The domain is discretized
through 323 and 643 grids. An initial velocity field is obtained through the
inverse Fourier transformation of the experimental data from [56]. The flow
is allowed to evolve until a non-dimensional time t = 2.0, at which point the
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(a) 323 (b) 643

Figure 2.1: Decaying isotropic turbulence. Energy spectra versus wavenum-
ber k for the 323 (a) and 643 (b) grids at t=2.0.

results are again compared with the experimental data. The energy spectra
for both grids are presented in Fig. 2.1. Both the low-dissipation formu-
lation as well as the VMS with c2 = 2 provide a fairly accurate prediction
of the energy cascade, with the former showing a slightly overdissipative
behavior at the very high wavenumbers. However, when the algorithmic
constant is increased to c2 = 8, a much less dissipative behavior from the
VMS is observed, which completely fails to capture the energy cascade in
the higher wavenumbers. This is consistent with the findings presented in
[42].

2.4.2 Taylor-Green Vortex

The Taylor-Green Vortex (TGV) is a canonical problem formulated to
address the study of the turbulence dynamics, the enhancement of vorticity
by vortex-stretching and the consequent energy transfer to smaller eddies
[57]. The problem proposed consists of an incompressible flow in a three-
dimensional periodic cubic domain of side 2π in which the initial velocity
field is given by:

u = U0sin
x

L
cos

y

L
cos

z

L

v = −U0cos
x

L
sin

y

L
cos

z

L
w = 0

(2.55)

and the pressure is obtained from the solution of the Poisson equation for
the given velocity field:

p = p0 +
ρ0U

2
0

16

(
cos

(
2x

L

)
+ cos

(
2y

L

))(
cos

(
2z

L

)
+ 2

)
(2.56)
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(a) (b)

Figure 2.2: Results for the TGV benchmark, using a 643 grid. a) Tempo-
ral evolution of the kinetic energy as a function of the dimensionless time.
b) Temporal evolution of the enstrophy integrated over the domain as a
function of the dimensionless time.

where L = 1, U0 = 1, ρ0 = 1 and p0 = 0. In the present problem, the
Reynolds number, defined in terms of the initial velocity U0 and the side of
the domain L, is set to Re = UoL/ν = 1600. The problem is solved using
grids of 643, 1283 and 2563 degrees of freedom and the flow is simulated
for t = 20tc, where tc is the characteristic convective time tc = U0/L. The
numerical results presented here are compared to the direct numerical sim-
ulation of Van Rees et al. [58] obtained with a pseudo-spectral code on a
computational mesh of 5123.

The temporal evolution of the volume-averaged kinetic energy:

Ek =
1

ρ0V

∫
V

1

2
ρu · udV (2.57)

and the integrated enstrophy:

ζ =
1

ρ0V

∫
V

1

2
ρω · ωdV (2.58)

as a function of the dimensionless time t are presented for each grid in Fig.
2.2-2.4. It is immediately obvious that while the low-dissipation formula-
tion predicts a slightly higher dissipation for the kinetic energy, it performs
significantly better in predicting the evolution of the enstrophy, which can
be directly related to the vorticity-based dissipation [59], especially in the
coarser grids. All the methods converge towards the reference DNS when
using the 2563 grid, since the accuracy depends more on the mesh size than
the method at such fine grids. It must be noted that both formulations pro-
duce results of significantly higher quality compared to the low-order codes
presented in [60], which is especially true in the case of the low-dissipation
formulation.
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(a) (b)

Figure 2.3: Results for the TGV benchmark, using a 1283 grid. a) Tempo-
ral evolution of the kinetic energy as a function of the dimensionless time.
b) Temporal evolution of the enstrophy integrated over the domain as a
function of the dimensionless time.

(a) (b)

Figure 2.4: Results for the TGV benchmark, using a 2563 grid. a) Tempo-
ral evolution of the kinetic energy as a function of the dimensionless time.
b) Temporal evolution of the enstrophy integrated over the domain as a
function of the dimensionless time.
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(a) (b)

Figure 2.5: Results for the TGV benchmark, using the low-dissipation for-
mulation and quadratic (Q2) elements. a) Temporal evolution of the kinetic
energy as a function of the dimensionless time. b) Temporal evolution of
the enstrophy integrated over the domain as a function of the dimensionless
time.

Nevertheless, it is very important to note that, unlike the DIT case (Sec-
tion 2.4.1), the VMS method provides notably better results with c2 = 8,
compared to c2 = 2, which is a very undesirable behavior, since it points
towards an ad hoc tuning of the constants, depending on the case examined.
In [42], it is argued that c2 = 2 is more appropriate for homogeneous tur-
bulence, i.e. the DIT and TGV cases, however, it is quite evident from Fig.
2.2-2.4, that this is not the case for the TGV problem.

Fig. 2.5 presents results from the low-dissipation formulation, using
quadratic elements. It can be observed that when using high order elements,
the results are notably improved compared to linear elements for the same
number of degrees of freedom (dof). In fact, the predictions are in very
good agreement with the reference data for all three meshes. Especially the
results from the finer meshes (1283 and 2563 dof) are almost identical to the
DNS.

Vortical structures identified by Q-isosurfaces [61] are presented in Fig.
2.6, as predicted by the low-dissipation formulation. It can be seen that
the flow is still organized at t/tc = 4, however the vortex-stretching process
activates the energy cascade and the flow breaks down into smaller and
smaller scales (t/tc > 8).

2.4.3 Turbulent Channel Flow at Reτ = 395

In this section we perform LES of the turbulent flow in a plane channel
at Reτ = 395, where Reτ denotes the friction Reynolds number, defined in
terms of the friction velocity uτ and channel half-height δ.
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(a) (b)

(c) (d)

Figure 2.6: Taylor-Green vortices. Instantaneous vortical structures repre-
sented by volumetric Q-isocontours, Q = 0− 0.5 (a darker colour represents
a higher level of Q) (a) t/tc = 4, (b) t/tc = 8, (c) t/tc = 12, (d) t/tc = 16.
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xy
z

Lx=2π
δ

Lz=2/3πδ

Ly=2δ

Figure 2.7: Computational domain for the turbulent channel case at Reτ =
395.

The size of the computational domain considered herein is 2πδ × 2δ ×
2/3πδ in the streamwise, wall-normal and spanwise directions respectively.
The geometry of the channel is presented in Fig. 2.7. The streamwise
and spanwise directions are assumed to be homogeneous, and thus periodic
boundary conditions are applied, while a no penetration condition is imposed
on the wall boundaries.

A mesh of 323 elements has been used with uniform distribution in the
tangential directions, while a hyperbolic tangent function has been used in
the wall-normal direction:

y(i) =
tanh

(
γ
(

2(i−1)
Ny
− 1
))

tanh(γ)
(2.59)

where i = 1, ...,Ny with Ny being the number of nodes in the wall-normal
direction and γ the concentration factor, here γ = 2.75. This results in the
first grid point off the wall being located at y+ = 1.3, while at the center
of the channel ∆x+ = 77.6, ∆y+ = 67.8 and ∆z+ = 25.9 resulting in fairly
isotropic elements.

The results are compared with the DNS data of [62]. The reference DNS
used a 256× 193× 192 mesh on a domain with size 2πδ × δ × πδ. The flow
is driven by a constant pressure gradient in the streamwise direction.

The simulation is run for an appropriately long time to guarantee that
a statistically stationary regime is reached. Once that quasi-steady state
has been achieved, statistics are collected, and the results are averaged in
time for approximately 24 flow-through units (we define a flow-through unit
as t = Lx/U where U denotes the velocity at the center of the channel
and Lx is the size of the domain in the streamwise direction). They are
subsequently averaged in space (in the streamwise and spanwise direction)
and non-dimensionalized using the computed friction velocity.
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(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 2.8: Mean streamwise velocity and rms velocity fluctuations for Reτ =
395.

The results for the velocity and its fluctuations are presented in Fig.
2.8. It can be seen that both the low-dissipation formulation, as well as
the VMS method with c2 = 8, provide a quite accurate prediction for the
mean streamwise velocity, with the former being slightly more accurate. By
contrast, when the algorithmic constant is decreased in the VMS method
(c2 = 2), a much more dissipative behavior is obtained, which fails to accu-
rately predict the mean flow. Nevertheless, it offers some improvement in the
fluctuations in the wall-normal and spanwise directions. The low-dissipation
formulation offers a significantly better prediction for the streamwise fluctu-
ations than either VMS setup, while falling short in the other two directions.
It is important to remind that the value of the Vreman constant has been
chosen with focus on high Reynolds number flows (following the author’s
recommendation), and therefore at such low Reynolds numbers it tends to
be more dissipative in the buffer zone. With this in mind, the turbulent
channel case at a relatively high Reynolds number, namely Reτ = 950, is
also examined.
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(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 2.9: Grid G1: Mean streamwise velocity and rms velocity fluctuations
for Reτ = 950.

2.4.4 Turbulent Channel Flow at Reτ = 950

For the Reτ = 950 case, the size of the computational domain has been
increased to 6δ×2δ×3δ to match the setup presented in [63]. The reference
DNS is the one described in [64], which utilized a 3072×385×2304 mesh on a
8πδ×2δ×3πδ domain. Two different grids are considered: one consisting of
64×97×64 elements (grid G1) and one of 128×129×128 elements (grid G2),
matching the resolutions used in [63]. The meshes use a uniform distribution
in the tangential directions, while the hyperbolic tangent function of Eq.
2.59 has been used to concentrate the nodes towards the wall boundaries in
the wall-normal direction. Here, the concentration factor is set to γ = 2.5.
The first grid point off the wall is located at y+ = 1.4 and y+ = 1 for
grids G1 and G2 respectively. At the center of the channel, much like the
previous case, the elements are fairly isotropic with ∆x+ = 89, ∆y+ = 49.6
and ∆z+ = 44.5 for grid G1 and ∆x+ = 44.5, ∆y+ = 37.3 and ∆z+ =
22.3 for grid G2. As in the Reτ = 395 case, statistics were collected over
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approximately 24 flow through units.
Fig. 2.9 shows the predictions for the velocity and its fluctuations for

grid G1. All the formulations provide a fairly reasonable prediction for the
mean streamwise velocity (Fig. 2.9a), with the VMS method with c2 = 8
showing the best agreement with the DNS results. When the constant is set
to c2 = 2, the method overpredicts the velocity, which is consistent with the
findings in Section 2.4.3. The low-dissipation formulation overpredicts the
velocity in the region 30 < y+ < 400 with very good agreement with the
DNS data in the rest of the channel.

(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 2.10: Grid G2: Mean streamwise velocity and rms velocity fluctuations
for Reτ = 950.

In terms of the prediction for the fluctuations (Fig. 2.9b-2.9d), it can be
observed that the VMS method consistently overpredicts the fluctuations in
the near-wall region, especially when c2 = 8. While the prediction for the
fluctuations improves when c2 = 2, they are still overpredicted. The results
are significantly better when the low-dissipation formulation is used. The
overprediction of the near-wall streamwise fluctuations is notably smaller,
while the wall-normal and spanwise fluctuations are slightly underpredicted
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near the wall. This behavior is in good agreement with the results presented
in [63] for the same mesh resolution.

The predictions for grid G2 are presented in Fig. 2.10. Much like the
Taylor-Green Vortex case, it can be seen that all the methods converge to-
wards the DNS data when the mesh is refined, in regards to the prediction
of the mean streamwise velocity. Some deviation from the DNS can be ob-
served in the fluctuations, however there is notable improvement compared
to the results from grid G1. More specifically, the low-dissipation formu-
lation offers better predictions for the fluctuations than either VMS setup,
with the only exception being the spanwise fluctuations in the center of the
channel.

2.4.5 Conclusions

Two numerical formulations for performing Large Eddy Simulations have
been presented. The Variational Multiscale method (VMS), originally pro-
posed by Hughes [11, 12], relies on performing a scale splitting operation
and modelling the effect of the subscales as a means of stabilization. The
numerical dissipation introduced by the stabilization is used to account for
the effects of the subgrid scales in lieu of an explicit subgrid scale model.
Therefore, the method can be categorized as an implicit LES method. A
new low-dissipation formulation is also introduced. It uses a non-incremental
fractional step method to stabilize the pressure and allow the use of equal
order interpolation for velocity and pressure. The method uses an explicit
subgrid scale model (in this work, the Vreman model [8] is used) for turbu-
lence closure and can therefore be categorized as a classical LES method.

The two methods are compared in a set of benchmark cases, namely
the Decaying Isotropic Turbulence (DIT), the Taylor-Green Vortex (TGV)
and the Turbulent Channel Flow (TCF). Both formulations perform well in
the cases examined, however an important issue is highlighted for the VMS
method. Depending on the case and the Reynolds number examined, the
best results are obtained for different values of the stabilization constants.
This means that an ad hoc tuning of the constants is required to obtain the
most accurate results. It is shown that using c2 = 2 performs best in the
DIT case, while c2 = 8 performs best in the TGV and TCF cases. This
behavior is also observed in a TCF at a higher Reynolds number (Reτ =
2003) presented in Chapter 4, where using c2 = 2 proves to be more accurate.
The findings presented here are consistent with the results from [42, 65]. It
can be argued that this is a very undesirable behavior for a formulation
that aims to be systematically used to predict complex flows, such as the
ones encountered in industry. While this behavior is less prevalent when
the meshes are refined, such resolutions are not representative of the grids
typically used in engineering applications.
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On the contrary, the new low-dissipation formulation has shown to offer
very accurate predictions for all the cases examined without requiring any
ad hoc tuning, even when coarser meshes are considered. Additionally, the
new formulation results in a significant decrease in computational cost, need-
ing approximately 60% less computational time per time-step, compared to
VMS. This was partially counteracted by the ability to use higher time-steps
in VMS in the examples considered in this section, however this is typically
not possible in highly unsteady flows, where the size of the time-step is lim-
ited by the physics of the flow. The low-dissipation formulation is further
tested in more complex cases in the next section with great results and is
therefore recommended for use in the simulation of engineering applications.

2.5 Complex geometry problems using the low-
dissipation formulation

2.5.1 Flow past a sphere

The fluid dynamics of the flow past a sphere at Re = UrefD/ν = 104

are considered. Here, the Reynolds number is defined in terms of the free-
stream velocity Uref and the sphere diameter D. At this Reynolds number,
the flow separates laminarly from the sphere and transition to turbulence
occurs in the separated shear layer, i.e. the flow is in the sub-critical regime
[66]. In this regime, the main characteristics of the flow, i.e. drag coefficient,
non-dimensional vortex shedding frequency, location of the separation of the
boundary layer from the sphere, remain almost constant up until the flow
enters the critical regime around Re ≈ 2.3× 105 [67].

For the problem under study, a cylindrical computational domain of
dimensions x ≡ [−5.5D, 25.5D]; r ≡ [0, 10D]; φ ≡ [0, 2π], with the sphere
located at (0, 0, 0), is considered. This domain has similar dimensions to
that used in the DNS of Rodriguez et al. [68, 69]. Three different meshes
have been considered and the flow has been integrated over 350 time-units
to achieve well converged statistics. The meshes used are summarized in
Table 2.1. The computational meshes are formed by three inner cylindrical
regions of radius 1.5D, whose outer boundary extends to x/D = 3.5, 8.5, 20
from the sphere center. The sizes of the elements at these zones are given
in Table 2.1 and are denoted as ∆z1, ∆z2 and ∆z3 respectively. The size of
the outer/external zone ∆z4 is also given in the table.

Solutions obtained with the three different grids are compared to those of
the DNS of Rodriguez et al. [69], which were obtained using a finite-volume
approach on a computational grid of 18.2 million degrees-of-freedom.

