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Manifiesto es que los antiguos de buena gana usaron de ladrillos en lugar de piedras. 

Yo creo cierto que los hombres al principio guiados por falta y necesidad de las 

cosas, pusieron en uso el hacer edificios de ladrillos, y que después que se consideró 

este género de edificio cuan fácil de hacer y cómodo para el uso, y apto para la 

gracia, y firme y constante para durar, llevaron adelante el edificar, y así las otras 

cosas como las cosas reales de ladrillo. Finalmente después que o por caso, o por 

industria percibieron que el fuego valía para firmar y espesar los ladrillos 

perseveraron en levantar con ladrillos todas las cosas a cada paso. 

 

De Re Aedificatoria, Leon Battista Alberti (15th c.)  

Spanish translation from latin by Francisco de Lozano in 1582 

 

 

 

 

Insensibly one begins to twist facts to suit theories, instead of theories to suit facts. 

 

Sherlock Holmes in A scandal in Bohemia 

Arthur Conan Doyle (1891)
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 Abstract 
 

Masonry has been used for millennia to build all sort of constructions. As a result, a 

significant part of the building stock around the world is made of masonry. In the need of 

structural assessment, structural analysis tools, as well as strength criteria proposed in building 

codes, require the knowledge of the mechanical properties of the materials. 

However, the mechanical characterisation of masonry is still difficult and challenging, due 

to its composite nature and its complex mechanical behaviour. In fact, it is possible to find 

contradictions among standards, lack of definition for certain procedures, or even lack of 

standards for certain tests. 

This thesis aims to contribute with the critical analysis of some of these testing procedures 

and provide possible improvements for a specific type of masonry. Four lines of research have 

been identified, which cover tests in laboratory and in situ to characterise the behaviour in 

compression and in shear. The specific type of masonry on which the experimental campaigns 

are carried out is the traditional type of brickwork that was extensively used in Barcelona during 

the 19th and 20th c. In spite of its relevance, this type of masonry is in need of further 

characterisation. 

A preliminary research was necessary to find a historical-like mortar with a relatively fast 

hardening and low mechanical properties. The modification of hydraulic lime based 

commercial mortars with the addition of limestone filler is investigated. Small amounts of filler 

enhance the mechanical properties of the mortar. High amounts of filler reduce the mortars’ 

strengths and make it suitable to replicate historical-like masonry in laboratory. 

The first line of research on testing procedures covered the compressive characterisation 

of masonry on prismatic standard specimens. European and American standards differ in the 

type of specimen to consider, running bond walls and stack bond prisms, respectively. This 

work compares experimental results obtained from both types of specimen and also obtained 

from two types of loading, monotonic and cyclic. 

The second line of research involves an experimental campaign that investigates the 

possibility of using 90 mm cylinders extracted from existing walls to characterise the 

compressive behaviour of masonry. Four examples of masonry have been investigated, 
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including cylinders extracted from three existing buildings of Barcelona. The results obtained 

with 90 mm cylinders compare well to those obtained with the well-known 150 mm cylinders. 

The third line of research deals with the characterisation of the shear response of masonry 

in laboratory. The standard triplet specimen consisting of three units and two mortar joints 

present some interpretation problems related to the non-simultaneous failure of the two joints. 

This experimental campaign studies the possibility of using couplet specimens of only one 

mortar joint to determine the shear parameters. For the two types of brickwork investigated, 

couplets provide higher estimations of the shear parameters with respect to triplets. 

The last line of research investigates the diagonal compression test, a testing procedure 

applicable both in situ and in laboratory for shear characterisation. First, an experimental 

campaign is presented. The experimental results are used to calibrate a numerical model, which 

is applied to investigate the actual states of stresses and to find correlating coefficients between 

the test results and the mechanical properties of masonry.   

The combination of all the former researches provides a set of reference values for the 

mechanical properties of the traditional brickwork of Barcelona. Nevertheless, the scientific 

findings, methods, and criteria presented in this thesis, even if derived for a specific type of 

brickwork, may be of application for the characterisation of other types of masonry around the 

world.  

  

 

 

 

 

 

Keywords: Masonry · Brickwork · Mechanical characterisation · Laboratory testing · 

Compression · Shear · Existing buildings · Historical constructions · Handmade bricks · Lime 

mortar · Barcelona 
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Resum 
 

L’obra de fàbrica ha estat utilitzada durant mil·lennis per construir tota mena d’estructures. 

Davant la necessitat de verificacions estructurals, les eines d’anàlisi, així com els criteris de 

resistència dels codis de construcció, requereixen el coneixement de les propietats mecàniques 

dels materials. 

Malauradament, la caracterització mecànica de l’obra de fàbrica no es tasca fàcil i continua 

suposant un desafiament, per la seva natura composta i el seu complex comportament. De fet, 

és possible trobar contradiccions entre normes, manca de definició per alguns procediments i, 

inclús, inexistència de normes per alguns tipus de test. 

Aquesta tesi aspira a contribuir a l’anàlisi crítica d’algunes d’aquestes tècniques d’assaig i 

proveir-ne possibles millores per a un tipus d’obra de fàbrica específic. Quatre línies de recerca 

s’han identificat, que abasten tests en laboratori i in situ per caracteritzar el comportament a 

compressió i a tallant. El tipus específic de material sobre el qual es duran a terme les 

campanyes experimentals és la fàbrica de maó tradicional que va ser extensament utilitzada a 

Barcelona durant els segles XIX i XX. Tot i la seva rellevància, aquest tipus de material 

continua necessitant una caracterització més detallada. 

Una recerca preliminar fou necessària per trobar un morter pseudo-històric amb febles 

propietats mecàniques. La modificació de morters comercials de calç hidràulica amb l’addició 

de filler calís és investigada. Petites quantitats de filler milloren les propietats mecàniques del 

morter. Majors quantitats de filler redueixen les resistències del morter i el fan apropiat per 

replicar fàbriques de tipus històric al laboratori.  

La primera línia de recerca sobre tècniques d’assaig va estudiar la caracterització a 

compressió amb espècimens prismàtics estàndards. Les normes americanes i europees 

difereixen en el tipus d’espècimen considerat, prismes apilats i petits murets, respectivament. 

Aquest treball compara resultats experimentals obtinguts amb els dos tipus d’espècimen i també 

obtinguts amb dos tipus d’aplicació de càrrega, monòtona i cíclica.  

La segona línia de recerca desenvolupa una campanya experimental que investiga la 

possibilitat d’utilitzar cilindres de 90 mm de diàmetre extrets de murs existents per caracteritzar 

la resposta a compressió. Quatre exemples d’obra de fàbrica s’han investigat, incloent cilindres 
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extrets de tres edificis de Barcelona. Els resultats obtinguts amb els cilindres de 90 mm es 

comparen satisfactòriament amb els obtinguts amb els ja coneguts cilindres de 150 mm. 

La tercera línia de recerca tracta la caracterització en laboratori de la resposta a tallant de 

l’obra de fàbrica. La tripleta estàndard formada per tres maons i dos junts de morter presenta 

alguns problemes d’interpretació relacionats amb la fallada no simultània dels dos junts. La 

campanya estudia la possibilitat d’utilitzar bipletes composades de tan sols un junt de morter 

per determinar els paràmetres a tallant. Pels dos tipus de material estudiats, les bipletes 

proporcionen majors estimacions de les propietats a tallant que les tripletes. 

L’última línia de recerca estudia el test de compressió diagonal, una tècnica aplicable in 

situ i al laboratori per caracteritzar el comportament a tallant. Es presenta una campanya 

experimental, els resultats de la qual s’utilitzen per calibrar un model numèric. Aquest s’aplica 

per investigar els estats de tensions reals i trobar coeficients de correlació entre els resultats del 

test i les propietats mecàniques de l’obra de fàbrica. 

La combinació de les investigacions prèvies proporciona un conjunt de valors de referència 

per a les propietats mecàniques de la fàbrica de maó tradicional de Barcelona. Les conclusions 

científiques, mètodes i criteris presentats en aquesta tesi, tot i haver estat derivats per un tipus 

específic de fàbrica, poden ser d’aplicació per a la caracterització d’altres tipus de fàbrica arreu 

del món.  
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Resumen 
 

La obra de fábrica ha sido utilizada durante milenios para construir toda clase de 

estructuras. Ante la necesidad de verificaciones estructurales, las herramientas de análisis, así 

como los criterios de resistencia de los códigos de construcción, requieren el conocimiento de 

las propiedades mecánicas de los materiales. 

Desafortunadamente, la caracterización mecánica de la obra de fábrica no es una tarea fácil 

y continúa suponiendo un desafío, por su naturaleza compuesta y su complejo comportamiento. 

De hecho, es posible encontrar contradicciones entre normas, falta de definición en algunos 

procedimientos o, incluso, inexistencia de normas para algunos tipos de test. 

Esta tesis aspira a contribuir en el análisis crítico de algunas de estas técnicas de ensayo y 

proveer posibles mejoras en ellas para un tipo de obra de fábrica específico. Se han definido 

cuatro líneas de investigación que abarcan ensayos en laboratorio e in situ para caracterizar el 

comportamiento a compresión y a cortante. El tipo específico de material sobre el que se llevan 

a cabo las campañas experimentales es la fábrica de ladrillo tradicional que se usó extensamente 

en Barcelona durante los siglos XIX y XX. A pesar de su relevancia, este tipo de material 

continúa necesitando una caracterización más detallada. 

Una investigación preliminar fue necesaria para encontrar un mortero pseudo-histórico con 

débiles propiedades mecánicas. La modificación de morteros comerciales de cal hidráulica con 

la adición de filler calizo es investigada. Cantidades pequeñas de filler mejoran las propiedades 

mecánicas del mortero. Mayores cantidades de filler reducen sus resistencias y lo hacen 

apropiado para replicar obras de fábrica de tipo histórico en el laboratorio. 

La primera línea de investigación sobre técnicas de ensayo estudió la caracterización a 

compresión con especímenes prismáticos estandarizados. Las normas americanas y europeas 

difieren en el tipo de espécimen considerado, prismas apilados y pequeños muretes, 

respectivamente. Este trabajo compara resultados experimentales obtenidos con los dos tipos 

de espécimen y también obtenidos con dos tipos de aplicación de carga, monótona y cíclica. 

La segunda línea de investigación gira sobre una campaña experimental que investiga la 

posibilidad de utilizar cilindros de 90 mm de diámetro extraídos de muros existentes para 

caracterizar la respuesta a compresión. Se han investigado 4 ejemplos de fábrica, incluyendo 
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cilindros extraídos de 3 edificios de Barcelona. Los resultados obtenidos con los cilindros de 

90 mm se comparan satisfactoriamente con los obtenidos en los ya aceptados cilindros de 150 

mm.  

La tercera línea de investigación trata la caracterización en laboratorio de la respuesta a 

cortante de la obra de fábrica. La tripleta estándar formada por tres ladrillos y dos juntas de 

mortero presenta algunos problemas de interpretación relacionados con el fallo no simultáneo 

de las juntas. La campaña estudia la posibilidad de utilizar bipletas con una sola junta de mortero 

para determinar los parámetros a cortante. Para los dos tipos de material estudiados, las bipletas 

proporcionan mayores estimaciones de las propiedades a cortante que las tripletas.  

La última línea de investigación estudia el ensayo de compresión diagonal, una aplicable 

in situ y en laboratorio para caracterizar el comportamiento a cortante. Se presenta una campaña 

experimental cuyos resultados se utilizan para calibrar un modelo numérico. Este se aplica para 

investigar los estados reales de tensiones y encontrar coeficientes de correlación entre los 

resultados del ensayo y las propiedades mecánicas de la obra de fábrica. 

La combinación de las investigaciones previas proporciona un conjunto de valores de 

referencia para las propiedades mecánicas de la fábrica de ladrillo tradicional de Barcelona. Las 

conclusiones científicas, métodos y criterios presentados en esta tesis, aun habiendo sido 

derivados para un tipo específico de fábrica, pueden ser aplicados para la caracterización de 

otros tipos de fábrica en otras áreas geográficas.  
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1.1. Motivation 

Masonry is a form of construction consisting of the arrangement of units that are laid dry 

or bound together by mortar. Among others, bricks, cut stones or concrete blocks may act as 

units, while mud, lime, gypsum or cement may act as binder. This great variety of possible 

components, some of which are easily available in nature, together with the simplicity of the 

technique, have motivated the extensive use of masonry from antiquity until today for building 

structural elements such as walls, columns, arches or vaults. Nowadays, a significant part of the 

existing building stock worldwide is made of load-bearing masonry members. In many 

instances, these buildings have a high cultural or architectural value. 

The structural analysis of masonry constructions may be required in different situations. In 

the case of existing buildings, a structural evaluation may be necessary to design remedial 

measures after a seismic event or to address progressive damage or material decay experienced 

over the years or centuries. Sometimes, buildings need to be assessed for adaptive reuse projects 

or to ensure conformity with relevant new regulations. Preventive analyses of the actual 

vulnerability of constructions might be recommended as well, especially on earthquake prone 

areas. In addition, masonry is still the primary construction technique in many countries around 

the world and new buildings need to be properly designed.  

At present, engineers and architects have at their disposal a wide and diverse collection of 

methods to carry out the assessment of masonry structures. This abundance of resources 

contrasts with the very limited means available at the times when most of these structures were 

built. For millennia, tradition and imitation were the only tools for designing masonry buildings. 

The classical architectural treatises from Renaissance to 19th century only included suggestions 

on good building practices and rules of thumb based mainly on proportionality. Some of these 
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rules were mere generalizations of empirical observations. Specifications based on a scientific 

approach did not appear until the first half of the 20th century for modern materials such as 

steel or concrete, while reports and standards devoted to masonry started to be published after 

the 1950s and were incorporated to modern building codes from 1970 onwards. In the case of 

existing masonry structures, recommendations were not specifically considered until very 

recently. From the 1980s onwards, an important and sustained research effort, supported by the 

increasing capabilities of computers, has provided powerful tools for the structural analysis of 

masonry, based on different approaches and considering different levels of detail. 

Nevertheless, most of the available analysis methods rely on previous knowledge of the 

mechanical properties of masonry. Given its composite nature, as a material constituted by units 

and mortar, masonry presents a very complex mechanical behaviour that depends on the 

individual properties of the components, the interaction between them, their relative dimensions 

and arrangement, and the loading conditions. In consequence, its characterisation faces two 

major issues in the selection of a representative specimen and in the application of proper 

boundary conditions. When dealing with historical constructions, these difficulties increase as 

damage and impact on the structure should be reduced to a minimum in order to preserve its 

intrinsic value. 

International and national organizations such as the American Society for Testing and 

Materials – ASTM-, the European Committee for Standardization – CEN- or the International 

Union of Laboratories and Experts in Construction Materials, Systems and Structures – 

RILEM-, among others, have issued and adopted standards and recommendations that deal with 

testing procedures of masonry. Nevertheless, and not surprisingly given the complexity of the 

subject, the current standards are not exempt of criticism. As a matter of fact, examples can be 

found of contradictions between standards, absence of specifications for certain properties, or 
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procedures that would need to be better detailed or clarified.  The determination of the 

compressive strength, which is the single most important property of masonry, stands as a 

paradigmatic example: the choice of the testing specimen – small running bond wall or stack 

bond prism- would depend on the standard being applied.   

These inconsistencies may entail difficulties for the common practitioner. Additionally, the 

lack of unified or precise criteria for certain aspects may hinder the necessary comparison 

between results from different researchers. The ultimate goal of this thesis is to help in the 

improvement of the characterisation procedures of masonry. Any contribution from research 

and academia could be incorporated into new or updated versions of the standards and codes. 

Eventually, the collective research effort will result in better designs and in more respectful 

interventions while guaranteeing the structural safety of new and existing buildings.      

1.2. Scope 

The scope of this thesis is the critical analysis of the current procedures for the 

characterisation of masonry, and the contribution with possible improvements applicable to a 

specific type of masonry. 

The following four criteria narrowed the scope of the thesis to adapt it to the limited 

availability of time and material resources: 

 Delimit the selection of the testing procedures to be analysed to those related with 

the most important mechanical properties involved in the assessment and design of 

masonry structures. Set the focus of the thesis on the properties of masonry as a 

composite material. The detailed investigation of procedures required for the 

characterisation of components (units or mortar) is beyond the scope of this work.  

 Systematically keep in mind applications to historical and existing constructions. 
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 Delimit experimental investigations to tests on a single type of masonry. Take 

advantage of the experimental campaigns to entirely characterise a type of material 

representative of traditional masonry assemblages. The traditional brickwork 

extensively used in the city of Barcelona during the 19th c. and the first half of the 

20th c. has been selected. 

 Prioritise the preparation of publications to increase the dissemination of the 

findings. The next section explains how this criterion has influenced the outline of 

this work. 

The specific scientific objectives and the methodology oh the thesis are presented in 

Chapter 3, based on the conclusions provided by the literature review presented in Chapter 2. 

1.3. Outline of the thesis -  Compendium of publications 

In agreement with the possibilities offered by the Universitat Politècnica de Catalunya, this 

doctoral thesis is presented as a compendium of publications. All of them are related to masonry 

characterisation and are published in a journal that belongs to the category Construction & 

Building Technology in Journal Citation Reports (JCR), classified within the first quartile (Q1) 

as required by the specific regulations of the Doctoral School. 

The compendium comprises the following three papers: 

 Paper I: J. Segura, D. Aponte, L. Pelà, P. Roca, Influence of recycled limestone 

filler additions on the mechanical behaviour of commercial premixed hydraulic 

lime based mortars, Constr. Build. Mater. 238 (2020), 

https://doi,org/10.1016/j.conbuildmat.2019.117722.  

https://doi,org/10.1016/j.conbuildmat.2019.117722
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 Paper II: J. Segura, L. Pelà, P. Roca, Monotonic and cyclic testing of clay brick 

and lime mortar masonry in compression, Constr. Build. Mater. 193 (2018) 453-

466, https://doi.org/10.1016/j.conbuildmat.2018.10.198.  

 Paper III: J. Segura, L. Pelà, P. Roca, A. Cabané, Experimental analysis of the size 

effect on the compressive behaviour of cylindrical samples core-drilled from 

existing brick masonry, Constr. Build. Mater. 228 (2019), 

https://doi.org/10.1016/j.conbuildmat.2019.116759.  

Additionally, two more papers have been prepared and are incorporated into this document. 

On the date of submission of the thesis, these two last manuscripts are still under review: 

 Paper IV: J. Segura, E. Bernat, V. Mendizábal, L. Pelà, P. Roca, L. Gil, 

Experimental comparison of two testing setups for characterising the shear 

mechanical properties of masonry. Under review. 

 Paper V: J. Segura, L. Pelà, S. Saloustros, P. Roca, Experimental and numerical 

insights on the diagonal compression test for the shear characterisation of masonry. 

Under review.  

All together, the five papers conform a corpus of research consistent with the thesis’ scope. 

The present document has been elaborated to create a coherent and continuous framework for 

the five papers to better expose the contributions of this work. Figure 1 shows the outline of the 

thesis. From now on, papers will be referred to with the numbering given above. 

https://doi.org/10.1016/j.conbuildmat.2018.10.198
https://doi.org/10.1016/j.conbuildmat.2019.116759
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Figure 1 Outline of the thesis. 

The document is composed by seven chapters. Papers are reproduced in its integrity as 

subchapters within Chapters 4, 5 and 6. 

Chapter 2 explores the current state of the art in relation with the characterisation of 

masonry. This chapter intends to narrow the scope of the thesis’ aim and identify the needs for 

research. The chapter is divided in three main parts. The first part deals with the review of 

different available analysis methods and building codes, with the goal of identifying which are 
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the most relevant mechanical properties for structural analysis and assessment of masonry 

constructions. The second section offers an overview of the available characterisation 

procedures for the aforementioned mechanical properties. The needs presented in this section 

defined the main lines of this research. This second part delves into different aspects: the general 

difficulties and challenges associated with masonry characterisation, the existing procedures to 

determine the mechanical properties in compression, and the existing procedures to determine 

the mechanical properties in shear. Both laboratory and in situ approaches were considered in 

all cases. The third and final section of Chapter 2 aims to establish the type of masonry to be 

used for the experimental investigations. It was found that clay brick masonry made of lime 

mortar is one of the prevailing masonry typologies around the world. Particularly, this type of 

construction is the base for many buildings in the city of Barcelona, and is currently in need of 

better characterisation. The section also includes a short discussion on replicating historical-

like materials in the laboratory. Overall, Chapter 2 presents a brief literature review that sets 

the context for the research, given that each of the papers includes a distinct introduction and 

state of the art. 

Chapter 3 develops the scope of the thesis in accordance with the needs observed in Chapter 

2. It describes the broad subjects addressed within the thesis and details the specific objectives 

pursued in each paper. The general methodology is also described.   

Chapter 4 presents the materials used during the whole research to replicate a traditional 

form of brickwork. These materials are handmade clay bricks specially selected from a local 

manufacturer and a hydraulic lime based mortar whose design motivated the first paper of the 

compendium. Paper I is included as a section in the chapter and investigates the influence of 

limestone filler additions on the mechanical behaviour of hydraulic lime mortars. The chapter 

also mentions all the other materials that appear along the thesis. 



CHAPTER 1 

 

10 

 

Chapters 5 and 6 conforms the core of the thesis as they present the investigation on the 

characterisation procedures. Chapter 5 is devoted to the determination of mechanical properties 

in compression. After an introduction, the chapter includes Paper II and Paper III of the 

compendium. Paper II deals with the characterisation of masonry in laboratory with standard 

specimens. It investigates the influence of the specimen types and provides data for both 

monotonic and cyclic loading. Paper III delves in a characterisation technique specific for in 

situ inspections, which consists of extracting cylindrical cores from existing walls and testing 

them in a laboratory. This research explores the use of a new proposed specimen which is 

smaller than the standard one. The chapter includes a short discussion that compares the results 

from both papers. 

Chapter 6 follows a parallel outline to that of Chapter 5 but devoted to the estimation of 

mechanical properties in shear. Besides an introduction and a discussion, this chapter includes 

Paper IV and Paper V. Paper IV covers the determination of shear properties of bed joints in a 

laboratory setting. It compares the standard triplet test with a proposed specimen consisting of 

only one joint. Paper V tackles the estimation of the shear strength from a different approach, 

by means of the diagonal compression test which can be applied in laboratory or in situ. The 

paper deals with the controversy that exists around the interpretation of this test. 

Finally, Chapter 7 serves to summarize and unify the conclusions drawn in the preceding 

chapters, to highlight the main contributions, and to give suggestions for future work. 
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2.1. Introduction 

2.1.1. Overview 

The mechanical characterisation of a material refers to the different procedures that provide 

information on properties such as strengths or elastic parameters, which are required to carry 

out structural analyses and evaluate the structural performance and safety of a building. In the 

case of masonry1, the mechanical characterisation is a complex, non-univocal and still 

challenging subject that covers a great variety of issues. The literature review presented in this 

chapter aims to narrow the scope and define the lines of research and objectives of the thesis. 

In the last years, many authors have devoted their efforts to compose complete state-of-the-art 

summaries on these issues. Given that each of the papers included in the subsequent chapters 

incorporate a particular state of the art, the perspectives presented herein are short reviews on 

specific topics that aim to delineate the research context.  

The following subsection 2.1.2. briefly introduces the mechanical behaviour of masonry, 

because its particular features have influence on the rest of the subjects addressed within the 

chapter, which contains three main sections. Section 2.2 answers what is a mechanical 

characterisation needed for and which are the main mechanical properties that require to be 

characterised. It is a purpose-oriented section that links this research with the real practice of 

engineers and architects. Section 2.3 delves into how the former mechanical properties are 

characterised. The section offers an overview on the different laboratory and in situ procedures 

available for masonry, and highlights possible areas of improvement that will be explored 

                                                             
1 Masonry has been defined in Section 1.1 as a building technique. Nevertheless, for the sake of concision, it is 

common practice in the engineering field to use the term masonry also as a metonymy of the composite material 

made of units and mortar. This common practice is also applied in this work and masonry may refer to both the 

building technique and the composite material.  
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within the thesis. Section 2.4 aims to define which materials combination will be used to carry 

out the experimental investigations. As stated in the global aim of Section 1.2, this work intends 

to take advantage of the planned research to fully characterise one type of masonry. A last 

section, 2.5., summarizes the former findings. 

2.1.2. Mechanical behaviour of masonry 

Masonry is a composite material that results from the arrangement of units that are bound 

together with mortar or laid dry. Figure 2 displays some examples of different combinations of 

constituents that conform different masonry typologies. Despite this heterogeneity and the wide 

variety of possible combinations, masonry has some common features as a material.  

As a consequence of its composite nature, masonry presents a very complex mechanical 

behaviour [1,2], which is influenced by the individual properties of the units and the mortar, 

their interaction, their relative dimensions, the arrangement of the pieces, and the direction and 

magnitude of loading.    

 

Figure 2 Examples of different masonry typologies. a) Rubble stone masonry, b) ashlar stone masonry with dry 

joints, c) clay brick masonry, d) concrete block masonry. 

Masonry behaviour is highly nonlinear as the result of the nonlinearities of the components 

and the source of weakness constituted by the interface or bond between components. The 
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response of the components is generally quasi-brittle, while the bond is characterised by a 

normal-stress dependent cohesive-frictional behaviour in shear and a cohesive response in 

tension [3].  

The most relevant feature of masonry is its ability to withstand compression, compared to 

a very limited, even null in some cases, capacity in tension. Historically, this characteristic has 

been reflected in structural design, where masonry was used for building structural members 

subjected mainly to compression. The durability and resistance of this material are obvious in 

the light of the amount of existing constructions that were built centuries ago [4].  

The behaviour of masonry in compression reflects its composite nature and the interaction 

between components. For instance, the case of brickwork is clearly illustrated in Figure 3, 

which shows three experimental stress-strain curves from a well-known research carried out by 

Binda et al [5]. In the figure, the curves show how the composite behaviour is the result of the 

contribution of both constituents, and how the composite strength lays within the strengths of 

brick and mortar. In the common case where units are stronger and stiffer than mortar, the 

resulting masonry strength is higher than the mortar’s but lower than the units’ strength. This 

fact has been traditionally explained by the difference in the stiffness of the materials and the 

particular states of stresses that are generated within the components [1,2]. While both bricks 

and mortar would tend to expand laterally under vertical compression, the difference in stiffness 

–in both Young’s modulus and Poisson’s ratio- would motivate bricks to prevent the free 

expansion of the mortar in the joint. This confinement creates a favourable triaxial compression 

state within the mortar, which is able to withstand higher stresses. Conversely, bricks are 

compressed vertically but are stretched laterally and eventually fail by tensile splitting.      
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Figure 3 Examples of stress vs. strain curves for mortar, brick and masonry prisms under uniaxial compression 

(from Binda et al. [5]). 

Because of being composed by a superposition of layers of units and mortar, another 

feature of masonry is its anisotropy. The more regular the arrangement, the higher the influence 

of anisotropy; the more random the arrangement, the more valid would be the hypothesis of 

isotropy. Extreme cases could be a perfectly built brickwork and a very random rubble masonry. 

Page and co-workers carried out extensive experimental campaigns to investigate the 

anisotropy of brickwork under biaxial stresses [6–8].  Figure 4 illustrates the variation of the 

failure modes with the orientation of the loads with respect to the bed joints. The sketches 

exemplify the role played by mortars joints as discontinuity planes and lines of weakness. 

Figure 5 displays the failure surface that assembles all the experimental results. Two remarks 

are obvious: a) the much higher strength observed in compression than in tension, and b) the 

higher strength observed in compression when the load is applied perpendicularly to the bed 

joints than when it is applied obliquely or parallel to the bed joints 
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Figure 4 Modes of failure for biaxial tests (examples on brick masonry by Dhanasekar et al. [8]). 

 

Figure 5 Failure surface for biaxial tests in terms of normal stresses and angle of orientation of the bed joints 

planes (results for brick masonry obtained by Dhanasekar et al. [8]). 
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Combined with compression, masonry members may also need to withstand shear in 

instances such as soil settlements, wind loads, or seismic events. The resistance to in-plane 

loading is of paramount importance especially in the latter case, given the severe consequences 

that may be occasioned by an earthquake in terms of damage and casualties. The shear strength 

of masonry is another feature that depends on several parameters: the geometry and boundary 

conditions of the structural member, the masonry arrangement, the acting axial load, and the 

mechanical properties of the constituents [9]. Figure 6 exemplifies the influence of the acting 

axial load on the strength and failure modes of a masonry pier. For a pier of given slenderness 

and given masonry type, the shear response is characterised by the limit domain shown in Figure 

6a associated to the failure modes depicted in Figure 6b. Failure modes A and C occur if the 

pier has a predominant flexural behaviour. For low levels of vertical load, the rotation of the 

pier about the toes produces horizontal cracks at the corners (A – rocking). For high levels of 

vertical load, the more compressed corner eventually presents a widespread damage pattern of 

sub-vertical cracks (C- crushing) [9]. In the case of predominant shear behaviour, two additional 

modes of failure may happen. Shear frictional sliding failure involves the sliding through a 

horizontal bed joint plane or a stepped diagonal line with no damage in the units (B1 in Figure 

6). This failure is usually preceded by the opening of the flexural crack, which eventually 

reduces the resisting section. The other possible failure is diagonal cracking, that refers to the 

failure produced with the formation of a diagonal crack that passes through the mortar joints 

and the units (B2 in Figure 6). 
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Figure 6 a) Limit domain and b) failure modes of a masonry pier under combined vertical and horizontal loading 

(from Calderini et al. [9]). 

A last feature of masonry that should be highlighted is its inherent variability. Beyond the 

differences of typology found between geographical areas or between buildings, masonry 

presents a high scattering in its properties within the single building. This fact is especially 

relevant in the case of historical constructions, due to the less industrialized processes of the 

time. The causes of variability are diverse and of different origins: a) variability within the raw 

materials, which could present chemical, physical or geometrical differences, b) variability 

during the construction and related to workmanship, e.g. the amount of water used for wetting 

the units or preparing the mortar, or bad practices resulting in non-constant mortar thicknesses 

and misalignments, and c) variability after the construction, related to the curing process, the 

loading history or the damage and decay experienced over the years. Overall, the material 

variability affects the structural performance by creating weaker areas and should be taken into 

account while designing characterisation campaigns.  
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2.2. Mechanical characterisation needs for the structural 

assessment of masonry structures 

Structural assessment is a procedure for checking whether a building satisfies the required 

limits of safety and serviceability appropriate to the actions under consideration. The complete 

assessment procedure involves the definition of the design context, the determination of actions, 

the performance of structural analysis, and, finally, the verification of the required limits.  

To perform the structural analysis of a building, different input data are necessary. Other 

than the loads acting on the structure, input data include geometrical definition, soil conditions, 

construction details, damage and state of conservation, and mechanical properties of the 

materials, which are the subject of this thesis.  

Material properties feed the structural models, which are used to determine the effects of 

the actions either on the structure -such as rotations- or on structural members -such as forces, 

moments, stresses or strains. It is then obvious that a better characterisation would increase the 

reliability of the structural analysis results. From a practical point of view, this observation is 

especially important. Most modern building codes are based on a limit state philosophy, also 

known as load and resistance factor design approach. In the case of existing buildings 

assessment, codes such as Eurocode 8-3 [10] or the Italian NTC [11] define different levels of 

knowledge that account for the uncertainties of the building. Improving the characterisation of 

the materials helps in reducing the uncertainties and allows a reduction of the safety factors 

applied during the analysis. Eventually, this better characterisation results in a safer and more 

respectful design. 

This section explores the specific material properties that require to be known for the 

structural assessment of masonry buildings, with the aim of narrowing the scope of the work. 
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First, Section 2.2.1. reviews the different modelling strategies for structural analysis and 

identifies the most relevant properties in use. Second, Section 2.2.2. reviews current building 

codes to identify the properties used in safety verifications. The last Section 2.2.3. presents a 

summary. 

2.2.1. Modelling strategies for structural analysis 

During the last decades, a great research effort has led to the development of a plethora of 

modelling strategies devoted to the analysis of masonry structures [12]. The complexity of the 

mechanical behaviour of the material, as described in Section 2.1.2., motivated the appearance 

of diverse approaches, which faced the subject of masonry analysis within different conceptual 

frameworks. D’Altri et al. [3] made an updated review of the different strategies, and proposed 

a classification consisting on four different categories: a) Geometry-based models, where the 

structure is modelled as a combination of rigid bodies and the equilibrium is usually 

investigated by means of limit analysis-based solutions; b) Continuum models, where masonry 

is modelled as a continuum deformable body, with no distinction between constituents; c) 

Block-based models, where the actual texture of masonry is taken into account, considering the 

blocks either rigid or deformable; and d) Macroelement models, where the structure is idealized 

into panel-scale structural members (typically piers and spandrels).  

Although other classifications are possible, like the more traditional distinction between 

limit analysis, finite element methods (macromodelling and micromodelling) and discrete 

element methods with different subcategories, the proposal by D’Altri et al. [3] suits the 

objectives of this section because it is simple and makes order on the great variety of available 

modelling strategies. Therefore, the following exposition of the material properties required for 

each strategy is presented according to the aforementioned categorization. Table 1 (see Section 
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2.2.1.5) presents an inventory of the different material properties. For further details on the 

basics and features of each strategy, the reader is referred to [3,12]. 

2.2.1.1. Geometry-based models 

This exposition starts with geometry-based models because they constitute the category 

that requires the less amount of mechanical properties to be characterised. In fact, geometry-

based models rely basically on the definition of the geometry as the only input. This modelling 

strategy is based on the application of limit analysis, i.e. the application of the limit theorems 

of plasticity. The static (lower bound) theorem is applied to assess the equilibrium of a structure, 

its static safety, and is especially suitable for the analysis of arches and vaults (see Figure 

7a,b,c). Complementarily, the kinematic (upper bound) theorem is useful to study the possible 

collapse mechanisms, and is widely used for the assessment of the seismic vulnerability of 

buildings (see Figure 7d). In the prime formulation by Heyman [13], these theorems are of 

application under the following assumptions: i) compressive strength of masonry is infinite, ii) 

sliding between parts is prevented, iii) tensile strength of masonry is negligible. Therefore, 

procedures applying limit analysis approaches would not need theoretically the characterisation 

of any material property. 

Nevertheless, given that masonry compressive strength is certainly not infinite, sliding may 

occur, and tensile strength is limited but not null, some authors have proposed innovative 

formulations that extend the possibilities of limit analysis and apply to the actual features of 

masonry. For instance, the concept of thrust zone adds geometric constraints that account for 

the limited compressive strength of the material [14,15]. More recently, Chiozzi et al. [16] 

proposed a new approach based on the kinematic theorem that requires three material properties 

as input: the compressive, tensile and shear strengths of masonry. 
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Figure 7 Examples of geometry-based models. a) Andreu et al. [17], b) Block et al. [18], c) Block and Lachauer 

[19], d) Chiozzi et al. [20]. 

2.2.1.2. Continuum models 

Continuum models consider masonry as a continuum deformable body. As a continuum, 

the actual texture of the material is not described and the required computational effort is, 

generally, lower than in more detailed approaches. The deformability condition needs the 

definition of homogeneous constitutive laws that approximate the overall mechanical response 

of the material. The use of homogenization techniques to derive constitutive laws is mentioned 

in the next section on block-based models. 

 Although non-fully coherent with the masonry mechanics described in Section 2.1.2., 

these homogeneous isotropic models have been extensively used because of their computational 

efficiency, their availability in finite element (FE) codes, and the reduced number of parameters 

that need to be characterised [3]. Consequently, they are especially suitable for large-scale 

structures given their ability to represent complex geometries and to integrate the randomness 

and irregularities found in many historical masonry buildings [21–24], as shown in the 

examples of Figure 8. In the case of more regular types of masonry, such as brickwork, 

orthotropy plays an important role. Different approaches have been developed to incorporate 

the effect of anisotropy, although they increase the computational needs and the number of 

mechanical properties to be determined [25–27].  
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Different approaches have been adopted to define the constitutive laws, which are based 

namely on fracture mechanics, on damage mechanics or on plasticity theory. The required input 

mechanical parameters vary depending on the selected theoretical framework [28]. A fracture 

or damage-based approach may need to be feed with tensile and compressive strengths of 

masonry, tensile and compressive fracture energies of masonry, and ultimate or crack strains. 

The plasticity-based models such as Mohr-Coulomb or Drucker-Prager involve also cohesion, 

friction angle and dilatancy angle. In all cases, the elastic properties of masonry (Young’s 

modulus, Poisson’s ratio) are necessary. 

 

Figure 8 Examples of continuum models. a) Valente and Milani [21], b) Betti et al. [22], c) Elyamani et al. [23], 

d) Pelà et al. [24]. 

2.2.1.3. Block-based models 

In block-based models, masonry is considered as a heterogeneous material composed by 

different constituents: blocks (units) and joints (filled with mortar or empty). Consequently, 

these models describe the actual texture of masonry and are able to account intrinsically for the 

anisotropy of the material and the representation of the failure modes. Nevertheless, this 

modelling strategy is characterised by a huge computational demand, by a time-consuming 

preparation process, which also faces the possible lack of complete information about the actual 

masonry texture, and by the need of a large amount of different mechanical parameters to be 

characterised. Overall, its applicability is mostly reduced to academic purposes or high-level 

construction projects [3]. 
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D’Altri et al. [3] classified the different existing block-based models into several 

subcategories, namely interface element-based approaches, contact-based approaches, and 

textured continuum-based approaches (see Figure 9). The differences among them lie in the 

formulation of the interaction between blocks and the level of detail. With regard to the subject 

of this thesis, the mechanical properties that need to be characterised also vary depending on 

the selected approach. As a matter of fact, one example of each subcategory is described below 

with the definition of all the required mechanical parameters. This list cannot be exhaustive, 

given the specificity and variety of the different approaches that are currently under 

development. 

A classic example of interface-element-based model with a FE approach is the multisurface 

interface model proposed by Lourenço and Rots [29]. In this model, units are expanded in both 

directions by a mortar thickness and modelled with continuum elements. Mortar joints are then 

modelled with zero-thickness interface elements that concentrate all the possible nonlinearities. 

In addition, potential cracks within the units are introduced also with zero-thickness interface 

elements. The required mechanical properties to feed this model are as follows. Deformability 

is modelled through the Young’s modulus and Poisson’s ratio of the units, and the normal and 

shear stiffness of the joints. The latter two are determined from the elastic properties (Young’s 

modulus and shear modulus) of both units and mortar. The inelastic properties of the joints 

account for the different failure modes. Tensile strength of the joints or of unit – mortar 

interface, together with mode I fracture energy, stands for the tension mode. This mode also 

applies for the potential cracks. Initial cohesion of the joints, initial friction angle, residual 

friction angle, mode II fracture energy and dilatancy angle are required to represent the shear 

mode. The cap mode is defined with the compressive strength and three internal parameters.  
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An example of contact-based approach is provided in [30], which presents a modelling 

strategy based on the discrete element method (DEM). In DEM, discrete blocks interact 

mechanically with each other along their boundaries. In this example, blocks are considered 

rigid and all the system deformation is lumped at the joints, which are characterised by the joint 

normal and shear stiffness. The nonlinear contact behaviour is governed by a Mohr-Coulomb 

model characterised by tensile, cohesion and friction parameters (tensile strength, cohesion, and 

angle of friction for both horizontal and vertical joints). 

The last subcategory is the textured continuum-based approach, where the actual texture of 

masonry is modelled in a FEM framework with distinction between blocks and joints, but 

without any interface between them. An example of this approach is given in [31], where a 

tension/compression damage model applies for both units and mortar joints. Coherently with 

the material model, this example requires the following mechanical properties for both units 

and mortar joints: Young’s modulus, Poisson’s ratio, tensile strength, tensile fracture energy, 

elastic limit in compression, compressive strength, residual compressive strength, and 

compressive strain at peak stress.  

 

Figure 9 Examples of block-based models. a) Interface-element-based approach by Lourenço and Rots [29], b) 

Contact-based approach by Pulatsu et al. [32] c) Textured continuum-based approach by Petracca et al. [31]. 

Finally, the aforementioned block-based models may be applied to representative volume 

elements (RVE) of the structure through a homogenization process with the aim of determining 
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the constitutive law of masonry (at structural-scale) from the properties of the constituents (at 

material-scale). This constitutive law may be used in continuum-based approaches as the ones 

described in Section 2.2.1.2. 

2.2.1.4. Macroelement models 

The macroelement approach consists in the idealization of the structure into panel-scale 

structural components, the so-called macroelements (see Figure 10). These macroelements are 

typically identified either as piers – vertical resisting elements- or as spandrels – horizontal 

parts over openings that couple the piers. A phenomenological or mechanical-based nonlinear 

response is assigned to each macroelement. After assembling the individual elements, the 

macroelement model is able to reproduce the in-plane behaviour of entire masonry walls [33]. 