In Table 2.2 the drag coefficient CD, the base pressure coeffficient −Cpb,
the separation angle θsep and the non-dimensional vortex shedding frequency
St = fUref/D are given for the three meshes considered. For meshes m2 and
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Figure 2.11: Flow past a sphere. (a) Pressure coefficient and (b) skin friction
distribution along the circumference of the sphere. Comparison with results
from the literature [ROD13] Rodriguez et al. [69] and [SEI97] Seidl et al.
[70].
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Figure 2.12: Flow past a sphere. (a) Mean streamwise velocity in the wake
centerline and (b) its fluctuation. Comparison with results from the litera-
ture [ROD13] Rodriguez et al. [69].
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Mesh Nelem Ndof ∆sph ∆z1 ∆z2 ∆z3 ∆z4

m1 3.19× 106 7.1× 105 0.05 0.08 0.13 0.195 1.09
m2 9.60× 106 1.7× 106 0.005 0.05 0.08 0.12 0.75
m3 3.27× 107 5.6× 106 0.0025 0.025 0.05 0.12 0.75

Table 2.1: Flow past a sphere. Meshes used in the simulation. Nelem: total
number of elements, Ndof : number of degrees of freedom, ∆sph: size of the
elements on the surface of the sphere, ∆z1 to ∆z4: size of the elements in
the regions 1 to 4 in the wake of the sphere.

Mesh CD −Cpb θsep St

m1 0.446 0.332 91.44 0.179
m2 0.408 0.287 89.8 0.213
m3 0.400 0.286 89.8 0.183

DNS 0.402 0.277 84.7 0.195

Table 2.2: Flow past a sphere. Flow parameters for Reynolds number
Re = 104. Comparison with literature results. Drag coefficient CD, base
pressure coefficient −Cpb, separation angle θsep, non-dimensional vortex
shedding frequency St. * DNS results by Rodriguez et al. [69].

m3 results are in good agreement the DNS data. Small differences are obtain
in the vortex shedding frequency, which at these sub-critical Reynolds num-
bers is more difficult to measure as vortices are shed at different azimuthal
locations at every vortex shedding cycle, as discussed in [68].

The pressure coefficient distribution (Cp = (p − pinf/0.5ρU2
ref) together

with the non-dimensional skin friction along the sphere circumference are
plotted in Fig. 2.11. For the skin friction, results are compared to the DNS
of Seidl at al. [70] at a lower Reynolds number of Re = 5000. To make com-
parisons possible, the results have been scaled with the Reynolds number.
For the coarsest mesh, deviations from the reference data are large, espe-
cially in the aft part of the sphere. This is probably due to the quite coarse
mesh used in the zone immediately after the sphere, which is altering the
fluid dynamics in the recirculation zone producing a rather large and artifi-
cial mixing. However, for the second and third level of refinement results are
quite close to the DNS data. The altered mixing in the recirculation zone
obtained with mesh m1 can also be observed if the stream-wise velocity and
its fluctuations are compared along the wake centerline (Fig. 2.12). For
this mesh, the recirculation zone is shorter and closes near the sphere back
stagnation point. However, with the two other levels of refinement, results
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tend to the DNS data and the finest mesh accurately predicts the location
and magnitude of the minimum velocity defect. Actually, these two meshes
are capable of reproducing the level of streamwise fluctuations in the wake
centerline quite well.

2.5.2 Flow around an Ahmed body

The Ahmed body is a generic reference car-type bluff body with a
rounded front part and a slant back. Although it is a simplified geome-
try, it exhibits some of the main flow features encountered in real cars such
as the large three-dimensional recirculation zone at the back of the geometry
and complex vortex interaction of the flow coming from the slant side edges
and the top and bottom surfaces. This generic car-like body was originally
used in experimental measurements by Ahmed et al. [71] and later Lienhart
et al. [72] performed laser Doppler anemometry (LDA) measurements of
the velocity field and Reynolds stresses on the 25° and 35° slant back con-
figurations. Because of its configuration, this simplified car model has also
been used as a benchmark case in numerical investigations (see for instance
[73, 74, 75, 76, 77, 78]).

Ahmed et al. [71] found that the slant angle largely influenced the flow
configuration and the drag in the car. For the critical slant angle of 30°,
they observed a complex vortex interaction with merging of vortices and
the recirculation bubble, and that a further small change in the slant angle
cause a dramatic change in flow configuration and in the body drag. The
experimental study of Lienhart et al. [72] around this critical slant angle
found that the counter-rotating vortices were responsible for keeping the
flow attached to the slant for angles lower than the critical one. However,
they observed that beyond the critical slant angle the flow detaches in the
slant and forms a large recirculation region in the rear zone.

The chosen configuration corresponds to the geometry defined as in the
experiments of Ahmed et al. [71]. The dimensions of the body are presented
in Fig. 2.13. In this study, the slant angle φ = 25° is considered. The com-
putational domain is a 3/4 rectangular open wind tunnel with dimensions
9.1944×1.87×1.4m, as in the experiments of Lienhart et al. [72]. The inlet
is located at 2.1024m upwind the front of the body. The downstream region
has a length of 6.048m, measured from the rear end of the car. The Reynolds
number in the experiments of Ahmed et al. [71], based on the inlet velocity
Uref and the car height H, was ReH = UrefH/ν = 1.2× 106, whereas in the
LDA measurements of Lienhart et al. [72] it was ReH = 7.68× 105. In the
present computations, wall-resolved LES have been conducted and thus, in
order to have a good resolution within the boundary layer, the Reynolds
number of the experiments has been reduced to ReH = 2 × 105 as in the
LES study of Krajnović & Davidson [74]. As it was argued by Krajnović
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Figure 2.13: Ahmed body dimensions.

Mesh Nelem Ndof

m1 9.48× 106 3.62× 106

m2 14.9× 106 5.64× 106

m3 25.6× 106 9.52× 106

Table 2.3: Ahmed body. Meshes used in the simulations. Nelem: total number
of elements, Ndof : number of degrees of freedom.

& Davidson, given the geometry of the body, the transition to turbulence
is triggered by the sharp corners and thus, this Reynolds number reduction
shall not affect the results after separation.

In order to perform the computations, large-eddy simulations with a
uniform velocity (u, v,w) = (Uref , 0, 0) at the inflow have been used. As the
domain is a 3/4 open wind tunnel, at the lateral and top walls slip boundary
conditions are prescribed. As for the outflow of the domain, a pressure-based
boundary condition is applied. No-slip conditions at the body and bottom
surface are prescribed. Three different levels of refinements are considered
here (see Table 2.3). To design the computational grids, a prism layer around
the car geometry has been constructed to capture the boundary layer and
allow a good resolution in this zone. The size of the elements in this layer
follows the values reported by Krajnović & Davidson [74]. Moreover, more
nodes are clustered in the zone of the slant in order to properly resolve
the separation of the boundary layer in the rear end of the car. The finest
computational mesh used (m3) can be seen in Fig. 2.14.

Fig. 2.15 shows the complex vortex interaction in the slant and rear end
of the car. Vortices are identified by means of Q-isosurfaces [61] and coloured
by the velocity magnitude. As can be seen, the simulations are capable of
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(a)

(b)

(c)

Figure 2.14: Ahmed body computational mesh (m3). (a) Mesh around the
car, (b) detail of the mesh on the slant, (c) detail of the mesh close to the
ground.

Figure 2.15: Ahmed car body. Vortical flow structures identified by Q-
isosurfaces Q = 150 coloured by the velocity magnitude.
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Figure 2.16: Ahmed car body. Mean streamwise velocity in the symmetry
plane z = 0 over the slant. Comparison with the experimental results of
Lienhart et al. [72].
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Figure 2.17: Ahmed car body. Streamwise velocity fluctuations in the sym-
metry plane z = 0 over the slant. Comparison with the experimental results
of Lienhart et al. [72].
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Mesh CD CD,p CL CD,rms CL,rms

m1 0.292 0.261 0.267 5.1× 10−3 2.09× 10−2

m2 0.296 0.262 0.272 5.7× 10−3 2.57× 10−2

m3 0.297 0.260 0.275 6.2× 10−3 2.82× 10−2

Ahmed (exp)* 0.285 0.234 - - -
K&D (LES)† - 0.294 0.334 5.0× 10−3 1.80× 10−2

ALJ (LES)‡ 0.302 0.292 0.282 8.0× 10−3 3.30× 10−2

Table 2.4: Ahmed body. Aerodynamic forces on the surface and compar-
ison with the literature. Drag coefficient CD, form drag coefficient CD,p,
lift coefficient CL, rms of the drag and lift coefficients CD,rms and CL,rms

respectively. * experimental results by Ahmed et al. [71], † LES results by
Krajnovic & Davidson [74], ‡ LES results by Aljure [78].

capturing the two counter-rotating vortices that separate from the slant top
corners and interact with the flow coming down from the center of the slant.
In Table 2.4, the aerodynamic forces on the surface of the car are given for
the three computational meshes and compared to the experiments of Ahmed
et al. [71]. and to the LES computations by Krajnovic & Davidson [74] and
Aljure et al. [78]. In general, present LES results reproduce both the form
and total drag from the experiments quite well, even with the coarsest grid,
which is the result of the good resolution achieved in the near-wall region.

Fig. 2.16-2.17 show computed profiles of the mean streamwise velocity
and its fluctuations in the symmetry plane over the slant at different stream-
wise stations. Results are compared to the experimental data of Lienhart et
al. [72]. Good level of agreement is observed at all levels of refinement.





Chapter 3

Inflow boundary conditions

3.1 Introduction

In contrast with RANS, where only the mean flow is directly calcu-
lated (i.e. not modelled) and thus only a mean inflow profile is required
as boundary condition, in LES and DNS the specification of the inflow
boundary conditions is more complex. In early applications of LES, this
problem did not appear, as the flows could usually be considered periodic
in the flow direction. For spatially developing flows, however, such as those
encountered in real world applications, the inflow conditions need to pos-
sess specific characteristics connected with the properties of LES. When the
inflow is expected to be laminar and transition occurs later in the computa-
tional domain, the problem becomes nearly insignificant as the production
of turbulence is mostly performed inside the domain. For flows with a fully
turbulent inflow, on the other hand, specifying inappropriate boundary con-
ditions can significantly alter the numerical predictions.

Ideally, the inflow velocity needs to accurately represent the contribution
of the eddies. This, in effect, means that the imposed velocity vector needs to
match the moments, spectra and phase of the above eddies. While the first
two could, in theory, be approximated by the use of stochastic methods, the
same is not possible for phase information, as it is flow-dependent (related to
the structure of the eddies). The absence or inaccuracy of this information
results in the need of a transition zone, until realistic, for the particular type
of flow, turbulence is achieved. In an effort to reduce the cost of LES and
DNS, the inlet should be as close to the region of interest as possible. Thus,
the approximate conditions introduced need to be as accurate as possible,
so this transition zone is minimized.

Different approaches have been proposed for the specification of appro-
priate inflow boundary conditions. They can be categorized as follows:

– Recycling/Mapping
In the recycling technique, originally proposed by Spalart [79], profiles

43
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of variables are extracted from a predefined downstream location and
reintroduced as inflow boundary conditions, after being rescaled to
match the characteristics of the desired inflow profiles.

– Precursor/concurrent simulation
An alternative method is to use time-accurate inflow profiles from
an auxiliary simulation, usually called precursor/concurrent simula-
tion. This can be achieved either by simultaneously running the two
simulations and feeding the profiles from the auxiliary (concurrent)
simulation to the main simulation [80, 81], or by initially running a
(precursor) simulation and storing the generated inflow data, for later
use in the main simulation.

– Synthetic turbulence
These techniques synthesize inflow conditions by superposing some
sort of stochastic, unsteady disturbances on a mean flow profile. This
method was originally proposed by Kraichnan [82]. These perturba-
tions are usually based on analytic representations or Fourier series
and they need to possess some specific flow characteristics, such as
low order statistics (mean velocity, turbulent kinetic energy, Reynolds
stresses etc).

Extensive reviews on the various techniques for generating turbulent
inflow conditions can be found in [83, 84, 85, 86, 87]. In this work the
generation of inflow conditions through a precursor simulation as well as
synthetic turbulence techniques will be examined.

3.1.1 Precursor simulation

As explained previously, a precursor simulation refers to an auxiliary
simulation that is performed before the main simulation, using the same
geometry and operating conditions. Typically the precursor mesh is created
through an extrusion of the inlet surface mesh of the main simulation. Inlet
slices are extracted and stored in order to be used later. Another possibility
is to run a concurrent simulation, where the auxiliary simulation runs in
parallel with the main simulation and the extracted slices are directly fed
into the main simulation through some form of communication (commonly
called coupling). This type of auxiliary simulations will not be explored
here.

If a fully developed mean flow is needed at the inflow, the precursor
simulation can be run with periodic conditions in the streamwise direction.
The flows considered here fall under this category. Nevertheless, spatially
developing flows can also be run on a precursor simulation.

Considering the high storage demands and computational cost of per-
forming a full precursor simulation, i.e. producing a set of inflow data that
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suffices for the full duration of the main simulation, a more common ap-
proach is to only run the precursor simulation for a limited amount of time
(after the statistically steady state has been reached), which results to a
limited set of inflow data being stored. This set of data is fed into the main
simulation, and when all the slices have been used, the same set is reused.
Two approaches are used here to perform this procedure: a) no periodicity
is imposed on the set of data, i.e. there is a discontinuity between the last
and first slice of inflow data, and b) the set of inflow data is modified to
become periodic through a simple blending function. Here, the blending
function suggested in [88]:

uper(i) =
1

2

[
u1(i)

(
1− cos

(
i

Nper
π

))
+ u2(i)

(
1 + cos

(
i

Nper
π

))]
(3.1)

is used, where i is the current time-step and Nper is the total amount of
time-steps used for the blending. Fig. 3.1 illustrates the procedure with
the original, discontinuous signal presented in Fig. 3.1a and the modified,
periodic signal in Fig. 3.1b. Reusing the same set of data can introduce an
artificial low-frequency behavior [85], however Li et al. [89] suggested that
the nonlinearity of the flow downstream of the inlet destroys such periodicity.
Both approaches are examined on the flow over a three-dimensional hill
(Section 3.3).

3.1.2 Synthetic turbulence

The simplest approach to synthesizing turbulence would be by superim-
posing random white noise on a mean flow profile. Such an inflow condition,
however, lacks any spatial and temporal correlation, two very important
characteristics of turbulence. This approach was followed by Lund et al.
[90], where a target Reynolds stress profile was assigned to white noise. As
a result of the lack of coherence between the eddies, they found that a very
large transition zone (of the order of 50 boundary layer thicknesses) was
needed for correct structures to be generated.

Kraichnan [82] proposed a method of generating isotropic fluctuations,
based on a sum of Fourier modes. An energy spectrum is prescribed, so that
the amplitude of the fluctuations is defined as a function of the wave num-
ber. In order to satisfy the requirement that the velocity profile possesses
certain statistical properties (mean/fluctuating values and energy spectra),
Lee et al. [91] suggested an inverse Fourier transform of the velocity field.
In their method, a three-dimensional box containing the generated fluctua-
tions is convected across the inlet plane, which transforms their streamwise
correlation to a temporal one. Le et al. [92] attempted a modification of
this method, where the fluctuations were rescaled in order to match a pre-
scribed Reynolds stress tensor at the inlet and used it in the backward-facing
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(a)

(b)

Figure 3.1: Inflow signal using a precursor simulation: (a) discontinuous
signal, (b) periodic signal.

step case. Even though they faced several problems, such as that the non-
homogeneity of the inlet plane significantly increases the cost of the inverse
Fourier transform, they noted that a transition zone of only 12 boundary
layer thicknesses was needed, i.e. a great reduction compared to the random
method [90].

Based on Kraichnan’s proposal [82] and the method of Le et al. [92],
Smirnov et al. [93] suggested a method that accounts for the anisotropy
of the flow. In their method, a Fourier decomposition with Fourier coef-
ficients computed from different spectra at different locations across the
flow, based on local turbulent time and length scales, was used. Batten et
al. [94] proposed the use of a superposition of sinusoidal modes with ran-
dom frequencies and wave numbers, but given moments and spectra. This
approach effectively allows for the more elongated eddies in the direction
of larger Reynolds stresses to be represented, thus producing more realis-
tic, anisotropic turbulence. Klein et al. [95] approached the problem in the
physical space, with the use of a digital filtering procedure that remedies the
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lack of large-scale dominance in the data generated by the random method.
They assumed a Gaussian shape for the filter, depending on the length scale
as a parameter. Kempf et al. [96] extended that work, by creating a method
that generated fluctuations in the physical space using a diffusion process.
Their method was shown to work in arbitrary geometries and unstructured
grids. Davidson [97], introduced a “mixed” method, combining the Fourier
decomposition with digital filtering. With a procedure similar to the one
proposed by Kraichnan [82], isotropic fluctuations are synthesized and then
filtered in time using an asymmetric time filter, in order to acquire temporal
correlation.

More recently, Jarrin et al. [98, 99], inspired by the work of Batten et
al. [94], proposed a different approach, based on a Lagrangian treatment
of vortices. In their method, known as synthetic-eddy method (SEM), the
fluctuations are imposed by eddies convected through a virtual box. These
eddies are convected through the box by the locally imposed mean velocity.
Upon their exit of the box, they are regenerated at a random location of
the inlet plane. These coherent structures generated in the inlet plane are
defined by a shape function that provides information on the structure’s
spatial and temporal characteristics. This method is shown to be able to
reproduce first and second order one point statistics, characteristic time and
length scales, as well as the shape of coherent turbulent structures. Pamiès
et al. [100] extended this idea by defining the shape function in more detail.
By splitting the near-wall region in multiple zones, they were able to adjust
the structures based on previous observations of vorticity in the turbulent
boundary layer. While this approach provides better results, it is an ad hoc
approach, as it implies specifically designing the structures for each problem.
Another problem identified in those methods is that the produced velocity
field is not divergence-free. To that end, Poletto et al. [101] constructed
a divergence free synthetic eddy method (DFSEM). They approached the
problem by applying the original methodology to the vorticity field and then
switching back to the velocity field by taking its curl, thus complying with
the divergence free condition.

3.2 Synthetic inflow through diffusion

In this work, the synthetic inflow technique proposed by Kempf et al.
[96] is considered, since it is based on creating a turbulent signal from white
noise through the diffusion process, making it easy to apply and implement
in a CFD code. This diffusion process eliminates the unphysical small-scale
structures of the random field, resulting in dominant large-scale structures.
Additionally, since it is a method based on physical space, it does not need
equidistant grid spacing, but can instead be applied to arbitrary grids. This
is a very desirable method when performing large-eddy simulations of com-
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plex flows, since the grids utilized are not isotropic. The method is described
in detail in the following:

Initially, the inlet surface mesh is extruded in order to create the auxiliary
grid that will be utilized for the diffusion process. In our implementation,
the z-axis serves as the temporal dimension (following Taylor’s hypothesis),
therefore the surface mesh is rotated, if necessary, before being extruded in
that direction. Taylor’s hypothesis relates temporal to spatial fluctuations,
reasoning that if the turbulence intensity of the flow is small, the temporal
variation of the velocity at a fixed point can be seen as the result of the
convection of unchanging spatial patterns. The length of the extrusion typ-
ically depends on the target integral time scale T , while the spacing in the
z-direction is related to the time interval between the consecutive slices of
the generated inflow set. No-penetration boundary conditions are imposed
on the boundaries that correspond to the wall and slip boundaries of the
main simulation, while periodic conditions are imposed to match those of
the main simulation. Periodicity is also imposed in the z-direction.

An initial condition for the auxiliary simulation is generated by means of
a three-dimensional white noise field Ui that is normalized in order to fulfill
the following conditions:

U i = 0

UiUi = 1
(3.2)

It is subsequently normalized with the square root of the lumped mass ma-
trix, which represents the volume of the mesh assigned to each node:

Ui := M
− 1

2
i Ui (3.3)

to account for the anisotropy of the typical computational grid. The auxil-
iary simulation involves solving the diffusion equation:

∂Ui
∂t

= D
∂2Ui
∂x2

j

(3.4)

for a time interval equal to t = T , where D is the diffusion coefficient, linked
to the desired integral scales through the following expression:

D =
L2

2πT
≈ L

2π
(3.5)

where L denotes the target integral length scale. The last approximation
stems from considering L ≈ T , which is the case in the numerical experi-
ments presented in this work. This diffusion process is shown to produce a
Gaussian-shaped autocorrelation function, since it is essentially equivalent
to convoluting the original signal with a Gauss filter [96].

The resulting field Ui is then renormalized to fulfill conditions 3.2. Fi-
nally, the velocity field is scaled in order to match the desired mean ve-
locity u and Reynolds stress tensor Rij profiles at the inlet. If the goal



3.3. Flow over a three-dimensional hill 49

is to only satisfy the trace elements, the velocity can be constructed using
ui = ui +

√
RiiUi. This is the procedure followed in the cases presented in

this work. Nevertheless, the cross-correlations between the velocity compo-
nents can also be taken into account by using Lund’s method [90], where
ui = ui + αijUj with:

αij =


R0.5

11 0 0

R21/α11

(
R22 − α2

21

)0.5
0

R31/α11 (R32 − α21α31) /α22

(
R33 − α2

31 − α2
32

)0.5

 (3.6)

Slices of this pseudo-turbulent velocity field u can be extracted and ap-
plied as inflow data in the LES, making use of Taylor’s hypothesis, that
relates temporal to spatial fluctuations.

It can be seen that the method is simple to use and implement in a CFD
code. It essentially consists of three major steps:

• Generate the grid and appropriate initial conditions for the auxiliary
simulation

• Perform the auxiliary simulation, which solves the diffusion equation

• Scale the resulting velocity field in order to satisfy the desired mean
velocity and fluctuation profiles

The method only needs the target integral scales (L,T ) and the desired
velocity profiles as an input, all of which can typically be approximated
using data from simpler simulations found in the literature.

3.3 Flow over a three-dimensional hill

The two precursor techniques (discontinuous and periodic), presented
in Section 3.1.1, as well as the synthetic method by Kempf et al. [96],
presented in Section 3.2 are evaluated in the simulation of a flow over a three-
dimensional circular hill, based on the experimental configuration presented
by Ishihara et al. [102]. The hill has a cosine-squared cross-section with a
maximum-slope of approximately 32°. The shape of the hill is described by
the following expression:

z(x, y) = H cos2

(
π
√
x2 + y2

2R

)

where H = 4 cm and R = 10 cm denote the height of the hill and the radius
of its base respectively. The hill along with the basic dimensions and the
coordinate system orientation are presented in Fig. 3.2.
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H=4cm

2R=20cm

z

x

Figure 3.2: Three-dimensional hill geometry and dimensions.

This case is of particular interest, since most of the experimental studies
focus on two-dimensional geometries. The three-dimensionality of this ge-
ometry allows for comparisons with experimental data along the horizontal
plane as well, and not just the vertical profiles. Additionally, using laminar
inflow conditions results in a significant underprediction of the velocity fluc-
tuations, highlighting the importance of using appropriate inflow conditions.
Therefore, this case allows for a thorough comparison between the various
turbulent inflow generation techniques described in the previous sections.

Without the hill the flow corresponds to a neutrally stratified atmo-
spheric boundary layer. The Reynolds number of the flow is ReH = 15200
based on height of the hill H = 4 cm and the free-stream velocity Uinf =
5.36 ms−1 at the top boundary. The flow is simulated in a computational
domain of 128 cm× 64 cm× 32 cm in the streamwise (x), spanwise (y) and
wall-normal (z) directions respectively, with the hill located in the middle
of the domain. Periodic boundary conditions are used in the spanwise di-
rection with a slip boundary condition at the upper boundary. While those
conditions do not directly correspond to the conditions used in the exper-
iment, there is a large distance between the hill and the boundaries and,
thus, the conditions have minimal impact on the flow in the vicinity of the
hill.

An unstructured mesh of 2.6 million nodes is used, with a resolution of
∆x = ∆y = 0.25 cm and ∆z = 0.125 cm at the region of the hill. This
resolution results in z+ ≈ 18, which means that wall modelling is required.
The exchange location method described in Section 4.2 is used, with the
matching interface located at the third grid point off the wall. A simple
logarithmic law for rough walls (cf. Eq. 4.6) is employed to calculate the
wall stress, repeated here for ease of reading:

uz =
u∗
κ
ln

(
z + z0

z0

)
where κ = 0.41 is the von-Kárman constant, u∗ is the friction velocity and
z0 is the roughness length. The test-section floor of the experiment was es-
timated to have z0 = 0.001 cm, however the hill model was machined from
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wood, and, therefore, its roughness length is set to z0 = 0.002 cm, follow-
ing the setup used in [103]. Statistics are collected for 8 seconds after the
statistically steady state is achieved. All the results have been normalized
using the velocity at hill height in the undisturbed boundary layer, here
Uh = 4.3 ms−1.

Three different approaches are evaluated in regards to generating turbu-
lent inflow conditions. A precursor simulation was performed with periodic-
ity in the streamwise direction. The flow was driven by a constant pressure
gradient, set to an appropriate value that guaranteed a logarithmic velocity
profile described by the aforementioned wall law, with u∗ = 0.212 ms−1 and
z0 = 0.001 cm. The mesh used for the precursor simulation consisted of
approximately 1.8 million nodes, highlighting the significant overhead of the
method. Slices of inflow data were extracted for 20000 time-steps (corre-
sponding to a total time of 1 second). However only every fourth slice was
used, in order to reduce the memory and storage demands, with a linear
interpolation used inbetween. This procedure was found to have minimal
impact on the results. Two inflow sets were created from this database, one
discontinuous and one periodic following the technique described in Section
3.1.1, with Nper = 500, corresponding to tper = 0.1s. In addition, synthetic
inflow conditions were generated using the diffusion process by Kempf et
al. [96] (cf. Section 3.2). The target length scale was approximated as
L = 0.25H, based on the hill geometry and mesh element size. A simple
logarithmic profile was imposed on the generated turbulent field, along with
Reynolds stress profiles from an Atmospheric Boundary Layer simulation.
The time-interval between slices is ∆tinlet = 2.5 × 10−4s, which is approxi-
mately five times larger than the time-step used in the main simulation.

The vertical profiles of the streamwise and wall-normal velocity compo-
nents at seven different stations on the central plane of the hill are presented
in Fig. 3.3. It can be seen that all methods, including the laminar inlet,
provide very good agreement with the experimental data. It is important to
note the minimal difference between the two precursor inlets. This behavior
is evident in all the results presented here. The features of the flow are
properly captured, with the flow accelerating on the upwind slope of the hill
and separating shortly after the crest, before reattaching later downstream
of the hill. The separation is also evident when looking at the vertical ve-
locity (Fig. 3.3b), since positive values are obtained on the downwind slope.
A clear representation of the recirculation region can be seen in Fig. 3.4,
which presents a contour of the mean streamwise velocity in the vicinity of
the hill for the synthetic inlet case.

Figure 3.5 shows the spanwise distribution of the tangential components
of the velocity behind the hill (x/h = 3.75) at two different heights: (a)
z/h = 0.125 and (b) z/h = 1. The former corresponds to the height where
the streamwise and vertical fluctuations reach their maximum value, while
the latter is at the height where the maximum of the spanwise fluctuations
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      u/Uh
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 0             1.25
      w/Uh
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Figure 3.3: Three-dimensional hill. Vertical profiles of the mean (a) stream-
wise and (b) vertical velocity on the central plane of the hill. Blue dashed
lines ( ): periodic precursor, red dotted lines ( ): discontinuous pre-
cursor, yellow loosely dashed lines ( ): synthetic inlet, green dot-dashed
lines ( ): laminar inlet, circles (◦): experiment (Ishihara et al [102]).

is observed. It can be seen that the laminar inlet underpredicts the velocity
near the wall, however the correct values are recovered further away from the
wall. All the turbulent inflow methods provide accurate predictions, with
the results from the synthetic method being in better qualitative agreement
with the experimental data.

The vertical profiles of the three components of the normal stress on
the central plane of the hill can be seen in Fig. 3.6. It becomes immedi-
ately obvious that the laminar inlet completely falters, providing a severe
underprediction of the fluctuations in all directions as we move further away
from the wall, with the only exception being inside the recirculation zone,
where the turbulence is generated by the geometry itself and seems largely
insensitive to the prescribed inlet. The results from all the turbulent inflow
methods are in good qualitative agreement with the experimental data. All
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Figure 3.4: Contour of the mean streamwise velocity on the central plane of
the hill for the synthetic inlet method.

(a) (b)

Figure 3.5: Three-dimensional hill. Spanwise distributions of the streamwise
and spanwise velocity behind the hill at (a) x/h = 3.75, z/h = 0.125 and
(b) x/h = 3.75, z/h = 1. Blue dashed lines ( ): periodic precursor,
red dotted lines ( ): discontinuous precursor, yellow loosely dashed lines
( ): synthetic inlet, green dot-dashed lines ( ): laminar inlet, cir-
cles (◦): streamwise velocity, triangles (∆): spanwise velocity, experiment
(Ishihara et al [102]).

the methods overpredict the fluctuations immediately downstream of the
recirculation region at hill height, especially in the spanwise direction. A
small underprediction of the fluctuations can also be observed further away
from the wall. All the methods provide nearly identical results, with the
synthetic method being slightly less accurate in the near-wall region of the
upwind slope of the hill.

Fig. 3.7 presents the spanwise distribution of the normal stress compo-
nents at the two different heights mentioned previously. The laminar inlet
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method offers somewhat reasonable results in the near-wall region, which is
consistent with the observations from Fig. 3.6. However, it heavily under-
predicts the fluctuations away from the wall, especially in the regions further
away from the hill. A slight overprediction of the fluctuations from all the
methods can be observed at z/h = 0.125, with the synthetic method having
the biggest deviation from the experimental data. This issue is rectified
as we move further away from the wall, with both the precursor and the
synthetic methods offering very accurate results. This is especially obvious
in the streamwise direction, where the predictions are in excellent agree-
ment with the experiments. It is important to note that the “fluctuating”
behavior observed in the spanwise distribution of the stress components is
consistent with the LES studies found in the literature [104, 103].

Figures 3.8 and 3.9 show the streamwise vorticity upstream of the hill at
heights z/h = 0.125 and z/h = 1 respectively. It can be seen that on both
locations, the synthetic inlet needs a distance less than 5H at either height,
to recover the correct level of turbulence, even though the chosen length
scale was evidently much bigger than the actual one. Of course, an inlet
with the correct length scale could be generated, but that would be counter-
intuitive, since such values are unknown in a realistic scenario and are, thus,
approximated. As expected, the precursor simulation retains the same (and
presumed correct) level of turbulence throughout the domain. On the other
hand, the laminar inlet struggles to develop the appropriate turbulence. In
the near-wall region, it reaches the correct behavior after approximately 9H,
which explains why this method is able to provide reasonable predictions
for the fluctuations near the wall. However, further away from the wall,
the method completely falters, resulting in a significant underprediction of
the fluctuations (Fig. 3.6). Nevertheless, it needs to be noted that there is
an increase in the vorticity, showing that a laminar inlet should eventually
recover the appropriate turbulent behavior, given a large enough distance
upstream of the region of interest. This is not computationally feasible
in most engineering applications, however, further showcasing the need for
turbulent inflow generation techniques.