The reduced computational effort, the easy definition of the model, and the few required 

mechanical properties, make the macroelement approach the most widely diffused modelling 

strategy for common practitioners [3], especially when dealing with the seismic assessment of 

structures. Nonetheless, a certain expertise of the analyst is essential in the definition of the 

elements and properties, given the huge simplifications implicit to the method. Among others, 

the main assumption is that any activation of local (out-of-plane) failure mode is prevented.  

Macroelement models can be formulated with an equivalent beam-based approach or a 

spring-based approach. In both cases, the properties of beam elements and springs are modelled 

to simulate the different failure modes experienced by masonry members, which were described 

in Section 2.1.2: axial response, flexure (rocking/toe crushing), joint sliding and diagonal 

cracking  [34]. The common strength criteria defined for these failure modes are based on the 

following mechanical properties: compressive strength of masonry in the directions 

perpendicular and parallel to bed joints, cohesion, angle of friction, and diagonal tensile strength 
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(or tensile strength of units). In addition, Young’s modulus and shear modulus of masonry are 

required to define the stiffness matrix of the model [35].  

 

Figure 10 Examples of macroelement models. a) Lagomarsino et al. [35], b) Caliò et al. [36], c) Siano et al. [37], 

d) Rinaldin et al. [38] . 

2.2.1.5. Inventory of mechanical material properties required for modelling 

Table 1 compiles an inventory of the mechanical material properties used in the different 

modelling strategies reviewed along the previous sections. The table acts as a summary of the 

most relevant properties. In consequence, it does not include an exhaustive list of all the 

possible material parameters, which might be very specific of a particular type of model. 

Parameters such as fracture energies of units and mortar, residual angle of friction, ultimate 

strains, or the compressive strength of blocks, are not included because they don’t belong to 

general usage. Specific weight of masonry is neither included given that it is needed in all 

instances. References are indicated as examples to clarify the specific meaning of each 

parameter.  

Table 1 exemplifies the features exposed above. There are two different groups of 

properties depending on the modelling level of detail: one corresponding to properties of 

components and their interaction, and one corresponding to properties of masonry as a 

composite material. Block-based models capture the heterogeneity of masonry and need an 

extended set of properties. Conversely, the other three approaches apply simplifications at 
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different level, and do not consider the actual texture of the material. Therefore, these 

approaches require fewer mechanical properties to be characterised.   

Table 1 Inventory of mechanical material properties used in different modelling strategies. Grey background 

indicates properties that are typically used in the corresponding strategy. Stripped background stands for 

properties that could be used within that strategy. HOM indicates that the property is used through a 

homogenization technique.  

Symbol Mechanical property 
Modelling strategy [Examples in brackets] 

Geometry-
based 

Continuum Block-based 
Macroel- 
ements 

fc Compressive strength of masonry [15,16] [23,39–41] - 
[33,36–

38,41–46] 

ft Tensile strength of masonry [16] 
[23,39–
41,47] 

- 
[36–38,41–

43,45] 

E Young’s modulus of masonry - 
[23,39–
41,47] 

- 
[33,36–

38,41–46] 

ν Poisson’s ratio of masonry - 
[23,39–
41,47] 

- [37,43] 

Gft Fracture energy in tension of masonry - 
[23,39–
41,47] 

- [41] 

Gfc 
Fracture energy in compression of 

masonry 
- [39–41] - [41] 

G Elastic shear modulus of masonry - - - 
[33,36,38,41

,44,45] 

Eb 
Young’s modulus of blocks (units, 

bricks) 
- HOM [48–50] 

[29,31,51–
56] 

- 

Em Young’s modulus of mortar - HOM [48,49] [31,53,57] - 

νb Poisson’s ratio of blocks (units, bricks) - HOM [48–50] 
[29,31,51,52

,54–56] 
- 

νm Poisson’s ratio of mortar - HOM [48,49] [31] - 

ft_b Tensile strength of blocks (units, bricks) - - [31,52,56] [35] 

ft_m 
Tensile strength of mortar (also tensile 

strength of mortar-unit interface) 
- HOM [48]  

[29,31,55–
57] 

- 

fc_m Compressive strength of mortar - HOM [48] [54,55] - 

c 
Cohesion – Shear strength of masonry at 

zero normal stress (also fvm0, τ0) 
[16] 

[22,58]  

HOM [48,50] 
[29,31,52–

56,59] 
[33,36,38,41

,42,44] 

ϕ 
Angle of friction (μ = tanϕ ≡ coefficient 

of friction) 
- 

[22,58]  

HOM [48,50] 
[29,31,32,51
–54,56,57] 

[36,41,42,45] 

ψ Angle of dilatancy - [22,58] 
[29,31,51,54

,55] 
- 

Gf 
I Mode I Fracture energy - HOM [48,50] 

[29,31,32,52
,55,56,59] 

- 

Gf II Mode II Fracture energy - HOM [48,50] 
[29,31,32,52
,54,55,59] 

- 

kn Joint normal stiffness - - 
[29,31,32,51
,55,56,59] 

- 

ks Joint shear stiffness - - 
[29,31,32,51
,55,56,59] 

- 

  

 

 



CHAPTER 2 

 

30 

 

2.2.2. Structural assessment in building codes 

Building codes establish a set of common rules that regulates the standards for constructed 

objects. Any construction or intervention design must conform to the code in order to obtain 

the official permit. From antiquity, societies have adopted this type of codes to protect public 

health, safety and general welfare. 

With regard to structural assessment, and in general terms, modern building codes stipulate 

certain strength criteria that must be fulfilled. The assessment consists then in the verification 

of the structural members by confronting the actions on the structure with the prescribed 

strength criteria. As the main load-bearing elements in a masonry building, codes devote special 

attention to walls.  

This section briefly reviews some of the strength criteria established by common codes, 

with the aim of identifying the material properties that are involved. The focus of the review is 

placed on these properties, and the rationale behind each limit and equation is not included here. 

Further information can be found in the corresponding code. In the following, Eurocode 6-1 

[60], Eurocode 8-3 [10], and ASCE/SEI 41-17 [61] are reviewed, because these are codes of 

international diffusion, easily available and which have inspired other national codes. The 

Italian code Norme Techniche per le Costruzioni [11] is also considered given its special 

emphasis on existing buildings.  

2.2.2.1. Eurocode 6 – Design of masonry structures. Part 1: General rules 

Eurocode 6 [60] applies to the design of buildings and civil engineering works in 

unreinforced, reinforced, prestressed and confined masonry. Its Section 6 deals with the 

definition of the Ultimate Limit State and the corresponding verifications. Within this 



LITERATURE REVIEW 

 

31 
 

framework, design values of applied loads shall be less than or equal to the design values of the 

resistances. 

When a wall is subjected to mainly vertical loading, the design value of the vertical 

resistance, NRd, is given by Equation 1: 

𝑁𝑅𝑑 = Φ𝑡𝑓𝑑 (1) 

where ϕ is a capacity reduction factor that accounts for the effects of slenderness and 

eccentricity of loading, t is the thickness of the wall, and fd is the design compressive strength 

of the masonry. 

In a wall subjected to shear loading, the design value of the shear resistance, VRd, is given 

by Equation 2: 

𝑉𝑅𝑑 = 𝑓𝑣𝑑 𝑡𝑙𝑐 (2) 

where lc is the length of the compressed part of the wall, ignoring any part of the wall that 

is in tension, and fvd is the design value of the shear strength which depends on its characteristic 

value.  

In absence of tests, the characteristic shear strength of masonry, fvk, according to Eurocode 

6 [60], may be taken from Equation 3: 

𝑓𝑣𝑘 = 𝑓𝑣𝑘0 + 0.4𝜎𝑑 (3) 

where fvk0 is the characteristic initial shear strength, at zero compressive stress, and σd is 

the design compressive stress perpendicular to the shear in the member at the level under 

consideration. 
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2.2.2.2. Eurocode 8 – Design of structures for earthquake resistance. Part 3: 

Assessment and retrofitting of buildings  

Eurocode 6 [60] does not cover the special requirements of seismic design. Provisions on 

seismic verifications are given in Eurocode 8 [10]. Its Part 3 is devoted to the evaluation of 

existing individual building structures. According to Annex C, which is dedicated to masonry 

buildings, the shear force capacity of an unreinforced masonry wall controlled by flexure, Vf,flex, 

under an axial load N, may be given by Equation 4: 

𝑉𝑓,𝑓𝑙𝑒𝑥 =
𝐷𝑁

2𝐻0
(1 − 1.15

𝑁

𝐷𝑡𝑓𝑑
) (4) 

where D is the in-plane horizontal dimension of the wall (depth), H0 is the distance between 

the section where the flexural capacity is attained and the point of zero moment, and fd is again 

the design compressive strength of masonry. 

The equation proposed in Eurocode 8 [10] for the shear force capacity of an unreinforced 

masonry wall controlled by shear under an axial load N, is the same as Equation 2 proposed in 

Eurocode 6. 

2.2.2.3. Norme Tecniche per le Costruzioni 

The Norme Techniche per le Costruzioni, NTC, [11], issued by the Italian Government, 

constitutes the official building code in Italy. Although it is consistent with Eurocodes, this 

code reflects the particularities and common practices of the country. As a result of Italian 

seismicity and abundance of historical constructions, the NTC stands out for paying special 

attention to seismic assessment and the evaluation of existing buildings.  

Other than former Equations 1, 2 and 4, which are transcribed literally in the NTC, the 

novelty appears in a second document, the Circolare [62], which includes instructions for the 
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application of the NTC. The Circolare [62] recommends three additional expressions for the 

verification of the shear capacity. In the case of irregular masonry, the shear resistance of a 

wall, Vt, may be given by Equation 5: 

𝑉𝑡 = 𝑙𝑡
𝑓𝑡𝑑

𝑏
√1 +

𝜎0

𝑓𝑡𝑑
 (5) 

where b is a correction factor related to the stress distribution within the section, σ0 is the 

average normal stress, and ftd is the design value of the tensile strength of masonry by diagonal 

cracking.  

In the case of regular masonry, the shear resistance of a wall, Vt, may be taken as the 

minimum of the values computed with the former Equation 5 and Equations 6 and 7: 

𝑉𝑡 =
𝑙𝑡

𝑏
(

𝑓𝑣0𝑑

1 + 𝜇𝜙
+

𝜇

1 + 𝜇𝜙
𝜎0) (6) 

𝑉𝑡 = 𝑙𝑡
𝑓𝑏𝑡𝑑

2.3𝑏
√1 +

𝜎0

𝑓𝑏𝑡𝑑
 (7) 

where fv0d is the shear strength at zero compressive stress, μ is the coefficient of friction, ϕ 

is a parameter describing the interlocking of masonry pattern, σ0 is the acting normal stress, and 

fbtd is the tensile strength of the blocks.  

2.2.2.4. ASCE/SEI 41-17 Seismic evaluation and retrofit of existing buildings 

American ASCE/SEI 41-17 specifies provisions for the seismic evaluation and retrofit of 

existing buildings. Its Section 11 is devoted to masonry. This code defines five primary in-plane 

actions which masonry walls may be subjected to, and proposes the corresponding five strength 

criteria. 

Expected rocking strength, Vr, may be calculated with Equation 8: 
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𝑉𝑟 = 0.9(𝛼𝑃𝐷 + 0.5𝑃𝑤)𝑙/ℎ𝑒𝑓𝑓 (8) 

where heff is the height to resultant of seismic force, PD is the superimposed dead load at 

the top of the wall under consideration, Pw is the self-weight of the wall, and α is a factor equal 

to 0.5 for fixed-free cantilever walls, or equal to 1.0 for fixed-fixed walls. 

 Expected bed joint sliding strength, Vbjs, shall be given by Equation 9: 

𝑉𝑏𝑗𝑠 = 𝑣𝑚𝑒𝐴𝑛 (9) 

where An is the area of net mortared section of a wall, and vme is the expected bed joint 

sliding shear strength. 

Lower-bound toe-crushing strength, Vtc, is given by Equation 10: 

𝑉𝑡𝑐 = (𝛼𝑃𝐷 + 0.5𝑃𝑤)𝑙/ℎ𝑒𝑓𝑓(1 −
𝑓𝑎

0.7𝑓′𝑚
) (10) 

where fa is the axial compression stress caused by gravity loads, and f’m is the lower-bound 

masonry compressive strength. 

Diagonal tension strength, Vdt, shall be based in Equation 11, which is equivalent to 

Equation 5: 

𝑉𝑑𝑡 = 𝑓′𝑑𝑡𝐴𝑛𝛽√1 +
𝑓𝑎

𝑓′𝑑𝑡
 (11) 

where β is a correction factor depending on the ratio length/height, and f’dt is the lower-

bound masonry diagonal tension strength. 

Finally, lower-bound compressive strength of a masonry wall, Pcl, is given by Equation 12: 

𝑃𝑐𝑙 = 0.80(0.85𝑓′𝑚𝐴𝑛) (12) 

where f’m is the lower-bound compressive strength. 
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Overall, the reviewed building codes propose simplified strength criteria that would require 

the characterisation of the following mechanical properties: compressive strength, shear 

strength at zero normal stress, diagonal tension strength, tensile strength of blocks and friction 

coefficient. In addition, all codes consider in their formulations the Young’s modulus and the 

elastic shear modulus of masonry. Table 2 compiles the different material properties included 

in the strength criteria proposed by the reviewed building codes. 

Table 2 Mechanical properties involved in building codes strength criteria. 

Symbol Mechanical property 
Building code 

Eurocode 6 
[60] 

Eurocode 8 
[10] 

NTC [11] 
ASCE/SEI 
41-17 [61] 

fc Compressive strength of masonry x x x x 

ft Tensile strength of masonry   x x 

ft_b Tensile strength of blocks (units, bricks)   x  

c 
Cohesion – Shear strength of masonry at 

zero normal stress (also fvm0, τ0) 
x x x x 

ϕ 
Angle of friction (μ = tanϕ ≡ coefficient 

of friction) 
  x  

 

2.2.3. Summary of characterisation needs 

The two previous sections have explored the mechanical characterisation needs that a 

practitioner would face when analysing a masonry building. These needs depend basically on 

the modelling strategy selected to perform the analyses. Two groups of properties could be 

easily identified. Block-based approaches require the complete mechanical characterisation of 

the masonry components and the interface between them. Geometry-based models, continuum 

models, and macroelement models, make different assumptions and consider masonry as a 

simpler composite material. The latter consideration concerns also the simplified strength 

criteria proposed by common building codes. 

Block-based approaches may provide the most detailed and precise simulation of the 

masonry structural response. However, their high computational cost, together with the 



CHAPTER 2 

 

36 

 

difficulties to determine all the required mechanical properties, and the time-consuming 

preparation of the model, restrict their applicability to either the research field or reduced 

structural elements. Even if this situation might change in the future thanks to the increasing 

power of computers, the other approaches are preferred in common practice by engineers and 

architects. In consequence, this thesis will be focused on the characterisation of masonry as a 

composite material, because the potential contributions might have a greater impact in real 

practice.  

From the point of view of masonry as a composite material, the most relevant mechanical 

properties detected in the previous sections were: compressive strength, tensile strength, 

Young’s modulus, Poisson’s ratio, compressive and tensile fracture energies, shear elastic 

modulus, cohesion or shear strength at zero compressive stress, and angle of friction. Section 

4.5.3. of the NTC code [11] reduces the fundamental mechanical properties of masonry to only 

four parameters: compressive strength, shear strength at zero compressive stress, Young’s 

modulus and shear elastic modulus. A similar list of properties is proposed by Krzan et al. [63] 

as the fundamental mechanical parameters necessary to define and interpret the behaviour of a 

masonry assemblage: compressive strength, initial shear strength, coefficient of friction, 

Young’s modulus, shear elastic modulus, and diagonal tensile strength. 

The determination of the former mechanical properties will be analysed and discussed 

within the thesis. The common distinction between masonry loaded in compression and 

masonry loaded in shear has been applied in this work to organise the chapters and sections. 
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2.3. Mechanical characterisation procedures 

This section delves into the existing procedures for the mechanical characterisation of 

masonry. It is reminded that each of the papers presented later in Chapters 4, 5 and 6, include a 

specific and detailed literature review. The section is divided into three parts. Part 2.3.1. 

discusses general aspects on the characterisation of masonry such as the approaches and 

challenges normally encountered. It also presents some basic definitions about testing 

procedures that will contribute to a better exposition of ideas along the thesis. Part 2.3.2. covers 

the characterisation techniques for masonry loaded in compression, while Part 2.3.3. is devoted 

to masonry loaded in shear.  

According to the literature review presented in the previous Section 2.2., the discussion of 

this Section 2.3. deals exclusively with six properties of masonry as a composite material: 

compressive strength and Young’s modulus in Section 2.3.2., and initial shear strength, shear 

elastic modulus and diagonal tensile strength of masonry in Section 2.3.3. Note that this thesis 

does not cover the following aspects of the characterisation of masonry: fatigue, shrinkage, 

creep, dilatation, durability, damage limits or hysteretical response.   

2.3.1. General aspects 

2.3.1.1. Approaches and challenges 

The complex mechanical behaviour of masonry described in Section 2.1.2., which is the 

result of its composite nature, influences significantly the process of characterisation. Hendry 

distinguishes three categories of tests depending on the considered scale [1]: a) tests on 

components, i.e. units and mortar, which are afterwards correlated with properties of the 

composite material; b) tests on small specimens of masonry, such as prisms and wallettes, which 
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provide a direct determination of the properties of the composite material; and c) tests on 

complete masonry elements, which are intended to evaluate global effects. 

The major issue in relation with the characterisation of masonry is therefore that of 

representativeness, the dilemma between local and global behaviour, the quandary about 

whether the tested specimen and the boundary conditions are able to represent the actual 

behaviour of masonry. 

The former issue applies to any type of masonry. However, in the case of existing historical 

masonry, the lack of representativeness becomes a multifaceted problem given the high level 

of heterogeneity found within historical buildings. To obtain significant results, a sufficient 

amount of tests in different parts of the building should be done to improve their statistical 

reliability. Nevertheless, this necessity is in contradiction with the impossibility of causing 

damage to the building in the case of cultural heritage assets.  

In the last decades, a vast effort has been devoted to the development of non-destructive 

tests (NDT) for the characterisation of masonry [64]. Among others, techniques such as 

thermography, sonic tests, or georadar, are helpful in the definition of hidden characteristics, 

the overall knowledge of the structural elements, or construction details. More precisely, they 

offer the possibility to evaluate the quality of the masonry element and can be used with a 

comparative purpose, to identify parts of the building that have similar physical properties.  

       Yet, either minor destructive tests (MDT) or destructive tests (DT) are required for the 

determination of mechanical properties. These type of tests are the ones covered in this thesis, 

together with standard laboratory tests. The different options are briefly discussed in Section 

2.3.2. and 2.3.3. The reader is referred to complete state-of-the-art references for further 

information [1,63–65].  
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Lastly, it is relevant to highlight in these general-aspects section, the importance of a 

sustained research effort to improve the characterisation procedures. In some instances, new 

methodologies have not been supported by a standard yet, in the lack of extensive and 

comprehensive experimental campaigns. Conversely, standards and building codes are 

continuously updated, and usually incorporate new research findings that have been 

conveniently proven [61,66].  

2.3.1.2. Requirements for characterisation tests 

When designing a characterisation test, different aspects should be taken into account. 

Other than the specific mechanical property that is pursued, Hendry considers two additional 

criteria [1]: a) the cost, considered in relation with the purpose of the test, and b), the 

practicability of the proposed test. This practicability refers to several features: the time required 

to perform the test and to obtain the results, the specificity of the required equipment, the levels 

of skill required to the technicians performing the test, the reproducibility of the test, and, most 

importantly, the accuracy of the obtained results. 

More precisely, different features should be addressed in the definition of a characterisation 

test: the geometry of the specimen, the boundary conditions, the loading protocol, the 

instrumentation, and the post-processing of the results [67]. These aspects are discussed in the 

following in general terms for the case of masonry. The goal is to set a framework for the 

discussion of the different tests in the next sections. 

 Geometry of the specimen.  

The geometry of the specimen, i.e. size and configuration, is directly related 

to the aforementioned issue of representativeness. The testing procedure should 

define the number of joints to be considered, and the proportions of the specimen 

with respect to the dimensions of the units. A sufficiently large specimen is also 
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required to guarantee a proper distribution of stresses and to avoid spurious effects 

related to the loading system. In the case of existing masonry, the size of the 

specimen should be chosen with the aim of reducing the damage to the minimum 

extent.  

 Boundary conditions. 

Boundary conditions refer to the testing setup and how the load is transferred 

to the specimen. The testing setup should guarantee the stability of the specimen 

and provide satisfactory conditions in terms of both loads and restricted 

displacements. The system should provide enough force capacity to apply the 

required loads. Attention should be paid also to the contact surfaces between the 

masonry specimen and the setup. 

 Loading protocol. 

The loading protocol defines how the load is applied, and covers the rates of 

loading (under force or displacement control). Loading rates are important to 

properly capture the studied phenomenon and to allow the comparison of results 

among researches. The loading protocol stablishes also if the load is applied 

monotonically or cyclically. The latter is important to represent the effect of cyclic 

actions, but it also has influence in the procedures to determine elastic parameters. 

An additional issue is related with the moment to stop the test. The determination 

of postpeak parameters would require the continuation of the test beyond the peak 

but maintaining the safety of the process. 
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 Instrumentation. 

Different instruments are used to measure displacements, deformations and 

forces on the specimen. Defining the data that should be measured is a capital 

question within a test. The design of the instrumentation involves deciding which 

instruments should be used and their required precision and range, the number of 

instruments and their position –e.g. with respect to the mortar joints-, and the 

sampling frequency.   

 Post-processing.  

The test outcomes are generally expressed in terms of forces and 

displacements. A post-processing procedure of the data is required to convert the 

quantities measured during the test into the desired mechanical properties. These 

procedures, which usually involve simple analytical expressions, should be defined 

carefully. 

2.3.2. Characterisation of masonry in compression 

This section reviews the characterisation techniques available for the determination of the 

two most relevant properties of masonry in compression: the compressive strength and the 

Young’s modulus. 

2.3.2.1. Compressive strength of masonry 

The compressive strength is the most relevant mechanical property of masonry [68], and it 

justifies the traditional way of designing masonry structures. Furthermore, in the lack of other 

characterisation tests, this parameter is used as a reference to compute the rest of the properties: 

e.g. by means of common or standard values assumed for the ratios relating tensile strength, 
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Young’s modulus or compressive fracture energy with the compressive strength of masonry 

[69]. 

This review on the characterisation of the compressive strength is divided into three parts: 

a) methods to apply in laboratory, b) methods to apply in situ, and c) derivation from 

components’ properties. 

a) Laboratory methods 

In the case of new masonry, the characterisation consists in testing small specimens of 

masonry under compression [70–72]. The basic procedure considered by all standards involves 

the construction of the specimen, the storage in convenient conditions to guarantee the 

hardening of the mortar, the testing under prescribed loading rates, and the computation of the 

strength as the maximum attained load divided by the net area of the specimen cross section. 

The main differences among standards lie on the type of specimen being tested. The 

American standard ASTM C1314 [70] specifies the testing of masonry prisms built with single 

units laid one on top of another. From now on, this type of specimen is called stack bond prism 

(SBP). The European norm EN 1052-1 [72], conversely, prescribes the use of small running 

bond walls, also called wallettes, to determine the compressive strength. Old versions of some 

standards recommended to test other types of specimen, such as bigger walls [1] or stack bond 

prisms composed by two units per row [73].  

As discussed in the previous section, the representativeness of the chosen specimen is in 

conflict with other criteria such as practicability. The American approach [70] results in a more 

economic test, because prisms are easier to build, to handle, and to test, but they do not consider 

the likely influence of head joints in the masonry response. In literature, it is possible to find 

multiple examples of both approaches, either on prisms [74–78] or on wallettes [79–82], as 

shown in Figure 11. 
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Figure 11 a) and b) Examples of compressive tests on stack bond prisms, from Drougkas et al. [75] and Pelà et 

al. [83], respectively. c) and d) Examples of compressive tests on wallettes, from Parisi et al. [84] and Gumaste 

et al. [79], respectively. 

Although the target of the standards is new masonry, American provisions in building 

codes [61,66] allow two options for existing masonry: I. constructing the specimens with 

recovered units and a replicated mortar; and II. cutting specimens from the existing walls. 

Nevertheless, given the dimensions of the required specimens, the latter option is not often 

considered as it inflicts heavy damage on the structure and the reliability of the results is 

uncertain. During the sampling, transport, and handling operations, these specimens could 

easily dismantle.  

With regard to load application, standards recommend the application of monotonically 

increasing load. However, cyclic actions are present in actual buildings, not only in the extreme 

case of an earthquake, but because of wind or temperature changes. Very few experiences have 

dealt with the cyclic behaviour of masonry in compression [85–94].   
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b) In situ methods 

Two are the main techniques to determine the compressive strength of existing masonry: 

double flat jack tests and core testing. 

The double flat jack test is specifically designed to evaluate the deformability of masonry 

[95,96], as explained in Section 2.3.2.2. However, if extended damage is allowed within the 

masonry wall, and flat jacks offer sufficient pressure, the test can be continued until the failure 

of the masonry panel is attained [97,98]. This approach affects the integrity of the loaded area, 

which should be repaired, and presents some accuracy issues. The latter are due to the need of 

specific calibration required by these instruments. If this test is performed in combination with 

a single flat jack test to determine the acting stresses within the wall [99,100], the value of 

strength found with the double flat jack approach could at least provide an estimation of a safety 

factor for the masonry member being investigated [98]. 

The core testing consists in testing in laboratory masonry cylinders that have been 

previously core-drilled from the existing masonry wall. This technique is recommended by the 

International Union of Railways (UIC) [101] for the inspection of bridges. It has been calibrated 

and validated during the last decades by different authors [83,102–106]. The UIC recommends 

this technique for brickwork and stablishes the minimum size of the cylinders in 150 mm 

diameter. This type of cylinders includes at least two bed mortar joints and one head joint (see 

Figure 12a, b and c). Further experiences on smaller cylinders have been also published [107–

109] (see Figure 12d).  
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Figure 12 a), b) and c) Examples of tests on 150 mm cylinders, from Brencich and Sterpi [102] , Matysek [104], 

and Pelà et al. [110] respectively. D) Example of test on 100 mm cylinders, from Sassoni et al. [107].  

c) Derivation from components’ properties 

A last approach to determine the compressive strength of masonry as a composite material 

is its derivation from the properties of the components. This approach can be divided into two 

categories: I. Empirical expressions obtained by statistical methods from experimental 

databases; and II. Phenomenological expressions that attempt to describe analytically the failure 

behaviour of masonry under compression. 

The first category is recommended by several building codes in the lack of direct 

experimental results. Eurocode 6 [60] proposes the following Equation 13 to determine the 
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characteristic compressive strength of masonry fk from the normalised mean compressive 

strength of the units, fb, and the compressive strength of the mortar, fm: 

𝑓𝑘 = 𝐾𝑓𝑏
𝛼𝑓𝑚

𝛽
 (13) 

where α, β, and K are constants. For masonry made with general purpose mortar and 

lightweight mortar, α and β are given values of 0.7 and 0.3 respectively. The value of K depends 

on the type of unit and the mortar joint thickness. National building codes from several 

European countries [11,111] propose the same expression with slight modifications of the 

coefficients to account for the specificities of each country.   

The American code ACI 530.1 [112] recommends the use of the following Equation 14 

which depends only on the average compressive strength of the units, fb,c: 

𝑓𝑐,𝐴𝐶𝐼 = 𝐴(400 + 𝐵𝑓𝑏,𝑐) (14) 

where A and B are constants that depend on the type of masonry and type of mortar 

respectively. This method is known as unit strength method. The experimental database used 

for the calibration of the former expression is included in the code. Bricks with compressive 

strengths spanning from 40 to 125 MPa were considered. The compressive strengths of the 

associated masonry prisms ranged from 15 to 50 MPa. 

Different authors have derived equations that belong to the category of phenomenological 

expressions. Among others, Hilsdorf [113–115], Khoo and Hendry, and Ohler, proposed 

expressions that incorporate the properties of units (compressive and tensile strengths), mortar, 

and the geometry of the masonry arrangement (through factors relating the thicknesses of joints 

and units).  

The former empirical and phenomenological approaches deal, however, with the added 

difficulty of determining the strengths of units and mortar [116–118].  
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2.3.2.2. Young’s modulus of masonry 

Young’s modulus is the mechanical property that defines the deformability of the material 

under uniaxial stress. It is capital in the definition of the stiffness of a structural member. This 

section is organized in parallel with the previous one given that the measurement of this 

parameter in compression involves the same tests as before. 

a) Laboratory methods 

Compression tests are used to determine the Young’s modulus of masonry. There are no 

specific standards that cover the determination of this parameter, although standards for the 

determination of the compressive strength provide some recommendations. While the 

maximum attained load was the only test outcome that was required to be measured for the 

determination of compressive strength, the evaluation of Young’s modulus requires the 

measurement of deformations within the specimen at different stress levels. The differences 

between standards are found in the definition of Young’s modulus and the loading protocol. 

The European norm EN1052-1 [72] prescribes the application of the vertical load in three 

increasing steps until half the possible maximum forces is attained. No unloading cycles are 

planned. Once the test is finished after the maximum load is reached, the Young’s modulus is 

computed as the secant modulus at a stress equal to one third the maximum stress. 

The American standard ASTM C1314 [70] refers to standard ASTM E111 [119] to define 

the loading protocol. ASTM E111 is a standard that gives specific provisions for the 

determination of elastic modulus. It recommends the application of at least three loading cycles, 

without exceeding the proportional or elastic limit. ASTM C1314 defines the Young’s modulus 

as the chord modulus of elasticity between 5% and 33% of the maximum stress reached. 
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The building code ACI 530-11 [66] admits that further standardization on this subject is 

needed. It refers that differences in procedures between one research investigation and another 

may hinder the comparison of results. Also, it admits that the definition of the moduli as secant, 

tangent or chord modulus is not unanimous among researchers. 

b) In situ methods 

Double flat jack tests intend to reproduce within an existing wall a standard compressive 

test [97,98]. They are regulated by the American standard ASTM C1197 [95] and the 

recommendations MDT.D.5 by RILEM [120].  

Jurina [98], and Gregorczyk and Lourenço [97], offer a comprehensive review on this 

method. Two horizontal parallel slots are cut in a wall and create and isolated part of masonry 

between them. Flat jacks are then introduced into the slots and pressurized. The acting stresses 

are calculated from the pressure of the jacks and corrected by means of calibration factors that 

depend on the type of jack being used and the section of the slot. The masonry area between 

the jacks is instrumented and measurements are taken for different levels of pressure (see Figure 

13). The resulting deformations allow computing the Young’s modulus of masonry.  

This test is powerful and versatile, and has been applied successfully to different types of 

masonry [97,121–124]. Nevertheless, it presents some drawbacks that may hinder its 

interpretation [98,121]. Among them, difficulties in calibration, and misleading measurements 

due to stress concentrations or to the confinement effect exerted by the lateral parts of the wall 

that were not isolated. Practical issues concern the applicability in low rise buildings where the 

upper masonry does not offer the necessary contrast, or the irreversibility of the inflicted 

damage. In consequence, users need to be skilled and experienced, not only to precisely 

interpret the test results, but to perform the tests in conditions of safety and health [125].  
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Figure 13 a) Scheme of double flat jack test, from Jurina [98]. b) Application example on existing building by 

Binda and Tiraboschi [121]. 

The technique consisting in coring cylinders from the existing walls and testing them in 

laboratory may be also of application to the determination of the Young’s modulus of masonry. 

Although the aforementioned UIC leaflet [126] does not recommend the use of these cylinders 

to evaluate elastic properties, some authors have attempted to find a direct correlation between 

the Young’s moduli determined on prismatic standard compression tests and the ones found 

from cylinders [105,106].   

c) Derivation from other properties 

In the lack of specific measurements, building codes recommend to determine the Young’s 

modulus of masonry proportionally to the compressive strength. Nevertheless, the reliability of 

such approach is uncertain, given the variability in the testing procedures for Young’s modulus 

mentioned above. 

Eurocode 6 and other national European codes recommend a constant of proportionality 

equal to 1000 between the Young’s modulus and the characteristic compressive strength 

[11,60,111]. Experimental researches have shown that a value of 1000 is probably too high for 
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existing or low strength types of masonry [127,128]. American codes have adapted this constant 

progressively. Older versions of codes proposed a value of 1000 [66]. ACI 530-11 recommends 

a ratio equal to 700 for clay masonry and equal to 900 for concrete masonry [66]. A value of 

550 is suggested in FEMA 356 [129]. Furthermore, recent updates of New Zealand Guidelines 

for seismic assessment prescribe a ratio of 300 [130]. The latter examples show how 

experimental research plays a capital role in the advance of standards.  

Other than in relation with the compressive strength, the Young’s modulus of masonry may 

be derived from the elastic properties of the components [82,131]. For regularly arranged types 

of masonry, a one-dimensional homogenization method can be applied to estimate the Young’s 

modulus. This type of models consider masonry as a system of series-parallel uniaxial springs 

that account for the interaction of units with bed and head mortar joints. Other than the severe 

simplification implicit within the model, this approach deals with the practical difficulties 

encountered to determine the Young’s modulus of both units and mortar joints [132,133]. 

2.3.3. Characterisation of masonry in shear 

This section reviews the characterisation techniques available for the determination of four 

mechanical properties of masonry in shear: the initial shear strength and the coefficient of 

friction, the diagonal tensile strength of masonry, and the shear elastic modulus of masonry. 

2.3.3.1. Initial shear strength and coefficient of friction 

As described in Section 2.1.2, the shear response of masonry depends on multiple factors. 

Nevertheless, it is accepted that a key parameter in the shear resistance of a wall is the shear 

strength of the bed joints. It is traditionally assumed that the joint shear failure at low 

precompression levels can be adequately described by the Mohr-Coulomb criterion [134], as 

expressed in the following Equation 15: 
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𝜏𝑢 = 𝑐 + 𝜎 × 𝑡𝑎𝑛𝜑 (15) 

where the ultimate joint shear strength τu and the normal compressive stress σ are related 

by means of the cohesion c and the internal friction angle φ. In the common case of failure 

through the unit-mortar interface, the cohesion can be interpreted as the initial bond at zero 

precompression or initial shear strength τ0, while the tangent of the angle of friction represents 

the coefficient of friction μ.  

Different testing methods deal with the characterisation of the former shear parameters: 

initial shear strength and coefficient of friction. These methods can be classified into laboratory 

and in situ methods. 

a) Laboratory methods 

The most widespread method for determining the shear parameters of bed joints is the test 

of triplet specimens in shear. This method is specified by the European standard EN 1052-3 

[135]. Similar methods on triplets are also recommended by RILEM [136], and other national 

committees (e.g. New Zealand [137]).  

This method consists in testing at least nine triplet specimens in shear under four-point 

load, with precompression perpendicular to the mortar joints. The specimens consist of three 

units bonded by two mortar joints. At least three different levels of precompression are 

considered, with three specimens per level. The specimens are tested to failure, and the 

maximum shear load and the precompression load are registered. These values are used to 

calculate couples of data for each specimen: the individual shear strength and the normal 

compressive stress, which are then plotted in a graph. The line determined from a linear 

regression of the points provides the shear parameters: the intercept of the line with the vertical 

axis is the initial shear strength at zero normal stress, while the slope of the line gives the angle 

of internal friction [135]. 
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The use of triplets is recommended by the standards because it is a compromise solution 

for a difficult challenge. Riddington et al. defined five criteria to define an adequate testing 

setup for shear parameters [138]. Among others, these criteria included the need of ensuring 

uniform distributions of normal and shear stresses along the joints, avoiding tensile stresses at 

any point, and keeping the setup as simple as possible. Different authors have proposed a 

plethora of alternatives to the triplet test [134], which presents some drawbacks that originate 

from the fact of having two joints that might not fail simultaneously [139–141]. Among these 

alternatives, testing couplet specimens seem to be more suitable to the study of the post-peak 

behaviour of the joints [69]. The couplet testing setups usually require however complex and 

very specific equipment [142–144]. 

 

Figure 14 a) Example of test on standard triplet specimen, from Pelà et al. [145], b) Example of complex setup 

for testing couplet specimens, from Van der Pluijm [144].  

b) In situ methods 

Two main approaches stand as possible solutions for the shear characterisation of existing 

masonry: the shove test, and the core-testing method. Other secondary approaches are still 

under development, such as the derivation of the shear parameters from the results of diagonal 

tests as proposed by Calderini et al [146].   



LITERATURE REVIEW 

 

53 
 

The shove test is supported by the American standard ASTM C1531-16 [147]. RILEM also 

published a recommendation more than two decades ago, the MS-D.6 [148], on the in situ 

measurement of masonry bed joint shear strength. Nevertheless, few examples of real 

applications can be found in literature.  

Basically, the shove test consists of pushing (shoving) a brick unit that had been previously 

isolated by removing the two adjacent bricks. The load is applied horizontally by a jack or ram 

placed on one side of the brick (see Figure 15a). Before pushing, two flat jacks located above 

and below the selected brick impose a vertical stress to the surrounding masonry area. With the 

repetition of the tests under different vertical stresses, a Coulomb-type frictional relationship 

can be derived [149] to obtain the shear parameters. Recent works have been carried out by 

different authors to delve into the procedure and interpretation of this type of test [149,150]. 

These works aimed to better understand some uncertainties related to the shove test, such as the 

actual vertical compressive stress acting on the tested brick, or the role played by dilatancy. 

The core-testing method proposes to drill masonry cylinders from the existing walls and 

test them in laboratory. The differences with the tests in uniaxial compression described in 

previous sections are the load application, and the orientation of the cylinders with respect to 

the load. In this case, cylinders are subjected to Brazilian or splitting tests, and bed joints are 

not oriented horizontally. Instead, cylinders are rotated and tested with different inclinations 

with respect to the load (see Figure 15b and c). The vertical load can be then decomposed into 

normal and tangential components with regard to the bed joint, and used to calculate the normal 

compression stress and the tangential shear stress in the joint. These couples of values allow 

the derivation of the shear properties by application of the Mohr-Coulomb failure criterion. Pelà 

et al. [145,151,152], and Mazzotti et al. [153], have investigated the correlation between this 

approach and laboratory standard tests. More recently, Jafari et al. evaluated the possibilities of 
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these tests to assess the nonlinear shear-sliding behaviour of the interface after failure [154]. 

No specific standard covers this inspection method, except of a recommendation in the New 

Zealand guidelines that includes a simplified version of this test among the available 

characterisation methods [137]. 

 

Figure 15 a) Example of in situ shove test from Ferretti et al. [155]. b) Scheme and example of Brazilian test on 

cylinders from Marastoni et al. [151]. c) Example of test on cylinder from Jafari et al. [154].  

2.3.3.2. Diagonal tensile strength of masonry 

Section 2.1.2. described diagonal cracking as one of the possible failure modes of masonry 

walls subjected to shear. This failure is a recurrent response found after seismic events. 

Diagonal compression tests constitute an attempt to replicate this type of loading in laboratory 

or in situ.  

The American standard ASTM E519 [156] is the main reference that regulates the 

procedure and interpretation of the diagonal compression test. RILEM also issued a 

recommendation, LUMB6 [157], which gives very similar provisions. Some other national 
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standards are direct translations of the ASTM E519, such as the one from Guatemala [158], or 

incorporate specific details as the Chilean norm NCh 2123 [159]. 

 The procedure consists in applying a compression load to a square panel at two diagonally 

opposite corners. This load eventually causes the panel to split by tensile stresses around the 

centre of the panel, and to open through a diagonal crack that tends to connect the loaded 

corners. The common procedure suggested by ASTM E519 is to place the panel in vertical 

position inside a test machine (Figure 16a). An alternative consists in placing the wall with one 

of its sides supported horizontally, and apply the diagonal load by means of a system of tensed 

bars and jacks. The latter is suitable to be applied in situ to characterise existing masonry walls 

(Figure 16b and c). With regard to the panels size, ASTM E519 [156] recommends to use panels 

at least 1200 mm wide, while NCh 2123 [159] allows using smaller panels at least 600 mm 

wide. RILEM recommendation LUMB6 [157] sets the panel size in relation to the length of the 

units. It prescribes to use panels at least four units wide.  

The main outcome of these tests is the maximum diagonal load attained before failure. This 

load can be related with the dimensions of the panels to determine the diagonal tensile strength 

of masonry. Nevertheless, the interpretation of this result is not univocal yet. ASTM E519 

defines this parameter as shear strength of masonry, and proposes its calculation under the 

assumption of considering a pure shear stress state within the panel [156]. Other authors, based 

on the seminal works by Frocht on photoelasticity [160], have dismissed this assumption, and 

propose other formulae for the interpretation of the diagonal test results [161,162]. Regardless 

of this disagreement, the diagonal compression test is widely used in real inspections [163,164] 

and in research [165–168], notably in the assessment of strengthening solutions (Figure 16d). 

In addition, it is especially suitable for the characterisation of the behaviour of irregular 
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masonry walls, which do not present evident sliding planes through regular horizontal bed joints 

[146]. 