3.4 Conclusions

In this chapter, the importance of utilizing appropriate inflow conditions
in turbulent flows has been examined. Two different methods of prescribing
a turbulent inflow are explored, one stemming from a precursor simulation
and one using a synthetic technique. For the precursor simulation method,
the effect of introducing periodicity on the set of inflow data is investigated,
however the results are nearly identical with those of the discontinuous in-
flow set. An extensive literature review of the various synthetic methods is
presented, and the method of Kempf et al. [96], where the inflow conditions
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 0             0.25
    σu/Uh
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 0             0.25
    σv/Uh
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 0             0.25
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Figure 3.6: Three-dimensional hill. Vertical profiles of the three normal stress
components on the central plane of the hill: (a) σu/Uh; (b) σv/Uh; (c)
σw/Uh. Blue dashed lines ( ): periodic precursor, red dotted lines ( ):
discontinuous precursor, yellow loosely dashed lines ( ): synthetic inlet,
green dot-dashed lines ( ): laminar inlet, circles (◦): experiment (Ishi-
hara et al [102]).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Three-dimensional hill. Spanwise distributions of the normal
stress components behind the hill at (a-c-e) x/h = 3.75, z/h = 0.125 and
(b-d-f) x/h = 3.75, z/h = 1. Blue dashed lines ( ): periodic precursor,
red dotted lines ( ): discontinuous precursor, yellow loosely dashed lines
( ): synthetic inlet, green dot-dashed lines ( ): laminar inlet, symbols
(◦, ∆, 2): experiment (Ishihara et al [102]).
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(a)

(b)

(c)

Figure 3.8: Three-dimensional hill. Streamwise vorticity in a region upstream
of the hill at height z/h = 0.125, for three different inlet conditions: (a)
precursor, (b) synthetic, (c) laminar.
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(a)

(b)

(c)

Figure 3.9: Three-dimensional hill. Streamwise vorticity in a region upstream
of the hill at height z/h = 1, for three different inlet conditions: (a) precur-
sor, (b) synthetic, (c) laminar.
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are generated through a diffusion process, is selected. This technique is cho-
sen because of its ease of implementation, as well as the fact that it can be
used in arbitrary geometries and unstructured grids.

All the methods are tested in the simulation of a flow over a three-
dimensional hill, a case of particular interest, where prescribing a laminar
inlet is shown to falter, severely underpredicting the fluctuations in regions
away from the wall. Both the precursor and the synthetic method offered
results of similar quality, in good agreement with the experimental data.
However, it needs to be noted that the precursor simulation imposes a sig-
nificant additional computational cost. On the other hand, the synthetic
method necessitates an a priori specification of a target length scale and
also needs knowledge of some quantities of the flow for the scaling proce-
dure. Nevertheless, considering the similar quality of the results from the
two methods, the use of a synthetic inlet is suggested, due to the lower
computational cost. The two methods are also tested in the flow over the
Bolund hill, presented in Section 5.2.





Chapter 4

Wall modelling

4.1 Introduction

Even though LES has found a more widespread use in the simulation of
turbulent flows at high Reynolds numbers and complex geometries, it still
faces limitations in wall-bounded flows, as the cost to resolve the flow in the
near-wall region increases exponentially. Considering that most engineering
flows occur in Reynolds numbers of the order of 106-109, the use of wall-
resolved LES is, therefore, limited to flows of moderate Reynolds numbers.
In 1979, Chapman [105] presented a complete analysis of grid-resolution
requirements for LES of turbulent boundary layers. For this analysis, he
separated the flow into an inner layer, where the viscous effects are dominant,
and an outer layer, where they are almost negligible on the mean flow. The
dynamically important eddies in the outer layer scale with the boundary
layer thickness δ. He showed that the number of grid points required in the
wall-normal direction is practically independent of the Reynolds number.
Under the assumption that the grid size in the tangential directions scales
like Re0.2 (like the boundary layer thickness), the estimate for the total
number of points is proportional to Re0.4.

The requirements for the inner layer, however, are much more strict.
Quasi-streamwise vortices, of a constant size in wall units, dominate the
flow in that region. Thus, a constant grid spacing in wall units must be
preserved. He finally estimated that the number of points required to resolve
the inner layer is

Ninner ∝ CfRe2

which leads to
Ninner ∝ Re1.8

under the assumption that Cf ∝ Re−0.2.
The cost of a calculation, however, does not only depend on the size

of the grid. We need to consider that the equations of motion need to be
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advanced for a sufficient amount of time (related to the integral time scale
of the flow), in order to obtain converged statistics. Considering that the
CFL condition needs to be satisfied in most cases, the time-step is defined as
∆t ∝ ∆x/U , i.e. the number of time-steps is proportional to the number of
grid points in one direction. Finally, the total cost of the calculation scales
with Re2.4 for the inner layer.

More recently, Choi and Moin [106] revisited these estimates, after point-
ing out that the assumption for the scaling of the skin friction is only valid
for low to intermediate Reynolds number range (Re 6 106) and has been
shown to not hold at higher Reynolds numbers. Instead the skin friction
coefficient scales with

Cf ∝ Re−1/7

which leads to the following estimation for the number of points required to
resolve the inner layer:

Ninner ∝ Re13/7.

It becomes immediately obvious that the cost of fully resolving the inner
layer far outweighs that of the outer layer and dominates the simulation.
Therefore, the need to minimize or avoid that cost has been identified and
modelling the flow in the inner layer has been proposed as an alternative.
The basic principle behind wall modelling is that the transport of the mo-
mentum in the inner layer has to be modelled, since the grid is too coarse to
resolve the dynamically important eddies and just assuming a no-slip con-
dition results in an incorrect velocity profile, and subsequently, wall stress.

Deardorff [107] and Schumann [108] attempted to solve this problem by
using approximate boundary conditions similar to the wall functions used
in RANS simulations, under the assumption of a constant wall stress. This
suggests that a logarithmic layer exists, which can be used to relate the outer
layer velocity to the wall stress. In flows of engineering interest, however,
those approximate conditions cannot always be applied as the assumption
of an equilibrium flow and, subsequently, a logarithmic law does not hold.
Various modifications of the Schumann model have proposed ([109, 110,
111, 112]) that account for various parameters such as the roughness of the
wall, the elongation of the near-wall structures etc. Piomelli et al. [110]
suggested a so-called ejection model, which takes into account the fact that
the fast fluid motions toward or away from the wall significantly affect the
wall stress. In the modified version of this model by Marusic et al. [112],
the model is based on the streamwise component of the velocity instead of
the wall-normal one, which is found to yield more accurate results.

Werner and Wengle [113] proposed a model, where they replaced the log-
arithmic law with a power (1/7) law. Their model functions under they hy-
pothesis that the instantaneous tangential velocity components are in phase
with the respective instantaneous wall shear stresses. This model is more
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suitable for inhomogeneous configurations, since it does not make use of av-
eraged statistics for the velocity and/or wall stress values. A modification of
this model was suggested by Hassan and Barsamian in [114], where the shift
that exists in the correlation between the wall friction and the instantaneous
velocity is accounted for, similar to the ejection model presented by Piomelli
et al. in [110].

Following these early methods, a lot of different approaches have been
considered to deal with the near-wall region. They can be categorized in two
groups: a) wall stress models and b) hybrid RANS/LES methods. The first
category relies on approximate boundary conditions to model the transport
of momentum in the inner layer. In these methods, the LES grid is formally
defined as extending all the way to the solid wall. The model calculates the
wall stress in terms of the outer velocity, which is then provided to the LES
as a boundary condition. On the contrary, in the second category the LES
does not extend all the way to the wall and instead the wall model is respon-
sible for simulating near-wall flow, with the model and the LES exchanging
information at the matching interface. The present work focuses exclusively
on the first category. For more extensive reviews on wall modelling, the
reader is referred to [6, 115, 116, 117, 118].

In this chapter two different models are evaluated. In section 4.2, an
equilibrium wall model is investigated. Instead of focusing on the model
itself, we use a simple law of the wall and focus on the way the wall model
is applied. We find that the classical finite element approach fails in both
theory and practice. In section 4.3, some preliminary work on a two-layer
non-equilibrium wall model, that solves the RANS equations on an auxiliary
grid, is presented.

4.2 Equilibrium model

4.2.1 Introduction

In this section we focus on the implementation of wall modelling for large
eddy simulation in a finite element framework. The standard approach to
wall modelling for LES in finite elements is the same as the one typically
used in RANS, as described for example in [119, 120, 121, 122]. As opposed
to the approach commonly used in finite differences and finite volumes, the
mesh does not extend all the way to the wall (i.e., a part of the domain is
omitted). Therefore, there exists a thin region of height d between the wall
and the first point of the computational mesh (see Fig. 4.1a). The traction
is applied at point A with the velocity evaluated at the same point.

Despite its importance for simulation problems of engineering interest,
little work has been conducted in regards to wall-modelled LES (WMLES) in
a finite element framework. Bazilevs and Hughes [123] proposed an alterna-
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tive method to deal with coarse meshes in the near-wall region, through the
weak imposition of the boundary conditions using Nitsche’s method [124].
The formulation was further enhanced by Bazilevs et al. in [125, 126], by
incorporating the law of the wall of Spalding [127] and also imposing the
boundary condition in the wall-normal direction in a weak sense, although
the primary goal of the latter was ease of implementation. The weak im-
position performed considerably better when uniform (and, thus, coarse)
grids were utilized, as is often the case in applications of practical interest.
However the results were still not very accurate. The concept was further
explored in [128, 129], where an additional stress field was utilized for the
imposition of boundary conditions. This approach was shown to offer im-
proved, yet still not accurate, results, while also guaranteeing the imperme-
ability of the wall boundaries. Krank and Wall [130] suggested an alternative
approach to wall modelling, via the use of a function space that consists of a
standard polynomial function space and an enrichment constructed on the
basis of Spalding’s law of the wall. This modification allows for the bound-
ary layer to be resolved in a mean sense (somewhat resembling Detached
Eddy Simulation on that respect) even with coarse meshes. Following the
classification proposed in [117], the method they propose is a RANS-LES
method, in contrast to the method proposed herein that classifies as a two-
layer approach. The method was tested in various configurations using very
coarse meshes with surprisingly accurate results. However, questions can be
raised in regards to the dissipative nature of their code, since they obtained
improved results on higher Reynolds numbers in the turbulent channel flow
case, despite keeping a fixed grid.

Kawai and Larsson approached the problem from a different angle (albeit
in a finite difference context) in [131]. In order to explain the mismatch be-
tween the modelled and the real skin friction that is observed when the wall
stress is modelled using the nearest neighboring LES velocity (commonly
referred to as Log-Layer Mismatch or LLM), they looked at the error due to
the under-resolved LES in the first few grid points off the wall. They noted
that there is no inherent requirement to apply a wall model at the first grid
point off the wall (as is it typically done in a finite volume or finite differ-
ence context), as long as it is applied within the inner part of the boundary
layer. This means that the wall model is fed with more accurate information
and thus provides a better prediction of the wall shear stress, resolving the
LLM problem. Instead of the typical finite difference approach, where the
traction is applied on the wall with the velocity evaluated at the first grid
point off the wall (points B and C respectively in Fig. 4.1b), they proposed
that the velocity is evaluated at a point further away from the wall (e.g.
point D in Fig. 4.1b). They called this point exchange location. We will,
therefore, refer to the method as the exchange location method. The typical
implementation of the wall law in the finite difference community can be
regarded as a particular case of the exchange location method.
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Yang et al. [132] suggested that the LLM is not caused by the numerical
error in the first point off the wall, as proposed in [131], but rather by the
unphysically strong coupling between the wall shear stress and the velocity
at the first point off the wall. They proposed an alternative solution in which
the wall model receives the time-filtered LES velocity at the first point off the
wall, which proved to be successful in eliminating the LLM problem. They
also showed that the same effect can be achieved through the application of
wall-parallel spatial filtering on the wall model input, but noted the difficulty
of constructing such spatial filters in unstructured meshes. In addition, they
pointed out that while the method proposed in [131] has been useful, it is
impractical in complex geometry flows, imposing a large overhead on mesh
generation as well as wall model implementation.

De Wiart and Murman performed WMLES in a Discontinuous Galerkin
Spectral Element framework in [133]. Using a simple equilibrium wall model
and high-order elements, they were able to accurately predict the turbulent
channel flow even at Reynolds numbers up to Reτ = 50k, however the
model was unable to correctly predict non-equilibrium flows such as the
two-dimensional periodic hills and the NACA 4412 airfoil. In the airfoil
case, they experimented with the input location for the wall model, with
minimal impact on the results. Frère et al. [134] employed both the afore-
mentioned strategies (from [131] and [132]) in the turbulent channel flow,
using a high-order Discontinuous Galerkin code. They observed that apply-
ing an averaging procedure on the input of the wall model had no impact on
the results. It is important to note, however, that they only applied a “par-
tial” average (cf. Eq. 11 therein), as opposed to the full average suggested
in [132]. The traction they imposed was proportional to the instantaneous
velocity while the factor of proportionality depended on the average velocity.
Instead, in the method proposed in [132] not only does the factor of propor-
tionality depend on the average velocity but the traction is proportional to
the average velocity. Since the method used imposes the unphysically strong
coupling between the wall shear stress and the velocity of the first point off
the wall, it is not expected to introduce a significant improvement according
to the findings in [132]. In terms of the input location for the wall model,
they found that placing the interface at the bottom of the second element
off the wall, massively improved the results compared to placing it at the
top of the first element. However, they did not examine locations further
away from the wall. Considering the significant differences between the Dis-
continuous Galerkin and standard finite element methods, we believe that
their conclusions are not necessarily transferable to the framework used in
this work. For instance, in a continuous finite element approach the velocity
is the same at the bottom of the second element off the wall and at the top
of the first element.

We adapt the finite difference approach for wall modelling to the finite
element framework and compare it with the approach typically used in the
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Figure 4.1: Wall modelling approach in different spatial discretization meth-
ods.

finite element community [119, 120, 121, 122]. We also examine the exchange
location method proposed in [131], as well as the application of temporal
filtering on the input of the wall model, suggested in [132]. A key contribu-
tion of this Chapter is to show that abandoning the classical finite element
implementation offers significant improvements in the results.

4.2.2 Explanation of the method

The analytical expression for the shear stress parallel to the wall at a
distance y = d from the wall is:

τ(d) = (µ+ µLES)
∂ux
∂y

∣∣∣∣
y=d

− ρu′xu
′
y

∣∣
y=d

(4.1)

where x and y correspond to the streamwise and wall-normal directions
respectively, while µLES refers to the turbulent viscosity introduced by the
subgrid-scale model (if one is used). The first term of the RHS of Eq. 4.1
refers to the viscous and the modelled stress, while the second term refers
to the resolved stress.

In the following, three different approaches to model Eq. 4.1 are pre-
sented: i) the typical approach used in finite elements, ii) the typical ap-
proach used in finite differences and iii) the exchange location method. It is
worth noting at this point that an open integration rule is used in the sim-
ulations, i.e., the calculations are performed at the boundary gauss points
and the corresponding exchange location points. However, we refer to grid
points in the following, as if a closed (nodal) integration rule was used, in
order to make an easier comparison between the finite element and finite
difference approaches.

Classical finite element approach

The most commonly used approach for wall modelling in finite elements
is to consider a mesh that does not extend all the way to the wall, as shown in
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Fig. 4.1a (see also [119, 120, 121, 122]). In this approach, the layer between
the wall and the first grid point (A) is not directly resolved. Instead it is
modelled through a wall function. The velocity at point A and the so-called
“wall distance” between that point and the wall (denoted by d in Fig. 4.1a)
are typically used to calculate the shear stress (τ(d)), which is then imposed
at point A. In addition, a no-penetration condition is imposed at that point.

This method imposes the following conditions on point A (y = d):

τ(d) = (µ+ µLES)
∂ux
∂y

∣∣∣∣
y=d

(4.2)

uy = 0 (4.3)

where the no-penetration condition (Eq. 4.3 ) means the resolved stress is
equal to zero. Comparing Eq. 4.1 and 4.2, we see that the classical approach
does not account for the effect of the resolved stress at y = d. Since the total
shear stress is well calculated due to momentum conservation, this leads to
an inaccurate prediction of the velocity gradient, i.e., the method suffers
from severe Log-Layer Mismatch.

Following the classification presented in [117] for wall modelling, this
method is essentially equivalent to a hybrid LES/RANS model, since the
LES is not formally defined as extending all the way to the wall.

Classical finite difference approach

An alternative method proposed here involves following the approach
commonly used for wall modelling in finite differences. In this approach,
the grid extends all the way to the solid wall (Fig. 4.1b) and we are, in fact,
imposing the wall shear stress at y = 0, in terms of the velocity evaluated
at y = d, where d now denotes the distance between the first grid point (B),
which now coincides with the wall, and the first grid point off the wall (C).
Due to the fact that this velocity has a non-zero vertical component, the
problem outlined in the previous paragraph in regards to the resolved stress
being zero at a distance y = d from the wall is solved. It is worth noting
that, since in this case we are actually resolving the near-wall part of the
domain, we are indirectly imposing the following shear stress at point B:

τ(d) = (µ+ µLES)
∂ux
∂y

∣∣∣∣
y=d

− ρu′xu
′
y

∣∣
y=d
≈ τ(y = 0) +

∂p

∂x
d (4.4)

where the last approximation stems from integrating the Navier-Stokes equa-
tions in the near-wall elements.

As opposed to the classical finite element approach, this method is equiv-
alent to a wall-stress model (again following the classification of [117]), where
a wall model is solved over a layer of thickness d.
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Exchange location

The finite difference approach provides an additional opportunity (as
explained in [131]). A very typical problem of wall modelling is that, even
with a perfect wall model, the results would still be inaccurate, since the
LES is under-resolved in the near-wall part of the domain (e.g. at the first
grid point off the wall) and thus provides inaccurate information to the wall
model. There is, however, no requirement for the velocity to be evaluated at
the first grid point off the wall. As mentioned earlier, the only requirement
is that the velocity is evaluated at a point located within the inner part of
the boundary layer, where the wall functions are typically valid. The use
of the exchange location method allows us to place the exchange interface
(i.e. the point where the LES feeds information to the wall model) further
away from the wall (such as point D in Fig. 4.1b), where the LES is more
accurately resolved and, therefore, can provide a more accurate prediction
for the wall shear stress.

An issue arising with this method is that, in very complex geometries, it
could happen that certain exchange location points are placed outside of the
computational domain. To that end, we have developed an adaptive pro-
cedure that locates the missing points and gradually reduces the distance
from the corresponding wall, until the point is located inside the computa-
tional domain. This procedure is used in the realistic car model DrivAer
case in Section 5.1. Moreover, no additional meshing effort is required in
our experience.

4.2.3 Parallel implementation

Normally, in a parallel simulation, it is not possible to know in advance
which parallel processes the exchange interface will be located in. It is also
to be expected that partitions requiring information for the wall model will
not host the needed exchange location points and thus communications will
be necessary. To that end, a pre-process stage to construct a communication
scheme is proposed in Algorithm 2. Given that all the partitions perform
the same tasks, the description is done in terms of one of them.

A graphical description of this procedure is shown in Fig. 4.2, where
the bounding box of the exchange location points of partition 1 is shown
together with the bounding box of partitions 2 and 3. In this example,
partition 1 will receive information from partitions 2 and 3. It is important
to note that this procedure is not necessary for the classical finite difference
approach (i.e., when the exchange location is placed at the first grid point
off the wall), which is a significant advantage in terms of the simplicity of
implementing the method in a finite element code.
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Algorithm 2 Definition of the communication scheme for the exchange
location method.

• Define the bounding box of my physical domain.
• Exchange bounding boxes with all other partitions.
• Define a bounding box containing my exchange location points and check
for intersections with the bounding boxes of other parallel partitions. If
there is an intersection, mark the partition as a neighbor.
• Send the coordinates of my needed points to my neighbors and receive
coordinates from them.
• For each neighbor, check if their needed points are contained in my
elements. Mark the contained points as ‘hosted nodes’.
• Exchange the hosted nodes’ list with my neighbor partitions.
• Build the communications scheme according to the ‘hosted nodes’ lists.

Figure 4.2: Neighbouring subdomains containing the exchange location
points.
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4.2.4 Wall modelling tools

Two different wall functions are utilized in the tests performed in this
work, one for smooth walls and the other one for rough walls. These wall
functions are used to calculate the friction velocity u∗, based on the LES
velocity that the model receives as an input, which is subsequently used for
the calculation of the wall shear stress through the expression τw = ρu2

∗.
Reichardt’s extended law of the wall [135]:

u+ =
1

κ
ln
(
1 + κy+

)
+ 7.8 ·

(
1− e−

y+

11 − y+

11
· e−0.33y+

)
(4.5)

is used in the turbulent channel and wall-mounted hump cases, where u+ =
u
u∗

and y+ = yu∗
ν denote the dimensionless velocity and wall distance re-

spectively, and κ = 0.41 is the von-Kárman constant. Ideally, a single wall
model would be utilized in all the cases presented, in order to avoid adding
an extra degree of freedom in the assessment of the method. However, due
to the roughness of the wall in the atmospheric boundary layer case, we use
the logarithmic law for rough walls and neutral stability:

uy =
u∗
κ
ln

(
y + y0

y0

)
(4.6)

commonly used in environmental simulations. Here uy denotes the mean
wind speed at height y and y0 denotes the surface roughness.

In addition, an exponential running average similar to the one proposed
by Meneveau et al [136] is used to account for the time-average nature of
the wall functions utilized. For any quantity φ, the local time average φ at
any time tn is defined as:

φ
n

= εφn + (1− ε)φn−1

The weighting parameter ε is defined as:

ε =
δt

T

where δt is the computational time-step and T is the characteristic averaging
time-scale, chosen to be comparable to the convective time scale of the
problem. In this method, the time-averaging is applied to the velocity that
is used as the input for the wall model, in a similar fashion to [132]. We
have confirmed in our numerical experiments that the process is insensitive
to the precise value of T , as pointed out by Yang et al. in [132], provided
that it is large enough (not shown here).
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4.2.5 Turbulent Channel Flow at Reτ = 2003

To assess the performance of our method, we investigate a turbulent
channel flow at Reτ = 2003 with a setup similar to the one used in [126],
where Reτ is the friction Reynolds number based on the friction velocity and
channel half width. We compare the two variations of the exchange location
with the classical FE approach, using the DNS results of [137] as reference
data.

The size of the computational domain considered herein is 6πδ×2δ×2πδ
in the streamwise, wall-normal and spanwise directions respectively, where
δ is the channel half-width. The streamwise and spanwise directions are
assumed to be homogeneous, and thus periodic boundary conditions are
applied, while a no penetration condition is imposed on the wall boundaries.

Meshes of 643 (G1), 128× 96× 96 (G2) and 256× 128× 128 (G3) linear
elements that are uniform in all directions are employed. That results in
y+ ≈ 63, y+ ≈ 42 and y+ ≈ 31 respectively at the first node. The reference
DNS used a 6144× 633× 4608 mesh on a domain with size 8π × 2× 3π in
the streamwise, wall-normal and spanwise directions respectively. The flow
is driven by a constant pressure gradient in the streamwise direction.

The simulation is run for an appropriately long time to guarantee that
a statistically stationary regime is reached. Once that quasi-steady state
has been achieved, statistics are collected, and the results are averaged in
time for approximately 24 flow-through units (we define a flow-through unit
as t = Lx/U where U denotes the velocity at the center of the channel
and Lx is the size of the domain in the streamwise direction). They are
subsequently averaged in space (in the streamwise and spanwise direction)
and non-dimensionalized using the computed friction velocity. Reichardt’s
extended law of the wall (Eq. 4.5) is used for modelling the wall layer. The
averaging period T is equal to two flow-through units.

Three alternatives for applying the wall law are compared. In the first
one, which will be labeled “classical” approach in the following, we employ
the standard FE approach to wall modelling, as described in Section 4.2.2.
The wall distance is set equal to the height of the elements (d = hel). The
remaining two make use of the exchange location method (cf. Section 4.2.2)
at two different locations: one on the first grid point off the wall and the
other at a distance of y = 0.125δ (coinciding with the fourth grid point off
the wall). The second location is intentionally chosen to be at the limit of
the wall law’s validity, to evaluate the approach proposed in [131]. We note
here that it is not necessary for the exchange location to coincide with the
grid points. Additionally, we evaluate the effect of using temporal averag-
ing on the input velocity of the wall law (as described in Section 4.2.4), by
performing the two exchange location simulations with and without aver-
aging. The identifier “noav” is used to denote the cases without temporal
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averaging.

(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 4.3: Mean streamwise velocity and rms velocity fluctuations, for grid
G1.

Results for the mean streamwise velocity are presented in Fig. 4.3a, for
grid G1. It becomes immediately obvious that the classical FE approach
cannot accurately predict the flow, resulting in a vast overprediction of the
mean streamwise velocity. Specifically, the velocity at the first grid point
is in agreement with the DNS data (as expected, since that is the point
where the wall law is applied), however the velocity gradient is inaccurately
predicted in the first few near-wall elements resulting in a significant error
in the mean streamwise velocity as we approach the core of the channel.
This overprediction is a result of omitting the resolved part of the stress
as explained in Section 4.2.2, leading to a severe Log-Layer Mismatch. The
results from the classical FE approach are similar to the ones in [126]. When
the exchange location is used, however, the prediction for the mean flow is
significantly more accurate. Placing the exchange location further away from
the wall offers a slight improvement in the results. However, both exchange
location simulations fail to accurately capture the shape of the DNS results.
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Figure 4.4: Mean streamwise velocity for grids G1, G2 and G3, each shifted
upward by 8 units for clarity.

Additionally, it is interesting to note that the use of temporal filtering has
minimal impact on the results.

The differences between methods are smaller when looking at the fluctu-
ations, but still noticeable (Fig. 4.3b - 4.3d). All simulations overpredict the
fluctuations in the streamwise direction in the near-wall region while under-
predicting the wall-normal and spanwise fluctuations. The predictions are
much more accurate as we approach the core of the channel. This behavior
is expected since the wall law only accounts for the mean velocity profile and
the coarse mesh employed does not allow for the near-wall part of the fluctu-
ations to be accurately resolved. Another possible cause is the use of linear
elements since they typically falter in accurately predicting the fluctuations
near the wall (cf. [27]). That said, the exchange location method still offers
an improvement in results, especially near the wall. Small improvements in
the results can also be observed when time filtering is used. We also have
to note the fact that v′ = 0 at y 6= 0 for the classical implementation of the
wall law in the finite element context, which is an inherent problem of the
method.

The influence of grid refinement on the velocity and its fluctuations, when
the exchange location method with temporal averaging is used, can be seen
in Fig. 4.4 and 4.5 respectively. It is clear that refining the grid offers a
significant improvement in the prediction for the mean streamwise velocity,
with the prediction for grid G3 being very close to the DNS results, especially
when the exchange location is placed at y = 0.125δ. The improvement



74 Chapter 4. Wall modelling

(a) Rms streamwise velocity fluctuations

(b) Rms wall-normal velocity fluctuations

(c) Rms spanwise velocity fluctuations

Figure 4.5: Rms velocity fluctuations for grids G1, G2 and G3, each shifted
upward for clarity.
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is smaller for the fluctuations, but still noticeable. Simulations using the
classical FE method were also performed for grids G2 and G3, with similar
trends to those of grid G1 (not shown here). The effect of placing the
exchange location at the third and fourth grid point off the wall was also
examined on all grids, however the results were almost identical to those
with the exchange location at y = 0.125δ.

We would like to emphasize the superior performance of the exchange
location compared to the classical FE approach. Even when the exchange
location is considered at the first grid point off the wall (which is essen-
tially the standard finite difference approach adapted to finite elements),
the improvement in results over the classical FE approach is astounding. It
is interesting to note that despite the equivalence between finite elements
and finite differences when structured grids and a closed integrating rule are
used (cf. [138]), the approach when it comes to wall modelling is radically
different. Here, we demonstrate that the finite difference approach is signif-
icantly more accurate. We believe this to be an important result, especially
given the simplicity of the method and its implementation in a finite element
code.

Apart from the results presented here, the method was also tested with
the VMS formulation in the 643 mesh, Fig. 4.6. Similar conclusions can
be drawn, with the difference between the classical FE method and the ex-
change location method being even higher. This is to be expected since
there is no eddy viscosity to partially counteract the LLM problem (cf. Sec-
tion 4.2.2 and Eq. 4.2 therein), and therefore the increase in the velocity
gradient is even higher. Additionally, the prediction of the mean stream-
wise velocity is notably more accurate when the exchange location is moved
further away from the wall. The VMS formulation is shown to significantly
overpredict the velocity fluctuations, which is in agreement with the lower
Reynolds number cases (Section 2.4). It is important to also note the os-
cillatory behavior in the near-wall region, especially when the classical FE
method is paired with the VMS formulation, most evident when looking at
the rms velocity fluctuations in the wall-normal direction.

Another important observation is that, in contrast with the low Reynolds
number cases (cf. Section 2.4.3-2.4.4), the predictions are improved when
the constant is set to c2 = 2, even for the mean streamwise velocity (a
closer view can be seen in Fig. 4.7). This further proves the issue that
was highlighted in Chapter 2, where an ad hoc tuning of the stabilization
constants, based on the case and Reynolds number, is necessary in order to
obtain the best results.
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(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 4.6: Mean streamwise velocity and rms velocity fluctuations, for the
643 mesh, with the VMS formulation.

4.2.6 Atmospheric Boundary Layer

A large scale environmental flow, namely the neutral atmospheric bound-
ary layer flow over a flat terrain is considered in this section. The very high
Reynolds number of environmental flows (here, Reτ = 2.98×107) makes the
use of wall modelling imperative and the coarse resolutions used provide an
excellent test for the assessment of wall modelling approaches. The size of
the computational domain examined herein is H = Ly = 1000 m in the ver-
tical direction and Lx = Lz = 2πLy in the tangential directions. The com-
putational grid consists of 53 uniform elements in each direction. Periodic
boundary conditions are imposed in the tangential directions. A stress-free
condition is imposed at the upper boundary, while a no-penetration condi-
tion is imposed at the bottom and top boundaries. The logarithmic law (Eq.
4.6) is used to model the wall layer at the bottom boundary. The values
chosen for the friction velocity and roughness length are u∗ = 0.45 m s-1 and
y0 = 0.1 m respectively. Statistics are collected once the quasi-steady state
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Figure 4.7: Closer view of the mean streamwise velocity, with the VMS for-
mulation.

has been achieved, and the results are averaged in time for approximately
50 flow-through units (here we define a flow-through unit as t = Utop/Lx,
where Utop is the velocity at the top of the domain and Lx is the size of
the domain in the streamwise direction), and subsequently in space (in the
streamwise and spanwise direction). The averaging period T is set equal to
one flow-through unit.