 

Figure 16 Examples of diagonal compression tests. a) Test in vertical position by Parisi et al. [169] b) and c) In 

situ tests, from Borri et al. [164] and Ferretti et al. [155], respectively. d) Test on a strengthened wall by 

Mahmood and Ingham [165]. 

 Another test that allows the determination of the diagonal tensile strength of masonry is 

the shear compression test or racking test. Within this test, a vertical load is constantly applied 

to introduce a precompression into the wall, which is also fixed to the ground. Then, the wall is 

pushed or pulled at its top and is subjected to shear. Turnšek and Čačovič defined a criterion 

that correlates the failure shear stress with the precompression stress by means of the diagonal 

tensile strength of masonry [170]. The drawbacks of this type of test are the lack of regulations 

or standard procedures, the difficulties encountered to properly apply the loads and the 

boundary conditions [171], and the difficulties to control the actual mode of failure [165]. 

2.3.3.3. Shear elastic modulus of masonry 

The shear elastic modulus is defined as the ratio of shear stress to shear strain, and it is a 

key parameter in the derivation of the structural stiffness of masonry elements. Being a 

parameter that describes the deformability of the structural element, its definition is greatly 

affected by the anisotropy of the material. However, all the existing current characterisation 

methods rely on the application of simple analytical expressions that are based on an isotropic 
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behaviour of the material. Furthermore, no standardized method exists for the determination of 

this parameter. In the following, three available methods are described [172,173]: one of them 

provides a direct estimation of the shear modulus while the other two can provide only an 

indirect estimation.  

The diagonal compression test presented in the previous section according to ASTM E519 

[156] is also used to determine the shear elastic modulus together with the diagonal tensile 

strength. The loads applied within this test subject the masonry panel to a shear stress state. 

Within this state, it is possible to directly determine the acting shear stresses and the 

corresponding shear strains. The shear strains can be calculated from the uniaxial strains 

measured along the compressed and the tensed diagonals of the wall [156,157]. Consequently, 

the shear elastic modulus can be directly evaluated from the shear stress – strain curves obtained 

with these tests. The drawbacks of this procedure are the initial assumption of isotropy to define 

the state of stresses, and the disparity within the research community about the best procedure 

to determine the acting stresses.   

The two alternative methods are based on   higher simplifications. The first possibility is 

using the results of compression tests to determine the shear elastic modulus. With a 

compression test, either a standard one in laboratory on prismatic samples, or the double flat 

jack test applied in situ, the Young’s modulus E and the Poisson’s ratio ν of masonry can be 

obtained. These two elastic parameters may be correlated with the shear elastic modulus G by 

means of the following relationship presented in Equation 16: 

𝐺 =
𝐸

2(1 + 𝜐)
 (16) 

Other than the assumption of isotropy necessary to apply the former equation, this method 

is influenced by the possible inconsistencies in the determination of the Young’s modulus, and, 
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especially, of the Poisson’s ratio. The transversal strains needed to compute the Poisson’s ratio 

usually require highly precise instruments to be measured. Further issues, as the proper location 

of these instruments, may also affect the results [172]. 

The second possible alternative is using shear compression tests on masonry panels. These 

tests, also described in the previous section, provide as main outcomes the shear force at the top 

of the wall and the corresponding horizontal displacement at the top of the wall. These two 

results allow the experimental computation of the elastic stiffness of the structural element, Ke. 

This stiffness depends, according to the theory of elasticity, on the mechanical properties of the 

material, the geometry of the element, and the boundary restraints [172]. Equation 17 displays 

the relationship of the elastic stiffness with the rest of parameters: 

𝐾𝑒 =
𝐺𝐴

1.2ℎ [1 + 𝑘′
𝐺
𝐸 (

ℎ
𝑙

)
2

]

 
(17) 

where k’ is a coefficient which accounts for the applied restraint conditions, h and l are the 

height and length of the wall respectively, and A is the area of the wall section [172]. The 

derivation of the shear elastic modulus with this approach faces the inaccuracy associated to 

the testing setup, the determination of the Young’s modulus, and the simplification of Equation 

17. 

Croce et al. [173] compiled a database of shear elastic modulus values for different types 

of masonry, which included results from the three types of tests described above. They found a 

huge variability within the distinct methods and highlighted the need of proposing a harmonized 

method. 
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2.3.4. Summary of characterisation procedures 

The previous sections have briefly compiled the existing methods to characterise the 

selected properties. Table 3 summarizes the existing tests for each mechanical property, and 

indicates the main encountered needs for each them. In this thesis’ context, a need refers to a 

test feature that presents uncertainties or inconsistencies, and probably requires further 

investigation to be better defined. In general, the encountered issues are related to the size of 

the specimen and the boundary conditions in the case of strength properties, and related to the 

loading protocol and instrumentation in the case of elastic properties. In most cases, 

uncertainties with regard to the interpretation and post-processing of results have been detected.  

Table 3 also includes the corresponding standards and norms that regulate each test, and 

highlights the lack of standardization in some instances.   

Table 3 Main encountered needs for the different types of test investigated, classified by mechanical property 

and by test feature. Last column indicates the corresponding standard if applicable.  

Property and test 

Test features 

Standard Geometry 
of specimen 

Boundary 
conditions 

Loading 
protocol 

Instrumentation 
Post-

processing 

Compressive strength       

- Tests on prismatic specimens 1 -- -- -- -- 
ASTM C1314, 

EN 1052-1 

- Flat jack test -- -- -- -- 2 3 

- Core testing 4 -- -- -- 5 UIC Leaflet 778 

Young’s modulus       

- Tests on prismatic specimens -- -- 6 7 8 
ASTM C1314, 

EN 1052-1 

- Flat jack test -- 9 -- 10 11 
ASTM C1197, 

RILEM MDT D.5 

- Core testing 12 -- 13 14 15 16 

Initial shear strength and 
coefficient of friction 

      

- Standard triplet 17 18 -- -- 19 
EN 1052-3, 

RILEM MS B4 

- Shove test -- 20 -- -- 21 
ASTM C1531, 

RILEM MD-D6 

- Core testing -- 22 23 -- -- 24 

Diagonal tensile strength       

-Diagonal compression test 25 -- -- -- 26 
ASTM E519, 

RILEM LUMB6 
- Racking test -- 27 -- -- 28 29 

Shear elastic modulus       
- Diagonal compression test -- -- 30 31 32 33 

- Compression tests 34 -- -- 35 36 37 
- Racking test -- 38 -- -- 39 40 

Notes: 
1. Possibility of testing stack bond prisms and small running wallettes. 
2. Difficulties in the interpretation of the actual stresses. 
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3. Existing standards cover the determination of the stress level and of Young’s modulus, but are not specific to 

compressive strength. 
4. Possibility of testing cylinders of different diameters. 
5. Doubts in the area to be considered to compute the actual stresses. 
6. Inconsistencies between standards about the cycles to be performed. 
7. For elastic parameters, the decision of how many joints have to be covered by the instruments is capital. 
8. Inconsistencies in the definition of the type of modulus: secant or tangent. 
9. Results affected by the surrounding masonry conditions. 
10. See Note 7. 

11. Difficulties in the interpretation of the actual stresses. 
12. Possibility of testing cylinders of different diameters. 
13. Need to define the loading cycles to be performed. 
14. See Note 7. Doubts on instruments placement. 
15. See Note 5. 
16. Existing UIC Recommendations do not consider the determination of Young’s modulus. 
17. Some authors propose to use couplets. 
18. Difficulties to ensure an adequate distribution of stresses. 

19. Interpretation issues when joints do not fail simultaneously. 
20. Uncertainties with regard to the acting stresses. 
21. Difficulties in the interpretation of the actual stresses. 
22. Need to have cylinders with intact joint to study the initial shear strength. 
23. Number of specimens and different orientations to be investigated have not been defined yet. 
24. Other than a recommendation in the New Zealand guidelines, there is no official standard. 
25. Possibility of testing panels of different sizes. 
26. Uncertainties in the definition of the acting stresses. 
27. Difficulties to control the actual boundary conditions. 

28. Indirect determination through the Turnšek and Čačovič criterion. 
29. No standard is available. 
30. See Note 13. 
31. See Note 7. 
32. See Note 26. 
33. See Note 3. 
34. See Note 1. 
35. See Note 7. 

36. Doubts in the applicability of the elastic relationship with Young’s modulus and Poisson’s ratio. 
37. No standard is available. 
38. See Note 27. 
39. Doubts in the applicability of the elastic relationship with the geometrical and material properties of the panel. 
40. No standard is available.  

 

2.4. Replication of historical-like masonry in laboratory 

2.4.1. General aspects 

As continuously highlighted along the previous sections, the diagnostic activity and 

characterisation of mechanical properties in existing masonry structures are not exempt of 

difficulties. Furthermore, in some cases, the inspection procedures may be not compatible with 

the conservation status of the cultural asset. In other cases, the budget may be limited and could 

be better devoted to the retrofitting intervention.  
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At these instances, it is essential to have available reference parameters to be adopted for 

different masonry types [63]. Building codes attempt nowadays to provide reference values for 

the characteristics of different masonry typologies, and adapt these values to their regional or 

local features. A well-known example is the table C8.5.I included in the Italian Circolare [62]. 

This table provides reference ranges of the basic mechanical parameters for different types of 

masonry, such as regular stone masonry, solid clay brick masonry or rubble masonry, among 

others. Similar tables may be found in other codes. In the case of European norms, individual 

countries may undertake characterisation campaigns to define their own regional values. 

In view of the impossibility of performing extensive campaigns on real buildings, research 

groups investigate the behaviour of historical-like types of masonry that have been reproduced 

or replicated in laboratory. Usually, this approach combines the aim of investigating local types 

of masonry, with a primary or secondary scientific goal related, for instance, with strengthening 

techniques, testing procedures, or analytical considerations. 

The approach of investigating replicated historical-like masonry may be a debatable issue, 

especially because of the effects of ageing and decay that are difficult to be taken into account. 

Nevertheless, studies on replicated historical-like masonry are very common and cover a great 

range of possible material combinations. As a matter of fact, research examples span from 

attempts to reproduce ancient Roman masonry [174] to studies on modern Dutch walls [175], 

from tests on regional varieties of Spanish masonry [176] to India [79] and New Zealand [177], 

or from irregular stone multi-leaf masonry used to build houses [178] to regular brick masonry 

used to build bridges [179].  

The replication of historical-like masonry requires the careful choice of the material 

components. This choice is easy in the case of the units, given that recycled units can be used 

obtained directly from existing buildings or demolition stocks [180]. E.g. the research group of 
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the University of Auckland is experienced in recover vintage solid clay bricks to perform 

experimental campaigns [165,177,181]. Otherwise, stone units can be obtained from the same 

or similar local quarries from where the historical blocks were cut [176,178]. In the case of 

bricks, local manufacturers can produce them with manual procedures that imitate the 

traditional ones [179]. Regarding mortars, the choice of the material is not straightforward. 

Nowadays, it might be technically possible to determine the mineralogical, chemical and 

physical properties of a given existing mortar [182–184]. However, the strength of the mortar, 

as well as the bond between the units and the mortar, require time to develop. This fact is 

especially true in the case of lime-based mortars, which would need years to harden. Given that 

time is a limited resource for researchers, mortars that incorporate small amounts of cement or 

hydraulic lime in their compositions are preferred [176].   

2.4.2. Structural masonry in the city of Barcelona 

Similarly to the examples exposed in the previous paragraphs, this thesis also combines the 

main scientific goal of improving the characterisation techniques of masonry with the 

investigation on a local type of masonry. The experimental campaigns required to fulfil the 

main goal are performed on a type of masonry that is common of the city of Barcelona: solid 

clay brickwork, built with lime-based mortar.  

This section describes the general features of this masonry typology. The need of this 

investigation is justified in the light of the several works and theses that have been published 

during the last two decades on the seismic performance of typical buildings of Barcelona [185–

194]. These works applied advanced analysis tools to assess the seismic vulnerability, which 

resulted to be high for certain instances. As the city is located in a low to moderate seismic 

hazard area, its buildings were built traditionally without any seismic consideration. The values 
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of material properties found during the present thesis would contribute to increase the accuracy 

of future studies about the buildings of Barcelona. 

2.4.2.1. Historical perspective 

Given the availability of local stone from surrounding quarries, the traditional architecture 

of Barcelona consisted of buildings that combined stone masonry with timber elements [195], 

while ceramic pieces were only used for vaults. By the end of the 18th century, clay bricks 

started to be used also in load bearing walls. Progressively, its use increased along the 19th 

century to become the prevailing building material in the city [196], as the low old stone houses 

of Ciutat Vella district transformed into the tall new buildings of the Eixample district. These 

buildings, which according to Paricio constitute the defining construction system of Barcelona 

[197], consisted mainly of load bearing walls made of brickwork combined with other elements: 

stone foundations, metallic supports in the ground floors, and beams with ceramic tile vaults in 

between to create the slabs (see Figure 17a). The beams material changed along the years from 

timber to steel to concrete.  

This evolution is not an exclusive feature of Barcelona. The replacement of stone by bricks 

is profusely reflected in historical books and construction manuals consulted for this thesis 

[198–203]. These books, dating from 1763 to 1927, highlight the use of bricks from the 

Babylonian and Roman antiquities to their time, and praise their advantages where stone 

quarries are not available. In 1859, Espinosa underlines the extensive use of bricks in Spain, 

but also in England, Belgium, France, Germany and Italy. Espinosa also mentions the 

appearance of certain machines in the USA that facilitate the production of bricks [200]. This 

feature, the possibility of being produced at will in bulk quantities, was key in the spreading of 

bricks as building material, because it allowed satisfying the huge need of building factories 

and inexpensive housing encountered in the industrialised countries [204]. 
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In Barcelona, the rise of bricks goes also hand by hand with the city’s evolution. The 

demolition of the medieval walls, and the subsequent development programme by Cerdà in the 

second half of the 19th century, motivated the creation of the Eixample district. As mentioned, 

load bearing walls made of brickwork were the distinctive elements of the new buildings. In 

addition, brick masonry was also used in singular constructions and, especially, in factories 

(Figure 17b, c, d), the industrial facilities that symbolised the progress of the city [205,206]. As 

a result of the massive use of clay bricks and lime during those years, 70 % of all the current 

buildings of the Eixample district of Barcelona are made of unreinforced masonry [188]. 

2.4.2.2. Materials and bond 

Paricio made a thorough study about the construction system in the Eixample of Barcelona 

from an architectural point of view [197,207]. With respect to the bricks, Paricio provided two 

important data. The standard dimensions of the typical solid bricks used in Barcelona were 300 

(length) × 150 (width) × 50 (thickness) mm³, with slight variations depending on the 

manufacturer. The local industries producing bricks were called ‘bòbiles’, and were located 

within the boundaries of the city but also in the surrounding areas. The demand of material was 

so high, that, for instance, up to 20 bòbiles existed simultaneously only in the Corts district 

[208]. The second relevant data provided by Paricio is the year 1920 as the approximated date 

that limits the production of bricks into two types: before 1920, manual production with 

traditional kiln, resulting in heterogeneous dimensions and qualities; and, after 1920, 

mechanical production with the introduction of extrusion and Hoffman kilns, resulting in more 

homogeneous products. 
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Figure 17 a) Axonometry by Paricio [197] of a typical rectangular building of the Eixample district in 

Barcelona. b), c) and d) Singular examples of industrial facilities of Barcelona made of brickwork: Fabra i Coats 

factory, Casaramona factory, and Can Batlló complex, respectively. 

 

It is important to note the dimensions of the bricks as a peculiarity of the historical masonry 

of Barcelona and Catalonia. In a comprehensive thesis about the architecture in Barcelona at 

the end of the 18th century, Rosell [195] includes details of personal documents written by an 

architect of the city, Josep Renart. In one of these manuscripts, Renart describes the bricks in 

the year 1810 as being of dimensions 1 ½ × ¾ × ¼ palms. Given that the Catalan palm measures 

approximately 200 mm, these dimensions are consistent with the ones described by Paricio 
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[197]. These bricks were consistently larger than those used in other parts of Spain and Europe 

[200,203]. This peculiarity is even reflected in the first Spanish code devoted to masonry, PIET-

70 [73], that differentiated two basic types of bricks: Castilian bricks of 240 × 115 × 52.5 mm³ 

and Catalan bricks of 290 × 140 × 65 mm³.  

With respect to mortar, Paricio describes an extensive use of the traditional aerial lime up 

to approximately 1910 [197]. Depending on the finality, the mortar proportioning varied from 

two to three parts of sand to one part of lime [207]. From 1910 on, hydraulic binders such as 

hydraulic lime and Portland cement started to be used. The appearance of hydraulic limes 

constituted a qualitative advance, although workers were reluctant to abandon their tradition in 

aerial limes. Hydraulic limes seem however to have been preferred for ground and first floors. 

The prevailing use of aerial lime mortar described by Paricio is consistent with the common 

practice reflected in the historical manuals [198–203]. 

One last aspect should be considered to define the features of the typical historical 

brickwork of Barcelona. According to Paricio [197], no bond pattern was preferred, provided 

that workers followed “good practice rules”. In the aforementioned books, different bond 

patterns were included as general possibilities: English bond pattern, Flemish bond pattern, 

Spanish bond pattern… To our knowledge, no study has been made yet to define the prevailing 

bond patterns in the city of Barcelona.  

2.4.2.3. Mechanical properties 

Up to date, the work presented by Cornadó constitutes the most comprehensive attempt to 

study the mechanical behaviour of the historical buildings in Barcelona [196]. With regard to 

the load bearing brickwork, Cornadó provides data from two interesting and different sources. 

The first source are the tests performed before 1950 by the architect Joan Bergós, in the 

laboratory of the Universitat Industrial de Barcelona. This laboratory had been inaugurated 



LITERATURE REVIEW 

 

67 
 

around 1920, and constituted a powerful novelty in the emerging science of materials 

characterisation. Bergós tested different types of masonry with different mortars. Results are 

included in the following Table 4. Nevertheless, they are hardly comparable to results obtained 

with current standards. 

Table 4 Results obtained by Bergós in the laboratory of the Universitat Industrial de Barcelona before 1950 

[196]. 

Material Compressive strength (MPa) 

Brickwork made of hydraulic lime mortar 1:3 6.42 

Brickwork made of gypsum mortar 7.87 

Brickwork made of fast hardening cement 1:3 8.32 

Brickwork made of slow hardening cement 1:3 8.36 

Brickwork made of Portland cement 1:3 11.7 

 

The second source provided by Cornadó are the results from tests performed on masonry 

specimens extracted from 15 real buildings in Barcelona [196]. These tests were carried out 

between 1995 and 2015 at the Laboratory of Materials of the Escola d’Edificació of the 

Universitat Politècnica de Catalunya. Cornadó proposed an average value for the compressive 

strength of 6.5 MPa. No more relevant data are given, except two isolated measurements of 

Young’s modulus, which averaged around 1200 MPa. 

The rest of works mentioned at the beginning of 2.4.2. did not provide experimental data. 

These works directly presented the values used in their models, which are displayed in Table 5. 

The values in the table come from undefined technical reports and the engineers’ expertise.  
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Table 5 Summary of mechanical properties used by different authors in the seismic assessment of Barcelona 

buildings. 

References Mechanical properties 

Bonett [185] E = 2100 MPa, G = 700 MPa, τ = 0.1 MPa 

Moreno-González [186] E = 1800 MPa, G = 300 MPa, τ = 0.12 MPa, fc = 4 MPa 

González-Drigo et al. [190,191] E = 2650 MPa, G = 589 MPa, τ = 0.08 MPa, fc = 2.65 MPa 

Pujades et al. [189,193] E = 1800 MPa, G = 300 MPa, τ = 0.2 MPa, fc = 1.8 MPa 

2.5. Summary 

This chapter has presented the framework of this thesis. By means of short reviews on 

different aspects, this literature review has served to narrow the scope and set the main 

objectives described in the following Chapter 3. 

First, the mechanical behaviour of masonry has been briefly described. Masonry is a 

composite and complex material, whose behaviour is influenced by the individual properties of 

the components and their interaction, but also their relative dimensions, arrangement, and the 

loading and boundary conditions. Relevant features of masonry are its ability to withstand 

compression, its anisotropy, its complex response to shear actions, and its variability.  

Section 2.2. has covered the mechanical characterisation needs encountered in the 

structural analysis of masonry. This section has reviewed the different modelling strategies and 

the building code provisions. Overall, two levels of detail define the required mechanical 

properties: strategies that consider the microscale and require to know the properties of 

components and their interaction, and strategies that consider the macroscale and consider 

masonry as a composite and homogeneous material. The latter is reflected in the strength 

criteria provided in common building codes. Six mechanical properties of the composite 

material have been identified as the most relevant to perform structural analysis of masonry: 
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the compressive strength, the Young’s modulus, the initial shear strength, the coefficient of 

friction, the diagonal tensile strength, and the shear elastic modulus. 

Section 2.3. has reviewed the possibilities of experimental characterisation procedures that 

apply for the aforementioned properties, both in laboratory and in situ. The main issue with 

respect to the characterisation of masonry is that of representativeness. This section has defined 

a series of features to be analysed for each testing procedure: geometry of the specimen, 

boundary conditions, loading protocol, instrumentation, and post-processing. Research needs 

have been identified for the different tests. In general, tests characterising strength properties 

present issues related to the size of the specimen and the boundary conditions. The loading 

protocol and the instrumentation are more relevant in the case of determining elastic properties. 

Uncertainties related to the interpretation and post-processing of results have been detected in 

most cases. 

Finally, Section 2.4. has investigated the traditional and most relevant type of masonry of 

the city of Barcelona, which has been identified as solid clay brick masonry made of lime 

mortar. One of its particularities is the size of the bricks, which are of dimensions 300 × 150 × 

50 mm³. This type of masonry is in need of further and comprehensive characterisation, given 

that only partial studies have been performed until now. A better understanding of the 

mechanical properties would increase the reliability of the structural assessments carried out on 

existing buildings of the city.   
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3.1. Objectives 

As defined in Chapter 1 Introduction, the global scope of this thesis is the critical analysis 

of the current procedures for the characterisation of masonry, and the contribution with possible 

improvements applicable to a specific type of masonry.  

In agreement with the research needs described in Chapter 2 and summarised in Table 3, a 

set of specific objectives have been defined for the thesis. These objectives are: 

 To critically analyse the following testing techniques: 

o Standard tests on masonry prisms for the determination of compressive 

strength and Young’s modulus. 

o Tests on cylinders extracted from masonry walls for the determination of 

compressive strength and Young’s modulus. 

o Standard tests for the determination of the shear mechanical properties of 

the bed joints. 

o Standard test for the determination of the diagonal tensile strength of 

masonry. 

 To investigate the size and shape effect of the tested specimens on the results of the 

abovementioned testing techniques. 

 To investigate the influence of the performance of loading cycles on the 

determination of compressive strength. To study the suitability of performing initial 

loading cycles to determine elastic properties. 

 To carry out experimental campaigns on real buildings to characterize the 

mechanical behaviour of the typical brickwork of Barcelona. 
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 To select the appropriate material components for the replication of historical-like 

masonry in laboratory. To compare the results obtained in the replicated masonry 

with those obtained in real existing masonry. 

 To check the accuracy of available analytical and empirical expressions for the 

determination of the mechanical properties of masonry. 

3.2. Methodology 

The methodology applied to fulfil the objectives of the thesis has been as follows: 

 An initial literature review –presented in Chapter 2- allowed detecting the potential 

needs of research with respect to the mechanical characterisation of masonry. This 

review served to select the testing techniques to be analysed and to select the type 

of masonry that was going to be used during the experimental campaigns.  

 The first experimental step consisted of defining the masonry to be used, with the 

choice of suitable bricks and an appropriate mortar. The selection of the mortar 

motivated a whole and independent experimental campaign that studied the 

influence of limestone filler additions on the behaviour of hydraulic lime mortars. 

This investigation had as a result the Paper I included in Chapter 4.  

 The type of masonry previously defined was used to carry out the experimental 

campaigns that investigated the individual testing techniques. Three independent 

campaigns were performed: one in relation with the standard compression tests on 

prismatic specimens, one in relation with the standard shear test on triplets, and on 

in relation with the standard test under diagonal compression. These campaigns 

resulted in Papers II, IV and V, respectively. These papers are included in Chapters 

5 and 6. 
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 An additional experimental programme was performed on existing buildings of the 

city of Barcelona. The campaign investigated the nonstandard compression tests on 

cylinders, and also served to characterise examples of real existing masonry. The 

results were organised in Paper III included in Chapter 5. 

 The phases that constituted each one of the former four experimental campaigns 

consisted of: 

o Preparation of a specific state of the art review to detect the research needs. 

o Design of the individual campaign according to the needs. 

o Performance of the laboratory tests. These tests were performed on 

specimens built in the laboratory in all cases, and on specimens extracted 

from real buildings in the case of Paper III. 

o Analysis of the results. 

o Comparison of the results with databases and analytical expressions. 

o Drawing of conclusions. 

 Once all the experimental campaigns were completed and the papers were prepared, 

they were organised into this document. Papers dealing with compression were 

included in Chapter 5, while papers dealing with shear were included in Chapter 6. 

Each chapter incorporated also a brief section to discuss the ensemble of results. 

 Finally, global conclusions are drawn, with respect to the mortar used to replicate 

the historical-like type of masonry, to the new findings on the characterisation tests, 

and to the mechanical properties of the traditional brickwork of Barcelona. 

 The last step of this research was the proposal of future lines of work, in the light 

of the overall results. 
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4.1. Introduction 

This chapter briefly presents the different materials used during the experimental 

campaigns of Chapters 5 and 6. 

Section 4.2 and Section 4.3 describe the units and the types of mortar, respectively, which 

constitute the investigated masonry specimens. Section 4.4 presents additional materials that 

have been used on the contact surfaces between masonry specimens and the loading machines. 

The definition of the mortar to be used for building the masonry specimens required a 

preliminary research on commercial hydraulic lime mortars. This research explored the 

possibilities of reducing their strengths by adding limestone filler. It is the base of the first paper 

of this thesis, Paper I, which is reproduced in Section 4.5. 

4.2. Units 

4.2.1. Units used to replicate historical-like brickwork 

As described in Section 2.4.2.2., units that were characteristic of the brickwork used in 

Barcelona during the 19th century and the beginning of the 20th century were handmade solid 

clay fired bricks, with approximate dimensions of 300 × 150 × 50 mm³.  

With the aim of replicating in laboratory this type of historical masonry, different brick 

manufacturers were contacted to obtain bricks of similar characteristics. Bricks produced by 

the company Terra Cuita Piñol Pallarés SL were finally selected. These bricks have average 

dimensions of 311 × 149 × 45 mm³. 

This company, settled in the province of Tarragona, Spain, has kept the traditional way of 

producing bricks for generations. The only mechanized process in the whole production 
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sequence is the mixing of the raw materials. After that, bricks are moult one by one by pouring 

the clay paste into a wooden mould. This process is carried out in a big protected area with no 

walls, which favours air circulation and the first stage of drying. The floor in this area is covered 

with sand to avoid bricks getting stuck. This sand eventually remains on the surface of the 

bricks. Then, bricks are handled individually and placed carefully inside a traditional kiln that 

still burns firewood. 

The manual process reflects into at least three important features of these bricks: 

1. Dimensions among bricks are not constant, especially with regard to thickness. Within 

the individual brick, thickness is neither constant and it is greater towards the edges. 

2. Even if all the brick faces are rough, the face that was casted against the sand of the 

floor presents a rougher surface. 

3. The firing of the bricks depends on their position within the kiln. Some of them may 

be overbunt, while the ones far from the fire will be less burnt. This fact is reflected in 

the colouring of the bricks and was well known by ancient masons. It was common 

practice to devote the imperfect bricks to non-structural parts of the buildings. Within 

this research, imperfect bricks were disregarded. 

The three former features contribute to increase the variability in the properties of these 

bricks. This fact could be not desirable for a scientific research given that the experimental 

results reflect the variability and may hinder the drawing of conclusions. However, this 

variability contributes to increase the representativeness of the obtained results as they better 

simulate the scattering found in real existing masonry structures. 

Bricks from Terra Cuita Piñol Pallarés SL have been used for building masonry specimens 

in the four experimental campaigns presented in Papers II, III, IV and V. Their mechanical 

properties are described within those papers, including values of compressive strength, flexural 
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strength, tensile strength and Young’s modulus. Additional information about their physical 

and chemical properties will be available soon from an ongoing research that is carried out by 

the research group of Escola de Camins at UPC and performed by Albert Cabané and 

coworkers.  

4.2.2. Other units 

Other units used in this thesis are described in the following paragraphs. 

In Paper III (see Section 5.3), three existing buildings of the city of Barcelona were 

inspected, including two residential buildings from 1840 and 1930, and one textile factory built 

in 1910-1920. Bricks and masonry cylinders were extracted. In all cases, the bricks belonged 

to the investigated type: handmade solid clay fired bricks, with dimensions close to the standard 

300 × 150 × 50 mm³. 

Paper IV (see Section 6.2) studies the determination of the cohesion and friction of bed 

joints. Other than the type of masonry built with handmade bricks provided by Terra Cuita, a 

second type of masonry was studied to duplicate the available results and increase the research 

significance. This second type of masonry was built with modern solid bricks, obtained by 

extrusion. The aim was to compare the results obtained on these bricks with smooth faces, with 

the results from the handmade bricks that had rough faces. The dimensions of these bricks are 

270 × 127 × 51 mm³. 
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4.3. Mortars 

4.3.1. Mortar used to replicate historical-like brickwork 

As described in Section 2.4.2.2., historical mortars in Barcelona were produced with aerial 

lime, sand, and water. From 1910 on, hydraulic lime and Portland cement started to be used as 

well. 

When planning an experimental programme in laboratory, it is essential to count on the 

time that mortars need to set and harden. This time is especially long in the case of aerial lime, 

and it explains why research on masonry built with aerial lime in laboratory is so scarce 

[75,145,180]. In the context of this work, it was preferred to use a hydraulic lime based mortar 

that would reduce the hardening times and would reduce the global times of the programme. In 

current research projects, it is common to rely on the support of different material suppliers that 

provide industrially prepared commercial products. These products present the advantage of 

having less variable properties, and they are easy to prepare on site. Nevertheless, these 

products may reach strengths higher than the ones supposed for historical mortars. This issue 

has been encountered in several occasions by other researchers [209,210], and motivated a 

preliminary research that is presented as Paper I in Section 4.5. 

The practical justification of Paper I is to find a hydraulic lime based mortar that hardens 

sufficiently fast but keeps a low strength. This objective was achieved by adding limestone 

filler to the commercial premix. The scientific goal was therefore to investigate the influence 

of limestone filler additions on the mechanical behaviour of commercial premixed hydraulic 

lime mortars. It was found that strengths could be maximized with a certain amount of filler. 

Beyond that point, strengths decreased as required for this thesis. More interestingly, the 

strengths seemed to be kept constant as the hardening reactions stopped after 28 days. This fact 
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is very convenient for research purposes. It allows having more freedom in planning 

experimental campaigns as a greater time window is available. 

The finally used mortar consists of a mix of water, limestone filler, and a commercial 

premix containing NHL 3.5 hydraulic lime and inert aggregates provided by the company 

Kerakoll. This mortar corresponds with the mix defined in Paper I as mortar MD. The 

proportioning is 1:1:0.65 in volume – premix to filler to water. Samples of this mortar are 

characterised along Papers II, IV and V. Average mechanical properties after 28 days are 0.71 

MPa and 1.93 MPa for flexural and compressive strengths respectively. 

4.3.2. Other mortars 

Other than the main type of mortar used in the experimental programmes of Papers II, IV 

and V, two additional types of mortar were used to build masonry specimens for this thesis. 

In Paper III, masonry cylinders extracted from walls built in laboratory were tested. These 

walls were built with the handmade Terra Cuita bricks but with an aerial lime based mortar. 

The walls had been built in the context of an experimental programme previous to the work of 

this thesis by Kasioumi et al. [106,145]. It is important to note that Kasioumi et al. investigated 

the compressive strength of the mortar by means of double punch tests (DPT). They obtained 

an average strength of 0.91 MPa after one year from the construction of the walls. In Paper III, 

the investigated mortar was tested after two years from the construction of the walls, yielding 

an average strength by DPT tests of 1.61 MPa. This is further evidence of the low rates of 

hardening experienced by aerial lime based mortars. The examples of historical masonry 

studied in Paper III were also constituted by aerial lime based mortars. 

In Paper IV, a mortar including modern Portland cement as binder was used to build the 

specimens of the second type of masonry investigated. It was combined with the modern solid 

extruded bricks described in the above Section 4.2.2.  The mortar consisted of a M7.5 Portland 
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cement based commercial mortar mixed with water in a ratio 1 to 0.25. Average mechanical 

properties after 28 days are 1.03 MPa and 2.53 MPa for flexural and compressive strength 

respectively. 

4.4. Additional materials  

Besides the material components –units and mortar- used to build the masonry specimens, 

additional materials were required to carry out the characterisation tests studied within this 

thesis. More specifically, all tests needed additional elements to be placed between the masonry 

specimens and the loading machines. These elements are necessary to ensure a satisfactory 

contact surface, to guarantee an adequate transmission of loads, and to avoid spurious effects 

related to the boundary conditions. 

In Paper II (Section 5.2), the top and bottom surfaces of masonry prisms and wallettes were 

regularized with a Portland cement based mortar. These thin mortar layers provided plane and 

horizontal surfaces, and avoided any concentration of stresses motivated by the rough surfaces 

of the handmade bricks. 

In Paper III (Section 5.3), high strength mortar caps were casted on the top and bottom of 

the masonry cylinders. These caps allowed having horizontal and plane surfaces to properly 

apply the compression load into the specimens. This mortar was a premixed commercial 

especially designed for fast reparation works. It reached 30 MPa of compressive strength after 

28 hours. 

In Paper IV (Section 6.2), soft board sheets were placed between the external faces of the 

bricks and the loading machine plates. These sheets served to avoid any concentration of 

stresses. Furthermore, the sheets were rubbed with Vaseline. The aim of Vaseline was to reduce 
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as much as possible the friction between the soft board sheets and the loading machine plates 

in order to avoid spurious measurements of resisting load. 

Finally, in Paper V (Section 6.3), the two opposite corners where the diagonal compression 

loads were applied were regularized with a layer of epoxy resin. The resin created a fast 

hardening flat and smooth surface appropriate for the subsequent load application. Additional 

soft board sheets were placed between the resin cap and the metallic shoe to ensure a proper 

distribution of the load. 
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4.5. Paper I – Influence of recycled limestone filler additions on the 

mechanical behaviour of commercial premixed hydraulic lime 

mortars 

 

 

J. Segura, D. Aponte, L. Pelà, P. Roca, Constr. Build. Mater. 238 (2020), 

https://doi,org/10.1016/j.conbuildmat.2019.117722 

 

 

Abstract: This paper presents an experimental programme aimed at investigating the use 

of limestone filler additions to modify the mechanical properties of commercial premixed 

hydraulic lime based mortars. The influence of adding recycled limestone filler was evaluated 

from the mechanical point of view, i.e. by comparing the experimental compressive and flexural 

strengths of five different mortar mixes with variable filler contents. The comparison of results 

shows that, up to a certain amount, the addition of filler provides an improvement of the 

mortar’s mechanical properties. Beyond this optimum limit, strengths tend to decrease and 

eventually stabilize. Hence, mortars tested as part of this experimental campaign covered a 

range of strengths. Consequently, adding limestone filler can serve to adapt the applicability 

of hydraulic lime mortars to different practical applications, from the conservation of historical 

buildings to laboratory research on masonry. 

https://doi,org/10.1016/j.conbuildmat.2019.117722
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I.1 Introduction 

Masonry buildings making use of hydraulic lime mortar as a constituent material represent 

a significant part of the architectural heritage [211], which includes structures built during the 

19th and the beginning of the 20th centuries as well as older ones. In fact, after the findings of 

Smeaton in the 18th century, hydraulic lime mortars were systematically used as building 

material [211–213]. 

The modern restoration philosophy recommends the use of repair products that are as 

compatible as possible with the substrate historical materials [214–216]. Therefore, the use of 

hydraulic lime mortars should be preferred in interventions on the aforementioned buildings. 

When compared to aerial lime mortars, hydraulic ones present a faster development of strengths 

and are able to harden under water, thanks to their double hardening mechanism that combines 

carbonation and hydration reactions [211]. In consequence, the use of hydraulic lime mortars 

is also encouraged to repair aerial lime-based masonry in cases where a quick hardening is 

needed or in structures exposed to severe environments [213,214,217–221].  

Given the rise in the use of hydraulic lime mortar for restoration purposes [217], the 

research on this material has increased in the past two decades, with studies on the influence of 

the type of aggregates, the binder to water ratios and curing conditions on its properties 

[211,216,218,221,222]. The knowledge gathered through these and other experiences has 

allowed commercial companies to produce hydraulic lime based ready-mixed mortars that 

constitute an alternative to traditionally prepared ones [216]. Although these mortars have many 

advantages, two of them are particularly noteworthy. On one hand, their ease of use makes them 

available to less-skilled workers [223–225] since they only require adding water to the powder 
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materials. On the other hand, their industrial preparation provides a certain standardization 

[221,226] that increases the on-site homogeneity. 

The research effort has continued in recent years with the double objective of producing 

enhanced mortars while incorporating different materials into the mix to reduce landfill waste 

[227,228]. Metakaolin [229], zeolite [230], diatomite [231] or fly ash [231] were added to 

hydraulic lime mortars to favour pozzolanic reactions and increase the mortar strengths. 

Barbero-Barrera et al. [232] studied the influence of graphite powder additions, which 

eventually improved the mortar’s mechanical properties by filler and nucleation effects. The 

incorporation of organic additions, such as herbal [233] or cactus extracts [234], proved to have 

a beneficial impact on the overall properties thanks to the formation of side compounds. Some 

of the former mortars were specially designed to be used under severe environmental conditions 

of rain and freeze-and-thaw cycles, in high humidity and high temperature environments, or 

against acid erosion and salt crystallization.   

Calcareous fines up to 100 µm, hereafter called limestone filler, may be also considered as 

a possible addition to hydraulic lime mortars. This material is an industrial by-product obtained 

in great quantities from limestone crushing and grinding [235–238]. Besides its application in 

asphalt mixes, limestone filler can be incorporated into concrete as well, not only when self-

compaction is desired [239,240], but also in common concretes as replacement of either cement 

or sand. This replacement results in at least three environmental advantages: a) reduction of 

waste to be landfilled [241], b) decrease of carbon dioxide (CO2) emissions from the binder 

production [241,242], and c) reduction of natural or river sand needs in countries with a 

shortage in this material [243,244].  

The influence of limestone filler additions on concrete has been studied for decades [245–

247]. Benachour et al. [235] and Wang et al. [248] offer a comprehensive review on the main 
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mechanisms related to the incorporation of calcareous fines. A filler effect occurs because the 

fine particles fill the voids and increase the packing density of the material. The nucleation 

effect relates to the precipitation of hydration products by using the filler particles as nucleation 

sites. This fact accelerates the hydration reaction and improves the overall hydration of the 

paste. A limited chemical effect [248] takes place during the cement hydration, when the calcite 

(CaCO3) from filler reacts with the aluminate (C3A) and ferrite (C4AF) minerals of the paste 

to form carboaluminate. Finally, the dilution effect corresponds to the decrease within the mix 

of the cement content with respect to the other components. The positive or negative influence 

of the limestone filler on the global properties of the material would depend on the amount of 

filler and the combination of the former effects. A critical amount could be determined to 

optimise the concrete strength [235,242,243,249,250]. 

A certain influence of limestone filler additions on non-hydraulic products has been 

identified as well. Fragata and Veiga [251] found higher strengths in aerial lime mortars 

prepared with two different types of aggregate when calcareous fines were added. Skoulidis et 

al. [252] found an optimal content of calcite that improved the mechanical behaviour of 

hydrated lime pastes used for the consolidation of stones. As the rate of carbonation of the 

calcium hydroxide (portlandite - Ca(OH)2) was also increased, they suggested that the 

calcareous particles could act as crystallization seeds for the carbonation process.  

It may be assumed that effects similar to those described above for concrete and aerial lime 

mortars would take place in hydraulic lime mortars given their double hardening mechanism 

by carbonation and hydration. However, the duality of hydraulic limes also makes them more 

complex. Furthermore, their hydration products differ from those of cement [211]. More 

precisely, the major hydraulic phase in hydraulic limes is larnite (belite - C2S) instead of alite 

(C3S), and C3A and C4AF could be present but in very small amounts. In consequence, the 
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influence of limestone filler on the hydraulic lime mortar properties may also be different and 

needs to be investigated. Two experiences have recently dealt with this topic. Forster et al. [253] 

analysed the influence of calcite additions in the form of oyster shells, limestone chippings and 

precipitated calcium carbonate. They found an increase on the mechanical strengths as result of 

these additions. Faria and Silva [221] studied the filler incorporation but combined with 

different aggregates and curing conditions. Besides the impact on the strengths, they found the 

calcareous filler to be advantageous, particularly with regard to water absorption and drying 

capability. 