Fig. 4.8 presents the results for the mean streamwise velocity compared
with the theoretical values from the log-law. As observed, both the exchange
location simulations offer more accurate predictions than the one using the
classical FE method. Especially the results from the exchange location at
the third point are very similar to the theoretical values, albeit with a slight
underprediction at the part between the wall and the exchange location.

Another quantity of interest in the study of environmental flows is the
non-dimensional vertical gradient of the mean streamwise velocity, defined as
Φ = (κy/u∗)(dU/dy). It can be seen in Fig. 4.9 that all simulations deviate
from the theoretical value of 1 in the near-wall region. Nevertheless, the
results are noticeably better for the simulations using the exchange location
method, with the error being significantly higher in the near-wall region
when using the classical FE method.

It is noteworthy that the results when the exchange location is placed at
the third grid point off the wall are of similar quality to the ones presented
in the literature [139, 140].
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Figure 4.8: Atmospheric boundary layer. Mean streamwise velocity.

Figure 4.9: Atmospheric boundary layer. Non-dimensional gradient of the

mean streamwise velocity, Φ =
(
κy
u∗

)(
dU
dy

)
.
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Figure 4.10: Experimental setup for the hump case.

4.2.7 Wall-mounted hump

In this section, we consider the flow over a wall-mounted hump. The
features of this flow, where separation, reattachment and recovery of the
boundary layer occur, are of special interest, as they appear in several in-
dustrial applications. The configuration of the flow is based on the one
presented by Park in [141], and the results are compared with the experi-
mental data of Greenblatt et al. [142]. The size of the computational domain
is 4.64c, 0.909c and 0.3c in the streamwise (x), normal (y) and spanwise (z)
directions respectively, where c is the chord length of the hump. The inlet
and outlet planes lie at x/c = −2.14 and x/c = 2.5 respectively with the
leading edge of the hump at x/c = 0. The top wall is contoured with a small
constriction (see Fig. 4.11) between x = −0.5 and x = 1.5 to account for
the presence of the side-plates in the experiments (Fig. 4.10), following the
guidelines of the NASA CFDVAL2004 workshop.

The Reynolds number of the flow is Re = 936000, based on the hump
chord length c and the free stream velocity U∞ at the inlet. A slip boundary
condition is imposed at the top boundary, while periodicity is used in the
spanwise direction. A no-penetration condition is imposed at the bottom
boundary, with the wall stress being fed into the simulation through the
wall model (Reichardt’s extended wall law is used, Eq. 4.5). The averaging
period is set to T = 10c/U∞, corresponding to approximately two flow-
through units.

Two different grids are utilized in the simulations. The coarse grid (G1)
consists of approximately 3.1 million linear elements, with 743 × 71 × 61
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Figure 4.11: Computational mesh from grid G1 in the vicinity of the hump.

(a) Coarse grid (G1) (b) Fine grid (G2)

Figure 4.12: Grid spacings in wall units for the two grids.
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nodes in the streamwise, normal and spanwise directions respectively. In
the fine grid (G2) significant refinement was performed in the tangential
directions. In the wall-normal direction, the first grid point was kept at the
same distance from the wall (thus y+ remained the same), so that it remains
outside of the buffer layer, however the node density was increased, resulting
in a reduction of the growth rate (from 1.06 for the coarse mesh, to 1.03).
This resulted in approximately 8 million linear elements, with 901×111×81
nodes in the streamwise, normal and spanwise directions respectively. Fig.
4.11 presents the mesh in the vicinity of the hump for grid G1, and the
dimensionless grid spacings at the wall can be seen for both grids in Fig.
4.12.

Turbulent inflow data are synthesized through the use of the digital
filtering technique by Kempf et al. [96] described in Section 3.2, with the
target length scale set to L = 0.25δin, where δin denotes the thickness of
boundary layer at the inflow plane. Due to the limited experimental data
at the inflow, the missing Reynolds stresses were specified to match those
used by Park in [141] (left panels of Fig. 4.13). To ensure that realistic
turbulence evolves before the flow reaches the hump, the mean velocity and
Reynolds stresses from the present simulations are compared to those from
the WMLES of Avdis et al. [143], at a downstream location (x/c = −0.81),
shown in the right panels of Fig. 4.13, for grid G2. A slight overprediction
can be observed for the streamwise Reynolds stress, which is consistent with
the results presented in the turbulent channel flow in Section 4.2.5. However,
the general agreement is acceptable.

Statistics are collected over approximately 20 c/U∞ units of time, af-
ter the quasi-static state has been reached. The results are subsequently
averaged in the spanwise direction.

Three different exchange locations are examined for this case. Aside
from the exchange location at the first and third grid point off the wall, we
also examine placing the exchange location at a higher point of the inner
layer, without reference to the LES grid, as suggested in [117] and [131]. To
that end, we choose y = 0.125δin.

The predictions for the skin friction and pressure coefficients with grids
G1 and G2 are presented in Fig. 4.14 and Fig. 4.15 respectively. The re-
sults indicate that the exchange location method predicts the behavior of
the flow more accurately than the classical FE method for both grids. The
improvement in the prediction of the skin friction coefficient is remarkable,
especially in the case of the exchange location at y = 0.125δin, where the
prediction for the skin friction prior to the separation is essentially identical
to that of the experiments. A discrepancy is observed within the recircu-
lation region. However, that is to be expected since a simple equilibrium
model has been used. The separation and reattachment points are more
accurately predicted when the exchange location method is used (cf. Table
4.1) for both grids. A significant improvement in the position of the reat-
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Figure 4.13: Mean streamwise velocity and Reynolds stress at the inflow
(x/c = −2.14) and a downstream location (x/c = −0.81), for grid G2. Blue
lines ( ): u′u′, green lines ( ): v′v′, red lines ( ): w′w′, yellow lines
( ): u′v′, circles (◦): experiment (Greenblatt et al. [142]), squares (2):
WMLES (Avdis et al. [143]).
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(a) Skin friction coefficient (b) Pressure coefficient

Figure 4.14: Grid G1: Influence of the point where the velocity is evaluated
on the skin friction (a) and pressure (b) coefficients across the streamwise
direction. Green dotted lines ( ): classical FE method, blue dashed lines
( ): exchange location at first grid point, red dash-dotted lines ( ):
exchange location at third grid point, yellow solid lines ( ): exchange
location at y = 0.125δin, circles (◦): experiment (Greenblatt et al. [142]).

tachment point is obtained when the mesh is refined. Once more, the best
results are obtained in the case of the exchange location at y = 0.125δin.
In terms of the pressure coefficient, all the simulations offer similar predic-
tions. A slight underprediction is observed on the attached part of the hump
when the exchange location is placed at y = 0.125δin, however the shape of
the “plateau” observed in the experiments around x/c ≈ 0.7 − 0.9 is more
accurately predicted.

The profiles for the velocity and its fluctuations at different stream-
wise positions are presented in Fig. 4.16 and 4.17 for grids G1 and G2
respectively. All methods capture the mean streamwise velocity profiles ac-
ceptably, even though a simple equilibrium wall model has been used. The
results from the classical FE method show the highest deviation from the
experiment inside the recirculation region. Due to the underprediction of
the wall shear stress prior to the separation (Fig. 4.14a and 4.15a), the
boundary layer carries too high momentum, resulting in early reattachment
(Table 4.1) and, thus, an overprediction of the velocity profiles downstream
of the reattachment point.

We observe that all the simulations struggle to accurately predict the
Reynolds stresses within the recirculation zone, with the predictions improv-
ing downstream of the reattachment point. The discrepancies with respect
to the experimental results are similar to those observed in [141]. There
exists, however a marked improvement when placing the exchange location
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(a) Skin friction coefficient (b) Pressure coefficient

Figure 4.15: Grid G2: Influence of the point where the velocity is evaluated
on the skin friction (a) and pressure (b) coefficients across the streamwise
direction. Green dotted lines ( ): classical FE method, blue dashed lines
( ): exchange location at first grid point, red dash-dotted lines ( ):
exchange location at third grid point, yellow solid lines ( ): exchange
location at y = 0.125δin, circles (◦): experiment (Greenblatt et al. [142]).

Simulation Grid xsep/c xreatt/c (xreatt)error
Classical FE G1 0.665 0.97 11.8%

EL at 1st point G1 0.665 0.99 10.0%
EL at 3rd point G1 0.665 1.03 6.3%

EL at h = 0.125δin G1 0.67 1.05 4.5%

Classical FE G2 0.665 0.985 10.5%
EL at 1st point G2 0.665 1.05 4.5%
EL at 3rd point G2 0.665 1.07 2.7%

EL at h = 0.125δin G2 0.67 1.09 0.9%

Experiment - ∼ 0.665 ∼ 1.1 -

Table 4.1: Wall-mounted hump. Separation (xsep) and reattachment (xreatt)
locations for the different configurations.
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(a) Mean streamwise velocity profiles shifted by ∆ = 1.5

(b) Streamwise Reynolds stress profiles shifted by ∆ = 0.15

(c) Wall-normal Reynolds stress profiles shifted by ∆ = 0.075

(d) Shear Reynolds stress profiles shifted by ∆ = 0.075

Figure 4.16: Grid G1: Influence of the point where the velocity is evaluated on
the mean streamwise velocity and Reynolds stresses, at different streamwise
positions: x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3. Green dotted lines ( ):
classical FE method, blue dashed lines ( ): exchange location at first
grid point, red dash-dotted lines ( ): exchange location at third grid
point, yellow solid lines ( ): exchange location at y = 0.125δin, circles
(◦): experiment (Greenblatt et al. [142]).
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(a) Mean streamwise velocity profiles shifted by ∆ = 1.5

(b) Streamwise Reynolds stress profiles shifted by ∆ = 0.15

(c) Wall-normal Reynolds stress profiles shifted by ∆ = 0.075

(d) Shear Reynolds stress profiles shifted by ∆ = 0.075

Figure 4.17: Grid G2: Influence of the point where the velocity is evaluated on
the mean streamwise velocity and Reynolds stresses, at different streamwise
positions: x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3. Green dotted lines ( ):
classical FE method, blue dashed lines ( ): exchange location at first
grid point, red dash-dotted lines ( ): exchange location at third grid
point, yellow solid lines ( ): exchange location at y = 0.125δin, circles
(◦): experiment (Greenblatt et al. [142]).
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(a) Skin friction coefficient (b) Pressure coefficient

Figure 4.18: Influence of grid resolution on the skin friction (a) and pressure
(b) coefficients across the streamwise direction (velocity evaluated at y =
0.125δin). Red dash-dotted lines ( ): coarse grid (G1), blue dashed linse
( ): fine grid (G2), circles (◦): experiment (Greenblatt et al. [142]).

further away from the wall.
The influence of the grid resolution on the results is presented in Fig.

4.18-4.19, for the simulations where the velocity is evaluated at y = 0.125δin.
Although the differences in the skin friction and pressure coefficient are
hardly noticeable at first glance (Fig. 4.18), it can be seen that refining
the mesh improves the prediction of the reattachment location (Table 4.1).
Minimal differences are also observed for the mean streamwise velocity (Fig.
4.19a); however there is a significant improvement in the prediction of the
Reynolds stresses close to the center of the recirculation region (Fig. 4.19b-
4.19d) as the mesh is refined.

4.2.8 Conclusions

The implementation of wall modelling used by the finite difference and
finite volume communities has been adapted to finite elements. The new
implementation is as simple and easy to implement as the classical finite
element implementation but it provides vastly superior results. Instead of
omitting a part of the domain and relying on the wall model to account for
it, as is commonly done in finite elements, the whole domain is resolved and
the wall stress at the wall is calculated using the velocity at the first grid
point off the wall (or gauss point in the finite element context). The fact
that this velocity is fully three-dimensional (as opposed to the classical finite
element approach where the velocity used is imposed to be zero in the wall-
normal direction) leads to significantly improved predictions. Specifically,
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(a) Mean streamwise velocity profiles shifted by ∆ = 1.5

(b) Streamwise Reynolds stress profiles shifted by ∆ = 0.15

(c) Wall-normal Reynolds stress profiles shifted by ∆ = 0.075

(d) Shear Reynolds stress profiles shifted by ∆ = 0.075

Figure 4.19: Influence of grid resolution on the mean streamwise velocity and
Reynolds stresses (velocity evaluated at y = 0.125δin), at different stream-
wise positions: x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3. Red dash-dotted lines
( ): coarse grid (G1), blue dashed lines ( ): fine grid (G2), circles (◦):
experiment (Greenblatt et al. [142]).
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the presence of the resolved part of the stress −ρu′xu′z (cf. Eq. 4.1) leads
to a significantly more accurate prediction for the velocity gradient, com-
pared to the classical finite element method. The method is tested against
the classical approach, in three different benchmark cases: a) the turbulent
channel flow at Reτ = 2003, b) the atmospheric boundary layer flow, and c)
the wall-mounted hump flow. In all cases, the improvement in the results is
significant when using the new method, in particular for the mean stream-
wise velocity as well as the skin friction. It is interesting to note that the
proposed method performs remarkably well, despite the fact that the meshes
utilized were coarse, and a simple wall law was used as a wall model. This
is especially true in the hump case, a non-equilibrium flow with features
like separation and reattachment of the boundary layer that are typically
difficult to capture.

Additionally, two possible remedies for the LLM have been tested. Tak-
ing the input velocity for the wall law further away from the wall and using
the time averaged values of the velocity. For the atmospheric boundary layer
flow, due to the very high Reynolds number, time averaging is needed not
only to reduce the LLM but also to avoid divergence of the simulation due
to the strong fluctuations. In the channel case, we have tested the effect
of time averaging the input velocity of the wall model, as well as the effect
of the point where this velocity in evaluated. In this work, we do not find
a significant improvement by using time-averaged velocities as an input to
the wall law. The advantage of using the exchange location approach over
the classical finite difference approach is also subtle for this case. It is clear
that both approaches are significantly better that the classical finite element
approach based on the results obtained in this work and those available in
the literature. In the atmospheric boundary layer and wall-mounted hump
cases, time-averaged values have been used and only the influence of the
point where we evaluate the input velocity for the wall model is examined.
For these two cases it is clear that the classical finite element approach
provides much poorer results than the finite difference approach for wall
modelling. The exchange location provides the best results for both cases.
In the hump case, we observe that taking the velocity further away from the
wall provides noticeable improvements for the friction coefficient and the
location of reattachment point.

4.3 Non-equilibrium model

4.3.1 Introduction

The concept of a two-layer non-equilibrium wall model was originally in-
troduced by Balaras et al. in [144, 145], where they solved the thin boundary
layer equations (TBLE) in an auxiliary grid, using a simple algebraic mix-
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ing length model for turbulence closure. Their method consisted of feeding
the LES velocity to the wall model at the first grid point off the wall, which
then calculated the wall shear stress and passed it to the LES as a boundary
condition at the wall. Using the same strategy on a backward-facing step,
Cabot and Moin [146] found that due to the resolved Reynolds stresses
carrying over from the LES to the wall model, the skin friction was overpre-
dicted. To rectify that problem, they suggested a dynamic adjustment of
the von Kárman constant in order to reduce the modelled Reynolds stress
and, thus, counteract the excess resolved stresses. This approach was later
used by Wang and Moin [147] on a flow over an airfoil trailing edge, with a
notable improvement in the prediction of the skin friction.

Kawai and Larsson [148] noted that the assumption of a constant dis-
tribution of the von Kárman constant is not accurate in high Reynolds
numbers, since the ratio between resolved and modelled Reynolds stresses
varies along the wall-normal direction, due to the highly anisotropic meshes.
Instead they suggested that the standard value of the von Kárman constant
is to be used from the wall up to a certain height hcrit, where the auxiliary
mesh is too anisotropic to support resolved stresses. From this height up
to the matching interface, the von Kárman constant should follow a linear
distribution instead. Additionally, they solved the full RANS equations in
the auxiliary grid, in order to account for all the non-equilibrium phenom-
ena. A downside of their approach lies in the fact that the model parameter
that is used to specify hcrit depends on the numerical scheme as well as the
mesh. With that in mind, Park and Moin [149] suggested a method that
does not match the total stress in the wall model and the LES, but instead
subtracts the resolved part of the stress from the RANS modelled part.