The present research is motivated by two related considerations. On one hand, there is an 

increase in the use of hydraulic lime mortars and commercial ready-to-use premixes for 

restoration purposes, together with a growing research on different material additions to 

improve the performance of these mortars. On the other hand, a lack of results has been detected 

about the influence of limestone filler additions on the mechanical behaviour of hydraulic lime 

mortars, while this addition, which is an abundant industrial by-product, has proven to be 

beneficial for both concrete and non-hydraulic lime mixes. With these considerations in mind, 

the present paper combines both research trends and explores the possibility of modifying the 

mechanical properties of hydraulic lime based mortars by incorporating limestone filler into 

their formulation. The influence of this addition has been evaluated from a mechanical point of 

view, i.e. in terms of changes in the compressive and flexural strengths of the mixture. The 

research involved five varied contents of filler, with the aim of covering a wide range of final 

applications.  
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I.2 Materials and methods 

I.2.1 Materials 

The experimental programme was carried out at the Laboratory of Technology of 

Structures and Building Materials of the Technical University of Catalonia (UPC – 

BarcelonaTech). 

The mortars of this research were prepared by combining a hydraulic lime based 

commercial premix (HP) with limestone filler (LF) and water (W). The commercial product 

was a ready-to-use powder mix of binder and aggregates. A natural hydraulic lime NHL-3.5 as 

defined by EN 459-1 [254] acted as binder. The aggregates consisted of two types of washed 

river silica sand (0.1 ÷ 0.5 mm and 0.1 ÷ 1 mm) and pure white marble powder (0 ÷ 2.5 mm). 

The unit weight of this blend was determined to be 1740 kg/m³.  

The manufacturer supplied the former premix in 25 kg bags. The content of one bag was 

studied. First, it was conveniently reduced by means of a quartering device to obtain a 

representative sample. This sample was divided into two fractions, one being the material 

passing through the 0.063 mm sieve and the other the material retained in the 0.063 mm sieve. 

Both fractions were analysed by X-ray diffraction with a PANalytical X’Pert PRO MPD Alpha 

1 diffractometer using Cu Kα radiation (λ = 1.5406 Å (45 kV – 40 mA)). Figure I.1 presents 

those results. The diffractogram of the finer fraction (Figure I.1a) indicates the presence of the 

binding compounds, namely the hydraulic phases larnite and alite with a predominance of the 

former, as well as portlandite. This composition is in agreement with that of any hydraulic lime 

based binder [211,216]. The diffractogram of the coarser fraction (Figure I.1b) shows calcite as 

the main mineralogical phase, together with a reduced presence of quartz. This is consistent 

with the base materials defined in the former paragraph, silica sand and marble powder. Given 
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the nature of the aggregates and both diffractograms, and according to a similar procedure 

adopted in [216] for the study of commercial NHL mortars, it could be assumed that the material 

passing the 0.063 mm sieve corresponded to the binder while the material retained in the 0.063 

mm corresponded to the aggregates. This assumption was applied to compute an approximate 

binder to aggregates weight ratio of the hydraulic commercial premix that was 1:3.22. Lastly, 

the particle size distribution of the aggregates fraction was determined by sieving according to 

the standard EN 933-1 [255]. Figure I.2 displays the resulting chart, which corresponded to a 

well-graded fine aggregate. 

 

Figure I.1 XRD diffractograms in the 5 – 60º 2θ angular region of the anhydrous premix. a) Fraction passing the 

0.063 mm sieve, b) fraction retained in the 0.063 mm. 
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Figure I.2 Determination of the particle size distribution chart of the premix aggregates. 

The limestone filler incorporated into the mortars was supplied by a company that obtained 

it as a by-product of limestone grinding. A representative sample was studied. First, the unit 

weight of the filler was determined to be 1120 kg/m³ and its fineness was confirmed since 100% 

of the material passed through the 0.063 mm sieve. The particle size was analysed in more detail 

by means of a polarized light microscope JenaPol. Figure I.3 includes microscope images with 

a magnification of 100X of limestone filler particles that had been previously dispersed in oil. 

These images show that all particles were smaller than 50 μm and presented variability of 

shapes. Finally, Figure I.4 displays the results of an X-ray diffraction of the filler that indicate, 

as should be expected, the total predominance of calcite as main mineralogical phase. The 

presence of kaolinite, quartz and muscovite was incidental and could be originated in clays 

present during the initial extraction of the material. Therefore, the incorporation of the 

recovered limestone powder into the mortars did not add any harmful substance. 
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Figure I.3 Polarized light microscope images of limestone filler particles dispersed in oil. Magnification 100X. 

Scale 50 µm. 

 

Figure I.4 XRD diffractogram in the 5 – 60º 2θ angular region of limestone filler. 

I.2.2 Mortars design 

The reference mortar, here identified as mix M0, consisted only of hydraulic commercial 

premix and water. To investigate the influence of the limestone filler additions, four mortars 

with increasing filler content were defined. Table I.1 indicates the content of the two different 

constituents for the reference mix M0 and the modified mixes MA, MB, MC and MD. This 

content is indicated as a percentage of the total powder volume. Figure I.5a shows graphically 

the mortars definition, which ranged from MA, with a substitution by filler of only 12.5% of 

the total powder volume, to MD, where half the volume was substituted by filler. The weight 

proportions of the powder materials displayed in Figure I.5b were calculated with the bulk 
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densities and the binder to aggregate ratio found in the previous section I.2.1. The chart shows 

how the proportion of binder decreased with the progressive addition of filler. 

Table I.1 Mortars definition in terms of total powder volume by replaced by limestone filler. 

Mortar 
Powder volume (%) 

Hydraulic premix (HP) Limestone filler (LF) 

M0 100 0 

MA 87.5 12.5 

MB 75 25 

MC 62.5 37.5 

MD 50 50 

 

 

Figure I.5 Graphical representation of mortars proportioning, a) by percentage of total powder volume and b) by 

percentage of total powder weight. 
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The mortars design was completed by determining the water content of each mix. A batch 

of reference mix M0 was prepared according to the prescriptions of the manufacturer, i.e. 4.5 l 

of water every 25 kg of hydraulic commercial premix. The consistence of the fresh mortar was 

evaluated by means of the flow table test described in the standard EN 1015-3 [256]. A metallic 

mould was filled with two compacted layers of fresh mortar. After removing the mould and 

jolting the table 15 times, the result of the test was obtained as the mean diameter of the spread 

mortar measured in two directions at right angles. The flow value of 168.5 mm measured for 

mix M0 was considered acceptable in terms of workability [222] and was selected as a target 

consistence for the rest of the mortars. The water content of the other mixes was determined by 

a trial-error process until obtaining the required consistence. Table I.2 indicates the water 

contents and flow values for all the mixes, and the complete proportioning by volume and by 

weight as well. 

Table I.2 Mortars proportioning by volume and by weight, and flow measured according to EN 1015-3 [256]. 

Mortar 

Proportions by volume Proportions by weight 

Flow 

(mm) 
Hydraulic 

premix 

(HP) 

Limestone 

filler (LF) 
Water (W) 

HP: 

Aggregates 

HP: 

Binder 

Limestone 

filler 
Water 

M0 1 0 0.312 0.763 0.237 0 0.180 168.5 

MA 1 0.143 0.357 0.763 0.237 0.092 0.206 169.3 

MB 1 0.333 0.416 0.763 0.237 0.215 0.240 167.8 

MC 1 0.600 0.499 0.763 0.237 0.387 0.288 165.5 

MD 1 1 0.650 0.763 0.237 0.645 0.375 167.1 

I.2.3 Specimens preparation and testing 

The influence of the limestone filler additions on the mechanical behaviour of hydraulic 

mortars was investigated by means of the evaluation and comparison of two mechanical 

properties, namely the flexural and compressive strengths of the material. The European 



MATERIALS 

 

   PAPER I 

 

99 

 

standard EN 1015-11 [257] covers the testing of these two properties on hardened mortars. The 

experimental work presented herein followed the specifications of the standard. 

A set of nine test specimens was built for each mortar. The specimens were 160 × 40 × 40 

mm³ (length × width × depth) prisms casted in metallic moulds. The mix of the three 

constituents, i.e. commercial hydraulic lime based premix, filler and water, was carried out for 

each mortar type with a mixer following the times prescribed by EN 196-1 [258]. After mixing, 

the fresh mortars were poured into the moulds in two approximately equal layers. Each layer 

was compacted by 25 strokes of a standard tamper. A palette knife was used to skim off the 

excess mortar to ensure surfaces plane and levelled with the top of the moulds. Each mould was 

then placed in an individual sealed polyethylene bag. Although the standard EN 1015-11 [257] 

recommends to remove the prisms from the mould after 48 h, the prisms were demoulded after 

72 h because it was found preferable due to the slower hardening of the less strong mixes. After 

the demoulding, the prisms were kept again inside the bags for four additional days. Once 

extracted, they were stored in laboratory conditions until the age of testing (15 ± 5 ºC and RH 

65 ± 10%). 

The mortar prisms were tested, in sets of three specimens, at 14, 28 and 56 days. Testing 

at different ages was important to investigate the evolution of the properties with time. An age 

of 56 days was considered a sufficient time to carry out the comparison among mixes given the 

faster hardening of hydraulic lime compared to aerial lime mortars, which are usually tested 

after 90 days [217,251,259]. The flexural strength of the prisms (fflex) was determined by means 

of three-point bending tests (Figure I.6a) and evaluated according to the following expression 

(Eq. I.1): 

𝑓𝑓𝑙𝑒𝑥 = 1.5 ∗
𝐹𝑙

𝑏𝑑2
 I.1 
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where F is the maximum load applied to the specimen, l is the distance between the axis of 

the support rollers, which is equal to 100 mm, and b and d are the width and depth of the 

specimen respectively.  

The two halves of the prisms broken during the bending tests were kept and tested under 

compression. A specific laboratory jig (Figure I.6b) ensured that the loaded area (A) was a 40 

× 40 mm² square. The compressive strength of the mortar (fcomp) was evaluated with the 

following expression (Eq. I.2): 

𝑓𝑐𝑜𝑚𝑝 =
𝐹

𝐴
 I.2 

Both types of test were carried out with a 10 kN capacity compression machine. No 

additional measuring devices were placed to capture the displacements during the tests. In all 

cases, the loading rates were selected so that failure occurred after 30 seconds. 

 

Figure I.6 Mortar testing setup. A) Three-point bending and b) compression tests. 

I.3 Results and discussion 

Table I.3 and Table I.4 present the average 14, 28 and 56-day flexural and compressive 

strengths of all mortar types. The associated coefficients of variation are included in brackets. 

Figure I.7 and Figure I.8 plot the development of strengths over curing time. The results show 

the influence of limestone filler on the mechanical behaviour of hydraulic lime mortar and how 

it was dependent, as could be expected, on the amount of filler. However, the results also show 
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that the trend of this influence varied with the curing time and slightly differed depending on 

the mechanical property investigated. 

At 14 days, mortar MD (50% LF) was the weakest in both flexion and compression. M0 

(0% LF) was the strongest mortar in compression but MA (12.5% LF) and MB (25% LF) were 

stronger in flexion. Yet, differences between mixes were minor at this early age. At 28 days, 

the influence of filler additions was reflected in a reduction of the flexural and compressive 

strengths, which decreased as the amount of filler increased. At 56 days, conversely, M0 (0% 

LF) was not the strongest mortar. After two months of curing, the flexural strength of mortar 

MA (12.5% LF) was 8% higher than the reference one (M0) and 128% higher than the weakest 

mortar one (MD), while mortar MB (25% LF) was 35% stronger than the reference mortar M0 

and 177% stronger than the weakest mortar MD in compression.  

Among the 30 average results presented in Table I.3 and Table I.4, only three exhibited a 

high variability with coefficients of variation “CV” around 15%. The latter is often found for 

lime-based mortars [260]. Furthermore, one third of the average results had a coefficient of 

variation lower than 5%. The strength decrease captured for certain mixes between 28 and 56-

day tests has been also registered in previous research works available in the relevant literature 

[118,211,218,222,229,251,253,259]. Some authors pointed out that this behaviour could be 

attributed to the development of microcracking [218] or changes within the pore structure [253]. 

Table I.3 Flexural strength of mortars (fflex). Average values at 14, 28 and 56 days for each mortar. Coefficients 

of variation shown in brackets. 

Mortar 
 fflex (MPa)  

14 days 28 days 56 days 

M0 - 0% LF 0.94 (10.4%) 1.93 (7.6%) 1.64 (5.1%) 

MA - 12.5% LF 1.19 (1.7%) 1.83 (3.1%) 1.76 (3.8%) 

MB - 25% LF 1.10 (3.9%) 1.64 (9.1%) 1.55 (11.0%) 

MC - 37.5% LF 0.81 (15.9%) 1.03 (4.5%) 1.22 (8.5%) 
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MD - 50% LF 0.65 (15.1%) 0.68 (9.9%) 0.77 (2.2%) 

 

Table I.4 Compressive strength of mortars (fcomp). Average values at 14, 28 and 56 days for each mortar. 

Coefficients of variation shown in brackets. 

Mortar 
 fcomp (MPa)  

14 days 28 days 56 days 

M0 - 0% LF 2.89 (12.8%) 4.47 (7.5%) 3.78 (9.1%) 

MA - 12.5% LF 2.58 (3.4%) 4.35 (5.4%) 4.82 (5.1%) 

MB - 25% LF 2.39 (3.5%) 4.00 (4.1%) 5.09 (15.2%) 

MC - 37.5% LF 2.11 (8.9%) 3.15 (8.3%) 3.60 (8.3%) 

MD - 50% LF 1.64 (5.3%) 1.91 (6.4%) 1.83 (4.2%) 

 

Figure I.7 Flexural strength of mortars (fflex). Bars represent the average values at 14, 28 and 56 days for each 

mortar. Whiskers indicate the average values ± 1 standard deviation. 

 

Figure I.8 Compressive strength of mortars (fcomp). Bars represent the average values at 14, 28 and 56 days for 

each mortar. Whiskers indicate the average values ± 1 standard deviation. 
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As discussed in Section I.1, the incorporation of calcareous fines may have different effects 

on the strength development of mortars. Namely, the filler effect that increases the packing 

density, the nucleation effect that favours the hydration and carbonation reactions, and the 

dilution effect acting when the binder is not able to coat all the particles. As the two former tend 

to oppose the latter, the global observed influence would depend, among others, on the amount 

of filler added. The combination of the three main effects can explain the experimental results 

presented in this paper. At 14 days, the dilution effect motivated the progressive reduction of 

compressive strength registered for increasing amounts of filler. Conversely, the greater 

packing density provided by the filler effect was sufficiently important in flexion in the cases 

of mortars MA (12.5% LF) and MB (25% LF) to counteract the dilution and both mortars 

reached higher flexural strengths compared to the reference M0 (0% LF). At 28 days, the 

dilution effect seemed to prevail over the rest as mortar M0 consistently exhibited higher 

strengths in both flexion and compression. However, at 56 days, a positive influence in both 

compressive and flexural strengths was observed that might be attributed to the nucleation 

effect. This mechanism is related to the hardening reactions of mortar, the hydration of C2S –

which is slower than the hydration of C3S in cement mortars- and the carbonation of Ca(OH)2. 

Therefore, it required a certain time to be detected. With regard to the mortar MD incorporating 

50% of limestone filler, the dilution effect predominated in such extent that the strength 

evolution was stopped even at 14 days. For this mix, the mechanical strengths showed almost 

constant values during the three ages of testing. 

The objective of this work was to study the incorporation of limestone filler into 

commercial hydraulic lime based mixes to design modified mortars. From that point of view, 

the research provided a variety of results. At 28 days, mortar MA with a replacement with filler 

of 12.5% reached strengths similar to those of the reference mortar M0. At 56 days, an optimum 
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could be found between MA (12.5% LF) and MB (25% LF) to produce the mortar with the 

highest flexural and compressive strengths. The strength of 5 MPa exhibited by these two mixes 

in compression compares well with the results of Xu et al. [231] who added diatomite, Grilo et 

al. [229] who investigated metakaolin additions or Lanas et al. [211] who started from a stronger 

hydraulic lime. Those mortars might be suitable for restoration of structures in severe 

environments [229]. Additionally, mortar MD (50% LF) presented certain features that might 

be suitable for research purposes as discussed in Section I.4. 

Figure I.9 plots the compressive (fcomp) to flexural (fflex) strength ratios (fcomp/fflex) 

computed for all mortar types and grouped for the different ages. The graphs did not allow 

identifying any regular trend but showed that all the values ranged between 2.1 and 3.3. Figure 

I.10 was elaborated thanks to the great number of available test data, as it compares the total 

180 results in compression to the 90 results in flexion regardless of the age and the filler content. 

Even if the coefficient of determination R² was 79%, the ratio of 2.57 may be considered as 

representative of the types of mortar studied herein. 

Allen [261] indicated that the compressive to flexural strengths ratio relates inversely to 

the brittleness and directly to the plasticity of the material. Kalagri et al. [218] found this ratio 

to be proportional to the dynamic modulus of elasticity. The 2.57 estimated ratio is similar to 

the ratios found in other researches with hydraulic and aerial lime mortars 

[215,218,221,259,262] on the same type of tested specimen. 
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Figure I.9 Ratio between compressive (fcomp) and flexural strength (fflex) of mortars for each filler content at 14, 

28 and 56 days. 

 

Figure I.10 Correlation between compressive (fcomp) and flexural strength (fflex) by combining the available data 

from all types of mortar and ages. 

I.4 Example of application of mortar with limestone filler replacement of 

50% 

The previous section has shown that replacing the 50% of powder volume by limestone 

filler (mortar MD) leads to a strength reduction of the commercial premixed hydraulic lime 

based mortar down to 2 MPa. This strength value can be considered representative of a 

historical mortar [217,221,263,264] and makes mortar MD suitable to satisfy a need 

encountered in the research field. 
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Research on historical masonry usually involves building structures or structural elements 

in laboratory that try to replicate the properties of the real ones [265–267]. This implies the use 

of low strength mortars, but preferably with a certain hydraulicity to guarantee a fast hardening 

and to reduce the curing time needed before testing. Some researchers may choose the option 

of commercially available hydraulic lime premixes because of the homogeneity and easy use 

offered by an industrial product as exposed in section I.1. In some cases, however, these 

materials develop a too high compressive strength and may not be adequate to replicate a 

historical mortar. In fact, as investigated by Gulotta et al. [216], some of these mortars may 

reach strengths much higher than the strength-resistance classes of the initial binders.  

In order to address this issue, some authors have incorporated additions into the commercial 

premixes to combine the advantages of the latter with a convenient strength level. Magenes et 

al. [209] modified a hydraulic lime based commercial mortar by replacing 22% of the volume 

with sand. More recently, Guerrini et al. [210] added EPS beads up to 28% of the volume. Both 

cases achieved an appropriate strength reduction.  

During recent years, the mortar mix MD has been used in the Laboratory of Technology of 

Structures and Building Materials of the Technical University of Catalonia (UPC) in different 

experimental campaigns that aimed to study historical-like masonry elements [132,268]. Figure 

I.11 shows the results of bending and compression characterisation tests on prisms of mortar 

MD corresponding to the last campaigns carried out at UPC. A total amount of 60 and 120 

results are displayed for flexural and compressive strengths respectively. The charts cover 

different ages from 7 to 112 days. As discussed in the previous section, the incorporation of 

such amount of filler seemed to stop the strength development of the mortar at an early age. 

The average flexural and compressive strengths after 28 days were 0.71 and 1.93 MPa 

respectively and the individual test results exhibited a close oscillation around those values. 
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The related coefficients of variation, computed with all the data after 28 days, were 16.8% and 

12.9%. Taking into account the variability within the material, the differences in curing 

conditions and the inherent scattering of the experimental tests, those coefficients of variation 

allow considering the strengths as constant over time. The overall ratio fcomp/fflex was 2.72, 

which is consistent with the values displayed in Figure I.9. 

 

Figure I.11 Strength evolution of mortar MD with age. The dashed lines indicate the average value of the 

strengths considering all the individual results after 28 days. a) Flexural strength, b) compressive strength. 

The characterisation of this mortar MD was completed with two additional tests. On one 

hand, Figure I.12 shows three images of mortar joint sections obtained with a stereo microscope 

Leica using incident light. These pictures, with a magnification of 10X, illustrate the 

macrostructure of the hardened mortar at 56 days and reveal a porous material, with pores 
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occasionally bigger than 2 mm. The incorporation of filler did not saturate the pore structure 

and in consequence the mortar could be able to breath and carbonate easily. On the other hand, 

Figure I.13a displays the X-ray diffractogram of a sample of hardened mortar MD at 56 days 

after crushing and mechanical sieving. The results show that, at that time, there was a very 

limited amount of binding compounds (larnite, portlandite) left. Figure I.13b clarifies this 

aspect as it compares the diffractogram of the hardened mortar to that of the anhydrous original 

premix. The absence or reduction of the peaks related to the binding phases is especially noted 

in the 18, 30 – 35, 40 – 45 2θ angular regions. This fact involves a limited evolution of strengths 

after 56 days, consistently with the mechanical tests previously presented in Figure I.11 that 

yielded constant strengths between 56 and 112 days. It is also remarkable that the final products 

in the hardened mortar, namely calcite and traces of quartz, are the same of those of any 

hydraulic lime based mortar. This result together with the favourable pore structure imply that 

mortar MD, in case of being used in restoration works, would not present any compatibility 

issues with the traditional old substrate materials. Given that mortar MD was the mix with the 

highest amount of limestone filler, the former conclusions related to final resulting products, 

pore structure and compatibility would be also applicable to the rest of mixes studied in Section 

I.3. 

 

Figure I.12 Stereo microscope images of hardened mortar MD joint sections after 56 days. Magnification 10X. 
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Figure I.13 a) XRD diffractogram in the 5 – 60º 2θ angular region of hardened mortar MD at 56 days after 

crushing and mechanical sieving; b) comparison of XRD diffractograms in the 15 – 55º 2θ angular region of 

anhydrous premix (see Figure I.1a) and hardened mortar MD at 56 days. 

Additionally, mortar MD was used to build small masonry specimens with handmade solid 

clay bricks by the authors [268]. Bricks had average dimensions of 311 x 149 x 45 mm³ and a 

normalized compressive strength of 18 MPa. Running bond walls and stack bond prisms were 

tested in compression providing average compressive strengths of 6.51 MPa and 6.75 MPa 

respectively. These values may be representative of historical masonry elements as they 

compare well with laboratory campaigns studying this type of materials [105,269], inspection 

campaigns on real structures [104,270] or studies on historical buildings [196].  
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Therefore, mortar MD combines different features that might be interesting for researchers: 

1) it provides a convenient strength value and, when used to build brickwork specimens, the 

strength values compare well with those of historical masonry elements; 2) it is based on an 

already premixed material, which is produced industrially and offers a controlled variability; 3) 

the replacement material, limestone filler, is easily available as an industrial by-product at a 

low cost; 4) it attains the required strength at or before 28 days, in contrast with aerial lime 

mortars that require much more time to harden; 5) the constant value of strength over time 

makes it especially suitable for the experimental research in the laboratory. 

I.5 Conclusions  

This paper has presented an experimental investigation on the influence of limestone filler 

additions on the compressive and flexural strengths of hydraulic lime mortar. The filler was 

added to a commercial premix in varying amounts of 12.5%, 25%, 37.5% and 50% of powder 

volume. Mechanical tests were carried out at 14, 28 and 56 days. The following conclusions 

can be drawn from these experiments: 

- Limestone filler, which is an easily available industrial by-product, was successfully 

incorporated into mortar mixes. Mortars workability was maintained even for high 

amounts of material replacement. 

- The influence of limestone filler depended notably on the added amount. Yet, the trend 

of this influence varied with the curing time and the mechanical property evaluated. 

The effects of filler incorporation described by previous authors for cement and aerial 

lime mortars could explain the observed results.  

- With the amounts of filler studied herein, a positive impact on the mechanical strengths 

was not consistently registered until 56 days. By that age, the nucleation effect that 
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favours the slow reactions of hydration and carbonation was sufficiently important as 

to show its influence. At earlier ages, the dilution effect prevailed. 

- An optimum amount of filler between 12.5% and 25% could be found to maximize the 

compressive and flexural strengths of NHL 3.5 based mortars. At 56 days, the mortar 

incorporating 25% of filler was 35% stronger than the reference mortar without filler.  

- The replacement by filler of 50% powder volume provided a mortar of almost constant 

mechanical strengths over time for potential applications in the research field. 

- The incorporation of limestone filler, which is an inert material, doesn’t affect the 

nature of the resulting products in the hardened mortar if compared with other hydraulic 

lime based mortars. Therefore, these modified mortars would be compatible with 

traditional old materials. 
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5.1. Introduction 

This chapter presents two experimental researches that deal with the characterisation of 

masonry in compression. Based on the findings of the literature review presented in Section 2, 

these researches address some of the needs encountered in relation with the size and shape 

effect of the specimens and the type of loading.  

Section 5.2 reproduces Paper II, devoted to the characterisation of masonry in laboratory. 

It explains an experimental campaign on two types of standard specimen -stack bond prisms 

and running bond walls, and compares the results obtained through monotonic loading with 

results obtained after the performance of some loading cycles. Paper II pays also attention to 

different analytical and empirical expressions derived to predict the mechanical behaviour of 

masonry. 

Section 5.3 reproduces Paper III, devoted to the characterisation of masonry in existing 

buildings. It explains an experimental programme that consists of four campaigns on four 

different masonry examples, three of them from real buildings of Barcelona. The programme’s 

aim is to compare the results obtained by means of testing cylinders of 150 mm diameter, as 

recommended by the UIC Leaflet [101], with those obtained from smaller specimens, of only 

90 mm diameter, which would reduce the damage to the existing structure during the coring 

phase. 

Section 5.4 discusses some aspects of Paper II and Paper III as a whole and relates the 

obtained results. Conclusions of the individual papers are not restated here but in Chapter 7. 
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5.2. Paper II – Monotonic and cyclic testing of clay brick and lime 

mortar masonry in compression 

 

J. Segura, L. Pelà, P. Roca, Constr. Build. Mater. 193 (2018) 453-466, 

https://doi.org/10.1016/j.conbuildmat.2018.10.198 

 

Abstract: This research presents an experimental programme on the mechanical 

characterisation of masonry under monotonic and cyclic uniaxial compression. Two different 

types of standard specimens, running bond walls and stack bond prisms, were built using 

handmade clay bricks and hydraulic lime mortar. The experimental results are compared and 

discussed in terms of strength, stiffness and deformability. It was observed that the two 

specimen types provided very similar results on both strength and stiffness. Cyclic loading tests 

carried out on a set of samples provided new experimental evidence on the stiffness 

degradation, loss of load carrying capacity for increasing irreversible compressive strains and 

energy dissipation. The paper presents eventually a thorough discussion about the comparison 

between the obtained experimental results with available predictive models for strength, 

stiffness and fracture energy of masonry under monotonic and cyclic compression loading 

https://doi.org/10.1016/j.conbuildmat.2018.10.198
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II.1 Introduction 

Brick masonry has been largely used for structural purposes up to mid-20th c when, due to 

the increasing labour costs, it became less attractive than other more modern materials such as 

concrete and steel [271,272]. Due to its long historical prevalence, masonry consisting of clay 

bricks and lime mortar is abundant all over the world. Still today, a significant part of the 

building stock includes structural masonry members such as load-bearing walls [272–278]. Due 

to changes in regulations and uses, masonry buildings are often in need of structural re-

evaluation and, eventually, of possible retrofitting interventions. Within this context, the 

response of masonry in compression has a critical role in the evaluation of the strength capacity 

of masonry buildings against both vertical actions and the vertical load effects caused by 

horizontal actions. Characterising the response of masonry in compression involves the 

determination of parameters such as the compressive strength of the composite material, its 

modulus of elasticity and the overall stress-strain curves in compression under both static and 

cyclic loading. 

Traditionally, the characterisation of the mechanical behaviour of masonry in compression 

has been carried out by means of tests performed on two different types of composite 

specimens, namely stack bond prisms and small walls. Three recent references [128,279,280], 

including inventories of past researches on clay brick masonry, refer examples of tests done on 

either specimen type, although with preference for prims. The predilection to carry tests on 

prisms can be explained because they are easier and cheaper to build and the experimental setup 

needed in the laboratory is simpler.  

The possibility of testing two different types of specimen is also reflected in the standards 

that regulate the experimental determination of the compressive strength of masonry (fc). The 
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European standard EN 1052-1 [72] prescribes the use of small running bond walls with certain 

geometric constraints (Figure II.1a). These samples are supposed to provide a fair estimation 

of the strength taking into account the possible detrimental influence of head mortar joints. In 

addition, they are sufficiently slender as to keep the centre of the specimen free from the 

influence of possible 3D confinement effects caused by the contact between the specimen and 

the press platens. Conversely, the American ASTM C1314 [70] proposes the possibility of 

testing simpler stack bond prisms consisting of a sufficient number of stacked units. The 

standard specifies the recommended height to thickness ratios of the prisms (Figure II.1b). In 

turn, both types of specimens are considered in the RILEM [71] recommendations. 

 

Figure II.1  Masonry specimens for compression strength tests according to a) EN 1052-1 [72], b) ASTM 

C1314 [70]. 

So far, no empirical criterion has been proposed to correlate the experimental results 

obtained with both specimen types. However, this issue has motivated some research in the 

past. Several authors [281–283] have compared the results on prisms with those obtained for 

wall-like samples. Mann & Betzler [284] and Gumaste et al. [79] investigated the effect of the 

sample shape on the compressive strength. Among other specimen types, they analysed the case 

of non-standardized both stack bond prisms and running bond walls. They showed that the 
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comparison between the specimens’ results is influenced by the mechanical properties of the 

constituents, as well as by the specimens’ relative slenderness.  

Many real structures are subjected to cyclic loading caused by variable loads such as 

thermal effects, the passing of trains on railway bridges, or seismic actions. However, most of 

the research effort on the compressive behaviour of masonry has only focused on monotonic 

loading [75]. A few works can be found on cyclically loaded stone [85–87] and concrete block 

masonry [88]. With regard to brick masonry, [89,90] carried out pioneering researches on 

frogged clay and sand-plast brick masonry specimens. These authors developed the concepts 

of common and stability points to characterise the intersections among unloading-reloading 

branches in masonry. More recently, [91,92] contributed with more laboratory results, and [87] 

explored the possibility of performing and registering cycles in the softening range. Two more 

researches [93,277] dealt with samples obtained from historical buildings, while [94] is the only 

study including masonry built in the laboratory with solid clay bricks and hydraulic lime based 

mortar without cement.  

This paper aims to provide new experimental data on the static and cyclic response of brick 

masonry in compression. The paper focuses on the case of masonry built with solid clay bricks 

and hydraulic lime based mortar, on which there is still limited experimental evidence although 

being the traditional typology in historical masonry in many countries [81,93,196]. The research 

on the static response includes a comparison of results on the masonry compressive strength 

and elastic modulus for two different types of standardized specimens, corresponding to stack 

bond prisms and running bond walls. In turn, the research on the cyclic response includes cyclic 

tests up to and beyond the peak load on stack bond prisms. The performance of different criteria 

and models for the estimation of the masonry compressive properties and the simulation of its 

cyclic response has been evaluated by comparison with the experimental results. 
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II.2 Experimental programme 

The experiments were carried out at the Laboratory of Technology of Structures and 

Materials of the Technical University of Catalonia (UPC – BarcelonaTech). As mentioned, the 

experimental programme included compression tests on two different types of specimens 

(running bond walls and stack bond prisms), under monotonic and cyclic loading. 

II.2.1 Materials 

The masonry specimens were built with materials similar to those existing in historical 

masonry walls, including handmade solid clay bricks and a low mechanical performance lime 

mortar. 

Handmade fired solid clay bricks were chosen, with average dimensions of 311 (length) × 

149 (width) × 45 (height) mm³ and density of 1700 kg/m³. Given their manual way of 

manufacturing, these bricks presented a moderate compressive strength, rough surfaces and 

slightly variable dimensions. A commercial premixed lime mortar based on NHL 3.5 natural 

hydraulic lime was selected. Its strength category was M5, which was considered to be too high 

to reproduce the expected compressive strength of lime mortar in historical masonry. Hence, a 

new mix was studied and prepared in laboratory by adding an amount of non-reactive material 

(in this case, limestone filler) to reduce the strength of the mortar. The volume ratio of premixed 

mortar to filler to water was 1 : 1 : 0.65.  

The standard EN 772-1 [285] was considered as reference to obtain the normalized 

compressive strength of the bricks (fb). Their faces were polished until getting a constant height 

of 40 mm to obtain flat surfaces. Pieces of 100 x 100 mm² were cut to fulfil the minimum height 

to width ratio of 0.4 required by the standard and then tested. The measured strength values 

were corrected by applying a shape factor of 0.7 in compliance with the standard. The bending 
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tensile strength of the units (fb,fl) was determined by three-point-bending tests on full bricks. In 

the lack of a specific standard for the determination of the bending tensile strength of clay units, 

the tests were carried out according to EN 772-6 [286] for aggregate concrete masonry units. 

Similarly, and since there are no available standards on the determination of the elastic modulus 

of bricks, EN 12390-13 [287] on the determination of the modulus of elasticity for hardened 

concrete was used as a reference. Brick prisms measuring 40 × 40 × 80 mm³ were cut both in 

longitudinal and transverse directions of the unit. It should be noted that measuring the modulus 

of the bricks in the direction parallel to the load is hardly feasible due to their very small height. 

Three loading-unloading compressive cycles, with minimum and maximum loads equal to 10% 

and 30% of the estimated peak load, were applied to the specimens. The moduli of elasticity in 

the two directions (Eb,long and Eb,trans) were evaluated as the slope of the last reloading branches 

as suggested in the standard [287]. The results of this characterisation are presented in Table 

II.1. The considerably high coefficients of variation found in the determination of the elastic 

modulus may be explained by the heterogeneity of the handmade bricks. In addition to the 

scattering related to the raw materials, the manual process adds variability during the casting of 

the bricks and the curing inside the traditional furnace. 

Table II.1 Mechanical parameters of bricks 

 fb [MPa] fb,fl [MPa] Eb,long [MPa] Eb,trans [MPa] 

Average 17.99 2.44 3718 3331 

Number of samples 20 10 12 17 

CV 8.3% 20.0% 28.0% 51.4% 

The compressive strength (fm) and the bending tensile strength (fm,fl) of the mortar were 

evaluated according to EN 1015-11 [257], by using prisms with dimensions of 160 × 40 × 40 

mm³ that were casted with mortar obtained from the mason’s batch during the construction of 

the masonry specimens. As for the evaluation of bricks elastic modulus, EN 12390-13 [287] 

was adopted as reference. The estimation of the mortar elastic modulus (Em) was carried out on 
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mortar cylinders 200 mm high with a diameter of 100 mm. These cylinders were tested under 

cyclic loading similarly to the brick prisms. A summary of the results is presented in Table II.2 

Table II.2 Mechanical parameters of mortar 

 fm [MPa] fm,fl [MPa] Em [MPa] 

Average 1.91 0.72 948 

Number of samples 36 18 6 

CV 10.1% 10.9% 18.4% 

II.2.2 Masonry specimens 

Two different sets of masonry specimens were built and tested. The first set consisted of 4 

standard running bond walls (RBW) fulfilling the requirements of EN 1052-1 [72]. The second 

set consisted of 7 stack bond prisms (SBP) built according to the geometric prescriptions of 

ASTM C 1314 [70]. As previously indicated, one of the aims of the present research lays in the 

comparison of the strength and elasticity parameters measured by means of these two types of 

standardized specimens. The average dimensions of both types of samples are 639 (length, ls) 

x 148 (thickness, ts) x 658 (height, hs) mm³ for walls, with aspect ratio (hs/ts) of 4.45, and 312 x 

148 x 288 mm³ for prisms, with aspect ratio (hs/ts) of 1.95 (Figure II. 2). The samples were built 

with 15 mm thick mortar joints. This thickness, which is often observed in historical clay brick 

masonry, allowed a sufficiently regular laying of bricks despite of the geometrical irregularities 

of their faces.  

The building and storing of the specimens were carried out according to EN 1052-1 [72]. 

The bricks were wetted for one minute before being laid. The samples were all built during the 

same day, by the same highly qualified mason, and stored under the same environmental 

conditions until the performance of the tests. After construction, they were covered with 

polyethylene sheets in order to prevent the dry-out of the mortar. After 3 days, they were 

uncovered and stored in the laboratory at 15 ºC and 65 % of relative humidity. 
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Figure II. 2 Masonry samples, average dimensions. a) Running bond walls, b) Stack bond prisms. Common 

average thickness ts = 148 mm. 

With the aim of facilitating the handling of the RBW wall specimens, they were built and 

tested on top of metallic beams filled with concrete. Some days before testing, the top face of 

the RBWs, as well as the bottom and top faces of the SBPs, were capped with a layer of high 

strength cement mortar in order to ascertain a smooth contact between the samples and the 

loading machine plates.  

II.2.3 Test procedures 

The wall and prism masonry samples were tested in compression after 28 days from their 

construction, following EN 1052-1 [72] recommendations. The prisms SBP were tested in a 

general-purpose loading machine with a capacity of 3000 kN (Figure II.3a). The walls RBW 

had to be tested inside a steel reaction frame due to their larger dimensions. In the reaction 

frame, the load was applied by means of a double effect hydraulic jack with capacity of 1000 

kN (Figure II.3b). A combination of instruments was placed on the specimens’ faces in order 

to capture vertical displacements. Four LVDTs (with a displacement range of +/- 5 mm and a 
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precision of 5 μm) were glued between the second and fourth bricks of the SBPs. They allowed 

having a reference length longer than one third of the sample height while avoiding possible 

boundary effects. The same distance was also monitored in the case of RBWs with a vertical 

LVDT placed on each face. This allowed obtaining comparable measurements in the two 

specimen types, with the difference that a head mortar joint was included in the walls. 

 

Figure II.3 Experimental setups: a) Stack bond prisms, b) Running bond walls. 

The tests were carried out in two stages (Figure II.4), the first one was aimed to facilitate 

the measurement of the elastic modulus of masonry and the second one investigated its ultimate 

capacity. In the lack of a specific standard on the measurement of the elastic modulus of 

masonry, the procedure adopted during the first stage was based on standards for the 

determination of the elastic modulus in other materials such as concrete (EN 12390-13 [287], 

ASTM C 469-02 [288]) and stone (EN 14580 [289]), and also on methods applied in former 

researches [75,105,283].  
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The first stage was common to all the specimens and included three loading-unloading 

cycles performed under load control. The lower and higher load levels applied during the cycles 

were set to 5% and 30% of a supposed maximum load (Po) that had been estimated before the 

tests. In the case of the walls, these limits were taken as 26 and 150 kN, while for the prisms 

the limits were 14 and 83 kN. Rates of loading of 2 kN/s and 1 kN/s were selected for walls and 

prisms respectively to keep the duration of the loading/unloading branches around 1 minute. 

After each loading/unloading branch, the load level was maintained also for 1 minute. As stated 

by the general standard ASTM E111 [119], the lower load was used to minimize the errors due 

to initial effects of backlash and specimen irregularities while the upper load was selected so as 

to keep the specimen within the elastic range of the material.  

The second stage of the tests explored the strength and non-linear behaviour of the 

specimens under either monotonic or cyclic loading. A displacement controlled loading 

procedure (at a rate of 0.6 mm/s) was used during this stage with the intention of capturing the 

post-peak response. This phase was undertaken under monotonically increasing displacement 

for the 4 running bond walls (identified as RBW1, RBW2, RBW3, RBW4) and for 4 stack bond 

prisms (SBP1, SBP2, SBP3, SBP4).  

In the remaining three stack bond prisms (SBP5, SBP6, SBP7), the displacement was 

imposed cyclically. The aim of these tests was not to represent any example of real structures, 

which may be subjected to cyclic loads characterised by very different frequencies and 

amplitudes, but to study a generic case. The type and number of cycles was decided as to have 

comparable results with former researches [87]. The system was programmed to apply 

increasing load up to vertical displacement values of 2.5, 4, 5.5, 7, and 8.5 mm. These values 

were defined based on the results of the previous monotonic tests. Once those displacements 

were reached, the specimens were unloaded under force control until the previously set level of 
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5% of the estimated maximum load. The vertical displacement was controlled by the loading 

machine’s internal transducer.  

With regard to the elastic moduli, they were evaluated for all the specimens as the chord 

modulus between the 5% and 30% of the actual maximum load (Pmax) (Figure II.4), of the stress-

strain curves obtained during the second testing stage. 

  

Figure II.4  Generic load (kN) vs. time (min) curve describing the adopted loading history. Load levels: A - 5% 

of an estimated maximum load (Po). B - 30% of an estimated maximum load (Po). C - Actual maximum load 

registered during the test (Pmax). D and F - Loads corresponding to 5% and 30% of the actual maximum load 

(Pmax), used as limits to compute the elastic modulus on the stress-strain curves. 

II.3 Experimental results 

This section presents the results of the experimental campaign for each type of specimen 

and loading protocol. Compressive stresses acting on the samples were computed as the ratio 

between the applied load and the area of the cross section. LVDT readings were divided by 

their reference lengths and averaged to obtain axial strains. In some cases, anomalous individual 

deviations of one LVDT were omitted. Full stress-strain curves, considering both stages of 
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testing, are plotted for all the tests. As for the post-peak branches, they are only shown for the 

cases in which it was possible to obtain meaningful results.  

II.3.1 Running bond walls 

The stress-strain curves resulting for both stages are shown in Figure II.5, for the RBW 

specimens. The effect of the application of the three cycles is illustrated in Figure II.5a. The 

unloading-reloading branches have higher stiffness than the original monotonic loading one. 

The elastic moduli (Ec) reported in Table II.3 were evaluated according to the procedure 

indicated in section II.2.3. The average value is 2744 MPa. However, the result associated to 

sample RBW3 is anomalously high compared to the other specimens. This high value may be 

explained by a possible better manufacture or by an unexpected localization of better quality 

materials within the length captured by the measuring instruments. Due to the significant 

deviation of this value with respect to the remaining set of values, it has been deemed preferable 

to also calculate the average value of the elastic modulus without taking it into account. The 

value of this second calculated average is 2318 MPa. This has been the value considered in the 

discussions presented in sections II.4 and II.5. Other RBW3 results, such as the compressive 

strength and the strain at peak stress, are considered sufficiently representative and have not 

been disregarded in the calculation of the corresponding averages. Globally, the curves depicted 

in Figure II.5b continue to be linear up to around 2 MPa and then experience a progressive 

reduction of the stiffness until the peak stress. Table II.3 presents the values of the compressive 

strengths (fc) and the strains at the peak stresses (εp). The average strength is 6.51 MPa and the 

average strain at peak stress is 0.98%. 
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Figure II.5 Stress vs. strain experimental curves for running bond walls. a) Detail of the three loading/unloading 

cycles, b) Full curves until failure. 

Table II.3 Compressive strength, stiffness and strain at peak stress of running bond walls. 

RBW fc (MPa) Ec (MPa) εp (%) 

RBW 1 6.72 2205 0.82 

RBW 2 6.22 2227 1.48 

RBW 3 7.20 4023 0.62 

RBW 4 5.88 2521 1.00 

Average 6.51 2744 0.98 

CV 8.9% 31.5% 37.6% 

    Average  2318*  

CV  7.6%*  
* The value of Ec for RBW3 is not considered in the average. 

 

The failure mode of the RBWs was qualitatively similar for the 4 samples. The first visible 

cracks appeared at about 75% of the maximum load. These cracks were thin and vertical, 

initially only visible in the bricks and mostly located in the external thirds of the front faces of 

the specimens. At the peak load, the cracks were wider and visibly affected both bricks and 

mortar (Figure II.6a). After the peak, degradation continued, with further opening of the cracks 

and sudden spalling of mortar and brick portions. In two samples, sudden transverse splitting, 

visible from the lateral faces, was produced (Figure II.6b). Once dismantled (Figure II.6c), the 

specimens exhibited a typical sandglass failure, characterised by the presence of a remaining 

core. 
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Figure II.6 Failure of running bond walls. a) Crack pattern at peak load, b) State at the end of the test, c) 

Dismantled specimen. 

II.3.2 Stack bond prisms – Monotonic loading 

Among the 7 stack bond prisms prepared, 4 were tested following the same procedure 

applied to the running bond walls. After the first stage, involving three cycles under load 

control, they were subjected to a steadily increasing imposed displacement. The experimental 

stress-strain curves are displayed in Figure II.7. Although SBP3 presents a longer linear branch, 

all 4 specimens have a noticeable non-linear behaviour. Significant deformability is observed 

after 65% of the maximum load, particularly for specimens SBP1 and SBP2. Table II.4 reports 

a summary of the experimental results, which yielded an average elastic modulus of 2494 MPa, 

compressive strength of 6.49 MPa, and strain at peak stress of 1.2%. 

The mechanical behaviour and failure of the stack bond prisms are illustrated in Figure 

II.8. Before the peak load, vertical cracks developed in the bricks, mainly on the three central 

ones and near the edges of the faces. After the peak load, these cracks propagated and opened 

leading to the spalling of some brick and mortar portions. A remaining core forming a sandglass 

shape could be observed for some of the specimens (Figure II.8c). 
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Figure II.7 Stress vs. strain experimental curves of the stack bond prisms with monotonic loading. a) Detail of 

the three loading/unloading cycles and beginning of the second stage, b) Full curves until failure. 

Table II.4 Compressive results of stack bond prisms. 

SBP 

mono 
fc (MPa) Ec (MPa) εp (%) 

SBP 

cyclic 
fc (MPa) Ec (MPa) εp (%) 

SBP 1 5.98 2249 1.45 SBP 5 6.91 1957 0.90 

SBP 2 6.15 2782 1.05 SBP 6 7.34 2549 1.09 

SBP 3 7.31 2443 1.10 SBP 7 7.03 2634 1.00 

SBP 4 6.52 2502 1.05     
        Average 6.49 2494 1.16 Average 7.10 2380 1.00 

CV 9.1% 8.8% 16.4% CV 3.1% 15.5% 9.4% 

 

 

Figure II.8 Stack bond prisms after failure. a) Front view, b) Lateral view, c) Dismantled specimen. 

II.3.3 Stack bond prisms – Cyclic loading 

As explained in section II.2.3, three stack bond prisms were tested cyclically at the second 

loading stage until displacement controlled failure. As shown in Figure II.9, the stress-strain 
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curves of specimens SBP5 and SBP6 present a complete set of 8 cycles, composed of the three 

initial ones corresponding to the first stage, two more cycles on the pre-peak range and three 

additional cycles after the peak load. The post-peak response of specimen SBP7 could not be 

plotted since it was not properly captured by the LVDTs. 

 

Figure II.9 Stress vs. strain experimental curves of the stack bond prisms with cyclic loading until failure. a) 

SBP5, b) SBP6, c) SBP7. 

The displayed curves clearly reveal the non-linear behaviour, the accumulation of non-

reversible strains and the stiffness degradation experienced by masonry under cyclic loading. 

As stated by former researches [89,91,277,290], the cyclic behaviour is characterised by the 

presence of intersecting points between the reloading branches and the unloading branches of 

previous cycles, the so-called ‘common points’. In the tests here presented, the reloading 

branches are almost straight lines for cycles before the peak load, while after the peak load they 
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present a more complex shape. This is consistent with the findings of similar experimental 

campaigns, e.g. Naraine et al. [290]. 

One important feature shown by the experimental curves is the stiffness degradation 

experienced at each cycle, which is accentuated after the peak load. Figure II.10 illustrates the 

evolution of the elastic modulus as a function of strain by means of normalized values. The 

normalized elastic modulus is calculated as the ratio between the elastic modulus of each 

reloading branch (Ec,i) and the maximum elastic modulus found for that specimen (Ec,max). The 

normalized compressive strain used here for each reloading branch is the ratio between the 

strain at the end of the branch (εr,i) and the strain at peak stress (εp) reported in Table II.4. As 

can be observed, values of Ec are maximum and almost constant for the first cycles, 

corresponding to strains below 25% of the strain at peak stress. At peak stress, the stiffness 

degradation attains 20 to 40% of the initial one. After the peak load, the decrease of the elastic 

modulus is very significant due to the damage experienced by the material. 

 

Figure II.10 Normalized elastic modulus (Ec,i/Ec,max) of the reloading branches vs. normalized compressive 

strain (εr,i/εp), for the stack bond prisms tested under cyclic loading. 

The crack patterns and mechanical behaviour of the prisms under cyclic loading were 

essentially the same as the ones reported for the monotonically loaded prisms in section II.3.2. 

The resulting experimental values are included in Table II.4 and are characterised by an average 
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elastic modulus of 2380 MPa, compressive strength of 6.95 MPa, and strain at peak stress of 

1.0%. 

Additionally, an estimation of the compressive fracture energy (Gfc) could be done for 

specimens SBP5 and SBP6 since their post-peak response was captured until low values of 

residual load. It was calculated as the area below the envelope stress-displacement curve 

through a Riemann sum. Results are 8700 N/m for SBP5 and 10800 N/m for SBP6. 

II.4 Analytical studies 

The aim of this section is to investigate the validity of existing predictive equations and 

models for the estimation of the compressive strength and the elastic modulus of masonry and 

the simulation of its compressive behaviour. The experimental results are compared with 

analytical and empirical expressions. 

II.4.1 Masonry compressive strength 

In the absence of experimental evidence obtained through standardized tests, such as the 

ones described in EN 1052-1 [72] or ASTM C1314-09 [70], building codes propose the use of 

some expressions for the determination of the masonry compressive strength from the 

properties of the component materials. Eurocode 6 [60] allows the use of an equation 

(Appendix. Eq. A1) that relates the characteristic compressive strength of masonry with the 

compressive strengths of brick and mortar. Similarly, the American ACI, ASTM and TMS, on 

a Commentary on the Specification for Masonry Structures ACI 530.1-02 [112], proposes the 

use of an empirical expression (Appendix. Eq. A2) that relates the compressive strength of 

masonry to the compressive strength of the units only. 
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Several authors have derived analytical models or closed form expressions to estimate the 

compressive strength of masonry. Among others, Hilsdorf [113], Khoo & Hendry [114], and 

Ohler [115], developed models based on equilibrium and the multiaxial stress states 

experienced by the masonry components at failure. The proposed formulations (Appendix. Eq. 

A3 to A5) depend on the relative thicknesses of the components, the compressive strength of 

mortar, and both the compressive and tensile strength of the units. The reader is referred to 

[128,291] for details about these models and the standards’ expressions. 

The compressive strength of masonry was evaluated for the different equations 

aforementioned. A specific investigation has been carried out on the sensitivity of the models 

to the variation of the material properties. For that purpose, a virtual sample of data normally 

distributed was created for each of the material properties reported in Table II.1 and Table II.2. 

The tensile strength of the bricks was determined from the bending tensile one by applying the 

conversion formula proposed by Eurocode 2 [292]. This formula (Appendix. Eq. A6) was used 

in the lack of a more specific one available for clay bricks. Each virtual sample was composed 

of 5000 data and characterised by the mean and the standard deviation of each property. 5000 

strength estimations were obtained for each equation. A summary of the results indicating the 

mean value and the coefficient of variation is shown in Table II.5. All the predictions can be 

compared with the average experimental values (fc,exp). To convert the characteristic value 

provided by the European code [60] to the average one, the former was multiplied by a factor 

equal to 1.2 as proposed by the EN 1052-1 [72]. In the table, fc,EC6 and fc,ACI refer to the values 

calculated with Eurocode 6 [60] or ACI 530.1-02 [112], while fc,Hilsdorf, fc,K&H and fc,Ohler 

correspond to those calculated according to [113], [114] and [115] respectively. All the 

analytical predictions present reasonable estimations of the compressive strength of masonry, 

being fc,EC6 and fc,K&H the lower and upper bounds respectively. 
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Table II.5 Experimental and analytical compressive strength values (MPa). The coefficient of variation is 

indicated in brackets. 

Sample fc,exp fc,EC6 fc,ACI fc,Hilsdorf fc,K&H fc,Ohler 

RBW 6,51 (8.9%) 

6,06 (6.7%) 6,36 (4.8%) 6,80 (9.3%) 7,14 (10.0%) 6,47 (9.8%) SBP,mono 6,49 (9.1%) 

SBP,cyclic 7,1 (3.1%) 

II.4.2 Masonry stiffness 

In the case of the elastic modulus of masonry, building codes also propose some simple 

relationships to estimate this parameter in the lack of experimental results. Eurocode 6 [60] 

proposes to evaluate the elastic modulus (Ec,EC6) through a linear relationship with the masonry 

characteristic compressive strength. The recommended constant of proportionality is 1000. The 

American Requirements for Masonry Structures [66] follow a similar approach and suggest to 

estimate the elastic modulus (Ec,ACI) as 700 times the compressive strength. These criteria were 

applied to the masonry herein investigated by using the strength estimates obtained in the 

previous section II.4.1. The comparison with the experimental results (Ec,exp) is included in 

Table II.6. The experimental value shown for the SBPs is an average of all the static and cyclic 

tests on prisms (7 tests) since they do not differ in the procedure used for the measurement of 

the elastic modulus. 

Based on the findings of Pande et al. [131], Pelà et al. [105] proposed a very simple one-

dimensional homogenization method for the estimation of the elastic modulus of masonry. This 

model considers the interaction of units with bed and head mortar joints as a system of series-

parallel uniaxial springs, by incorporating the elastic moduli of the material components. It 

allows using different expressions for the different testing specimens such as stack bond prisms 

-without head joints-, and running bond walls -with head joints. The model (Appendix. Eq. A7 

and A8) was applied with the material properties specified in Table II.1 and Table II.2. In the 

lack of a specific measurement, the elastic modulus of the bricks in the direction parallel to the 
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load was estimated as the average of the values of the other two perpendicular directions. Table 

II.6 presents the results of the homogenization method (Ec,1D) that provides more accurate 

Young’s moduli estimations than the expressions provided by the aforementioned standards.  

Table II.6 Experimental and analytical elastic modulus values (MPa). 

Sample Ec,exp Ec,1D Ec,EC6 Ec,ACI 

RBW 2318 2075 
5050 4445 

SBP, all 2445 2098 

II.4.3 Stress-strain relationships under cyclic loading 

The literature review presented in section II.1 reported a limited number of references 

dealing with the experimental testing of masonry under cyclic compression. The number of 

references studying the constitutive stress-strain laws of the masonry cyclic compressive 

response is even more reduced. Naraine & Sinha [290] proposed a simple mathematical model 

to predict the unloading and reloading curves of brick masonry. It consisted of exponential 

stress-strain relationships, which were calibrated to fit previous experimental data obtained by 

them [89]. The same data were used by Eibl et al. [293] to define another simple model, which 

proposed exponential unloading curves and linear reloading curves. Similar formulations, 

representing the curves with exponential or polynomial functions are also included in [294–

296] for different types of masonry. None of the former models considered the case of partial 

unloading-reloading.  

Sima et al. [297] proposed a more complex constitutive model based on a damage 

parameter. The model was also calibrated using experimental results of Naraine and Sinha [89]. 

The newest available approach is the one formulated by Facconi et al. [92], which is partially 

based on the work of Crisafulli [298]. Its equations were calibrated for different types of 

masonry tested by different authors [89,92,277,295,299,300].  
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The latter two models are able to also predict the case of partial unloading-full reloading. 

In addition to their larger generality, these two models have been selected for the present 

investigation because of their ability to model cyclic loading processes not reaching zero stress 

as in the case of the experiments presented in section II.3.3.  

The two investigated models consider the strain at the onset of unloading as the internal 

variable that completely defines a whole cycle of unloading-reloading. The rest of parameters 

controlling the cycle are obtained from this strain by means of relationships adjusted from 

experimental data. The parameters of the model of Sima et al. [297] have been recalibrated in 

this work by using the experimental results of tests SBP5, SBP6 and SBP7 as reference data. 

The new calibration is displayed in Figure II.13 in terms of relationships between unloading 

strain to plastic strain ratio (r) and the unloading damage (δun), between the final unloading 

stiffness to initial stiffness ratio (R) and the unloading damage (δun), and between the reloading 

damage (δre) and the unloading damage (δun). 

The model of Sima et al. [297] defines the envelope curve based on the modulus of the 

initial linear branch (Eo), the strain value limiting the initial branch (εo), the compressive 

strength (fc) and the strain at the peak stress (εp). The model of Facconi et al. [92] considers the 

same parameters with the exception of the strain limiting the initial branch. Instead, their model 

uses the ultimate strain at zero stress (εu) to also delimit the post-peak response.  

In both cases, unloading branches are defined via nonlinear equations. Sima et al. [297] 

proposes straight reloading branches. Conversely, Facconi et al. [92] implements a more refined 

double-curvature law for the reloading response, although the limits of the resulting curves are 

also based on a linear relationship. In addition, the model of Facconi et al. offers the possibility 

to modify the value of some parameters to obtain a better adjustment of the curves and 

specifically the parameter γun, which governs the initial slope of the unloading curves. 
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Both models have been used to simulate the tests on specimens SBP5 and SBP6, with the 

input data indicated in Table II.7. Figure II.11a and Figure II.12a show the comparison between 

the experimental stress-strain curves of specimens SBP5 and SBP6, respectively, and the 

analytical curves obtained through the direct application of Facconi et al. model [92]. Figure 

II.11b and Figure II.12b display the comparison with the model of Sima et al. [297] with the 

new calibration previously indicated. 

Table II.7 Model input data for comparison with the experimental results of specimens SBP5 and SBP6. 

Specimen Model Eo (MPa) εo (%) fc (MPa) εp (%) εu (%) γun (-) 

SBP 5 
Facconi et al. [92] 1100 - 6.91 0.90 1.60 3 

Sima et al. [297] 1030 0.5 6.91 0.90 - - 

SBP 6 
Facconi et al. [92] 1600 - 7.34 1.09 2.00 3 

Sima et al. [297] 1463 0.2 7.34 1.09 - - 

 

Figure II.11 Experimental (dashed) and analytical (solid) stress-strain curves for specimen SBP5. a) Analytical 

model by Facconi et al. [92], b) Analytical model by Sima et al. [297], with new calibration. 
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Figure II.12 Experimental (dashed) and analytical (solid) stress-strain curves for specimen SBP6. a) Analytical 

model by Facconi et al. [92], b) Analytical model by Sima et al. [297], with new calibration. 

 

Figure II.13 New relationships for the model proposed by Sima et al. [297], obtained by curve fitting of the 

present work’s experimental data. Notation according to [297]. a) Relationship between unloading strain – 

plastic strain ratio (r) and the unloading damage (δun), b) Relationship between the final unloading stiffness – 

initial stiffness ratio (R) and the unloading damage (δun), c) Relationship between the reloading damage (δre) and 

the unloading damage (δun). In the above, rc² is the coefficient of determination R squared. 
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II.5 Discussion 

Masonry specimens of two different configurations, consisting in running bond walls 

(RBWs) built according to EN 1052-1 [72] and stack bond prisms (SBPs) built following 

ASTM C1314 [70], have been tested under uniaxial compression. The failure modes observed 

during the tests have been very similar for both sets of samples. The response of both types of 

specimen was characterised by an initial crack pattern consisting of thin vertical cracks in the 

bricks, appearing mainly near the specimens’ edges. With the increase of load, these cracks 

become later apparent across the mortar joints and propagated over the whole height of the 

specimens. Additional vertical cracks affected the central part of the faces after the peak load. 

A final remaining core was observed showing a sandglass shape, as typically obtained in 

compression tests. Due to their similar failure mode, both types of sample can be considered 

able to represent the complex mechanism of the compressive response of masonry. 

The average value of the compressive strength obtained for stack bond prisms tested under 

cyclic loading is 7.10 MPa, which is slightly higher than the strength obtained for monotonically 

loaded prisms, equal to 6.49 MPa. The associated variabilities, the scattering of the materials 

(see Table II.1 and Table II.2), and the limited amount of specimens tested might justify such a 

difference derived from monotonic and cyclic testing. The monotonic curves seem to provide, 

however, a good estimate of the peaks’ envelope of cyclic curves, as also seen by [89,91,277].  

The strength obtained for the stack bond prisms is very similar to that obtained for the 

running bond walls, equal to 6.51 MPa. The difference is very small and may be only due to 

the scattering of the material properties. The almost null influence of the head joints in the wall 

specimens may be explained as the consequence of a careful construction in laboratory 

involving the accurate filling of all joints with mortar. It should be noted that the presence of 

head joints could have a more detrimental effect in not-so-carefully built masonries. 
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Very moderate coefficients of variation, of 9.1% for SBP under monotonic load, 3.1% for 

SBP under cyclic load and 8.9% for RBW, have been obtained. These coefficients are lower 

than the ones obtained for the material properties. It can be said that, as shown in the 

experiments, the scattering of the results on composite specimens is smaller than that shown by 

the component materials.  

 The equations available in the standards for the prediction of the compressive strength 

have provided satisfactory estimations of the strengths measured experimentally, as reported in 

Table II.5. In the case of the ACI equation [112], a satisfactory estimation has been obtained in 

spite of the fact that it was originally adjusted for more resistant masonry types than the one 

studied herein [112].  

Table II.5 also includes the results of the application of three closed form expressions to 

predict the compressive strength. The three equations yield very accurate values fully 

comprised within the limits of the experimental ones taking into account the obtained scattering. 

Nevertheless, former researches such as [105,291] have found that these formulas may in some 

cases overestimate the experimental strength. A possible explanation for this overestimation 

can be found in the fact that the three equations, based on equilibrium considerations, are very 

sensitive to the value of the tensile strength of the units. The latter is a mechanical parameter of 

difficult determination whose measurement is not covered by any available standard. Due to it, 

these equations or similar closed form ones should only be used when reliable values of the 

material properties have been made available through accurate experimental tests.  

Table II.5 also presents the coefficients of variation obtained for the simulations. In a way 

consistent with the experimental results, the 5 studied equations provide coefficients of 

variation lower than the ones of the component material properties.  
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The elastic modulus of masonry has been evaluated as the chord modulus of the stress-

strain curves between the 5% and 30% of the maximum compressive load obtained after three 

initial loading cycles. The execution of the cycles is done, among other reasons, to cancel 

possible effects related to the first contact between the specimens and the loading machine 

platens. As shown in Figure II.5a and Figure II.7a, and highlighted in [94], the performance of 

cycles introduces irreversible strains in the specimen, which leads to an increase in the stiffness 

of the reloading branches. In addition to the platen-specimen contact effects, these irreversible 

strains might be due to an initial compaction of the material motivated by the closing of micro-

cracks in the unit-mortar interface and voids within the mortar joints [75]. The elastic moduli 

computed following this approach, after the application of cycles, are considered to be more 

realistic than the very low ones that would be obtained from the initial curves. 

A very similar value of the elastic modulus has been obtained for both types of specimen 

(RBW and SBP), with a difference of only 5%. The average elastic modulus obtained for 

running bond walls is 2318 MPa, while for all stack bond prisms is 2445 MPa. The latter value 

has been obtained as an average for the 7 SBPs, since there is no difference between monotonic 

and cyclic tests at this test stage. The similitude of the values for both specimen types was 

expected since the LVDTs were placed considering the same reference lengths, which included 

two bed joints and one full brick. 

The small difference between the elastic modulus obtained in the two specimen types may 

be explained as due to the scattering of the material properties. It might be also explained by 

the presence of the head joint in the case of the RBWs. In fact, the applied spring model detects 

a certain influence of the head joint, as shown by the results included in Table II.6 for the simple 

1-D homogenization, with a slightly lower value for the case of RBWs. In both cases, this 

simple method has provided a very satisfactory estimation of the experimental values. The 
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relative errors, from -10% to -15%, are of the same magnitude of those found by [105]. 

However, it is worth mentioning that this method is based on mechanical parameters (the elastic 

modulus of both units and mortar) that are difficult to be accurately measured in laboratory. 

Compared to the compressive strengths, Ec/fc ratios equal to 356 and 362 are obtained 

respectively for running bond walls and stack bond prisms. The ratios proposed by the building 

codes, equal to 1000 in the case of the European Eurocode 6 [60] and to 700 in the American 

requirements [66], clearly overestimate the measured elastic modulus. This provides further 

evidence on the fact that these expressions, derived mainly for new masonry, don’t apply for 

historical or existing masonry made of solid clay bricks and lime mortar. Previous researches 

on clay brick masonry have also obtained Ec/fc ratios significantly below those indicated by the 

codes, as for instance [77] with a ratio of 550, [127] with a ratio of 422, or the inventory 

presented in [128] with an average ratio of 356. In any case, the ratios obtained herein are very 

similar for both types of specimen. Additionally, the coefficients of variation associated to the 

estimation of the elastic modulus are moderately low (7.6% for RBWs, and 8.8% and 15.5% 

for SBPs). The performance of initial load cycles during the tests may have contributed to 

reduce the scattering obtained in the measurement of this mechanical property. 

A much higher scattering, with a variation coefficient between 9.4% for stack bond prisms 

under cyclic loading and 37.6% for running bond walls, has been obtained for the values of the 

strain at peak stress. However, the average values attained for the different samples are similar 

and equal to 1.2% and 1% for SBPs tested monotonically and cyclically respectively and to 

0.98% for RBWs. The strain at peak stress shows a strong dependence on the compressive 

strength, and tends to decrease as the strength increases.  

 In the case of the cyclic tests performed on stack bond prisms it has been possible to record 

the evolution of stiffness along the full tests and its progressive reduction with the accumulation 
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of damage, as shown in Figure II.10. Additionally, it has been possible to capture a significant 

fraction of the post-peak response, as in the researches made by Oliveira et al. [87] and De 

Felice [94]. The tests here presented have confirmed the loss of load-carrying capacity with 

increasing strains, but also the ability of the specimens to resist full unloading-reloading cycles 

after the peak load. In tests SBP5 and SBP6 the reloading branches recovered the stresses level 

attained before the unloading.  

Taking advantage of the almost complete curves obtained for SBP5 and SBP6 specimens, 

the compressive fracture energy was evaluated. Lourenço [301] introduced the concept of 

ductility index as the ratio between the compressive fracture energy and the compressive 

strength. The experimental ductility indices computed for this campaign are 1.24 mm for test 

SBP5 and 1.47 mm for test SBP6. These values are close to the recommendation of 1.6 mm 

found in literature [301] for masonry with compressive strength lower than 12 MPa.  

The two cyclic constitutive models studied are in good agreement with the experimental 

results obtained for specimens SBP5 and SBP6. Sima et al. model [297] is simpler and requires 

a lesser number of input parameters. However, in order to obtain a satisfactory agreement with 

the experimental results it has been necessary to recalibrate the parameters of the model based 

on the current tests. Conversely, Facconi et al. [92] model has provided a satisfactory agreement 

by directly applying the parameter values originally recommended by the authors, which were 

adjusted based on a set of different experimental campaigns. Compared to Sima et al model 

[46], the envelope curve formulated by Facconi et al. [92] has provided a better fit to the test 

results. The nonlinear shape proposed for the reloading branches is also more realistic. The 

prediction of the intersection of the reloading branches with the envelope curve for post-peak 

cycles, however, could be improved with an expanded series of experimental results. 
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II.6 Conclusions 

This paper has presented an experimental programme with new insights on the mechanical 

behaviour of brick masonry under compression. Two different sets of specimens were tested 

consisting of running bond walls built according to the geometric prescriptions of EN 1052-1 

and stack bond prisms built according to ASTM C1314. They were tested in the laboratory 

under uniaxial compression to evaluate their compressive strength, elastic modulus and post-

peak behaviour. A set of three stack bond prisms was tested under cyclic loading. The following 

conclusions can be drawn from these experiments: 

- For the specific combination of materials studied, the tests on the two types of standard 

specimens have provided similar results in terms of compressive strength and 

deformability. Additional research should be carried out to extend this conclusion to 

other types of masonry. 

- New experimental evidence on the behaviour of masonry under uniaxial cyclic loading 

has been obtained. Consistently with previous researches, the tests have shown the 

stiffness degradation of masonry for increasing strains. They have also shown that the 

static strain-stress curves can be used as a satisfactory estimation of the peak envelope 

of cyclic tests.  

- The evaluation of the elastic modulus of masonry has been done after the application 

of three initial loading-unloading cycles. This approach is consistent with the 

recommendations of standards on other materials specifically devoted to the 

determination of this parameter. Given the consistency of the experimental results 

obtained herein, it is recommended to measure the elastic modulus of masonry, as a 

general rule, after the application of several cycles. 
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- The expressions provided by the European and American standards and some authors 

for the evaluation of the compressive strength of masonry have provided values in 

agreement with the experimental ones. Conversely, the criteria proposed by these 

standards for the calculation of elastic modulus have strongly overestimated the 

experimental corresponding values. The elastic modulus has been satisfactorily 

estimated, however, by means of a simple one-dimensional homogenization model. 

Two cyclic constitutive models investigated, proposed by different authors, have 

shown their ability to satisfactorily simulate the cyclic response obtained in the 

experimental tests. As opposite to Facconi et al. model, the use of Sima et al. model 

has required significant previous calibration. 

 

 

 

 

 

 

 

 

 

 

 



CHARACTERISATION OF MASONRY IN COMPRESSION 

 

 

149 

 

5.3. Paper III – Experimental analysis of the size effect on the 

compressive behaviour of cylindrical samples core-drilled from 

existing brick masonry 

 

J. Segura, L. Pelà, P. Roca, A. Cabané, Constr. Build. Mater. 228 (2019), 

https://doi.org/10.1016/j.conbuildmat.2019.116759 

 

Abstract: This paper presents the results of an experimental programme about the 

evaluation of the size effect on the compressive behaviour of cylindrical samples of existing 

masonry. The study focuses on the in-situ coring and experimental testing of core specimens 

with 150 mm and 90 mm diameter. The 150 mm cylinder, recurrent in minor destructive 

evaluation of the compressive strength of existing masonry, includes four brick pieces, two 

mortar beds and one head joint. The 90 mm specimen includes one mortar bed and two segments 

of brick, and inflicts less damage on the inspected structural member due to its lower invasivity. 

The experimental research investigates the size effect on four different types of clay brick 

masonry. The first type was built in the laboratory using historical-like materials. The other 

three types of masonry belong to structural walls of existing historical buildings. The 

combination of experimental results from laboratory controlled materials and existing historical 

members shows that the size of the cylindrical specimen has regular effect on the compressive 

strength and the Young’s modulus. The consistent relationship found between the compressive 

strengths of the 150 mm and 90 mm core samples allows the use of the latter specimen for a 

more respectful inspection of existing structural masonry. 
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III.1 Introduction 

The use of masonry as building material is abundant all over the world, including many 

major examples of architectural heritage. Many of these buildings are in need of structural 

assessment because of structural damage or material decay experienced over the years. 

Additionally, their structural condition often requires careful evaluations due to the adaptation 

to new uses. The knowledge on the mechanical behaviour of this material and its most influent 

parameters, such as compressive strength and Young’s modulus, is of paramount importance 

for this kind of structural evaluations. 

The experimental determination of the mechanical properties of existing masonry is a 

challenging task. The in-situ sampling and subsequent testing of masonry specimens in the 

laboratory provide a suitable approach to the problem, since it is possible to obtain direct 

measurements of the mechanical parameters that describe the elastic and strength behaviour. 

However, the composite character of masonry requires laboratory tests on sufficiently large 

samples, able to represent the complexity of the material texture, and therefore including both 

units and mortar joints. Yet, the in-situ sampling of large prismatic specimens of masonry, e.g. 

extracted from existing walls, may encounter important difficulties. In addition, sampling 

procedures should always be minimal in the case of historical buildings due to their cultural 

heritage value.  

A possible solution to the aforementioned limitations in the case of brickwork is offered 

by the minor destructive testing (MDT) technique consisting in extracting masonry core 

samples from the existing structure to be tested in the laboratory. This technique was proposed 

by the UIC Leaflet [126] on the inspection of brick masonry arch bridges, which suggests to 

core drill cylinders with a diameter of at least 150 mm including four brick segments, two 
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mortar beds and one head joint. The cylindrical specimen is then tested under compression 

along the direction perpendicular to the mortar beds. Recent researches have shown that tests 

on such samples are able to reproduce the complex failure mechanisms of brickwork in 

compression. The calibration of this technique by comparison with tests on other non-standard 

[102–104] and standard [83,105,106] masonry specimens has shown its ability to provide 

reliable estimations of the compressive strength of the material. Pelà et al. [105] investigated 

also the possibility of estimating the Young’s modulus of masonry by means of compression 

tests on this type of specimen.  

The use of cylindrical samples smaller than those suggested by the UIC Leaflet might 

constitute a possible alternative to reduce the damage inflicted to the building. This may reveal 

to be necessary in case of protected heritage constructions requiring minimum invasivity of the 

in-situ inspection. The use of smaller cylinders may provide also additional practical 

advantages, besides the reduction of damage grade during sampling. A larger amount of 

cylindrical cores could be extracted, allowing an increase of the statistical significance of the 

results. Also, finding convenient spots where to drill smaller cores is easier than for 150 mm 

diameter cylinders, especially in the case of plastered walls. Moreover, the reduced size of the 

cores makes the transport, storage and testing operations easier.  

A suitable cylindrical sample with dimensions smaller than the 150 mm diameter specimen 

of the UIC Leaflet should still include both the brick and mortar components in order to be able 

to represent realistically the composite character of the masonry material. The smallest core 

sample with these characteristics is composed of one diametric mortar joint and two cylindrical 

segments of brick. The diameter of this type of specimen should be around 90 mm and 100 mm 

in order to ensure a proper cutting of the two bricks without affecting the integrity of the 

interposed mortar joint. The use of cylinders with a diameter of 100 mm to determine the 
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masonry compression parameters has been already investigated in [107,108] with satisfactory 

results. 

Previous experimental and analytical studies available in the scientific literature have 

already addressed the size dependence on the strength of different types of brick masonry 

samples. The research by Carpinteri et al. [302] focused on size dependence on fracture 

properties, such as strength and toughness, by testing different samples under three-point 

bending. The authors highlighted the important effect of constitutive heterogeneity on the size 

effect, especially when the specimen size is small. The numerical study by Lourenço [303] also 

showed the effect on tensile and compressive failures of the geometrical relationship between 

masonry units and the structural size.  

This paper presents an experimental research aimed at evaluating the size effect on the 

compressive strength and elasticity of cylindrical samples of existing brick masonry of 150 mm 

and 90 mm diameter. The adequacy of the 150 mm diameter masonry cores to assess the 

mechanical behaviour of masonry in compression has been already investigated and validated 

in [83,102–106]. This research pays special attention to the use of the smaller 90 mm diameter 

core samples, with the following specific objectives: (1) exploring the possibility to reproduce 

the mechanical behaviour of brick masonry in compression by means of tests carried out on 

them; (2) analysing the consistency and reliability of the results obtained and, specifically, 

investigating whether the scattering obtained is sufficiently moderate; (3) determining size-

effect correlations for compressive strength and Young’s modulus based on the comparison 

with experimental results obtained from the 150 mm diameter cylinders.  

The comparison between the tests on the two types of cylindrical cores has been carried 

out for four different types of masonry, all of them made of solid clay bricks and lime mortar 

but characterised by different brick and mortar compressive strengths.  
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The paper includes five sections. After an introduction about the purpose and objectives of 

the study, Section III.2 presents the first experimental campaign performed on masonry walls 

built in the laboratory with historical-like materials. The extraction, preparation and testing of 

two sets of cylinders, with 90 mm and 150 mm diameter, were carried out in a laboratory 

controlled environment. Section III.3 presents a second stage of the research, with three 

different experimental campaigns on different masonry typologies obtained from three real 

existing buildings. All field campaigns considered the in-situ sampling and subsequent 

laboratory testing of 90 mm and 150 mm cylindrical specimens. The results from the 

experimental programmes are discussed in Section III.4, in terms of failure modes, stability of 

experimental measurements, and size effect correlations of the compressive strengths and 

Young’s moduli of the 90 mm and 150 mm core samples. Section III.4 presents also a 

comparison with predictive expressions from building codes. The paper ends with the 

concluding Section III.5. 

III.2 Experimental programme on masonry built in the laboratory 

The first stage of the research considered core samples extracted from masonry walls built 

in the laboratory with historical-like material components. The samples of this campaign were 

identified with code “MA”. The experimental programme was carried out at the Laboratory of 

Technology of Structures and Building Materials of the Technical University of Catalonia 

(UPC – BarcelonaTech). 

III.2.1 Materials and construction of walls 

As stated before, the proposed MDT technique aims to study the compressive behaviour of 

existing brick masonry structures, with special focus on the case of historical buildings. 
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Therefore, the masonry built in the laboratory was designed to represent as much as possible a 

typical historical masonry with solid clay bricks and low-strength lime mortar in joints.  

The bricks were handmade and presented rough surfaces and slightly variable dimensions. 

The nominal dimensions were 305 × 145 × 45 mm³. A set of bricks was polished and cut into 

pieces of dimensions 100 × 100 mm² to be tested in compression according to EN 772-1 [285]. 

Table III. 1 reports the normalized compressive strength (fb), obtained by multiplying the 

experimental value by the shape factor proposed by the standard.  

Two single-leaf walls with dimensions 1.6 × 0.8 × 0.145 m³ were built in the laboratory by 

using the aforementioned bricks (Figure III.1a). A qualified mason built the walls in running 

bond using a pure aerial lime mortar, classified as CL90 according to EN 459-1 [254]. The joint 

thickness varied between 15 mm and 20 mm. The walls were stored in laboratory conditions 

for more than one year until the coring process. This long time was necessary for a sufficient 

hardening of the aerial lime mortar. 

At the time of the coring process for obtaining the masonry cylinders, some mortar joints 

were dismantled. These portions of mortar were cut into slabs with approximate dimensions of 

50 × 50 mm². After regularization with a little amount of gypsum powder, these pieces were 

subjected to the double punch test (DPT) by following DIN 18555-9 [304]. More detailed 

information on DPT can be found in [118,145,151]. As can be seen in Table III. 1, the average 

compressive strength value measured by means of this test (fm,DPT) was equal to 1.61 MPa. It is 

worth mentioning that this compressive strength value for the aerial lime mortar was obtained 

after two years from the construction of the wall. The DPT technique, suitable for the 

mechanical characterisation of the mortar joints in existing buildings, was considered in 

campaign “MA” as well as in the three case studies that will be described in Section III.3. The 
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DPT results from the four campaigns will allow direct comparisons of the actual compressive 

strength of mortar inside the joints.  

Table III. 1 Experimental compressive strength of bricks (fb) and mortar joins (fm, DPT) in campaign “MA” 

executed on masonry built in the laboratory. 

“MA” fb fm_DPT 

Average (MPa) 17.44 1.61 

Number of specimens 14 32 

CV 8.3% 20.1% 

III.2.2 Core drilling and preparation of masonry specimens 

Before the extraction of masonry cylindrical samples, a low vertical compression was 

applied to the walls with the aim of ascertaining their stability during the transportation inside 

the laboratory and the coring process.  

The extraction of the cores was done by horizontal drilling using the dry coring technology 

proposed, among others, in [104] and [105]. Two types of cylinders were extracted (Figure 

III.1b). First, 150 mm diameter core samples (actual diameter of 152.5 mm), including one 

vertical and two horizontal mortar joints and four brick portions. Second, 90 mm diameter core 

samples (actual diameter of 92 mm), including a single diametric mortar joint and two brick 

portions. All the cores had an approximate depth of 145 mm. Six cylindrical specimens of each 

diameter were extracted from the walls. Additional cores were extracted and used for other 

parallel researches carried out by the authors [145]. 

After extraction, two high strength mortar caps were casted on the cylindrical specimens 

(Figure III.2). These caps were used to create two flat surfaces allowing the application of an 

evenly distributed load. This approach was already proposed in [83,105,145] and differs from 

the UIC leaflet [126] where it is recommended to apply the load through steel concave loading 

plates and to make use of lead sheets in contact with the sample. The high strength mortar caps 
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match the irregular curved perimeter of the cores and avoid any stress concentration during the 

tests. The widths of the caps were about 110 mm for the 150 mm cores, and about 70 mm for 

the 90 mm cores. These dimensions were chosen to maintain similar width to diameter ratios 

for the two different types of cylinder. 

 

 

Figure III.1 a) Masonry wall built in the laboratory for the campaign “MA”, and b) core drilling of 150 mm and 

90 mm cylindrical samples. 

 

 

Figure III.2 Front and lateral views of regularized core samples of campaign “MA”: a) 150 mm cylinder and b) 

90 mm cylinder. 
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III.2.3 Testing procedures 

Both 150 mm and 90 mm cores were tested in a general-purpose compression machine 

with load capacity of 3000 kN (Figure III.3) after two years from the construction of the walls. 

Thanks to the mortar caps, uniaxial compression could be applied perpendicularly to the 

horizontal joints.  

The tests were carried out in two consecutive stages. The first one was aimed to study the 

elastic behaviour of the material and consisted in the application of three loading/unloading 

cycles under load control. These cycles ranged from 5% to 20% of a supposed maximum load 

that had been estimated before the tests. In the lack of a specific standard for these tests, the 

first stage was planned taking as reference some standards on the measurement of the Young’s 

modulus for other materials [119,287–289], as well as former researches [75,105]. The Young’s 

modulus was calculated for the loading branch of the third cycle. The second stage aimed to 

investigate the nonlinear behaviour of the material and to measure its compressive strength. 

The cylinders were tested under displacement control, at a rate of 0.004 mm/s. The tests were 

stopped after registering part of the post-peak softening response. 