In this section, preliminary work on a two-layer non-equilibrium wall
model is presented. The model solves the full unsteady RANS equations on
an auxiliary grid. In order to circumvent the excess of Reynolds stresses,
we apply a time-averaging technique on the information that the wall model
receives from the LES, that filters the incoming stresses. The model is tested
on the turbulent channel flow at Reτ = 2003. Furthermore, we investigate
the use of auxiliary grids which are coarser in the tangential directions than
the main grid.

4.3.2 Description of the model

Following the concept introduced in [144, 145], an auxiliary grid is uti-
lized to calculate the wall stress based on the velocity coming from the LES
mesh, Fig. 4.20. The auxiliary grid is typically, but not necessarily, gen-
erated from an extrusion of the wall surface mesh of the main simulation.
The nodes are concentrated towards the wall in the wall-normal direction,
following a geometric progression, so that the boundary layer is properly
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           for LES

Figure 4.20: Sketch of the two-layer strategy.

resolved and the wall stress is accurately predicted.
The full, unsteady Reynolds-Averaged Navier Stokes (URANS) equa-

tions are solved in the auxiliary grid:

∂tu + u · ∇u−∇ · (2(ν + νt)ε(u)) +∇p = f (4.7)

where (̄ ) denotes time-averaged variables and νt is the turbulent eddy vis-
cosity. An algebraic model based on Prandtl’s mixing length hypothesis is
used for turbulence closure:

νt = (κy)2 |ε(u)|
[
1− exp

(
− y

+

A+

)]2

(4.8)

where the expression in the bracket is the Van-Driest wall-damping func-
tion. Here, the wall-damping constant is A+ = 26. In order to avoid steep
restrictions on the time-step size due to the CFL condition and the wall-
normal refinement of the auxiliary grid, a first order implicit scheme is used
for temporal discretization. Instead, both simulations utilize the time-step
imposed by the CFL condition of the main (LES) simulation, as described
in Section 2.3.

Instead of relying on the aforementioned remedies, a time-averaging pro-
cedure is utilized in order to explicitly filter out the incoming resolved
Reynolds stresses from the LES mesh. The exponential running average
method described in Section 4.2.4 is used here. The method has shown to
be insensitive to the exact value of the averaging period T , providing it
is large enough to properly filter the incoming stresses. For the turbulent
channel flow examined here, T is set equal to 2 flow-through units, as in the
case of the equilibrium model.

The auxiliary simulation receives the time-averaged velocity from the
LES as a boundary condition at the matching interface. An alternative ap-
proach would involve using only the tangential components of the velocity
along with the wall-normal traction as a boundary condition, however this is
not possible with the current coupling structure available in Alya and was,
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therefore, not examined. A no-slip condition is imposed at the wall bound-
ary. In the remaining boundaries, the boundary conditions are set to match
those of the main simulation. In the turbulent channel flow examined here
for example, periodic conditions are imposed in the tangential directions.
The wall stress calculated by the auxiliary simulation is then provided to
the main simulation, which, along with a no-penetration condition, serve as
wall boundary conditions.

4.3.3 Turbulent Channel Flow at Reτ = 2003

The turbulent channel flow case at Reτ = 2003 is used to evaluate the
model. The reader is referred to Section 4.2.5 for basic information regarding
this case. The effects of time-averaging the LES velocity, as well as the
approach suggested by Kawai and Larsson [131], are evaluated on a 643

element mesh. The auxiliary grid is created by an extrusion of the LES
surface grid at the wall boundaries. In the wall-normal direction, the first
grid point is at y+ = 0.93 with a growth rate of 1.1. For the case where the
matching location is placed at the first grid point off the wall (in the LES
mesh), this results on two auxiliary grids (one for each wall boundary) of
64 × 21 × 64 elements, while when the matching location is moved to the
third grid point, the size of the grids is 64×32×64 elements. It is important
to note that, unlike the equilibrium model, moving the matching location
away from the wall incurs additional computational cost. Here, moving the
matching location to the third grid point results in a 50% increase in the
number of elements needed for the auxiliary grids.

The mean streamwise velocity for the cases with and without averaging
can be seen in Fig. 4.21. The identifier “noav” is used to denote the cases
without temporal averaging. It is immediately obvious that feeding the
wall model with the unfiltered, instantaneous LES velocity results in an
underprediction of the mean streamwise velocity. The problem becomes even
more evident when the matching location is moved to the third grid point
off the wall. Time-averaging the input velocity for the wall model massively
improves the results. A cross-comparison of Fig. 4.21 and 4.3a shows that
the results are comparable with those predicted by the equilibrium model.
In fact, a small improvement can be observed for the case with the matching
location at the first grid point off the wall, while the results are practically
identical when the matching location is moved further away from the wall.

A finer LES grid with 256 × 128 × 128 is also examined. Two types
of auxiliary grids are utilized: one with the same resolution as the LES
grid in the tangential directions (auxG1) and one with half the number of
elements in each tangential direction (auxG2). In the wall-normal directions
all grids have y+ = 0.93 with a growth rate of 1.1, as in the coarse LES
grid case. For the matching location at the first grid point, this results in
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Figure 4.21: Mean streamwise velocity for the 643 mesh.

Grid Nelem (×106) Increase (%)

LES 4.2 -
auxG1a 0.98 23.3
auxG2a 0.25 6.0
auxG1b 1.64 39.0
auxG2b 0.41 9.8

Table 4.2: Non-equilibrium model. Number of elements for each auxiliary
grid (for both boundaries), along with the increase in total number of ele-
ments.

resolutions of 256 × 15 × 128 elements (grid auxG1a) and 128 × 15 × 64
elements (grid auxG2a), while for the matching location at the third grid
point, the resolutions are 256 × 25 × 128 (grid auxG1b) and 128 × 25 × 64
(grid auxG2b).

Fig. 4.22 shows the results for the velocity and its fluctuations for the fine
grid. It can be seen that using coarser auxiliary grids has minimal impact
on the results. This is an important result, as decreasing the resolution of
the auxiliary grids significantly reduces the overhead of the model. This is
consistent with the findings in [150, 151], although the author of these works
used the thin boundary layer equations instead of a full RANS description.
The number of elements for each grid (including both wall boundaries), as
well as the increase in the total number of elements of each simulation is
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(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 4.22: Mean streamwise velocity and rms velocity fluctuations for the
fine grid.

given in Table 4.2. The coarser auxiliary grids amount to less than a 10%
increase in the total number of nodes. Using coarser grids also means that
the additional computational cost of placing the matching location at the
third grid point becomes fairly negligible. One could potentially use even
coarser grids, however not only would the resolution become too coarse, but
also the communication costs would become dominant, negating any gains.

4.3.4 Conclusions

Preliminary work on a two-layer non-equilibrium wall model has been
presented. The model solves the full unsteady RANS equations on an aux-
iliary grid, so that all the non-equilibrium phenomena are accounted for.
The wall model receives the time-averaged LES velocity as an input. This
temporal averaging explicitly filters the resolved Reynolds stresses, effec-
tively solving a common problem encountered in two-layer models, where
the excess of Reynolds stresses leads to an inaccurate prediction for the skin
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friction. It is also observed that the auxiliary grid does not need to be an
extrusion of the LES grid and can instead be coarser in the tangential direc-
tions. This results in significant savings in computational cost. The model is
only tested on a turbulent channel flow at Reτ = 2003, however the results
are promising.





Chapter 5

Real world applications

5.1 DrivAer

In this section we examine a realistic generic car model called the DrivAer
body that has become widely accepted within the aerodynamics commu-
nity. The model has been developed at the Technical University of Munich
(TUM). The geometry is based on two medium saloons, the BMW 3 series
and the Audi A4 and was created by merging CAD models in a collabora-
tion between the Institute of Aerodynamics and Fluid Mechanics at TUM,
the BMW Group and Audi AG. The model serves as an intermediate step
between simplified car models such as the Ahmed body (Section. 2.5.2) and
highly complex production vehicles. The model is modular allowing for up
to 18 different configurations with the most important variation being the
one regarding the geometry of the top. The three different geometries are
Fastback, Estate and Notchback, pictured in Fig. 5.1. The A and B pillars
are also illustrated for the Fastback model.

The model has been experimentally tested using a 40% scaled model
[152, 153, 154, 155] at Re = 4.87 × 106 at TUM. Cases with and with-
out moving ground have been simulated taking advantage of the belted
wind tunnel. There exist some small discrepancies between the values pre-
sented in the different works. To exemplify the differences we shall concen-
trate in the Fastback model with Smooth underbody, Mirrors and Wheels
(F S wM wW) with and without moving ground. The basic dimensions for
the Fastback model can be seen in Fig. 5.2. For the case without ground
simulation a 25% scaled model at Re from 0.75× 106 to 2.8× 106 has been
tested at the wind tunnel in Technical University of Berlin (TUB) [156, 157].
Despite the lower Reynolds number in [156], a nearly independent behav-
ior of the drag coefficient for Reynolds numbers above Re = 2.25 × 106 is
observed.

A lot of uncertainty exists for the exact setup in regards to the wheels
in the experiments. For example, in the TUM experiments a generic wheel

97
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A
B

Figure 5.1: DrivAer. Different geometries for the top of the model.

Figure 5.2: DrivAer. Dimensions of the Fastback configuration.
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w/o GS w GS

CD CL CD CL
Present LES 0.262 -0.111 0.265 -0.022

Heft [152] 0.261 0.01 0.265 -0.06
Heft [153] 0.254 n/a 0.243 n/a
Heft [154] n/a n/a 0.241 n/a
Mack [155] 0.249 n/a 0.247 n/a

Strangfeld [156] 0.249 0.057 n/a n/a
Wieser [157] 0.258 -0.096 n/a n/a

Table 5.1: DrivAer. Aerodynamic coefficients CD and CL for the Fastback
configuration.

design has been used [155]. Furthermore it is not specified whether the wheel
was in contact with the ground. In [156] it is specified that there exists a
gap of 1.5 mm between the ground and the wheel and that the distance
between the center of the wheel and ground is 83 mm. Since the radius of
the DrivAer wheel model scaled to 25% is 79.625 mm it seems that some
generic wheel must have been used. In [157] the gap between the wheel
and the ground is also 1.5 mm but there is no information about the wheel
diameter.

The reported aerodynamic coefficients for the cases with and without
ground simulation are presented in Table 5.1. We notice the spread in val-
ues, even for experiments conducted in the same wind tunnel. For the ex-
periments performed at TUM, the spread in the drag coefficient ranges from
0.016 to 0.012 for the cases with and without moving ground respectively.
A difference of 0.009 is also observed in the experiments from TUB. Fewer
results are available for the lift coefficient, but the spread here is significantly
larger, making it impossible to determine the correct value.

Numerical studies using a large variety of turbulence models have also
been performed on the DrivAer model. Most studies have performed RANS
simulations (see for example [158, 159, 160, 161]), however there have also
been studies using DES [159, 160, 161], as well as a study using both wall-
resolved and wall-modelled LES [162].

In this work, the fastback geometry with smooth underbody, mirrors and
both moving and fixed ground is simulated. The computational domain has
a length of 10L, a height of 8H and a width of 11W , where L, H and W
denote the length, height and width of the vehicle respectively. The vehicle
is situated at 2L from the inlet boundary at the symmetry plane as shown
in Fig. 5.3. A detail of the refinement zones is also included. The sizes used
in the different zones are presented in Table 5.2. The resulting unstructured
computational mesh consists of approximately 23 million degrees of freedom,
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10L

11W

8H

Figure 5.3: DrivAer. Computational domain and different refinement zones.

Refinement Zones Max Surface Length mm Max Volume Length mm

Green 10 20
Red 20 40
Blue 40 80

Table 5.2: DrivAer. Maximum element size for each refinement zone.

with a total of 84 million elements.
The Reynolds number, defined in terms of the vehicle length and the

reference velocity, is Re = 4.87×106, which requires the use of wall-modelled
LES. The exchange location method presented in Section 4.2 has been used
for the car and the ground, using Reichardt’s law of the wall (Eq. 4.5). Slip
boundary conditions have been used at the side and top boundaries. Finally,
a turbulent inflow was originally tested, however it had minimal impact on
the results. Therefore, a uniform velocity (u, v,w) = (Uref , 0, 0) is imposed
at the inlet. This is consistent with the DES and LES studies found in the
literature [159, 160, 161, 162, 163, 164].

The predicted aerodynamic coefficients are presented in Table 5.1. The
predictions are in good agreement with the experimental data, apart from
the lift coefficient for the case without moving ground. However, as ex-
plained previously, the large spread in experimental data means the correct
value is not known. Nevertheless, we observe a reduction of the lift coeffi-
cient when the ground is moving, which is consistent with the findings in
[152, 160].

The predictions for the pressure coefficient Cp = ((p − pref)/0.5ρU2
ref)

along the top and the bottom of the car geometry in the symmetry plane
for the case without ground simulation are presented in Fig. 5.4. The pres-
sure increases as the flow travels along the bonnet of the car, before a sudden
pressure drop is observed denoting the recirculation region occurring at the
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B-W
intersection

A pillar B pillar

(a)

(b)

Figure 5.4: DrivAer. Average pressure coefficient along the (a) top and (b)
bottom of the car geometry in the symmetry plane for the case without
ground simulation. Comparison with the experimental results of Heft [152].
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Figure 5.5: DrivAer. Q-criterion for the vorticity coloured by the velocity
magnitude for the fastback model with rotating wheels.

intersection between the bonnet and the windshield (Fig. 5.4a). Following
reattachment, the flow accelerates over the windshield resulting in a decrease
in pressure. The biggest deviation from the experiment is observed at the
top of the A pillar. Peters et al. [158] suggested that this could be due
to the absence of the roof stinger in the geometry used in the simulations,
along with other discrepancies between the geometries used in the numerical
simulations and the experiments. The overshoots observed at this point, as
well as the front bumper lip of the car, are consistent with the behavior
noticed in other LES and DES studies (cf. for example [160, 162]). The
predictions are in good agreement with the experiments in the region be-
tween the B pillar and the rear of the car. Looking at the underbody of the
car (Fig. 5.4b), the biggest deviation from the experiments is observed at
x/L ≈ 0.1, which is where the front wheels are located. We notice that the
pressure coefficient is negative across the length of the underbody, which
acts as a diffuser, generating a downforce that pushes the vehicle to the
ground, increasing traction.

In Figure 5.5, vortices identified by means of Q-isosurfaces and coloured
by the velocity magnitude for the fastback case with rotating wheels are pre-
sented. As expected a much more complex behavior is observed, compared
to the Ahmed body 2.15. Large structures are created when the incoming
flow interacts with the wheels and the mirrors. These structures appear to
be dominant in the wake of the car. The generation of some smaller vortical
structures can also be observed at the intersection between the bonnet and
the windshield, as well as when the flow interacts with the A pillar of the
car.
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Figure 5.6: DrivAer. Pressure coefficient and line integral convolution on the
symmetry plane for the average flow.

Figure 5.7: DrivAer. Streamlines for the average flow.