Linear variable differential transformers (LVDTs) were used to record the displacements 

experienced during the tests. Two vertical LVDTs of ±5 mm range and 5 µm precision were 

attached to the mortar caps to capture the vertical displacements. The vertical strains in 

compression were calculated as the ratio of the displacement experienced by the LVDTs and 

the cylinder’s diameter, as the high strength mortar caps had negligible deformation in 

comparison with that of the masonry. 
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Figure III.3 Experimental setups of campaign “MA” for a) 150 mm cylinder and b) 90 mm cylinder. 

III.2.4 Results 

Figure III.4 shows the stress-strain curves obtained during the second stage for the 150 mm 

and 90 mm cylindrical samples. All the curves present an initial linear branch. The end of this 

branch corresponds to the maximum stress reached in the previous loading/unloading cycles. 

After that, all the specimens present another linear branch with lower slope. 

In the case of the 150 mm core samples (Figure III.4a), the linear branch continues up to 

80÷90% of the maximum load, when a sudden reduction is registered in the slope for the 

majority of the specimens. This point usually corresponds to the appearance of the first crack, 

and indicates the start of a noticeable nonlinear behaviour until the peak stress. Then, a 

softening response follows with decreasing stresses under increasing strains. The curves of the 

90 mm core samples (Figure III.4b) are similar. However, the nonlinear behaviour before the 

failure begins at an earlier point corresponding to 50÷60% of the maximum load. The softening 

is more accentuated, showing a faster loss of load-carrying capacity under increasing strains. 

The failure mechanism observed in the 150 mm core samples started with a crack arising 

next to one of the edges of the mortar caps, either within the top or bottom brick of the specimen 

(Figure III.5a). The crack first appeared at one side of the specimen, possibly corresponding to 

the weakest of the two bricks. With increasing load, this crack propagated further by splitting 

the intermediate brick, and then a symmetrical crack appeared at the other lateral side (Figure 
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III.5b). Additional distributed thinner vertical cracks appeared through the entire specimen, 

both at the front and rear faces, as well as on the lateral faces. At failure (Figure III.5c), the two 

main cracks developed also through the mortar until fully connecting the top and bottom caps. 

This caused the detachment of the external parts, with a characteristic sandglass shape failure. 

 

 

Figure III.4 Compressive stress-strain curves of core samples of campaign “MA”: a) 150 mm cylinders and b) 

90 mm cylinders. 
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Figure III.5 Typical failure of 150 mm cylinders in compression tests of campaign “MA”: a) appearance of the 

first crack at one side, b) further opening of the first crack and development of a second crack at the other side, 

and c) final sandglass failure. 

The cracking process was similar in the 90 mm cylinders (Figure III.6a). The first initial 

vertical crack appeared in one of the two bricks, near the cap edge. A second crack appeared 

either in the same brick near the opposite edge or in the other brick by creating a longer crack 

at the same side. The lateral vertical cracks propagated also through the diametric mortar joint. 

At failure (Figure III.6b), the lateral cracks crossed the entire specimen from the top to the 

bottom caps causing the detachment of the external parts and the sandglass shape failure. 

Additional thinner vertical cracks appeared at the mid-section of the bricks. 

As described above, a similar failure mode was obtained for both 150 mm and 90 mm 

cylinders, producing a sandglass shaped remaining core. At the peak load, the external parts of 

the cylinders were already separated from the central core by vertical cracks. This suggests that 

the effective resisting cross-section at failure corresponded to the width of the mortar caps. 
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Taking into account this mechanical response, the compressive stresses acting on the specimen 

were calculated as the ratio between the load and the cross section determined by the width of 

the mortar caps. This is in agreement with the findings of [83,106,109]. Table III.2 presents the 

summary of the experimental results of campaign “MA”, including the compressive strength 

(fc) and the Young’s modulus (E) of masonry. 

 

Figure III.6 Typical failure of 90 mm cylinders in compression tests of campaign “MA”: a) vertical cracks 

crossing the core from the top to the bottom mortar caps, and b) final sandglass failure. 

Table III.2 Compressive strength (fc) and Young’s modulus (E) of 150 mm and 90 mm masonry cylinders in 

campaign “MA”. 

“MA” 150 mm cylinders “MA” 90 mm cylinders 

ID 
fc,150mm 
(MPa) 

E150mm 
(MPa) 

ID 
fc,90mm 
(MPa) 

E90mm 
(MPa) 

MA_3_1 7.46 -- MA_1_1 7.67 1771 

MA_3_2 8.64 1328 MA_1_2 9.93 1739 

MA_3_3 7.15 -- MA_1_3 10.16 1806 

MA_3_4 6.05 1900 MA_1_4 10.62 2253 

MA_3_5 7.41 1282 MA_1_5 8.63 1863 

MA_3_6 6.45 1390 MA_1_6 10.51 1823 

Average 7.19 1475 Average 9.59 1876 

CV 12.5% 19.4% CV 12.3% 10.1% 

 

The values of compressive strength obtained from the 150 mm samples are lower than 

those from the 90 mm cylinders. The average fc values are equal to 7.19 MPa and 9.59 MPa 

respectively. This is a direct consequence of the size effect related to the two different 

geometries. The strength of the 150 mm samples is particularly affected by the presence of two 

mortar beds and the central head joint. The ratio between the strengths of the 150 mm and 90 



CHARACTERISATION OF MASONRY IN COMPRESSION 

 

   PAPER III 

 

163 

 

mm samples is 0.75. The scattering obtained in the measurement of the compressive strength is 

very similar in the two types of cylinders, with a coefficient of variation around 12%. This 

scattering can be considered moderate taking into account the nature of the historical-like 

masonry investigated and the fact that it is built with handmade bricks. It is interesting to note 

that, in spite of their smaller size, the use of the 90 mm samples has not increased the scattering 

of the results with respect to that of the 150 mm.  

The value of the Young’s modulus obtained from the 150 mm samples is also lower than 

that estimated from the 90 mm specimens. In specific, E is equal to 1475 MPa and 1876 MPa 

respectively. This can be explained partly by the different size of the samples and also by the 

presence of two mortar beds in the 150 mm core. The ratio between the Young’s moduli of the 

150 mm and 90 mm samples is 0.79. The coefficient of variation is almost 20% in the case of 

the 150 mm specimens, which is still acceptable for the type of masonry tested. Again, the low 

scattering found for the tests of the 90 mm cylinders (CV 10%) confirms that the use of a smaller 

diameter is not introducing significant sources of variability.  

The ratios relating the Young’s modulus to the compressive strength (E/fc) are also very 

similar for the two types of specimen. They are equal to 214 for the 150 mm samples, and 198 

for the 90 mm ones. 

III.3 Experimental programmes on existing masonry buildings 

This section presents three experimental campaigns on real case studies intended to provide 

more results about the size effect on the masonry compression parameters for 90 mm and 150 

mm core samples. Three different examples of urban architecture of Barcelona, Spain, were 

inspected in the context of on-going renovation works. In all cases, samples of constituents 

(bricks and mortar joints), and cylinders (90 mm and 150 mm cores) were extracted and then 
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tested in the Laboratory of Technology of Structures and Building Materials of the Technical 

University of Catalonia (UPC – BarcelonaTech). 

The campaign with code “MB” dealt with one emblematic example of Catalonian industrial 

heritage (Figure III.7a), namely the textile factory “Fabra i Coats” built in 1910-1920 in 

Barcelona. The main 4-storey building consists of floors made of steel beams with small 

ceramic vaults in between supported by load bearing masonry walls. Its industrial activity 

decayed during the 1970s and the municipality recently converted the complex into a new 

cultural facility. Some works refurbished the building and adapted it to hold public exhibitions 

according to modern regulations. A structural assessment was required to design and verify 

these works. The project foresaw the opening of some new windows and doors in one façade 

wall. The cylinders tested within the present research were extracted from the same wall 

portions that were going to be eventually removed to make room to new openings. 

The campaign with code “MC” studied a residential building located in Rambla de 

Catalunya, one of the main streets of Barcelona (Figure III.7b). This construction was built in 

1930 in Noucentist style, and stands as a good example of bourgeois architecture of Barcelona’s 

Eixample neighbourhood. The load bearing masonry wall structure supports floors made of 

steel beams with small ceramic vaults in between. The building originally hosted 6-storeys, and 

two additional floors were added at the top in the second half of the 20th century, as in many 

other constructions of this area. This modification changed the loading conditions envisaged in 

the original project. Recently and prior to the execution of some renovation works, a structural 

assessment of the masonry structure was carried out. The assessment included inspection works 

to characterise the masonry mechanical properties. Again, the cylinders were extracted from 

wall portions to be demolished as part of the on-going renovation works. 
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The campaign with code “MD” involved a historical building in the district of Ciutat Vella 

(Figure III.7c). Built in the first half of the 19th century in Neoclassical style, this housing 

complex reflects the specific economical context of the time. The building stands out by the 

high-quality materials used, the stone masonry elements of the facades and the overall size of 

the construction. Brick masonry walls constitute the load bearing structure, which supports the 

floors made of timber beams with ceramic vaults in between. As in the former cases, the on-

going renovation works motivated and allowed the extraction of the cylinders. 

 

Figure III.7 a) View of the building of the “Fabra i Coats” industrial complex in Barcelona studied in campaign 

“MB”, b) main façade of the residential building at Rambla de Catalunya Street in Barcelona studied in 

campaign “MC”, c) façade of the housing complex in the district of Ciutat Vella in Barcelona studied in 

campaign “MD”. 

During the visits to the three buildings, sets of bricks and fragments of mortar joints were 

extracted. Bricks had average dimensions of 291 × 140.5 × 52 mm³ in campaign “MB”, 294 × 
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145 × 49 mm³ in campaign “MC” and 294 × 145 × 45 mm³ in campaign “MD”. The three sets 

of bricks showed variability in grain size and colour. Brick pieces of 140 × 140 mm² and 100 × 

100 mm² were cut respectively for campaign “MB” and campaigns “MC” and “MD”. These 

brick pieces and mortar fragments were prepared and tested in compression following the 

procedures described in Section III.2.1 for campaign “MA”. Table III. 3 shows the 

corresponding results. The variability observed by visual inspection was also reflected in the 

compressive strength of bricks (fb), particularly in the case of campaign “MC”. Bricks of 

campaign “MD” were twice stronger than those of campaigns “MB” and “MA”, and three times 

stronger than the bricks of campaign “MC”. 

Table III. 3 Experimental compressive strengths of bricks (fb) and mortar (fm_DPT) of campaigns “MB”, “MC” 

and “MD”. 

“MB” fb fm_DPT “MC” fb fm_DPT  “MD” fb fm_DPT  

Average (MPa) 18.80 0.62 Average (MPa) 10.74 1.52 Average (MPa) 35.45 3.1 

No. of 

specimens 
6 12 

No. of 

specimens 
12 28 

No. of 

specimens 
10 32 

CV 12.4% 16.0% CV 28.0% 35.0% CV 14.8% 55.4% 

 

The masonry walls investigated in campaign “MB” were 600 mm thick, built in English 

bond with variable mortar joint thickness between 10 mm and 15 mm (Figure III.8a). The walls 

investigated in campaigns “MC” and “MD” were interior single leaf walls 145 mm thick built 

in running bond (Figure III.8c and e). The mortar joint thickness varied between 14 mm and 17 

mm in the former and between 10 and 15 mm in the latter. The quality of workmanship was 

better in the types of masonry “MB” ad “MD” in terms of regularity and complete filling of 

mortar joints.  

Up to seven specimens of each cylinder type, 90 mm and 150 mm, were extracted in the 

three campaigns (Figure III.8b, d and f). Two additional specimens of 150 mm were extracted 

in campaign “MD”. The coring followed the same dry procedure mentioned in III.Section 2.2. 
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It is worth to remark the advantages of this technique, as already reported in [105,145]. The 

total absence of water protected the integrity of the weak mortar joints and guaranteed the 

efficiency of the full process. Only two operators could easily handle the equipment and a half 

working day was enough to extract the required amount of cores. The extraction of 90 mm 

cylinders was easier than for the 150 mm cores. Once the core-drilling machine was fixed to 

the masonry wall, the coring bit could be moved and the samples extracted along a 

circumferential path. Within a wall, finding an adequate spot to extract a 90 mm sample resulted 

easier than for a 150 mm core. Additionally, the specimens of campaign “MB”, which were 

extracted from 600 mm thick walls, were sawn to adjust their depth to the width of the 

constituent bricks (≈145 mm). 

The extracted specimens of the three campaigns were regularized with mortar caps and 

tested in compression, as described in Sections III.2.2 and III.2.3 for campaign “MA”. Figure 

III.9, Figure III.10 and Figure III.11 show the stress-strain curves of the tests for the three 

campaigns. The trends are similar to those discussed in Section III.2 for the campaign “MA”. 

The cracking sequences, which are illustrated by the failure examples shown in Figure III.12, 

resulted very similarly to those of campaign “MA”. 
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Figure III.8 a) Façade wall investigated in “Fabra i Coats” factory and b) in-situ core drilling for campaign 

“MB”, c) inner wall of the analysed building in Rambla Catalunya street and d) in-situ core drilling for campaign 

“MC”, e) inner wall of the building in Ciutat Vella and f) in-situ core drilling for campaign “MD”. 
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Figure III.9 Compressive stress-strain curves of campaign “MB”: a) 150 mm samples and b) 90 mm samples. 
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Figure III.10 Compressive stress-strain curves of campaign “MC”: a) 150 mm samples and b) 90 mm samples. 
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Figure III.11 Compressive stress-strain curves of campaign “MD”: a) 150 mm samples and b) 90 mm samples. 
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Figure III.12 Modes of failure in the 150 mm (left) and 90 mm (right) core samples extracted from existing 

masonry buildings: a) and b) campaign “MB”, c) and d) campaign “MC”, e) and f) campaign “MD”. 

Table III.4, Table III.5 and Table III.6 present the compressive strength and Young’s 

modulus results obtained from both types of cylindrical specimen for the campaigns “MB”, 

“MC” and “MD” respectively. The discussion of the results is included in Section III.4.1. 
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Table III.4 Compressive strengths (fc) and Young’s moduli (E) of 150 mm and 90 mm masonry cylinders of 

campaign “MB”. 

“MB” 150 mm cylinders “MB” 90 mm cylinders 

ID 
fc,150mm 
(MPa) 

E150mm 
(MPa) 

ID 
fc,90mm 
(MPa) 

E90mm 
(MPa) 

MB_3_0 9.13 -- MB_1_0 8.26 -- 

MB_3_3 6.53 2580 MB_1_1 13.22 3027 

MB_3_5 7.45 1663 MB_1_3 7.14 2551 

MB_3_6 5.60 2019 MB_1_6 8.51 -- 

MB_3_7 6.75 1992 MB_1_12 10.31 2430 

MB_3_8 8.64 2902 MB_1_16 11.55 3727 

MB_3_9 10.74 2665 MB_1_18 10.17 3719 

Average 7.83 2304 Average 9.88 3091 

CV 22.6% 20.9% CV 21.2% 20.0% 

 

Table III.5 Compressive strengths (fc) and Young’s moduli (E) of 150 mm and 90 mm masonry cylinders of 

campaign “MC”. 

“MC” 150 mm cylinders “MC” 90 mm cylinders 

ID 
fc,150mm 
(MPa) 

E150mm 
(MPa) 

ID 
fc,90mm 
(MPa) 

E90mm 
(MPa) 

MC_3_1 6.76 1416 MC_1_1 7.06 1797 

MC_3_2 4.94 1830 MC_1_2 7.81 1490 

MC_3_3 5.44 1827 MC_1_3 7.44 1290 

MC_3_4 5.20 1291 MC_1_4 6.82 1840 

MC_3_5 5.47 -- MC_1_5 7.01 1956 

MC_3_6 5.61 1688 MC_1_6 6.84 1906 

MC_3_7 3.55 1360 MC_1_7 7.18 1495 

Average 5.28 1569 Average 7.16 1682 

CV 18.1% 15.4% CV 4.9% 15.1% 

 

Table III.6 Compressive strengths (fc) and Young’s moduli (E) of 150 mm and 90 mm masonry cylinders of 

campaign “MD”. 

“MD” 150 mm cylinders “MD” 90 mm cylinders 

ID 
fc,150mm 
(MPa) 

E150mm 
(MPa) 

ID 
fc,90mm 
(MPa) 

E90mm 
(MPa) 

MD_3_1 11.91 4258 MD_1_1 16.67 5265 

MD_3_2 7.68 3362 MD_1_2 10.36 3157 

MD_3_3 8.14 1783 MD_1_3 10.04 2958 

MD_3_4 9.73 3927 MD_1_4 13.72 3598 

MD_3_5 11.18 2948 MD_1_5 11.66 3278 

MD_3_6 7.80 4157 MD_1_6 14.86 3590 

MD_3_7 8.05 3951 MD_1_7 12.02 4498 

MD_3_8 13.26 3614    

MD_3_9 6.75 3035    

Average 9.39 3448 Average 12.76 3763 

CV 23.9% 22.6% CV 19.1% 22.0% 
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III.4 Discussion 

III.4.1 Comparison among the four experimental campaigns 

The experimental programme described in Section III.2 consisted in testing samples 

extracted from masonry walls built in the laboratory. Useful remarks were drawn from the 

comparison between the results of the more novel MDT technique consisting in tests on 90 mm 

masonry cylinders with one mortar joint and the results of the relatively well-studied technique 

involving tests on 150 mm cylinders with two horizontal and one vertical mortar joints. Section 

III.3 described three additional campaigns on samples extracted from real historical buildings 

that aimed to confirm the aforementioned findings for the case of real existing masonry. 

The comparison of the stress-strain curves depicted in Figure III.4, Figure III.9, Figure 

III.10 and Figure III.11 shows similar recognizable trends for the two types of specimen studied. 

The first branch observed in all the curves up to low values of stress is related to the specific 

testing protocol adopted in this research, which included the performance of initial 

loading/unloading cycles. Then, the curves can be generally divided into three sections: a linear 

branch, a non-linear behaviour before the peak stress and a softening response after the peak 

stress. Some differences are observed, however, in the stress-strain curves. Longer linear 

branches are generally observed in the case of the 150 mm specimens that, in some cases, 

develop up to almost the peak stress. For the 90 mm samples, usually higher values of the strain 

at peak stress are detected. These observations apply for the four types of masonry investigated.  

The examples of tested specimens shown in Figure III.12 for campaigns “MB”, “MC” and 

“MD” confirm the failure mechanisms reported for the masonry of campaign “MA”. The 56 

cylinders tested in the context of this research failed in a very similar way. The failures were 

characterised by pseudo-vertical cracks appearing firstly on the bricks that caused eventually 
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the detachment of the external parts, leaving a final sandglass shaped core. These features are 

in agreement with the findings described by former researches on 150 mm cores [83,102–105] 

and 100 mm cores [108]. 

The failure is consistent with the common understanding of the mechanical behaviour of 

masonry in compression [1,2]. Because of the different elastic properties of the two 

constituents, i.e. stiff bricks and soft mortar in the types of masonry studied in this research, 

different stress states develop within the sample. Due to the mortar’s trend to experience a much 

higher lateral expansion than the bricks, units experience horizontal tensile stresses causing 

vertical splitting cracks in them. The sandglass shape results from the confinement exerted by 

the caps, which is more pronounced in the top and bottom sections of the cylinders than in the 

mid-section.  

Additional evidence that supports the use of core samples to characterise masonry may be 

found in the possible parallelism between the tests investigated herein and the tests on standard 

prismatic specimens for masonry [268]. EN 1052-1 [72] proposes the use of small walls to 

estimate the compressive strength of new masonry. These specimens include both bed and head 

joints and might be compared to the 150 mm cylinders, which also include a head joint. 

Conversely, ASTM C1314 [70] recommends the use of simpler stack bond prisms, without 

head joints, like the 90 mm cylinder investigated herein.  

The results on the compressive strength and the Young’s modulus reported in Table III.2, 

Table III.4, Table III.5 and Table III.6 for the four experimental campaigns are summarized in 

Figure III.13 and Figure III.14. As in campaign “MA”, the rest of campaigns confirm that tests 

on the 90 mm samples provide higher values of the compressive strength (Figure III.13). This 

was explained in Section III.2 as due to the size effect related to the different geometries. The 

presence of more mortar joints in the 150 mm samples may be especially relevant as they 
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introduce more weak points. Additionally, vertical stresses may be better distributed in the 90 

mm cylinders thanks to the absence of head joints. However, the ratio of the strengths obtained 

for the two types of specimen, calculated as Rc = fc,150mm / fc,90mm, is very similar for the four 

campaigns. The ratios obtained are 0.75, 0.79, 0.74 and 0.74 for campaigns “MA”, “MB”, 

“MC” and “MD” respectively.  

The coefficients of variation found for the compressive strength in the campaigns on real 

buildings are still moderate, and they can be fully explained by the variability of the materials. 

In campaigns “MB” and “MD”, the scattering for the two types of cylinder is very similar. This 

confirms that testing smaller cylinders does not introduce further variability into the results. 

Furthermore, a remarkably low value of the coefficient of variation, below 5%, was obtained 

in the case of 90 mm samples of campaign “MC”.  

With regard to the determination of the Young’s modulus, the values obtained with 90 mm 

specimens are higher than the results derived from 150 mm samples in the four experimental 

campaigns (Figure III.14). This outcome was explained in Section III.2 as due to the presence 

of one additional horizontal mortar joint in the 150 mm cores. The higher values of Young’s 

modulus and strain at peak stress in 90 mm cores are not contradictory, since the latter can be 

explained by the higher strengths reached by 90 mm specimens.  The ratio of Young’s moduli 

(RE = E150mm /E90mm) between the two types of specimen presented a certain scatter. The values 

ranged from 0.79 and 0.75 for campaigns “MA” and “MB” to 0.93 and 0.92 for campaigns 

“MC” and “MD”.  

The scattering observed in the estimation of the Young’s modulus is also moderate and 

similar to that observed for the compressive strength. The variability is consistent between the 

two types of cylinder in the three campaigns on real buildings. As occurred in campaign “MA”, 

no additional scattering may be attributable to the use of smaller cylinders. It is also significant 
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that both types of specimen provide similar values of the ratio relating the Young’s modulus to 

the compressive strength (E/fc) for each type of masonry investigated. These ratios range 

approximately from 200 to 350 in all the cases. These values are realistic for historical lime 

mortar brickwork [128,305]. 

 

Figure III.13 Comparison of compressive strengths (fc) results obtained for 150 mm and 90 mm cylinders for 

the four types of masonry investigated. 

 

Figure III.14 Comparison of Young’s moduli (E) results obtained for 150 mm and 90 mm cylinders for the four 

types of masonry investigated. 
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Figure III.13 and Figure III.14 allow also analysing the consistency of the results in terms 

of the relative values obtained for each type of masonry. The highest values of the compressive 

strength (Figure III.13) correspond to the masonry of Ciutat Vella building (campaign “MD”) 

that was constituted with the strongest materials (Table III. 3). The masonry of Fabra i Coats 

factory (campaign “MB”) is the second strongest. The weakness of its mortar (Table III. 3) is 

compensated with the combination of strong bricks and reduced thickness of the joints. Slightly 

lower values were obtained for the masonry built in the laboratory (campaign “MA”). The 

lowest masonry strength was found in the building in Rambla de Catalunya Street (campaign 

“MC”). This may be related to the weaker bricks used for its construction (Table III. 3). Both 

types of cylinder are able to predict the same trends. 

The Young’s modulus of the masonry of campaign “MD” is consistently characterised as 

the highest one by the two types of specimen. These highest values of Young’s moduli may be 

due to the combination of thin joints and strong mortar that characterises this masonry. The 

thinness of the mortar joints as well as the thickness of the bricks also explain the high values 

of Young’s moduli obtained in campaign “MB”. A simple 1-D homogenization model 

[105,131] to estimate the Young’s modulus can justify the former conclusions. Conversely, 

similar values of Young’s moduli have been obtained for the other two types of masonry, whose 

constituents have thicknesses that are more similar. 

With the exception of the compressive strength of campaign “MC” obtained by 90 mm 

specimens, which presented a remarkably low variability, the scattering found in the 

determination of both compressive strength and Young’s modulus presents also an expected 

trend. Campaigns “MB”, “MC” and “MD” present more variable results than campaign “MA”. 

This is related to the higher variability of historical masonry, which is intrinsic to its traditional 

constructive techniques and materials, in addition to a possible decay (not evident in the 
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materials analysed) and the possible influence of the experienced load histories. This variability 

contrasts with the more controlled processes used to build the walls in the laboratory. 

III.4.2 Size effect on the compressive strength and Young’s modulus of 

cylindrical specimens 

As presented in the Section III.4.1, the 90 mm specimens provide higher values of both the 

compressive strength and the Young’s modulus than the 150 mm ones. Figure III.15 shows 

graphically the size effect relationships on both properties. They are calculated as the linear 

regressions of the ratios Rc and RE between the 150 mm and 90 mm core samples for the four 

experimental campaigns considered in this research.  

The constant of proportionality is 0.75 for the four pairs of compressive strength values 

derived from the 150 mm cylinders (fc,150mm) and the 90 mm cores (fc,90mm). The approach 

followed in this research, which combines experimental results from laboratory controlled 

materials and real historical members spanning different levels of strength, allows obtaining a 

regression with a satisfactory coefficient of determination r² equal to 0.975. The increase of the 

compressive strength with the reduction of the specimen’s size is consistent with the trends 

obtained in previous experimental and analytical studies on prismatic masonry samples 

[303,306,307].  

 Based on the aforementioned results, the size-effect relationship on compressive strength 

of masonry cylindrical specimens can be written as follows (Eq. III.1): 

𝑓𝑐,150𝑚𝑚 ≅ 0.75 𝑓𝑐,90𝑚𝑚  (III.1) 

The constant of proportionality is 0.85 for the four pairs of Young’s modulus values 

derived from the 150 mm cylinders (E150) and the 90 mm cores (E90). Although the ratios RE 
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present a larger scattering than those of the compressive strengths Rc, the obtained coefficient 

of determination r² is still higher than 0.9 and equal to 0.92. 

 

Figure III.15 Size effect on a) compressive strength and b) Young’s modulus obtained from 150 mm and 90 mm 

cylinders for the four types of masonry investigated in this research. 

III.4.3 Estimation of the compressive strength of masonry and comparison 

with available predictive expressions 

As stated in Section III.1, the 150 mm specimens have been shown suitable for a direct 

evaluation of the masonry compressive strength by previous researches [83,106,109]. Eq. III.2 

expresses this approximate evaluation as: 
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𝑓𝑐
∗ ≅ 𝑓𝑐,150𝑚𝑚  (III.2) 

where 𝑓𝑐
∗

 is the compressive strength of the masonry being inspected. Other references 

[102,104] include in the former relationship a correction factor because they consider the 

diametrical section to calculate the acting stresses and the load is applied differently as 

described in Section III.2.2. Taking into account this latter remark, all the aforementioned 

references [83,102,104,106,109] propose equivalent expressions. 

Combining the former Equations III.1 and III.2, a new practical approach can be proposed 

consisting in the extraction and testing of 90 mm specimens and the estimation of the 

compressive strength of masonry through the application of the following expression (Eq. 

III.3): 

𝑓𝑐
∗ ≅ 0.75 𝑓𝑐,90𝑚𝑚  (III.3) 

Table III.7 presents the application of Equation III.3 to the four types of masonry 

investigated herein. The estimations of the compressive strength are compared to the 

predictions provided by the application of other approaches. Among the available possibilities, 

one consists in testing the individual components, i.e. bricks and mortar, and applying empirical 

or analytical correlations to estimate the mechanical properties of the composite material from 

those of the components [128,279,280]. This approach faces several difficulties. One of them 

stems from the applicability of the equations available in literature. The expressions with an 

empirical basis, like those proposed by some available standards for the design of new masonry 

structures, are in principle only adequate for the new construction materials for which they were 

calibrated and show limitations in the applicability to historical masonry. Another major 

difficulty lays in the characterisation of the existing mortar [117,118], which is hindered by the 

impossibility of extracting non-disturbed or normalized prismatic samples [257]. A possible 
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solution to this difficulty is found in extracting joint fragments and testing them under double 

punch compression, as it is done in the present research and explained in Section III.2.1.  

Table III.7 includes the comparison between the experimental estimation of the 

compressive strength by Equation III.3 and the predictions of two expressions available in 

building codes [60,112]. The term fc,ACI represents the compressive strength estimated by the 

unit strength method expression proposed in the Commentary on the Specification for Masonry 

Structures ACI 530.1-02 [112]. This empirical expression correlates the strength of the masonry 

with the strength of the units. The term fc,EC6 indicates the value obtained with the expression 

proposed by Eurocode 6 [60]. In the latter, the characteristic compressive strength of the 

composite material is correlated with the average compressive strengths of both mortar and 

units. The values reported in Table III.7 have been previously converted into mean value by 

multiplying by a factor equal to 1.2 as recommended in EN1052-1 [72]. The mortar strength 

introduced into the equation is the one obtained via the double punch tests. The columns on the 

right of the predictions express the difference in percentage terms (Δ %) with respect to the 

experimental estimation. 

Table III.7 Experimental estimation of masonry compressive strength (fc*) vs. predictions from expressions of 

ACI [112] (fc,ACI ) and EC6 [60] (fc,EC6). Δ % expresses the difference in percentage of the predictions with 

respect to the experimental estimation. 

Masonry fc* (MPa)  fc,ACI (MPa) Δ %  fc,EC6 (MPa) Δ % 

"MA" - Lab 7.19  6.24 -13.2%  5.63 -21.7% 

"MB" - Fabra 7.41  6.52 -12.0%  4.46 -39.8% 

"MC" - Rambla 5.37  4.90 -8.8%  3.94 -26.6% 

“MD” C. Vella 9.57  9.84 2.8%  11.26 17.7% 

The expression proposed by the ACI Specification [112] provides similar values to the 

experimental estimations, with a close agreement of 2.8 % in the case of the masonry made 

with the strongest bricks (campaign “MD”). In the latter, the equation of the Eurocode 6 [60] 

provides a non-conservative estimation, while it yields more conservative estimations in the 
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cases of campaigns “MA”, “MB” and “MC”. It is remarkable that the highest difference is 

found for campaign “MB”, which is the type of masonry with the poorest mortar. 

In the cases of low strength materials (campaigns “MA”, “MB” and “MC”), the expressions 

proposed by the building standards have provided more conservative values of the compressive 

strength compared with the experimental results. Under the assumption that the values obtained 

by means of the use of masonry cylinders are closer to the actual compressive strength of 

masonry, the investigated technique can be regarded as a convenient tool for mechanical 

characterisation. Since an accurate estimation of the mechanical properties helps to reduce 

uncertainties during the structural assessment, the design of possible interventions, such as 

retrofit or strengthening, can be less prominent and thus more respectful of the cultural value 

of existing heritage buildings. 

III.5 Conclusions 

This paper has presented an experimental research on the characterisation of the 

compressive mechanical properties of existing masonry. The laboratory testing of core samples 

extracted from masonry walls has been investigated as a MDT inspection technique. Two types 

of core, the already studied and validated three-joint cylinder with diameter of 150 mm and the 

proposed one-joint cylinder with diameter of 90 mm, have been tested and compared to study 

the effect associated to the reduction of size. The aim in reducing the cylinder’s size is to limit 

the damage caused to the structure during the sampling and allowing a more efficient extraction 

and testing. Tests on the two types of cylinder were investigated on masonry walls built in the 

laboratory with historical-like materials and then applied to three real case studies of historical 

buildings in Barcelona.  

The following conclusions can be drawn from the analysis of the results: 



CHAPTER 5 

 

PAPER III    

 

184 

 

- The dry procedure applied to drill the cores has proved to be a clean and efficient 

method for the extraction of cylindrical specimens in existing buildings. The extraction 

of 90 mm cylinders was comparatively easier than the extraction of 150 mm cylinders. 

- The experimental evidence confirms the adequacy of the 90 mm samples to reproduce 

the expected mechanical behaviour of masonry in compression. Similar failure 

mechanisms were found for the two cylinder types. It has been observed that tests on 

both cylinder types adequately represent the complex interaction between bricks and 

mortar that characterises the masonry response in compression.  

- The size of the core sample has been found to have significant effect on the compressive 

strength and the Young’s modulus. The comparison of the four experimental 

campaigns has shown that the tests on the two types of specimen provide consistent 

results and the same logical trends for the compressive strength and the Young’s 

modulus of masonry. The moderate scattering obtained in the tests can be fully 

explained by the variability found in the constituents’ material properties. 

- The comparison of the compressive strength results obtained from 150 mm and 90 mm 

specimens has provided an almost uniform relation for the four different experimental 

campaigns. A linear regression of the results has yielded a proportionality constant of 

0.75. This coefficient may be considered applicable to masonry types similar to the 

ones investigated, i.e. made of solid clay bricks –with normalized compressive 

strengths from 10 to 35 MPa- and joints made of lime mortar –with compressive 

strengths from 0.60 to 3 MPa. 

- Testing small 90 mm diameter cores has proved to be an advantageous and promising 

technique for the evaluation of the resisting properties of masonry in compression. A 

suggested set of 6 specimens extracted from an existing structural member may provide 
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a reliable estimation of the compressive strength and an acceptable estimation of the 

Young’s modulus. 
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5.4. Discussion  

The two previous sections have presented Papers II and III on the characterisation of 

masonry in compression. This section develops some remarks that can be drawn from the 

comparison of both papers. The individual conclusions of each paper are restated in Chapter 7. 

The tests performed on prismatic specimens in Paper II are acknowledged by the standards 

as being representative of the mechanical behaviour of masonry. Both specimens -running bond 

walls and stack bond prisms- behaved in a similar way, with compatible stress-strain curves 

and sandglass-like failures. The cylindrical specimens studied in Paper III, which are 

investigated as an alternative to be applied on existing buildings, behaved similarly. The 

comparison of failure modes and stress-strain curves between standard prismatic specimens and 

cylindrical specimens allows stating that the latter are also able to replicate the mechanical 

behaviour of masonry satisfactorily. 

The origin itself of the investigation included in Paper III was born from the research of 

Paper II. The fact of having a standard specimen that consists of only bed joints -the stack bond 

prism- motivated the possibility of studying the small cylinders that included only one bed joint. 

Therefore, the parallelism between both papers can be traced: big cylinders of 150 mm and 

three joints correspond to running bond walls, while small cylinders of 90 mm and one single 

joint correspond to stack bond prisms.  

In both papers, the study of smaller specimens is justified by practical reasons. These 

smaller specimens are easier to handle and require more reduced equipment for testing. In 

addition, in the case of cylinders, the smaller ones inflict less damage into the structure and are 

easier to extract. 
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With regard to the evaluation of the compressive strength of masonry, the size and shape 

of the specimens had different effects. In Paper II, statistically equal determinations were 

obtained from running bond walls and from stack bond prisms. This fact was explained in the 

paper by the careful construction of the specimens and the careful application of the loads 

during the tests. Recent researches by other authors have shown that, in general, stack bond 

prisms provide higher estimations, although for some cases results from both types of specimen 

are similar [308]. This is the case of the masonry studied in the thesis. Conversely, in Paper III, 

the size and shape effect of cylinders was clear. It was even possible to find a linear correlation 

with a very good coefficient of determination r2.  

This different influence of size and shape on the compressive strength found in prismatic 

and cylindrical specimens may be explained by the different way of applying the compressive 

load. For the prismatic specimens, the load was applied on the top and bottom flat surfaces, and 

in both cases the central part of the specimens was free of any platen effect. Even being smaller, 

the stack bond prisms were still sufficiently large as to properly distribute the compressive 

loads. For the cylindrical specimens, the mortar caps used to regularise the curved faces exerted 

a confinement on the sample. Even if the ratio cap width over sample diameter was maintained 

between the two cylinder sizes, the smaller cylinder seemed to be more affected by the cap 

confinement. 

 Contrariwise, both prismatic and cylindrical specimens seem to be affected in a similar 

way with regard the evaluation of Young’s modulus. In Paper II, the influence of the vertical 

head joint motivated that results obtained with running bond walls were 94% those of stack 

bond prisms. The simple homogenisation spring model discussed in the paper could justify this 

difference. In Paper III, estimations of Young’s modulus provided by the bigger cylinders were 

around 75 to 90% the estimations of Young’s modulus provided by the smaller cylinders. This 
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is predictable taking into account that smaller cylinders have only one mortar bed joint and 

therefore are less deformable than bigger ones, which include two bed joints and one head joint. 

Another important remark, related to the objectives of the thesis, is about the performance 

of initial cycles at low load levels to facilitate the measurement of Young’s modulus. This 

procedure has shown to be especially important in the case of cylinders from existing buildings, 

where the cycles application helped to stabilize the curves. A further consideration is the 

definition of Young’s modulus. In Paper III, whose experimental campaign was carried out 

before the campaign of Paper II, the Young’s modulus was evaluated between the plateaus of 

the third loading cycle. In Paper II, the Young’s modulus was evaluated on the final stress-

strain curve, between the limits defined by the actual maximum load attained for each particular 

specimen. This method constitutes a way to normalise the results and allows having a better 

comparison between them. As a consequence of this observation, it is recommended in the 

future to perform at least three loading cycles and evaluate the Young’s modulus as the chord 

modulus on the stress-strain curve, between two limits calculated according to the actual 

maximum attained load. 

Table 6 compares values of the five different masonry examples studied in Papers II and 

III. All of them belong to the category of traditional brick masonry in Barcelona, two of them 

replicated in laboratory, the other three extracted from existing buildings. 

The choice of the bricks from Terra Cuita Piñol Pallarés SL has shown to be satisfactory. 

Their compressive strength lays between the limits of the existing ones. Its value is very close 

to the one of bricks from the Fabra i Coats factory (masonry MB). Their variability is lower 

than that of historical bricks but this is explained because the bricks used in laboratory belonged 

to a single batch, while bricks from existing structures were obtained from different parts of the 

buildings.  
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The aerial lime mortar used in masonry MA of Paper III made in laboratory properly 

represents the values of historical mortars. The compressive strength of the modified hydraulic 

lime mortar of Paper II also compares satisfactorily. Nevertheless, strength values obtained by 

means of DPT tests are not directly comparable to values obtained from standard prismatic 

specimens. 

The values of compressive strength for replicated masonry (6.5 MPa in Paper II, 7.19 MPa 

in Paper III) match the average value of existing masonry considering types of masonry MB 

(factory) and MC (residential building). The case of masonry MD, which yielded a compressive 

strength of 9.39 MPa, can be disregarded in this comparison. The building belongs to the 

historical heritage of the city, and was built by one of the richest businessmen of modern 

Barcelona. It could be argued that both materials and masons participating in the construction 

were not representative of the common building practices of the time. Finally, it should be 

highlighted that the values obtained within this research for the compressive strength are very 

similar to the average value of 6.5 MPa found by Cornadó [196] (see Section 2.4.2). 

With regard to the Young’s modulus, the values obtained with replicated masonry also 

match the values of masonry from existing buildings. Again, the higher values associated to 

masonry MD could be disregarded for the comparison. 

Overall, it has been shown that historical-like masonry can be replicated in laboratory 

satisfactorily, at least with regard to the ability of replicating compressive parameters. The 

masonry built in Paper II, with the mortar prepared in Paper I and the selected bricks, has 

succeeded to provide similar values of Young’s modulus and compressive strength to those 

estimated from real examples of buildings of Barcelona. 
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Table 6 Comparison among the types of masonry studied in Paper II and Paper III. Coefficients of variation 

indicated in brackets. 

Type of 

masonry 
Paper II 

Paper III 

MA 

Paper III 

MB 

Paper III 

MC 

Paper III 

MD 

Origin 
Replicated in 

laboratory 

Replicated in 

laboratory 

Existing 

building 

Existing 

building 

Existing 

building 

Bricks 

Terra Cuita 

handmade solid 

clay fired 
bricks 

Terra Cuita 

handmade solid 

clay fired 
bricks 

Historical 

handmade solid 

clay fired 
bricks 

Historical 

handmade solid 

clay fired 
bricks 

Historical 

handmade solid 

clay fired 
bricks 

Compressive 

strength of 

bricks 

17.44 MPa 

(8.3 %) 

17.44 MPa 

(8.3 %) 

18.80 MPa 

(12.4 %) 

10.74 MPa 

(28.0 %) 

35.35 MPa 

(14.8 %) 

Mortar 

Modified 

hydraulic lime 

mortar (see 

Paper I) 

Aerial lime 

mortar 

Historical aerial 

lime mortar 

Historical aerial 

lime mortar 

Historical aerial 

lime mortar 

Compressive 

strength of 

mortar 

1.91 MPa 

(10.1 %) 

Prisms 

1.61 MPa 

(20.1 %) 

DPT 

0.62 MPa 

(16.0 %) 

DPT 

1.52 MPa 

(35.0 %) 

DPT 

3.1 MPa 

(55.4 %) 

DPT 

Compressive 

strength of 

masonry 

6.51 MPa 

(8.9 %) 

RBW 

7.19 MPa 

(12.5 %) 

150 mm 

7.83 MPa 

(22.6 %) 

150 mm 

5.28 MPa 

(18.1 %) 

150 mm 

9.39 MPa 

(23.9 %) 

150 mm 

Young’s 

modulus of 
masonry 

2318 MPa 

(7.6 %) 
RBW 

1475 MPa 

(19.4 %) 
150 mm 

2304 MPa 

(20.9 %) 
150 mm 

1569 MPa 

(15.4 %) 
150 mm 

3448 MPa 

(22.6 %) 
150 mm 

A last remark on the different expressions for predicting the compressive strength can be 

done. In general, the unit strength method proposed by American building codes  [112] provides 

better estimations that the expression included in Eurocode 6 [60]. The former only depends on 

the strength of the bricks while the latter depends on both the bricks and the mortar used. It 

seems that the expression from Eurocode 6 does not succeed in taking into account the 

peculiarities of historical and old mortars. This is probably due to Eurocode 6’s expression 

having been calibrated for more modern mortars. A second possibility relates to the difficult 

estimation of the mortar’s compressive strength in the case of existing masonry. A further 

observation is that masonry studied within the present work lays below the limits considered in 

the ACI standard, in terms of compressive strength of the units and compressive strength of 

masonry. The values of this thesis, together with other researches, could allow increasing the 

scope of the aforementioned standard.  
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6.1. Introduction 

This chapter presents two experimental researches that deal with the characterisation of 

masonry in shear. Based on the findings of the literature review presented in Section 2, these 

researches address some of the needs encountered in relation with the type of specimen and the 

uncertainties about interpretation of results.  

Section 6.2 reproduces Paper IV, devoted to the characterisation of masonry in laboratory. 

It explores the possibility of proposing a couplet specimen for the determination of cohesion 

and friction of brick – mortar interfaces, instead of the standard triplet specimen. The paper 

includes an experimental campaign on two different types of masonry, which compares the 

performance of the two types of specimen. Other than cohesion and friction, this work pays 

also attention to fracture energy and other shear parameters. 

Section 6.3 reproduces Paper III, devoted to the characterisation of masonry by means of 

the diagonal compression test. This versatile test is of common use in laboratory but it has been 

also usually applied to existing structures. The paper presents an experimental campaign that is 

used as benchmark for calibrating a numerical model. The numerical investigation delves into 

the interpretation of the test and eventually proposes coefficients for the determination of the 

tensile strength of masonry and the shear modulus of masonry. 

Section 6.4 discusses some aspects of Paper IV and Paper V as a whole and relates the 

obtained results among them and with Papers II and III. Conclusions of the individual papers 

are not restated here but in Chapter 7. 
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6.2. Paper IV – Experimental comparison of two testing setups for 

characterising the shear mechanical properties of masonry 

 

J. Segura, E. Bernat, V. Mendizábal, L. Pelà, P. Roca, L. Gil. Under review 

 

Abstract: The prediction of the structural capacity of masonry buildings against lateral 

loads requires an accurate characterisation of the masonry strength and general response 

under shear stresses. The experimental determination of shear strength parameters typically 

relies on shear tests on wallettes, or on standard triplets. Aiming to avoid the behavioural 

interpretation problems related with the existence of two mortar joints in triplets, this paper 

investigates the alternative possibility of testing simple couplet specimens. A direct 

experimental comparison was established with tests on the two specimen configurations 

(triplets and couplets) performed on two different types of masonry, both characterised by low 

strength mortars (hydraulic lime and cement based). The obtained results include the 

evaluation of Mohr-Coulomb parameters, residual shear strengths, second mode fracture 

energy, and secant shear modulus. The findings point out that couplets yield consistent 

experimental results and provide systematically higher estimations of all parameters compared 

to triplets.
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IV.1 Introduction 

Earthquakes, wind, support settlements or unsymmetrical distributions of vertical loads 

constitute actions that subject buildings to in-plane shear loading [309]. Under these conditions, 

the evaluation of the masonry shear strength is of great importance to accurately assess the 

structural performance of the building [310].  

The shear strength of a masonry wall depends on a number of factors [311], such as the 

wall aspect ratio, the mechanical properties of the components - i.e. units and mortar-, the bond 

tensile strength of the joints, the boundary conditions, and the compression stress level 

experienced by the wall. Zhang and Beyer [312] and Malomo et al. [313] have also investigated 

the role played by the bond pattern. Nevertheless, it is accepted that a key parameter in the shear 

resistance of a wall is the shear strength of the bed joints. The vast amount of research carried 

out along the last decades [134] has established as a consensus that the joint shear failure at low 

precompression levels can be adequately described by the Mohr-Coulomb (MC) criterion, 

expressed herein by Equation IV.1:  

τu = c + σ tan φ (IV.1) 

where the ultimate joint shear strength τu and the normal compressive stress σ are related by 

means of the cohesion c and the internal friction angle φ. In the common case of failure through 

the unit-mortar interface, the cohesion can be interpreted as the initial bond at zero 

precompression τ0, while the tangent of the angle of friction represents the coefficient of friction 

μ.  

Different testing configurations have been proposed for the experimental determination of 

the Mohr-Coulomb parameters [314–316]. Riddington et al. [138] identified a series of quality 

criteria that an ideal testing setup should fulfil: i) ensure a uniform distribution of normal and 



CHAPTER 6 

 

PAPER IV    

 

200 

 

shear stresses; ii) when failure is initiated at one point, the majority of the joint should be close 

to failure; iii) tensile stresses should be avoided along the joint; iv) the failure should be initiated 

away from the edge of the joint, and v) the testing setup should be kept as simple as possible. 

Yet, as stated by Popal and Lissel [317], none of the currently available methods meets the five 

criteria. In particular, the first criterion on uniformity -that is the basic assumption for the 

computation of the acting stresses along the joint- has been found nearly impossible to satisfy 

[318,319].  

With the previous considerations in mind, tests on triplet specimens conformed by three 

units and two bed joints stand as a compromise solution and have been adopted by most of the 

national and international standards. The European standard EN 1052-3 [135] gives guidance 

on the preparation of the specimens, the testing machine, the test method and the calculation 

method. One of the proposed procedures involves testing groups of specimens at different 

precompression levels and finding the cohesion and the angle of friction by a linear regression. 

The triplet test has been largely applied in both the research and the industrial fields and is 

used to characterise many different materials (e.g. masonry made of solid [145] and hollow 

bricks [320], stone units [321] or concrete blocks [320]). Nevertheless, even if generally 

accepted, this method presents certain inconsistencies derived mainly from the fact that the 

tested specimen includes more than one joint. Indeed, the assumed symmetry of both specimen 

and setup may be only apparent since several sources of asymmetry arise: imperfections in the 

geometry of the units and particularly in the thickness of the mortar joints; irregular boundary 

conditions, especially with regard to the applied precompression; the scattering of the properties 

of the materials including the variation in the roughness of the units’ faces and the possible 

heterogeneity within the mortar.   
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In consequence, as reported by a number of authors [139–141], both joints do not fail 

simultaneously. This circumstance is found experimentally [322–324] in force-displacement 

curves that present two peaks, each of them representing the failure of one of the two different 

joints. This ‘two-peak-phenomenon’, as identified by Vermeltfoort [319], hinders the 

interpretation of the results and raises doubts on which area should be considered for the 

calculation of shear stresses [325]. In addition, Angelillo et al. [69] have highlighted the 

impossibility to obtain accurate post-peak characteristics, and Riddington and Jukes [326] have 

pointed out some practical concerns associated to the size, weight and fragility of the triplet 

specimens. 

An alternative to overcome the limitations of tests on triplets can be found in testing 

specimens with a single bed joint, hereafter called ‘couplets’ [142,327–329]. Many researchers 

have proposed specific and complex testing setups on couplets [142,143], with the aim of 

fulfilling the first four of the aforementioned Riddington criteria. Van der Pluijm [144] designed 

a testing configuration with special metal devices. This latter setup allowed improving the 

knowledge on the shear behaviour of bed joints and has been successfully and continuously 

utilised for the calibration of numerical models [141]. However, it has been hardly used in 

laboratory afterwards given the specificity of the test arrangement, together with some 

difficulties [134] related to the need of attaching the steel sections to the bricks and the 

occurrence of a diagonal crack through the centre of the specimen instead of a joint failure for 

certain types of units.  

The research presented herein explores the possibility of testing couplets with the simplest 

setup, i.e. a simple modification of the standard triplet arrangement, and aims to correlate results 

obtained with both types of specimen. Although some authors have compiled inventories of 

shear tests that reported examples from either triplets or couplets [134,330,331], very few 
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references have dealt with their direct experimental comparison. Lawrence [329] and Schubert 

and Caballero [332] obtained higher values of cohesion in couplets tests. Conversely, Fouchal 

et al. [333] found very similar results for both types of specimen. More recently, Zhang et al. 

[141] presented a numerical evaluation. 

This paper presents an experimental programme on triplets and couplets and compares the 

obtained results in terms of Mohr-Coulomb parameters, i.e. cohesion and angle of friction, but 

also with regard to fracture energy, deformability and force-displacement curves. Two different 

material combinations have been considered, both with low strength mortars. The choice of the 

components of one of the combinations has been intended to represent a historical-like type of 

masonry. Therefore, the results obtained may contribute to expand the database on shear 

properties available for this type of material.  

IV.2 Experimental programme 

IV.2.1 Materials 

The experimental programme was carried out at the Materials and Structures Laboratory 

of Innovation Technology of the Technical University of Catalonia in Terrassa, Barcelona 

(UPC – BarcelonaTech). 

As mentioned, the tests involved two different material combinations to carry out the 

comparison between triplets and couplets. The first combination was chosen to represent a 

historical-like type of masonry. Given the difficulties to evaluate the shear properties of existing 

masonry structures [145], this campaign provided an opportunity to contribute with results 

obtained through standard triplet tests. Handmade fired solid bricks were selected, with average 

dimensions 311 (length) × 149 (width) × 45 (height) mm³. These bricks presented rough 
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surfaces because of their manual way of manufacturing. A NHL 3.5 natural hydraulic lime 

based commercial mortar was chosen. The mortar was modified with limestone filler additions 

to reduce its strength, as explained by the authors in a recent publication [334]. The volume 

ratio of commercial premixed mortar to filler to water was 1:1:0.65. This material combination 

has been already studied in compression, with results similar to historical ones [268]. On the 

other hand, the second type of masonry was designed to have different properties but keeping 

the low strength of the mortar. Modern materials were used in this case, which included a M7.5 

Portland cement based mortar and conventionally extruded solid clay bricks, with smooth 

surfaces and average dimensions 270 × 127 × 51 mm³. The volume ratio of commercial 

premixed mortar to water was 1:0.25 [335]. 

The two sets of materials were conveniently characterised according to EN 772-1 [285] 

and EN 1015-11 [257]. Table IV.1 summarizes the components’ strengths. The mortar prisms 

were casted during the construction of the masonry specimens and were tested at the same age. 

As planned, strengths were different for the two material combinations, with lower strengths in 

the case of historical-like materials. Nevertheless, the strength of the cement-based mortar can 

still be considered as a low strength. The variability found in the strength values, with a 

coefficient of variation up to 28 % in the case of the flexural strength of extruded bricks, is 

common in this type of materials [270]. 

Table IV.1 Mechanical strengths of masonry components. Number of specimens and coefficients of variation 

are shown in brackets. 

Material 
Compressive 

strength (MPa) 
 

Flexural strength 

(MPa) 

Handmade brick 17.99 (20, 8.3%)  2.44 (10, 20.0%) 

Extruded brick 27.93 (30, 19.0%)  5.99 (15, 28.0%) 

Hydraulic lime mortar 1.02 (12, 22.1%)  0.33 (6, 25.3%) 

Portland cement mortar 2.53 (12, 5.7%)  1.03 (6, 9.9%) 
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IV.2.2 Specimens preparation 

Two types of specimen were built for each material combination: standard triplets 

consisting of three bonded bricks with two mortar joints, and couplets consisting of two bonded 

bricks with one mortar joint. Figure IV.1 displays the dimensions of each specimen type. 

 

Figure IV.1 Geometric definition of the masonry specimens. 

The construction of the specimens included brushing the bricks, especially the handmade 

ones, wetting them by immersion into water for at least 1 minute, levelling the first brick, which 

was laid horizontally on its main side, and placing the next brick(s) on top maintaining the 

specified mortar joint thickness by using wooden mechanical gages. Average joint thicknesses 

of 18 mm and 12 mm were selected for the hydraulic lime and the cement mortar respectively. 

The former was necessary to accommodate the irregularities of the handmade brick surfaces, 

whereas the latter is more representative of real Portland cement joints in modern masonry. All 

samples were covered with plastic and cured in the same environmental conditions for 28 days. 
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IV.2.3 Setup and testing procedure 

Figure IV.2 sketches the testing setups for both triplets and couplets. The shear load (S) 

was applied through an aluminium profile 40 mm wide at the top of the corresponding brick. 

Steel profiles supported the other brick(s). The supporting edges were placed in all cases at 2 

mm from the brick-joint interface. The precompression normal load (N) was applied through a 

distribution steel plate 20 mm thick. Contact plates were placed at the external faces of the 

specimen, against the distribution steel plate and the reaction wall. These plates consisted of 

soft board sheets rubbed with Vaseline. Their aim was double: avoiding local normal stress 

concentrations and reducing the friction against the shear load. The latter of the utmost 

importance in the case of couplets. 

 

Figure IV.2 Testing arrangements for a) triplets and b) couplets. 
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Once the specimen was placed in its position, two LVDT sensors with 20 mm range and 

0.2% linearity were installed according to Figure IV.3 to measure the shear vertical (see Figure 

IV.2) and normal horizontal deformations. Both sensor support elements and reference 

contrasting elements were bonded to the brick with cyanoacrylate after convenient polishing 

and cleaning of the surface. 

    

    

Figure IV.3 LVDTs position for each specimen type. Red squared dots indicate support of the LVDT, blue 

triangular dots indicate support of the contrasting element. See Figure IV.2 for an actual picture of the vertical 

LVDTs. 

The tests consisted of two stages. They started with the application of the precompression 

normal load at a ratio of 10 kN/min. Tests at different levels of normal stress were performed, 

as indicated in Table IV.2. The horizontal actuator that applied the precompression load had a 

maximum capacity of 50 kN. When the precompression load was reached, it was maintained 

constant during the test, whereas the shear load was indirectly applied as an imposed 

displacement at a ratio of 1 mm/min. The vertical actuator that applied the shear load had a 

maximum capacity of 100 kN. 
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The tests finished when the sensor recording the shear deformation reached its maximum 

elongation (around 15 mm) and the contact with the reference element was lost. In few cases, 

this sensor fell from its position due to the energy release associated with the joint failure. In 

these cases, no full information is available and the corresponding curves are not included in 

the subsequent analyses.  

Table IV.2 lists all the tested specimens. The name of the test starts with a letter indicating 

the type of specimen (“T” for triplets and “C” for couplets), followed by a letter representing 

the type of masonry (“L” for masonry made of hydraulic lime mortar and handmade bricks and 

“C” for masonry made of Portland cement mortar and extruded bricks). The combination of 

these four letters defines the four different sets of samples being tested. The name of the 

specimens includes also a number that indicates the applied precompression force in kN, and a 

last number that designates the repetition of the test. 

The standard EN1052-3 [135] prescribes to perform tests at three different precompression 

levels with at least three specimens at each level. For units with compressive strengths higher 

than 10 MPa, the standard recommends to use precompression loads that give approximately 

0.2 MPa, 0.6 MPa and 1 MPA of precompression stress. This approach has been followed in 

the case of masonry L. However, taking advantage of the greater homogeneity of the 

industrialized materials used in TC and CC specimens, it was decided to investigate the 

convenience of including an additional normal-tangential stresses pair while reducing the 

repeatability of tests from 3 to two repetitions. This approach allowed to obtain additional 

information for the linear regression while saving one specimen. The new level of load 

considered for specimens TC and CC aimed to represent a zero normal precompression 

condition. The actual applied stress was 14.6 kPA, and corresponded to the minimum capacity 
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of the horizontal actuator (0.5 kN). This minimum load was necessary to maintain the 

overturning stability of the specimens during the tests. 

Table IV.2 List of tested specimens and applied normal stresses. 

Specimen 
Precompression normal 

stress (kPa) 

# 

Repetition 
 Specimen 

Precompression normal 

stress (kPa) 

# 

Repetition 

TL13.5_1 291.3 1  TC0.5_1 14.6 1 

TL13.5_2 291.3 2  TC0.5_2 14.6 2 

TL13.5_3 291.3 3  TC8_1 233.3 1 

TL27_1 582.7 1  TC8_2 233.3 2 

TL27_2 582.7 2  TC20_1 583.3 1 

TL27_3 582.7 3  TC20_2 583.3 2 

TL45_1 971.1 1  TC35_1 1020.7 1 

TL45_2 971.1 2  TC35_2 1020.7 2 

TL45_3 971.1 3  CC0.5_1 14.6 1 

CL13.5_1 291.3 1  CC0.5_2 14.6 2 

CL13.5_2 291.3 2  CC8_1 233.3 1 

CL13.5_3 291.3 3  CC8_2 233.3 2 

CL27_1 582.7 1  CC20_1 583.3 1 

CL27_2 582.7 2  CC20_2 583.3 2 

CL27_3 582.7 3  CC35_1 1020.7 1 

CL45_1 971.1 1  CC35_2 1020.7 2 

CL45_2 971.1 2     

CL45_3 971.1 3     

IV.2.4 Results 

According to the assumption of uniformity in the stresses distribution made in the EN 1052-

3 [135], the shear strength (τu) of each specimen was calculated by means of Equations IV.2 

and IV.3 for triplets and couplets respectively. The normal acting stresses (σ) were calculated 

for both types of specimen with Equation IV.4: 

τu (Triplets) = Smax / 2A (IV.2) 

τu (Couplets) = Smax / A (IV.3) 

σ = N / A (IV.4) 
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where Smax is the maximum shear force attained during the test, N is the precompressive force, 

and A is the cross sectional area of the specimen parallel to the bed joints.  

The pairs of values of shear strength and compressive stress for all the tests are plotted in 

Figure IV.4, for the four different sets of samples (TL, CL, TC, CC). Figure IV.4 also indicates 

the values of cohesion and angle of friction corresponding to the Mohr-Coulomb failure 

criterion defined by Equation IV.1. These parameters have been calculated as the intercept with 

the τ-axis and the arctangent of the slope, respectively, of a linear regression on the pairs of 

values. 

 

Figure IV.4 Shear strength τu vs. normal stress σ plots for a) TL, b) CL, c) TC, and d) CC specimens. Red lines 

represent the regression corresponding to the Mohr-Coulomb failure criterion, with indication of the cohesion c, 

the angle of friction ϕ and the coefficient of determination R². 
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Figure IV.5 and Figure IV.6 display two types of plot for both masonry combinations. The 

shear stress recordings along each of the tests are plotted against the relative shear displacement. 

These curves represent the mechanical response of the joints in shear. The shear displacements 

are also compared to the displacements measured in the direction perpendicular to the joint. 

This type of plot captures the possible signs of dilatancy. In both figures, curves with 

inconsistent data associated to measurement issues during the tests are disregarded. 

 

Figure IV.5 Curves for masonry made of hydraulic lime mortar and handmade bricks. a) Shear stress vs. shear 

displacement plot for triplets. b) Normal displacement vs. shear displacement plot for triplets. c) Shear stress vs. 

shear displacement plot for couplets. d) Normal displacement vs. shear displacement plot for couplets. 
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Figure IV.6 Curves for masonry made of Portland cement mortar and extruded bricks. a) Shear stress vs. shear 

displacement plot for triplets. b) Normal displacement vs. shear displacement plot for triplets. c) Shear stress vs. 

shear displacement plot for couplets. d) Normal displacement vs. shear displacement plot for couplets. 

Once the peak or ultimate shear strength τu was reached and after the failure of the joint(s), 

the specimens submitted to precompression were able to resist against additional shear 

deformation. In this research, the residual shear strength τres has been computed as the measured 

shear stress for a shear strain of 2.5%. This value of strain allowed the computation of the 

parameter τres for most of the tests. The residual strength can be compared to the ultimate 

strength by means of a strength degradation ratio (SDR) as defined by Augenti and Parisi [331] 

and the following Equation IV.5. A higher value of SDR corresponds to a lower degradation. 

Table IV.3 presents the available results of ultimate and residual shear strength and indicates 

the corresponding strength degradation ratio. The two latter parameters are used here mainly 

for comparative purposes between the types of specimen, but residual values play an important 

role in the evaluation of structures after seismic events. 
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SDR = τres / τu (IV.5) 

Additionally, Table IV.3 includes the estimated values of the second mode fracture energy. 

This mechanical property is relevant for the structural analysis of masonry by means of 

micromodelling approaches [3,29]. Two different procedures have been applied for their 

calculation. Figure IV.7 schematizes both procedures. The first approach follows the common 

definition as proposed by Van der Pluijm [144] and Lourenço [336] (Gf
II, column 6). The 

fracture energy is estimated as the area below the apex of the shear stress – displacement curves 

and above the plateau of the residual shear strength. This definition only applies when the shape 

of the experimental curve is similar to the idealized one of Figure IV.7a. To overcome the 

impossibility of computing the fracture energy in some cases, a second approach is proposed. 

The second procedure defines the fracture energy as the area below the shear stress – 

displacement curves up to a displacement corresponding to a 2.5% of shear strain (Gf
II

_2.5%, 

columns 7 and 8). The first approach aims to distinguish frictional energy from cohesive 

fracture energy [337] and evaluates this latter component, whereas the second proposed method 

involves all energy associated to the failure process for comparable damage final states. For the 

sake of clarity, these two parameters are called cohesive fracture energy (Gf
II) and cohesive-

frictional fracture energy (Gf
II

_2.5%) in the following. The combination of both approaches 

allows having more objective elements for the comparison between types of specimen. 
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Figure IV.7 Schematic shear stress τ vs. displacement δs curves that show the corresponding areas for the two 

approaches to calculate second mode fracture energy: a) Cohesive fracture energy Gf
II, b) Cohesive-frictional 

fracture energy taking into account the frictional dissipation up to a displacement corresponding to a 2.5% shear 

strain Gf
II

_2.5%. 

 

Table IV.3 Ultimate shear strength τu, residual shear strength τres, strength degradation ratio SDR, cohesive 

fracture energy Gf
II and cohesive-frictional fracture energy Gf

II
_2.5% for all specimens and precompression levels. 

The average values for each precompression level of SDR and Gf
II

_2.5% are indicated in square brackets. 

    Second mode fracture energy 

Specimen τu (kPa) τres (kPa) SDR      Gf
II (N/mm) Gf

II_2.5% (N/mm) 

TL13.5_1 414.87 284.77 0.686 

[0.752] 

0.070 

 

1.566 

[1.475] TL13.5_2 340.66 233.27 0.685            -  1.364 

TL13.5_3 316.12 280.16 0.886            - 1.496 

TL27_1 541.26 363.12 0.671 

[0.737] 

           - 

 

2.308 

[2.506] TL27_2 556.60 - -            - - 

TL27_3 589.75 473.01 0.802            - 2.704 

TL45_1 783.37 628.97 0.803 

[0.853] 

           - 

 

3.842 

[3.755] TL45_2 841.14 756.30 0.899 0.198 4.003 

TL45_3 810.49 693.63 0.856            - 3.420 

CL13.5_1 387.70 - - 

[0.625] 

           - 

 

- 

[2.174] CL13.5_2 713.40 377.07 0.529            - 2.231 

CL13.5_3 530.97 382.95 0.721 0.191 2.117 

CL27_1 832.03 774.82 0.931 
[0.952] 

           - 
 

3.861 
[2.988] 

CL27_2 830.21 808.00 0.973            - 2.115 

CL45_1 1393.01 1214.44 0.872 
[0.872] 

0.380 
 

6.573 
[6.573] 

CL45_2 1247.05 - -            - - 

TC8_1 286.82 189.55 0.661 
[0.446] 

0.033 
 

0.824 
[0.758] 

TC8_2 393.87 91.05 0.231            - 0.692 

TC20_1 234.45 - - 
[0.747] 

           - 
 

- 
[2.220] 

TC20_2 555.33 414.93 0.747 0.073 2.220 

TC35_1 907.78 822.19 0.906 
[0.905] 

0.076 
 

3.802 
[3.660] 

TC35_2 938.71 849.90 0.905             - 3.517 

CC8_1 460.83 234.12 0.508 [0.515] 0.129  1.303 [1.254] 
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    Second mode fracture energy 

Specimen τu (kPa) τres (kPa) SDR      Gf
II (N/mm) Gf

II_2.5% (N/mm) 

CC8_2 421.20 219.46 0.521             - 1.204 

CC20_1 823.98 672.98 0.817 
[0.817] 

            - 
 

3.311 
[3.217] 

CC20_2 752.09 718.99 0.956             - 3.122 

CC35_1 1162.75 1014.66 0.873 
[0.873] 

0.213 
 

5.327 
[5.222] 

CC35_2 1099.41 941.64 0.856             - 5.116 

 

Finally, the secant shear modulus G at any point can be calculated by means of Equation 

IV.6: 

Gi = τi / γi (IV.6) 

where γ is the shear strain computed as the ratio between the shear displacement and the 

reference length of the measuring instrument. Figure IV.8 displays the evolution of the secant 

shear modulus for the four sets of specimens. 

  
(a) (b) 

  
(c) (d) 

Figure IV.8 Shear secant modulus G vs. shear strain γ plots for a) TL, b) CL, c) TC, and d) CC specimens. 
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IV.3 Discussion 

The discussion of the experimental outcomes is organized in four sections. First, the results 

are studied from a general point of view. The second section analyses the influence of the type 

of specimen and compares the results of triplets and couplets. The lasts two sections evaluate 

the influence of the different materials on the former comparison and present a database of 

shear mechanical properties for masonry made of low strength mortars. 

IV.3.1 General 

The results of the four sets of samples show dependency on the level of confining normal 

stress. This dependency applies for all the parameters, not only for the shear strength and 

residual shear strength values, but also for the strength degradation ratio, the fracture energies 

and the secant shear modulus. Table IV.3 shows the clear upward trends for each variable. This 

dependency on the level of confining normal stress was expected due to the frictional behaviour 

of the material, and has been described by many authors [69,134,331,338].  

Figure IV.4 depicts all the pairs σ-τu and the corresponding Mohr-Coulomb envelopes. In 

three cases (TL, TC and CC) the coefficients of determination R² of the regression lines were 

higher than 0.95. In the single case of couplets made of hydraulic lime mortar and handmade 

bricks (CL) this coefficient was lower, but still acceptable, with a value higher than 0.9. This 

can be explained by the inherent variability of the material components, which was evidenced 

in Table IV.1 by high coefficients of variation in their mechanical properties. Among the 

individual data, the results of shear strengths for lower levels of normal stress seem to be more 

scattered. This is consistent with previous works [145] and is explained because at higher 

confining stresses the specimens are more stable. In this sense, the high scatter encountered in 

the samples tested at zero precompression, together with the fact that those tests do not allow 
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the evaluation of postpeak parameters, make advisable to follow the prescriptions of the 

standard EN1052-3 [135] with regard to the levels of precompression and number of repetitions.    

 With respect to the stress-displacement curves, Figure IV.5 and Figure IV.6 show in 

general a very stiff behaviour before reaching the peak shear stress. Shear deformation before 

failure is so small that it is hardly detectable by the installed instruments. In consequence, the 

curves present quasi-rigid initial branches, as also found by other researchers, e.g. Mojsilovic 

et al. [339] and Fouchal et al. [333]. This high stiffness is reflected by the vertical asymptotes 

depicted in the curves of Figure IV.8, and causes a great difficulty in the measurement of the 

strain at peak stress. After the peak stress, shear secant modulus is exponentially reduced for 

all tested cases (see Figure IV.8). Roca and Araiza [143] also reported similar difficulties to 

measure the strain at peak stress, finding a significant scattering and even randomness. 

Although not able to capture the initial deformation, the installed instrumentation was able to 

measure the sliding along the joint and thus the postpeak regions of the curves can be considered 

as reliable. In spite of the difficulties encountered, the general validity of the results for carrying 

out the comparison between types of specimen is confirmed. 

IV.3.2 Influence of the type of specimen 

The type of specimen showed to have influence on the determination of all the analysed 

mechanical properties. The first difference between triplets and couplets is evident when 

comparing the stress-displacement curves of Figure IV.5a and Figure IV.6a, with Figure IV.5b 

and Figure IV.6b. This difference is related to the presence of the additional joint in the triplet 

specimens. Couplets show a much stiffer behaviour that lasts until the peak stress is reached, 

while triplets are more deformable and present sometimes the two-peak phenomenon already 
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mentioned in the Introduction section IV.1. The non-simultaneous failure of the two joints is 

manifest, for instance, in the curve of specimen TL27_1.  

The second and more significant difference is that couplets attained higher shear strengths 

than triplets for a given level of confining normal stress. Consequently, the estimation of the 

Mohr-Coulomb parameters was affected. On one hand, the estimated cohesion increased as the 

shear strength values were higher. On the other hand, the effect of the type of specimen also 

increased with the confining normal stress, i.e. the greater the confining normal stress, the 

greater the difference between couplets and triplets. Therefore, the slope of the regression lines 

changes and so the estimated angle of friction.  

These observations partially agree with the few available experimental studies that have 

previously studied this comparison. Lawrence [329] undertook an experimental campaign on 

triplet and couplet tests to show up the differences between the two methods. This author found 

that the shear strength of couplets was higher than the comparative triplet tests. Schubert and 

Caballero [332]  found that the cohesion values estimated in couplet specimens were twice as 

large the values estimated in triplets. More recently, Fouchal et al. [333] presented an 

experimental campaign that involved again these two types of specimen. Although they 

concluded that both test methods provided similar results, a detailed analysis of their individual 

data show that couplet specimens gave higher values of cohesion than triplets. However, the 

three former references dealt with tests performed with zero precompression and their 

conclusions are not fully comparable to the ones presented herein. The work by Zhang et al. 

[141] considers different levels of confining normal stresses, but their research is only based on 

numerical simulations. Under idealized boundary conditions, they found that couplets provided 

lower values of cohesion but slightly higher values of angle of friction than triplets. 
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Independently of the previous literature considerations, the differences between triplets and 

couplets reported in the present research can be justified. Firstly, for the case of zero or low 

confining normal stresses, Lawrence [329] performed finite element linear analyses to confirm 

his experimental findings. He investigated the influence of the bending moment created by the 

non-aligned shear forces in both types of specimen. By comparing the stress distributions along 

the mortar joints, he found that triplet specimens had a larger region subjected to tension than 

couplets. Under the hypothesis that bond failure is triggered in the tension regions, this would 

explain why the shear strength in triplets was lower. Similar stress distributions were 

determined by Ali and Page [340]. Secondly, as stated by Lei [341], it is an established 

consensus that brittle fracture obeys the weakest-link postulate. This researcher has validated 

the existence of a specimen size effect for a wide spectrum of quasi-brittle materials and fracture 

modes, i.e. an inverse relationship between size and strength attributed to the stochastic 

distribution of microdefects in a material. Given that the brick-mortar interface area in the two-

joint specimens is twice larger than in one-joint specimens, the lower strengths obtained with 

triplets could also be explained from a statistical approach. Lastly, as for the evaluation of the 

actual stresses along the joints, it is worth highlighting again that triplets usually present a 

double peak phenomenon. It is possible that, at the higher peak, one of the two joints is 

contributing with the residual strength while the other one has not failed yet. This could lead to 

an underestimation of the acting shear stress. Conversely, in the couplet specimens, if the 

friction along the external surface is not negligible, the measured strength could be an 

overestimation of the actual one. It is likely that both effects occur, which eventually motivates 

the difference between the two types of specimen. 

 



CHARACTERISATION OF MASONRY IN SHEAR 

 

   PAPER IV 

 

219 

 

IV.3.3 Influence of the materials on the comparison between types of 

specimen 

With regard to the two sets of materials being investigated, the tests on standard triplet 

specimens provided very similar values of cohesion (167 kPa for TL specimens and 165 kPa 

for TC specimens) and angle of friction (33.71⁰ for TL specimens and 36.27⁰ for TC 

specimens). The influence of the different physical properties of each material component is 

difficult to analyse, as the research on the topic is controversial [134,319]. It could be expected 

that masonry C, made of cement mortar and extruded bricks, would show a better shear 

performance given the stronger mortar and the thinner mortar joints. However, the rougher 

surfaces of the handmade bricks and the higher fineness of the lime mortar aggregates used in 

masonry L compensate those effects.  

In both material sets, the change of testing setup from triplets to couplets resulted in higher 

values of cohesion and angle of friction although the rates of increase were different. For 

hydraulic lime mortar specimens, cohesion turned from 167 kPa to 209 kPa (+25.1%) and the 

angle of friction varied from 33.71º to 48.08º (+42.6%). In the case of cement mortar specimens, 

the variations were from 165 kPa to 279 kPa (+69.1%), and from 36.27º to 39.98º (+10.2%). 

Even if both variables showed significant increase in both cases, the angle of friction increases 

more in L specimens, because of the better frictional response due to the roughness of the bricks, 

while cohesion increases more in C specimens, as they are characterised by better mortar 

adhesion and smooth surfaces of the bricks. Finally, it has to be remarked that the absence of 

an evident trend makes it difficult to find a direct correlation between the results of both types 

of specimen. This asymmetry in the influence of the type of specimen with respect to the 

materials has also been observed in the results of Fouchal et al. [333], as the increase in the 

cohesion values was much higher for hollow bricks than for solid bricks.  
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A further difference found between materials is the dilative nature of the hydraulic lime 

mortar specimens. Dilatancy is the increase of material’s volume after crack formation that is 

associated with the shearing of the joint. The normal vs. shear displacement plots displayed in 

Figure IV.5b and 5d agree with the common features of dilative materials reported by Shadlou 

et al. [342]: (1) - dilatancy is prevented at small strains and accelerates after yielding at higher 

strains, as shown by most of the curves that start with a negative slope but change in 

correspondence with the peak stresses; and (2) – dilatancy depends on the level of normal 

precompression, as the curves of specimens subjected to the highest normal stresses do not 

show dilatancy. In the case of cement mortar, all the curves plotted in Figure IV.6b and Figure 

IV.6d present a negative slope and therefore no dilatancy effects were captured. This difference 

between both materials is related again to the roughness of the bricks surfaces. The handmade 

ones present an irregular surface as result of the fabrication process. One of their faces is 

especially rough due to the casting on a layer of sand, so dilatancy is really expected. 

Conversely, the industrially made bricks present a smooth surface as result of the extrusion 

process that explains why no dilatancy effects were observed. Moreover, with regard to the 

comparison between types of specimen, it is significant that both triplets and couplets have 

yielded the same observations with respect to dilatancy.  

Figure IV.9 provides comparative plots to ease the data interpretation about residual shear 

strength, strength degradation ratios, and fracture energies. As aforementioned, all the studied 

parameters show linear dependency on the level of precompression stress. The estimations from 

couplet tests are also greater in all cases, except for the strength degradation ratios SDR. With 

respect to this latter parameter, Figure IV.9b shows that there is an influence of the material for 

lower and medium precompression stresses. Indeed, masonry L, which relies more on the 

contribution of friction, presents higher values of SDR. Eventually, the scattering of the results 
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for higher precompression stresses is significantly reduced and all specimens show similar final 

SDR, with an average value of 0.87 and a coefficient of variation of 4.2%. 

As shown in Figure IV.9c, a very limited collection of cohesive fracture energy (Gf
II) values 

could be calculated following the previously described first approach. Nevertheless, an 

estimation of the cohesive fracture energy at zero normal stress can still be done by linear 

regression. The results for the sets TL, CL, TC and CC are 0.0152 N/mm, 0.110 N/mm, 0.0284 

N/mm and 0.104 N/mm respectively. These values are similar or of the same magnitude than 

those provided in the seminal research of Van der Pluijm [144], with 0.026 N/mm for soft mud 

brick and 0.058 N/mm for wire cut brick. It is important to note that other than the latter 

reference mentioned, very few comparative values of second mode fracture energy are available 

in literature for brick masonry, e.g. Ferretti et al. [322] found a value of 0.011 N/mm for calcium 

silicate bricks and cement mortar. Regarding the cohesive-frictional fracture energy (Gf
II

_2.5%) 

computed with the second approach, it is noted that specimens built with handmade bricks and 

hydraulic lime mortar showed greater fracture energy than those made of Portland cement and 

extruded bricks. This is again likely related with the superficial roughness of handmade bricks 

that increase the necessary energy to propagate the crack along an irregular superficial contact. 
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Figure IV.9 Comparative plots for different tested specimens of a) residual shear strength τres, b) strength 

degradation ratio SDR, c) cohesive fracture energy Gf
II, and d) cohesive-frictional fracture energy Gf

II
_2.5%. 

IV.3.4 Comparison with available experimental values and standards 

Table IV.4 presents an updated literature review of experimental campaigns on masonry 

made with low strength mortars. A mortar compressive strength of 3.5 MPa has been selected 

as the top bound. Given the limited number of available references on brick masonry, stone 

specimens have also been considered to increase the database on historical-like materials. The 

table indicates, ordered by increasing mortar strength, the type of specimen tested, the mortar’s 

binder and compressive strength, the type of unit and its compressive strength, and the shear 

parameters cohesion and angle of friction. The scarcity of available references is remarkable, 

which supports the contribution of the work presented herein. Although the majority of data 

were obtained from standard triplet tests, a non-negligible number of results comes from 

couplets or small wallettes. This highlights the need of studying the correlation between 
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different setups or, at least, defining the trends that compare results from one type of specimen 

to another.  

The magnitude of the results of this campaign in terms of cohesion and angle of friction 

lay within the intervals of the other researches. As already known, there is no univocal 

correlation between the compressive strength of the mortar and the shear parameters as the latter 

depends on varied physical properties of the masonry constituents. 

Table IV.4 Cohesion (c) and friction (ϕ) for different types of masonry available in the literature, with 

compressive strengths of mortar fm and of units fb.  

Source Mortar fm (MPa) Unit fb (MPa) c (MPa) φ  

Rahgozar and 

Hosseini [343] – 

Direct shear 

couplet 

Lime 0.54 Solid clay brick 10.0 0.054 41.08º 

Milosevic et al. 

[321] – Irregular 

triplet 

Aerial lime 0.56 
Roughly cut 

stones 
50.0 0.080 29.24º 

Rahgozar and 

Hosseini  [343] – 

Direct shear 

couplet 

Lime 0.71 Solid clay brick 10.0 0.064 41.37º 

Alecci et al. [344] 

– Triplet 
Aerial lime 0.96 Solid clay brick 17.0 0.044 - 

This research – 

Couplet 
Hydraulic lime 1.02 Solid clay brick 17.99 0.209 48.08º 

This research – 

Triplet 
Hydraulic lime 1.02 Solid clay brick 17.99 0.167 33.71º 

Milosevic et al.  

[321] – Irregular 

triplet 

Hydraulic lime 1.47 
Roughly cut 

stones 
50.0 0.200 50.88º 

Binda et al. [345] 

- Triplet 
Hydraulic lime 1.50 

Sandstone 

blocks 
106.0 0.330 36.46º 

Binda et al.  
[345] - Triplet 

Hydraulic lime 1.50 
Calcareous 

stone blocks 
5.9 0.580 30.12º 

Pelà et al. [145] - 

Triplet 
Aerial lime 1.63 Solid clay brick 30.7 0.040 35.65º 

Uranjek and 

Bokan-Bosiljkov 

[346] – Triplet 

Aerial lime + 

slag 
2.47 Solid clay brick 32.2 0.099 43.78º 

Augenti and 

Parisi [331] – 

Couplet wallette 

Pozzolana 2.5 Cut tuff blocks 4.1 0.146 16.44º 
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Source Mortar fm (MPa) Unit fb (MPa) c (MPa) φ  

This research – 

Couplet 
Cement 2.53 Solid clay brick 27.93 0.252 41.10º 

This research – 

Triplet 
Cement 2.53 Solid clay brick 27.93 0.165 36.27º 

Binda et al. [116] 

– Triplet 
Hydraulic lime 2.61 Clay brick 14.25 0.230 30.00º 

Alecci et al.  