Figure 5.6 combines the pressure coefficient over the car body with the



104 Chapter 5. Real world applications

Figure 5.8: The Bolund peninsula viewed from a meteorological mast south
of the site.

streamlines for the mean flow for the fastback DrivAer model in the case
without moving ground. The flow pattern in the symmetry plane compares
well with the experimental results from [156], with the lower vortex (the
one originating from the underbody) being slightly thinner in the present
work. A possible explanation could be the different wheel size and geometry
used. Some differences can be observed in the pressure coefficient towards
the end of the trunk lid, however there is a good qualitative agreement with
the experimental results from [156, 157]. Finally, the streamlines for the
mean flow at the car rear are shown in Figure 5.7. A good match with the
experimental surface visualization presented in [157] is obtained.

5.2 Flow over the Bolund hill

In this Section we examine the features of the flow over the Bolund
hill. The Bolund hill is a 12m high, 130m long and 75m wide hill located
on a peninsula close to the city of Roskilde, Denmark. A narrow isthmus
connects the hill to the main land at the east side, while the rest of the
hill is surrounded by sea, Fig. 5.8. Its highly three-dimensional geometry
(Fig. 5.9), featuring properties such as a steep vertical upstream escarpment,
similar to those of complex terrains with wind farm installations, as well
as a sharp change in surface roughness (from water to grass), make the
flow challenging to simulate and, therefore, an excellent case for validating
computational models. In addition, the incoming wind can be considered
horizontally homogeneous, since there exists a long fetch of sea upstream of
the hill, making it easier to establish proper inflow conditions. The hill’s
low height means it is not exactly representative of actual wind farm sites,
however it allows to neglect thermal and Coriolis effects. Nevertheless, the
shape of the hill represents a scaled-down model of a typical wind farm site.

The field data were collected during a measurement campaign performed
during the winter of 2007-2008 [165]. Velocity and turbulence data were col-
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Figure 5.9: Closer look at the Bolund hill model geometry.

lected from anemometers distributed on 10 masts, positioned as presented in
Fig. 5.10. Note that masts M0 and M9 were “control” masts for measuring
the incoming wind conditions. An extensive comparison between various
RANS and LES models was presented in [166], where the LES models were
seen to have shown large speed-up errors offering worse results than the
RANS ones. More LES studies have been conducted since [104, 167, 168],
with significantly improved predictions. Namely, Chaudhari et al. [168]
presented results from their LES studies that offered a noticeable reduc-
tion of the speed-up errors compared to the best published RANS results
(Prospathopoulos et al. [169]), albeit using a quite fine mesh.

The present work focuses on the case where the wind comes from the west
(angle 270°), which corresponds to case 1 in [166]. A mesh with local resolu-
tion ranging from 0.3m at the vertical escarpment, 0.7m at the hill region and
4m at the rest of the sea and coast surfaces has been used. This corresponds
to an unstructured grid of approximately 27 million elements (tetrahedral
and prisms) and only 6 million degrees of freedom. A detail of the mesh at
the vertical escarpment zone and the transition between that zone and the
hill is presented in Fig. 5.11 and Fig. 5.12 respectively. While this mesh
resolution is finer in comparison to the LES studies presented in [166], it is
notably coarser than more recent works, such as [168], where a mesh of 30
million degrees of freedom was used. The goal is to use a resolution that
offers a reasonable compromise between accuracy and computational cost.
It is estimated in [165] that for the Bolund case Reh = Urefh/ν ≈ 107, where
Uref ≈ 10 ms−1 is the wind velocity at a height of 10 m. The kinematic vis-
cosity was set to ν ≈ 1.4× 10−5 kg m−1s−1, following the recommendation
of [166].
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Figure 5.10: The Bolund hill topography coloured with height. Red dots
denote the positions of masts M0-M9 installed during the field experiment.

Figure 5.11: Detail of the Bolund hill surface mesh at the steeper vertical
escarpment zone.

Since the mesh is quite coarse for such a high Reynolds number, the need
for wall modelling arises. To that end, we employ the exchange location
method presented in Section 4.2, with a simple logarithmic wall law for
rough walls (Eq. 4.6). Additionally, for the generation of appropriate inflow
conditions, we use both the precursor and synthetic methods presented in
Chapter 3. For the latter, following the recommendations of [166], we impose
a logarithmic velocity profile:

S =
u∗0
κ
log

(
1 +

z

z0

)
where κ = 0.4 is the von-Kárman constant, z0 = 0.0003 m is the roughness
length over the water and u∗0 = 0.4 ms−1 is the reference friction velocity.
The fluctuations are imposed in such a way so that the turbulent kinetic
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Figure 5.12: Detail of the Bolund hill surface mesh at the transition between
the steeper vertical escarpment zone and the hill.

energy remains constant along the height z:

k

u2
∗0

= 5.8.

Figure 5.13: Bolund hill. Vertical profiles of the velocity speed-up ∆S at the
masts M1-M8. Red line ( ): precursor inlet, blue line ( ): synthetic
inlet, circle (◦): field data.

Let us define the velocity speed-up ∆S as:

∆S =
S − S0

S0
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where S is the simulated or measured mean wind speed and S0 is the mean
wind speed at the reference mast M0. Fig. 5.13 presents the vertical profiles
of the velocity speed-up at masts M1-M8, using both inflow methods, com-
pared to the field data. It can be seen that both LES configurations offer
a quite accurate prediction of the speed-up, with good agreement with the
field data. The error is noticeably higher at the lower heights of masts M2
and M6, which is consistent with the observations from [166] and [168]. The
explanation given is that there exists an intermittent flow separation close
to the surfaces, which most models struggle to predict. It is also important
to note that the two inflow methods offer predictions of similar quality, with
the results from the precursor method being slightly more accurate. How-
ever, it can be argued that the improvement is not significant enough to
justify the additional computational cost.

Figure 5.14: Bolund hill. Scatter plot of the velocity magnitude S at all
the mast locations using the synthetic inflow conditions, normalized by the
friction velocity at mast M0.

Fig. 5.14 presents a comparison of the mean velocity between the LES
(using the synthetic inflow method) and the field data at all the mast loca-
tions in the form of a scatter plot. The overall agreement is very good, with
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most of the points lying on the diagonal y = x, especially for the higher
velocities. More discrepancies are observed for low velocities, which is to be
expected since they are in locations close to the more geometrically complex
parts of the hill. Notably, most of the samples lie inside the confidence area
0.5 ≤ P/O ≤ 2, where P is the predicted and O the observed value. Using
the FAC2 (fraction of two) validation metric, that denotes the amount of
data that satisfy the above condition, we obtain FAC2 = 0.94, which is very
close to the ideal (FAC2 = 1) and is considered very high for environmental
simulations.

The mean absolute speed-up error for all measurement locations, defined
in [166] as:

RS = 100 (∆Ss −∆Sm)

where the subscripts s and m are the simulated and measured speed-up
respectively, is presented in Table 5.3, with results from the present study
being compared with results from the literature [166, 104, 167, 168, 169,
170, 171]. It can be seen that the results from the current work compare
well against all the available data, with only the results of Chaudhari et
al. [168] offering a better prediction. As mentioned before, the mesh used
here is much coarser than the one in [168], therefore this behavior is to be
expected. It is important to note, however, that the improvement compared
with the RANS results of Prospathopoulos et al. [169], as well as the RANS
results from Alya (not presented here), is not very significant, despite the
additional computational cost. In fact, it can be argued that the uncertainty
of the hill geometry used in numerical simulations [172] might have a bigger
effect on the accuracy of the results than the turbulence model.

Instantaneous vorticity iso-contours are depicted for the synthetic inlet in
Fig. 5.15. A horse-shoe vortex structure can be identified around the frontal
part of the Bolund hill. This vortex breaks down into hairpin-like small
scale vortices which are mixed downstream with the upcoming ABL streaks
generating a turbulent region in the wake of the Bolund hill. Additionally,
another system of turbulent instability generation is observed at the initial
part of the hill, where a separation of the boundary layer is found leading
to a further reattachment, thus increasing the turbulent mixing by shedding
hairpin-like structures into the wake of the hill.



110 Chapter 5. Real world applications

Model type RS References

RANS - 2eq 15.1 (11.4) Bechmann et al. [166]
LES 17.3 (14.1) Bechmann et al. [166]
Wind tunnel 14.7 (13.3) Bechmann et al. [166]
RANS - 2eq 10.3 Prospathopoulos et al. [169]
Wind tunnel 17 (13.9) Yeow et al. [170]
LES 10.9 Vuorinen et al. [167]
Wind tunnel 12 Conan et al. [171]
LES 11 Conan et al. [171]
LES 8.8 Chaudhari et al. [168]
LES - precursor 10.17 Present work
LES - synthetic 10.17 Present work

Table 5.3: Bolund hill. Mean absolute speed-up errors RS (in %) for all
measurement locations for the 270° wind direction, compared with results
from the literature. The values in brackets show the best performances of
the model.

Figure 5.15: Bolund hill. Vortical structures coloured by the wind velocity
magnitude.



Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis studies the development of a complete Large Eddy Simu-
lation framework within the Finite Element method. This includes a new
low-dissipation formulation, a comparison between synthetic and precursor
methods for the generation of turbulent inflows, a new method for applying
wall models and a simple method that solves the excess of Reynold stresses,
a common problem in two-layer non-equilibrium wall models.

The new formulation uses a non-incremental fractional step method to
stabilize the pressure and allow for equal order interpolations for velocity and
pressure. Temporal discretization is performed through an explicit energy-
conserving Runge-Kutta scheme with an eigenvalue-based time step estima-
tor. The final scheme preserves momentum and angular momentum, with
the error in the conservation of kinetic energy being of O(δt,h2) for linear
finite elements (coinciding with the error obtained for finite volumes using
collocated schemes). Explicit subgrid scale models are used for turbulence
closure. This new formulation is compared with the Variational Multiscale
(VMS) method, commonly used for (implicit) large eddy simulations in finite
elements, in a range of benchmark tests: a) Decaying Isotropic Turbulence,
b) Taylor-Green Vortex and c) Turbulent Channel flow at Reτ = 395, 950
and 2003. It is shown that, while for the VMS method the best configuration
of the stabilization parameters is problem dependent, the new formulation
performs very well without the need for ad hoc tuning. The formulation
is further tested on a flow over a sphere, as well as the Ahmed car body.
The results are in great agreement with the reference data, further showcas-
ing the suitability of the formulation for large eddy simulations for complex
geometries and high Reynolds numbers.

The importance of prescribing appropriate inflow conditions is also high-
lighted. Imposing a laminar inlet is shown to falter, significantly underpre-
dicting fluctuations, apart from regions where the turbulence is generated
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by the geometry (e.g. the wake of a three-dimensional hill). An extensive
review on techniques of synthesizing turbulence is performed, and a method
where turbulence is generated through the diffusion process is selected, be-
cause of the simplicity of its implementation in a CFD code and the fact
that it can easily be applied to arbitrary geometries and unstructured grids.
The method is compared with the precursor method on a flow over a three-
dimensional hill. The effect of introducing periodicity in the precursor inlet
is also examined, but is found to have minimal effect in the results. All
methods offer very accurate predictions, in good agreement with the exper-
imental data. The precursor method performs slightly better, however the
difference is quite small and it is argued that it does not justify the signifi-
cant overhead in terms of computational cost. Similar conclusions are drawn
from the case of the flow over the Bolund hill. Thus, the synthetic method
is instead preferred in the rest of the cases presented in this work.

Furthermore, considering the significant computational cost of resolving
the near-wall region, wall modelling techniques are investigated. Mainly,
the way that equilibrium models are commonly applied in finite elements is
investigated. The implementation typically used in the finite difference and
finite volume communities is adapted to finite elements. Instead of using a
“lifted wall” approach, where part of the domain is omitted with the wall
model accounting for it, as is commonly done in finite elements, the mesh
formally extends all the way to the wall and the whole domain is resolved.
It is seen that evaluating the input velocity further away from the wall and
not at the first grid point yields superior results. The method is tested in
three different cases: a) Turbulent channel flow at Reτ = 2003, b) Neu-
trally stratified atmospheric boundary layer and c) Wall-mounted hump.
The new method performs remarkably better than the classical finite ele-
ment approach in all cases. Additionally, preliminary work on a two-layer
non-equilibrium wall model is presented. Instead of the more complicated
procedures presented in the literature, the model relies on temporal averag-
ing of the input velocity in order to filter the excess Reynolds stresses and
solve a common problem of non-equilibrium models. The method is tested
in the turbulent channel flow case at Reτ = 2003 with great results. It is
also seen that the auxiliary grid does not need to be an extrusion of the LES
mesh, but can instead be coarser in the tangential directions.

Finally, the complete framework is used in the large eddy simulation of
real world applications with complex geometries, namely the DrivAer model,
a realistic car model based on the Audi A4 and BMW 3 geometries, as well
as the flow over the Bolund hill, a hill with complex geometry that resembles
a scaled-down model of actual wind farm sites. The predictions are in very
good agreement with experimental and field data in both cases, highlighting
the great potential of the methods presented.
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6.2 Future work

Following the work presented in this thesis, there are open lines of re-
search that can be investigated in order to extend the applicability of the
framework and potentially improve its accuracy, mostly within the wall-
modelled LES context.

• Non-equilibrium wall model
Following the preliminary work presented in Section 4.3, the two-layer
non-equilibrium wall model needs to be evaluated in complex cases.
The main goal is to ensure that time-filtering the input variables is suf-
ficient to solve the excess of Reynolds stress that lead to inaccuracies
in the skin friction predictions, without the need for additional reme-
dies. Furthermore, the effect of coarsening the tangential resolution
of the auxiliary grid needs to be examined, in order to evaluate the
computational cost imposed by the wall model, compared to a simpler
equilibrium one. Finally, the use of more complex RANS models in the
auxiliary simulation needs to be investigated. For instance, the poten-
tial of creating a wall model that can predict transition to turbulence,
via the use of an appropriate model such as the γ − Reθ transition
model, can be examined.

• Mixed wall modelling method
A method which combines the use of equilibrium and non-equilibrium
models in different regions of the flow can be devised. Instead of us-
ing the non-equilibrium model throughout the computational domain,
the auxiliary grid can be restricted in regions with a notable non-
equilibrium behavior of the flow, with an equilibrium model used in
the rest of the domain. Although such a method would require an a
priori knowledge of the flow and could be difficult to implement, it
can potentially provide results of great accuracy, without imposing a
significant overhead in terms of computational cost.

• High-order finite elements
The application of high-order finite elements has mostly been restricted
to simple flows, with more complex geometries examined only recently.
However, to the author’s knowledge, very little work has been con-
ducted in performing wall-modelled LES with high-order elements.
This line of research can potentially offer very accurate methods and
should be explored. It must be noted, however, that high order mesh
generation is fairly limited in commercial meshing software.
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[119] D. Lacasse, É. Turgeon, and D. Pelletier. On the judicious use of
the k-ε model, wall functions and adaptivity. International Journal of
Thermal Sciences, 43:925–938, 2004.

[120] T. Chacon Rebollo, M. Gomez Marmol, and S. Rubino. Numerical
analysis of a finite element projection-based vms turbulence model
with wall laws. Computer Methods in Applied Mechanics and Engi-
neering, 285:379–405, 2015.

[121] A.J. Lew, G.C. Buscaglia, and P.M. Carrica. A note on the numerical
treatment of the k-epsilon turbulence model. International Journal of
Computational Fluid Dynamics, 14(3):201–209, 2001.

[122] D. Kuzmin, O. Mierka, and S. Turek. On the implementation of the
k-epsilon turbulence model in incompressible flow solvers based on
a finite element discretisation. International Journal of Computing
Science and Mathematics, 1(2-4):193–206, 2007.

[123] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet bound-
ary conditions in fluid mechanics. Computers & Fluids, 36:12–26,
2007.

[124] J. Nitsche. Über ein variationsprinzip zur lösung von Dirichlet-
problemen bei verwendung von teilräumen, die keinen randbedingun-
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