[344] – Triplet 
Cement-lime 2.75 Solid clay brick 17.0 0.212 - 

Uranjek and 

Bokan-Bosiljkov  

[346] – Triplet  

Aerial lime 2.82 Solid clay brick 32.2 0.121 38.00º 

Van der Pluijm 

[144] – Couplet 
Cement lime 3.00 Soft brick 33.00 0.100 47.55º 

Van der Pluijm  

[144] – Couplet 
Cement lime 3.00 Sandlime brick 35.00 0.150 57.87º 

Alecci et al. [347] 

– Triplet 
Cement-lime 3.22 

Solid clay 

bricks 
24.1 0.260 34.38º 

 

Finally, Table IV.5 includes a comparison of the experimental results of cohesion or initial 

shear strength with the values recommended in two design standards: the Eurocode 6 for 

masonry structures [60] and the “Circolare” associated to the Italian NTC [62]. The latter is 

specific for existing and historical structures. Even if conceptually different, since the 

experimental values refer to the strength of a single joint and the design values refer to the 

strength of the masonry composite, the codes use the joint results to feed their models. The 

characteristic values of the cohesion are obtained as the 80% of the experimental results as 

indicated in EN1052-3 [135]. In the present research, and in the case of the weaker mortar, the 

characteristic initial strength is underestimated by the Eurocode 6 proposed value, while it is 

overestimated for the cement mortar masonry. With regard to the Italian recommendations, the 

experimental values lay within the suggested limits. The triplet tests, although with the 

associated problems of interpretation, provide values which are safer with regard to design. On 

the other hand, it could be expected that couplet tests may provide more representative 
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estimations that could allow more economical and respectful interventions. Nevertheless, their 

representativeness should be investigated with further theoretical and numerical studies. 

Table IV.5 Comparison of experimental results with design standard values. 

Tests 
Experimental 

cohesion c (MPa) 

Experimental 

characteristic 

cohesion ck (MPa) 

Characteristic 

initial shear 

strength EC6 [60] 

fvk0 (MPa) 

Initial shear 

strength 

NTC2018 [62] 

fv0 (MPa) 

TL 0.167 0.134 
0.1 0.13-0.27 

CL 0.209 0.167 

TC 0.165 0.132 
0.2 0.13-0.27 

CC 0.252 0.202 

IV.4     Conclusions 

This paper has presented an experimental investigation on the shear characterisation of 

masonry. A novel contribution is the execution of a direct experimental comparison between 

two types of specimen, standard triplets and couplets. The testing setup for couplets was a 

simple modification of the standard setup for triplets. Two different sets of materials were 

considered, with the aim of duplicating the observations. 

Both types of specimen have provided sound experimental results showing the expected 

dependency with the normal compression stresses. This dependency influenced the values of 

ultimate and residual shear strengths, as well as the values of fracture energy. The magnitudes 

of the estimated mechanical parameters, such as cohesion, angle of friction, and cohesive 

fracture energy at zero precompression, are similar to those found in literature for comparable 

materials. In addition, both specimens have predicted similar trends with respect to dilatancy. 

Couplet specimens provided consistently higher values of cohesion and angle of friction 

than triplets. For masonry made of handmade bricks and hydraulic lime mortar, the variations 

were of +25.1% and +42.6% for cohesion and angle of friction respectively. For masonry made 

of extruded bricks and cement mortar, the rates of increase were +69.1% and +10.2% for 
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cohesion and angle of friction respectively. This asymmetry in the influence of the type of 

specimen seems to be related with the dominant response of the materials, which is frictional 

in the case of the rougher handmade bricks, and cohesive in the case of the smooth extruded 

bricks. Therefore, a direct univocal correlation could not be found given the limited amount of 

data and the divergent trends. The type of specimen also influenced the estimations of fracture 

energy and residual shear strengths. 

The differences between standard triplets and couplets could be explained as the result of 

several causes. First, the stress distributions along the mortar joints are different in both types 

of specimen. Second, the lower strengths found with triplets could be explained from a 

statistical approach, given that the brick-mortar interface area is twice larger in triplets than in 

couplets. Third, the evaluation of the actual stresses along the joints may be biased in both types 

of specimen, by the double peak phenomenon in the case of triplets, and by the friction of the 

lateral faces in the case of couplets.   

A database of shear parameters for masonry made with low strength mortars has been 

presented. Besides results on standard triplets, the database included results from couplets and 

other irregular specimens, which are easily found in literature. It was however difficult to find 

references with experimental comparisons between the different types of specimen. This is a 

consideration that should be kept in mind when using parameters from existing databases. It is 

always necessary to know the conditions under which those parameters were obtained. 

One of the studied sets of materials aimed to represent a historical type of masonry built of 

handmade bricks and hydraulic lime mortar. The standard triplet tests provided a cohesion of 

167 kPa and an angle of friction of 33.71º. These new results contribute to complete the 

available database on similar materials. 
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6.3. Paper V – Experimental and numerical insights on the 

diagonal compression test for the shear characterisation of 

masonry 

 

J. Segura, L. Pelà, S. Saloustros, P. Roca. Under review 

 

Abstract: The masonry tensile strength and shear modulus play a key role in the definition 

of the shear capacity of masonry structures. These properties are often determined 

experimentally by means of the diagonal compression test on square walls, which is regulated 

by the ASTM E519 standard. In spite of its wide use, the interpretation of the test is still 

controversial and no universal criterion exists on how to derive the masonry mechanical 

properties from the wall overall strength. Aiming to contribute in the improvement of the test’s 

reliability and interpretation, this paper presents an investigation on the use of the diagonal 

compression test to characterize the shear properties of masonry. First, an experimental 

campaign on brickwork walls is described. The walls were built in laboratory in Flemish bond, 

a pattern that has been scarcely investigated in the available research studies on this type of 

test. Second, an advanced numerical model is used for the analysis of walls subjected to the 

diagonal compression test. The adopted numerical model, enhanced by a crack-tracking 

algorithm to reproduce accurately the tensile damage localization, constitutes a very useful and 

powerful tool to interpret correctly the behaviour during the test. Finite element analysis was 

executed to interpret the walls’ response in the linear and nonlinear ranges with models 

properly calibrated by comparison with the experimental results. As a result, a criterion was 

determined for the calculation of the tensile strength from the outcomes of the diagonal 

compression test. A sensitivity analysis was carried out with regard to the most influent material 
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properties of the material, the geometrical dimensions of the panel, and the loading conditions 

of the testing setup. The findings of this research were finally applied and validated by means 

of simulations of diagonal compression tests from eight experimental campaigns performed by 

other authors on different masonry typologies. 
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V.1 Introduction 

Shear walls resist the seismic effects in masonry buildings mostly through in-plane 

resisting modes. Being local out-of-plane wall failures prevented by appropriate connections 

between elements, the resisting mechanism that governs the global behaviour of the structure 

is the in-plane shear capacity of the walls [348,349], directly depending on the masonry shear 

strength.  

The definition of the shear strength of masonry is not univocal [310]. Because of its 

complex and composite behaviour, masonry may experience different failure modes under 

lateral loading, depending on the relative mechanical properties of the constituents, the 

boundary conditions, the geometry of the panel, and the level of vertical load acting on the 

structure. Three mechanisms are usually identified as potential failure modes in shear [350]: a) 

rocking failure involving the overturning of the wall and crushing of the compressed corner, b) 

shear sliding failure along a horizontal crack in the mortar bed-joints, and c) shear diagonal 

cracking through bed- and head-joints or also through the units. Different physical models have 

been adopted to estimate the shear capacity associated to the former mechanisms [310]  

In the case of diagonal cracking, which is a recurrent mode observed after past earthquakes 

[165,310], Turnšek and Čačovič proposed a criterion that predicts the shear capacity of a wall 

for a given level of compressive stresses [170]. The criterion is based on a triple assumption: a) 

masonry is considered a homogeneous and isotropic material, b) failure occurs when the 

maximum principal stresses at the centre of the panel, which can be derived through the Mohr’s 

circle from the acting shear and compressive stresses, exceed a reference value, and c) the 

reference value is supposed to be constant for walls made of the same material and represents 

a characteristic property. Turnšek and Čačovič validated these assumptions experimentally and 
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provided the following Equation V.1 for the shear interaction diagram of a wall (presented 

herein in the more general form published in [351]):  

𝜏𝑚 =
𝑓𝑡

𝑏
√1 +

𝜎0

𝑓𝑡
 (V.1) 

where τm and σ0 are the average shear stress at failure and the compressive stress in the wall 

due to vertical loading respectively, and b is a coefficient that accounts for the distribution of 

stresses within the panel. ft is the reference limit strength, defined and adopted as the 

conventional tensile strength of masonry [310,350]. Although the initial assumptions are drastic 

[3,350], this criterion is thoroughly diffused [352] as it manages to describe a complex 

behaviour with a single global parameter. Furthermore, the hypothesis of homogeneity is 

consistent with the continuum homogeneous models still in use for the analysis of masonry 

structures [3,12]. 

 The experimental determination of this tensile strength of masonry would require the 

performance of shear-compression tests in the laboratory and the derivation of ft from the 

inverse of Equation V.1. These tests are however costly in terms of time and equipment as 

special loading apparatus are necessary to impose the proper boundary conditions and loads 

[171], and the mode of failure is difficult to control [165]. An alternative test that induces a 

state of stresses leading to a diagonal cracking failure is the diagonal compression test 

[146,348,351]. This type of test is considered to be more versatile, simpler, and less expensive 

[169,353,354], being also applicable to in-situ inspections of real buildings [146]. 

The diagonal compression test consists of loading a masonry assemblage in compression 

along one of the diagonals, thus causing a tension failure with the specimen splitting apart 

parallel to the direction of load [355]. Given its ability to induce a shear diagonal cracking, it 

has been extensively used recently as a tool for comparing reinforcement products and 
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techniques [165–168,356,357], as well as to investigate the behaviour of historical buildings 

[163,164,358]. This test is also recommended as a characterisation tool by several national and 

international building codes [10,62,129]. 

The American standard ASTM E519 [355] is the main reference that provides guidance on 

the features of the masonry specimens required for the test and on the loading conditions and 

protocols. It regulates the calculation of the acting stresses and the shear modulus of masonry 

as well. Based on the hypothesis of an isotropic linearly elastic material, the standard assumes 

a stress state of pure shear at the centre of the panel. Figure V.1b represents the corresponding 

Mohr’s circle. Under the hypothesis of pure shear, the maximum principal stress, σI, is equal to 

the shear stress, τxy, and the standard proposes the following Equation V.2 for their calculation: 

𝜎𝐼,𝐴𝑆𝑇𝑀 = 𝜏𝑥𝑦,𝐴𝑆𝑇𝑀 = 0.707
𝑃

𝐴
 

 (V.2) 

where P is the diagonal load at a given time and A is the net area of the specimen computed 

with Equation V.3:  

𝐴 = 𝑡
𝑤 + ℎ

2
 

(V.3) 

where w, h and t are the width, height and thickness of the specimen respectively. Equation 

V.4 applies for the calculation of the tensile strength assuming that it is equal to the maximum 

principal stress at failure: 

𝑓𝑡,𝐴𝑆𝑇𝑀 = 0.707
𝑃𝑚𝑎𝑥

𝐴
 

 (V.4) 

where Pmax is the diagonal load value at failure. Additionally, there exists a 

recommendation by RILEM, LUMB6 [157], that covers also this test and specifies dimensions 

of specimens and apparatus. The suggested expression to calculate the tensile strength is the 

same as in ASTM E519 [355]. 



CHAPTER 6 

 

PAPER V    

 

232 

 

However, as soon as in 1931, Frocht found that a square plate made of an elastic isotropic 

material loaded in diagonal compression does not experience a pure shear state of stresses but 

a complex non-uniform one, where the normal components are not null [160]. Frocht drew this 

conclusion both from analytical derivation and by photoelasticity. These findings were 

confirmed afterwards in several instances by means of modern numerical methods 

[161,162,359]. Equations V.5 to V.7 show the expressions to calculate the acting stresses 

following Frocht’s approach. Equation V.8 relates the tensile strength of masonry with the 

maximum principal stress at failure: 

𝜎𝑥,𝐹𝑟𝑜𝑐ℎ𝑡 = 𝜎𝑦,𝐹𝑟𝑜𝑐ℎ𝑡 = −0.58
𝑃

𝐴
 

(V.5) 

𝜏𝑥𝑦,𝐹𝑟𝑜𝑐ℎ𝑡 = 1.1
𝑃

𝐴
 

(V.6) 

𝜎𝐼,𝐹𝑟𝑜𝑐ℎ𝑡 = 0.52
𝑃

𝐴
 

(V.7) 

𝑓𝑡,𝐹𝑟𝑜𝑐ℎ𝑡 = 0.52
𝑃𝑚𝑎𝑥

𝐴
 

(V.8) 

where σx and σy are the normal stresses. Figure V.1c depicts the corresponding Mohr’s 

circle. More recently, Brignola et al. [162] performed non-linear numerical analysis that 

accounted for the redistribution of stresses after failure and proposed new coefficients for 

Equation V.8, as explained in Section V.4.2.2. 
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Figure V.1 a) Coordinate system in the diagonal compressed wall. b) Mohr’s circle representations of the 

stresses at the centre of the panel according to ASTM’s and c) Frocht’s approaches. 

As illustrated in Figure V.1, both approaches, i.e. ASTM’s and Frocht’s, lead to different 

estimations of the tensile strength of masonry, but also of the acting shear stresses and the shear 

strength at zero compressive stress. Several authors have pointed out the controversy around 
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these interpretations of the diagonal tests and have questioned the proposed formulae 

[163,169,171,344,348]. This open debate hinders the applicability of the test and makes the 

comparison between researches difficult. Yet, even if the approach of ASTM E519 [355] 

overestimates the values of tensile strength compared to Frocht’s approach, it is still the most 

spread standard, and Equation V.2 is widely used [167,168,173,356,357,359–363].  

The work presented herein provides new insights on the mechanical behaviour of masonry 

panels under diagonal compression, and investigates the use of this test for the determination 

of homogenised properties of masonry, specifically the tensile strength and the shear modulus. 

The paper starts with two preliminary sections that describe the data and tools used to carry 

out the investigation. Section V.2 presents an experimental campaign involving diagonal 

compression tests that will be used as calibration results. This campaign has additional 

relevance as it deals with tests on masonry walls made of clay bricks and hydraulic lime mortar 

arranged in Flemish bond. This masonry typology has received little attention until now in the 

available scientific literature [364], and its investigation constitutes a novel contribution of the 

paper. Section V.3 describes the numerical tools used for the simulation of the experimental 

tests. The employed numerical model is based on a standard finite element formulation and 

includes the accurate description of tensile crack localization through a crack-tracking 

algorithm.  

Section V.4 constitutes the core of the paper. It includes the calibration of a numerical 

continuum model with the experiments of Section V.2, the interpretation of the stress field 

within a masonry panel and the proposal of coefficients for the calculation of both the tensile 

strength and the shear modulus from diagonal tests. It also includes a sensitivity analysis of the 

proposed coefficients and their validation with cases investigated by other authors. Section V.5 

presents the concluding remarks of the research. 
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V.2 Experimental programme 

The experimental programme presented herein had two main objectives: a) providing 

experimental data to calibrate the numerical models necessary for the investigation on the 

interpretation of the diagonal test, and b) characterizing a masonry typology recurrent in 

existing historical buildings. This section describes briefly the programme, which was carried 

out at the Laboratory of Technology of Structures and Building Materials of the Technical 

University of Catalonia (UPC – BarcelonaTech). 

V.2.1 Materials 

The masonry walls were built with handmade solid clay bricks and a low mechanical 

performance lime mortar, aiming to replicate a historical brickwork. 

Solid clay bricks, moulded and fired manually, were provided by a local company. Bricks 

had average dimensions of 311 (length) × 149 (width) × 45 (height) mm³ and presented rough 

surfaces because of their traditional manufacturing. Table V.1 includes the results of 

characterisation tests. The brick compressive strength, fb,c, was estimated according to the 

standard EN 772-1 [285] on cut pieces of 100 × 100 mm². Two different types of test were 

carried out to approximate the tensile strength of the bricks: three-point-bending tests on full 

bricks according to EN 772-6 [286] to evaluate the flexural tensile strength, fb,f, and Brazilian 

tests on prismatic pieces of 160 × 40 × 40 mm³ to estimate the indirect splitting tensile strength, 

fb,sp.  

A hydraulic lime based commercial mortar was chosen as binding material. This mortar 

was modified with limestone filler additions to reduce its strength, as explained by the authors 

in a recent publication [334]. During the construction of each masonry wall, mortar prisms with 

dimensions 160 × 40 × 40 mm³ were prepared from the mason’s batch. Each set of prisms was 
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tested at the same time of its companion wall. Table V.1 presents the average compressive 

strength, fm,c, and the average flexural tensile strength, fm,f, of mortar determined according to 

EN 1015-11 [257]. Additionally, after the test of each wall, some masonry bed-joints were 

disassembled with the aim of extracting mortar samples to perform double-punch tests (DPT). 

Specimens with approximated dimensions of 50 × 50 × 15 mm³ were tested according to DIN 

18555-9 [304] to assess the mortar compressive strength within the joints, fm,DPT.  

Masonry specimens made with these two same components were tested in parallel 

campaigns [268,365] to evaluate the compressive and shear mechanical properties of the 

masonry composite (see Table V.1). The compressive strength of masonry, fc, was obtained 

from tests on running bond walls according to EN 1052-1 [72]. Two additional tests on stack 

bond prisms provided estimations of the compressive fracture energy, Gfc. Triplet specimens 

were tested by following the standard EN 1052-3 [135] to determine the cohesion, c, and angle 

of friction, Φ, of the masonry bed-joints. 

Table V.1 Mechanical properties of constituent materials (brick and mortar) and of masonry composite. 

Brick fb,c [MPa] fb,f [MPa] fb_sp [MPa]  

Average 17.99 2.44 1.44  

Number of specimens 20 10 24  

CV 8.3% 20.0% 13.0%  

Mortar fm,c [MPa] fm,f [MPa] fm_DPT [MPa]  

Average 2.19 0.66 5.11  

Number of specimens 38 76 232  

CV 26.1% 25.4% 23.0%  

Masonry fc [MPa] Gfc [N/m] c [MPa] Φ [º] 

Average 6.51 9750 0.16 33.71 

Number of specimens 4 2 - - 

CV 8.9% 15.2% - - 

V.2.2 Masonry specimens 

Five double-leaf masonry walls with nominal dimensions 1270 × 1270 × 311 mm³ were 

built in the laboratory. The specimens were labelled URM_#, where # is a digit from 1 to 5. 
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The chosen dimensions allowed to satisfy the geometrical requirements established in the 

standard ASTM E519 [355] and in the recommendations LUMB6 of RILEM [157], i.e. have a 

minimum dimension of 1200 mm and be a minimum of four units wide, respectively. The walls 

were built in Flemish bond, as shown in Figure V.2. This bond pattern is particularly common 

in historical buildings [358,366] but still few experimental results are available in literature for 

this typology [358,364]. As reported in [165], there is a lack of experimental evidence on 

double-wythe masonry.  

Professional bricklayers built the walls on metallic C-profiles. This measure facilitated the 

later handling of the specimens. To avoid any influence of the metallic base during the tests, an 

interface consisting of one Teflon sheet 3 mm thick and one PVC sheet 3 mm thick was placed 

on top of the C-profile before laying the first joint of mortar (see Figure V.2). Up to 21 brick 

courses conformed the walls, with 15 mm thick mortar joints. This thickness was necessary to 

accommodate the irregularities of the brick surfaces. After the construction, the walls were 

stored in laboratory conditions during the curing of the mortar and were tested after 28 days. 

V.2.3 Setup and testing procedure 

The standard ASTM E519 [355] served as reference for the execution of the tests. 

However, a modification was introduced with respect to the positioning of the walls and they 

were kept horizontal instead of rotated 45 degrees. This measure avoided any damage during 

the handling of the specimens due to their low strength and is rather common in research 

practice [166,367,368]. Furthermore, this setup replicates the same one used for in-situ testing 

[163,164]. 

Figure V.2 displays the entire experimental setup for testing a wall. The specimens were 

placed on top of a metallic bench. Two steel loading-shoes, bolted to two robust beams, were 
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placed at two diagonally opposite corners of the specimens. The two beams were connected by 

two Dywidag bars, one at each face of the walls. During the test, two hydraulic jacks pulled the 

bars, thus creating a closed-loop system and introducing the diagonal load into the specimens 

[367]. The loading depth of the steel shoes at the corners was of 140 mm. The ratio of the loaded 

depth (140 mm) with respect to the total width of the wall (1270 mm) is equal to 1/9th. This 

ratio was chosen as a compromise between the suggestions reported in ASTM E519 [355] and 

in RILEM LUMB6 [157], which are 1/8th and 1/10th respectively. 

The loading protocol involved two stages, following the approach applied by the authors 

in [268]. The first stage aimed to facilitate the measurement of the elastic shear modulus of 

masonry, and consisted of the application of three loading-unloading cycles, from 10 to 50 kN 

under load control. The execution of cycles, as reported in [268] and suggested by specific 

standards for the determination of elastic properties (e.g. [119,287]), minimizes the possible 

errors due to initial effects of backlash and specimen irregularities. The second stage of the tests 

investigated its ultimate capacity. The load was applied beyond failure under displacement 

control at a constant rate of approximately 0.5 mm/min. The tests were stopped when the 

reduction of the load attained 50% of the registered peak load. 

Besides the pressure transducer and the encoder necessary to control the hydraulic jacks, 

the walls were mainly instrumented with four linear variable differential transducers (LVDTs). 

The mounted instruments had a displacement range of ± 5 mm and a precision of 5 µm. Two 

LVDTs were placed on each face of the specimens along the diagonals, one aimed to measure 

the shortening of the compressed diagonal and the other aimed to capture the elongation of the 

diagonal under tension. Redundant instrumentation, including wire sensors and additional 

displacement transducers, was mounted to assess the global behaviour of the walls during the 
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tests. Further details on the whole setup and testing procedure are available in [168], which 

covers a parallel research on strengthened masonry. 

 

Figure V.2 Setup of the diagonal compression test. 

After the tests, the tensile strengths of each wall were evaluated with Equations V.4 and 

V.8 corresponding to the different approaches of ASTM E519 [355] and Frocht [160]. The 

shear strains γ were calculated with the following Equation V.9: 
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𝛾 = 𝜀𝑐 + 𝜀𝑡   (V.9) 

where εc and εt are the compressive and tensile strains along the compressed and tensioned 

diagonals, obtained as the average of the readings from the LVDTs on both sides of the wall. 

The shear elastic moduli were evaluated as the chord modulus between the 5% and 30% of the 

actual maximum load (Pmax) of the shear stress-strain curves. Equations V.10 and V.11 present 

the expressions to calculate the shear elastic moduli G for each of the considered approaches, 

where the shear stresses are evaluated with Equations V.2 and V.6: 

𝐺𝐴𝑆𝑇𝑀 =
0.707

∆𝑃5−30%

𝐴
∆𝛾5−30%

 (V.10) 

𝐺𝐹𝑟𝑜𝑐ℎ𝑡 =
1.1

∆𝑃5−30%

𝐴
∆𝛾5−30%

 (V.11) 

where ΔP5-30% and Δγ5-30% stand for the increase of load and strain respectively between the 

5% and 30% of the maximum load. 

V.2.4 Experimental results 

Figure V.3 displays the crack patterns of the five walls after failure. These patterns were 

qualitatively similar and, in all cases, a final diagonal main crack connected both loaded 

corners. The particularity of the Flemish bond used to build the walls reflects in the number of 

bricks affected by the crack. Contrarily to other bond arrangements such as header bond, where 

cracks follow the mortar joints and bricks are broken only rarely [166,369], the length of the 

bricks used herein hindered the formation of a stair-stepped crack and necessarily required the 

failure of bricks in tension. Figure V.3f includes a detail of URM_2 that shows cracks involving 

both bricks and mortar joints. 
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The five walls presented a relatively brittle behaviour. In all cases, the load increased 

linearly with the imposed displacement until a change in the slope of the loading curves was 

noticed. This sudden change would indicate the appearance of initial damage and was detected 

by both the LVDTs and the redundant instrumentation at a load level around 80 to 90% of the 

maximum load Pmax. At that moment, superficial cracks were not visible to the naked eye. Full 

cracks connecting the corners appeared at the maximum load or immediately after, and 

continued to develop and open during the loss of bearing capacity of the wall. Only in the case 

of specimen URM_3, cracks started clearly at the centre of the panel and progressed along the 

diagonal to reach the corners. In the rest of specimens, it was difficult to place the starting point 

of cracks, as they appeared almost simultaneously along the full length. 

Table V.2 presents a summary of the experimental results from diagonal compression tests 

on the five walls. Table V.2 indicates the registered values of maximum load Pmax and the 

calculated values of tensile strength ft and shear modulus G according to the two approaches 

and Equations V.4, V.8, V.10 and V.11. No values of shear modulus are given for specimen 

URM_2 due to invalid readings of the LVDTs during the test. The need of delving into the 

interpretation of the diagonal test outcomes is evident in the light of the obtained average 

results. Compared to the standard procedure of the ASTM E519 [355], the estimations of the 

tensile strength and shear modulus of masonry with Frocht’s approach are 26% lower and 56% 

higher respectively. 
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Figure V.3 a) to e) Crack patterns at the end of the test for the five specimens. f) Pattern detail of wall URM_2 

with cracks involving both bricks and mortar joints. 

The obtained average values of tensile strength compare well with the few published results 

in literature on Flemish bond walls built with similar components [358]. 

Table V.2 Experimental results. Maximum load, tensile strength and shear modulus of each specimen. 

Specimen Pmax [kN] ft_ASTM [MPa] ft_Frocht [MPa] GASTM [MPa] GFrocht [MPa] 

URM_1 178 0.32 0.24 1536 2389 

URM_2 167 0.30 0.22 - - 

URM_3 117 0.21 0.15 1149 1787 

URM_4 179 0.32 0.23 1571 2444 

URM_5 115 0.21 0.15 883 1375 

Average 151 0.27 0.20 1285 1999 

CV 21.5% 21.3% 21.3% 25.6% 25.6% 
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The coefficients of variation of the experimental results range from 20 to 25%. This 

relatively high variability is common in this type of material and typology of test 

[348,356,359,370]. According to the coefficients of variation presented for bricks and mortar 

in Table V.1, the inherent variability of the material constituents can fully explain the scattering 

found in the diagonal compression tests. In this type of tests, cracks are localized in a narrow 

band of the wall, as shown in Figure V.3. Given the brittleness of the observed failures, and in 

agreement with the weakest-link postulate for brittle materials [341], it could be expected that 

the global results were sensitive to the local properties of the constituents. Another additional 

source of variability is given by the Flemish bond and the relevant two-brick thickness of the 

walls, which constitutes a further complexity in the material structure compared with the 

recurrent tests available in the literature on one brick walls with units laid in a stretcher pattern. 

As will be seen in Section V.4.1, this variability is helpful to the aim of this study because 

the results can be grouped in data sets of similar properties, and they can be used for the 

calibration of the numerical model in Section V.4. Table V.3 identifies the three proposed data 

sets, one corresponding to the average values and the other two corresponding to the higher and 

lower values. 

Table V.3 Experimental data-sets for numerical calibration. 

Data-set Specimens Pmax [kN] ft_ASTM [MPa] ft_Frocht [MPa] GASTM [MPa] GFrocht [MPa] 

High-set URM 1 & 4 178.5 0.32 0.23 1553 2417 

Average-set URM 1 to 5 151 0.27 0.20 1285 1999 

Low-set URM 3 & 5 116 0.21 0.15 1016 1580 

V.3 Numerical tools 

This Section V.3 provides the details of the numerical model employed in Section V.4 to 

interpret the diagonal compression tests. Section V.3.1 presents the modelling approach, 
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Section V.3.2 provides a brief description of the constitutive models used for the materials, and 

Section V.3.3. reports details on the simulation process. 

V.3.1 Modelling approach 

Different approaches have been adopted in recent years for the numerical simulation of 

diagonal compression tests. The possibilities span from distinct element models [371] to 

continuous finite element models, the latter covering a variety of cases depending on the level 

of discretisation detail: 3D and 2D homogeneous macromodels with a single masonry material 

[353,371,372], 3D and 2D simplified micromodels with no unit-joint interfaces [373,374], 

micromodels with simplified interfaces [67], or detailed micromodels [375], with diverse 

options of material constitutive laws. 

This research investigates the use of the diagonal compression test to determine 

homogenised mechanical properties of masonry considered as a continuous isotropic material. 

Consistently, and in coherence with the Introduction and the initial hypothesis on which 

Turnšek and Čačovič based their criterion [170], a macromodelling approach has been applied 

to simulate the tests. With this approach, only two materials are considered: steel for the loading 

shoes, and masonry as a whole for the wall. This strategy allows a direct comparison between 

the experimental outcomes and the material input parameters within the same framework. 

V.3.2 Constitutive model 

The nonlinear behaviour of the masonry material is modelled with a constitutive model 

based on Continuum-Damage Mechanics [376]. For the sake of simplicity, few aspects are 

highlighted in the following. The reader is referred to the most recent developments on the 

model for further details [31,377].  
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The strain-based continuum damage model uses two scalar damage variables that allow to 

distinguish between tensile (d+) and compressive (𝑑−) damage. The constitutive law is given 

in Equation V.12: 

𝝈 = (1 − 𝑑+)�̅�+ + (1 − 𝑑−)�̅�− (V.12) 

where 𝝈 is the stress tensor, and the effective stress tensor �̅� is split in a tensor related to 

tension stress states �̅�+and in a tensor related to compression stress states �̅�−. 

Two additional scalar variables, τ±, the equivalent stresses, determine the shape of the 

positive and negative damage surfaces, expressed according to Equations V.13 and V.14: 

𝜏+ = 𝐻[�̅�𝑚𝑎𝑥]
1

1 − 𝑎
[√3𝐽2̅ + 𝑎𝐼1̅ + 𝑏〈�̅�𝑚𝑎𝑥〉]

𝑓+

𝑓−
 

(V.13) 

𝜏− = 𝐻[−�̅�𝑚𝑖𝑛]
1

1 − 𝑎
[√3𝐽2̅ + 𝑎𝐼1̅ + 𝜅1𝑏〈�̅�𝑚𝑎𝑥〉] 

(V.14) 

with 

𝑎 =
(𝑓𝑏

− 𝑓−⁄ ) − 1

2(𝑓𝑏
− 𝑓−⁄ ) − 1

 
(15) 

𝑏 = (1 − 𝑎)
𝑓−

𝑓+
− (1 + 𝑎) 

(16) 

In the above, 𝐼1̅ is the first invariant of the effective stress tensor and 𝐽2̅the second invariant 

of the deviatoric effective stress tensor. f + and f - stand for the tensile and compressive strengths 

respectively and fb
- for the biaxial compressive strength. �̅�𝑚𝑎𝑥 and �̅�𝑚𝑖𝑛 denote the maximum 

and minimum principal effective stresses respectively. H[x] is the Heaviside step function. 

The failure surfaces described above stand for a tension-compression damage model. 

Within a wall subjected to diagonal compression, the combination of tension and compression 

leads to a shear stress state. The parameter κ1 introduced in Equation V.14 is a constant 
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proposed by Petracca et al. [31,378] for an enhanced mechanical description of the shear 

behaviour of masonry structures, as it controls the shape of the failure surface in the shear 

quadrants. Note that a zero value of κ1 leads to the Drucker-Prager criterion, while a unity value 

yields a criterion equivalent to the one proposed by Lubliner et al. [379]. Petracca et al. [31,378] 

have obtained satisfactory results in simulations of shear loading and diagonal cracking when 

using this model. 

The basis of the model also includes the definition of internal variables for the 

representation of the current damage thresholds, as well as the evolution laws for the damage 

variables. An exponential softening law is adopted in tension, while a parabolic hardening – 

exponential softening curve applies in compression. Six material properties are required to 

define the model input parameters: both tensile, ft, and compressive, fc, strengths, both tensile, 

Gft, and compressive, Gfc, fracture energies, and the elastic properties Young’s modulus, E, and 

Poisson’s ratio, ν.  

Additionally, the implementation of a local crack-tracking algorithm allows the simulation 

of localized cracks. This feature is especially convenient to the actual localized cracking found 

in the diagonal compression experiments, and provides a more realistic representation of the 

cracks if compared with the common smeared damage approach. This algorithm identifies the 

elements crossed by propagating cracks at each time/load increment, see references [380–385] 

for further details and the latest developments on this numerical technique. The use of a 

nonlinear stress-strain relationship for the elements on the crack path, together with a linear 

elastic response for the ones outside, allows the simulation of discrete cracks. The parameters 

of the crack-tracking algorithm have already been calibrated with shear benchmark problems 

[383,384] and are directly implemented herein.  
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V.3.3 Numerical simulation 

The diagonal compression test has been analysed under plane stress conditions. The 

simulation of the load application has been performed through imposed displacements, (δu, δv, 

see Figure V.4a), with increasing magnitude, in agreement with the testing procedure. 

Displacements of the same magnitude and opposite direction were imposed at both corners of 

the wall simultaneously. As shown in Figure V.4a, simplified steel loading shoes have been 

included to better simulate the load application. The actual geometry of the masonry specimens 

is modelled with average dimensions. 

The discretization of the specimens consists of an unstructured mesh of 2D plane-stress 

three-noded triangles (see Figure V.4b). The reference mesh contains 8573 nodes, with average 

mesh size, he, of 13 mm. 

The choice of a suitable reference measurement for the comparison between experimental 

and numerical curves to calibrate the models constituted a crucial point of the study. The use 

of the overall stroke of the jacks compared to the displacement between corner nodes was not 

suitable due to spurious readings associated to deformations of the loading devices. The 

compressive strain computed from the experimental readings of the LVDTs placed along the 

compressed diagonal was eventually chosen. This magnitude was compared to the numerical 

compressive strain calculated between two nodes of the compressed diagonal. These two nodes 

acted as a “virtual LVDT” placed at an equivalent position of the experimental LVDTs (see 

Figure V.2 and Figure V.4). However, the value of this compressive strain, immediately before 

and after the peak load, is affected in both the experimental case and numerical cases by the 

opening of the diagonal crack. Given the randomness of the experimental cracking, it was 

decided, during the calibration process, to compare the experimental and numerical curves only 

in terms of initial stiffness and value of the maximum load. 
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Figure V.4 a) Boundary conditions on the numerical simulation and position of the virtual LVDT for 

comparison. b) Discretized domain used for the macromodelling approach. 

The numerical solution was carried out in an incremental manner. A modified Newton-

Raphson method (using the secant stiffness matrix) together with a line-search procedure were 

used to solve the corresponding nonlinear equations. To achieve convergence at each step, the 

maximum value of the ratio between the norm of the iterative residual forces and the norm of 

the total external forces was set at 10-2. Calculations were performed with an enhanced version 
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of the finite element software COMET [386], while the software GiD [387] was used for the 

pre- and post-processing of the model. Both software have been developed at the International 

Centre for Numerical Methods in Engineering (CIMNE), in Barcelona. 

V.4 Study on the diagonal compression test to estimate homogenised 

properties of masonry 

This section investigates the possibility of using the diagonal compression test 

experimental outcomes to determine two mechanical properties of masonry: tensile strength 

and shear modulus. The basic hypothesis is considering masonry as a homogeneous and 

isotropic material, in correspondence with the assumption of the Turnšek and Čačovič criterion. 

Thus, the tensile strength and shear modulus are considered as global and intrinsic parameters 

of the material. 

The investigation begins with the calibration of a numerical macromodel with the 

experimental results exposed in Section V.2. Once the model is calibrated, the state of stresses 

within a reference panel is interpreted, and a factor is proposed to calculate the tensile strength. 

A sensitivity analysis evaluates the influence on this factor of the input material properties, the 

panel size and the dimensions of the loaded corners. Eight different experimental campaigns 

available in the scientific literature have been used as benchmark problems to validate the 

findings of this section for different masonry typologies. 

V.4.1 Calibration of the macromodel 

The numerical macromodel has been calibrated to fit the experimental curves of the three 

data sets defined in Table V.3. The calibration process followed a splitting approach, as defined 

by Chisari et al. [67]. The first stage involved the calibration of the elastic parameters, Young’s 
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modulus and Poisson’s ratio, to adjust the slopes of the curves. The second stage required the 

calibration of the tensile strength and the tensile fracture energy to reach the corresponding 

maximum load.  

The initial values of the mechanical properties were chosen as follows. The compressive 

strength and compressive fracture energy of masonry were always taken equal to the 

experimental values provided in Table V.1. The experimental shear moduli obtained from both 

approaches, i.e. ASTM’s and Frocht’s in Table V.3, were used to determine the Young’s moduli 

by means of the relationship E = 2G(1 + ν). The former expression is valid due the elastic linear 

behaviour presented by the walls at low load levels. Different values of Poisson’s ratio were 

checked. The experimental values of tensile strength obtained from both approaches (Table 

V.3) were assumed as starting point. Two different expressions were used to link the tensile 

fracture energy to the strengths of masonry. Equation V.17 was proposed by Angelillo et al. 

[69] as an adaptation from Model Code 1990 for concrete structures [388]. Equation V.18 is 

the proposal of the Model Code 2010 [389].  

𝐺𝑓𝑡 = 0.04 𝑓𝑡
0.7   (V.17) 

𝐺𝑓𝑡 = 73 𝑓𝑐
0.18  (V.18) 

Figure V.5 shows the results of the calibration with the comparison between the numerical 

and the experimental curves. Figure V.6 displays the contour of maximum principal strains in 

the finite element model for one of the cases after failure. The resulting numerical crack is 

perfectly diagonal and mesh-independent, proving the high accuracy of the considered 

computational technique. The adopted numerical approach simulates well the described crack 

patterns obtained experimentally and shown in Figure V.3. Table V.4 includes the final input 

parameters for the three different data sets and the comparison between the numerical and 

experimental maximum loads. The difference is always lower than 2%. 
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Regarding the input data indicated in Table V.4, the final values of Young’s moduli, which 

best fitted the experimental slopes, corresponded to those obtained from the values of shear 

moduli given by Frocht’s expression (Equation V.6). The input tensile strength was the most 

relevant parameter affecting the appearance of damage and defining the maximum load. In the 

three data sets, the values obtained by means of ASTM’s and Frocht’s approach (Equations V.4 

and 8) led to very high values of peak load. In the three data sets, in order to attain the sought 

load levels, it was necessary to reduce the input tensile strength to a value close to 0.40 times 

the experimental load Pexp over the area A. The modified expression from Model Code 1990 for 

the tensile fracture energy (Equation V.17) worked well also for the three-data sets. These 

satisfactory results were obtained with a constant value of 0.16 for the numerical parameter κ1 

proposed by Petracca et al. [31,378]. The same value was used in [31,377,384] to simulate other 

shear tests. The calibration process described in this paragraph applied for the three different 

data sets and led to good simulations of the initial slopes of the experimental curves, the 

maximum attained loads, and the failure mechanism. 

Table V.4 Calibration of the numerical model with experimental results: Input data for the numerical analyses of 

the three data-sets, and comparison between experimental and numerical maximum loads. 

 Input data Comparison exp - num 

Data-set 
E 

(MPa) 
ν (-) 

ft 

(MPa) 

fc 

(MPa) 

Gft 

(N/m) 

Gfc 

(N/m) 
κ1 (-) 

Pexp 

(kN) 

Pnum 

(kN) 
Δexp-num 

High-set 4203 0.15 0.183 6.51 12.17 9750 0.16 178.5 176.3 + 1.2% 

Average-set 3477 0.15 0.155 6.51 10.85 9750 0.16 151 151.8 -0.5% 

Low-set 2748 0.15 0.119 6.51 9.03 9750 0.16 116 117.6 -1.4% 
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Figure V.5 Comparison between the load-strain curves of the experimental tests and the numerical analyses. No 

experimental curve is given for specimen URM_2 due to invalid readings of the LVDTs during the test. 

 

Figure V.6 Contour of the maximum principal strains, εI, after the peak load. 

V.4.2 Interpretation of the diagonal test 

The previous section allowed having a properly calibrated numerical model able to 

simulate satisfactorily the experimental diagonal compression tests. This section seeks to 

interpret the state of stresses within the panel and to derive conclusions on the use of the 
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experimental outcomes to determine mechanical properties of masonry. The average data set 

defined in Table V.3 is used as a reference in the following. 

V.4.2.1 Linear range 

First, the focus is placed in the initial stage of the analysis when the wall still behaves 

linearly. For the sake of clarity, it is decided to define a series of coefficients alpha α or 

normalized stresses for the different stress components, according to the applied load P over 

the transversal area A. For a given time-step (i), the coefficients for the different stresses (σx, σy, 

τxy, σI) are defined with Equations V.19a to V.19d: 

𝛼𝑥(𝑖) = 𝜎𝑥(𝑖)
𝐴

𝑃(𝑖)
 (19a) 

𝛼𝑦(𝑖) = 𝜎𝑦(𝑖)
𝐴

𝑃(𝑖)
 (19b) 

𝛼𝑥𝑦(𝑖) = 𝜎𝑥𝑦(𝑖)
𝐴

𝑃(𝑖)
 (19c) 

𝛼𝐼(𝑖) = 𝜎𝐼(𝑖)
𝐴

𝑃(𝑖)
 (19d) 

Figure V.7 shows three contour plots that represent the stress state of the wall in the linear 

range. The coefficient α corresponding to each stress component at the centre of the panel is 

indicated below each of the plots. Unlike the hypothesis of pure shear stated in the American 

standard ASTM E519 [355], Figure V.7a illustrates that the normal stresses along the X-axis 

(also along Y-axis) are not null. As pointed out by Gabor et al. [374], the stress condition of 

pure shear would require an additional pair of tensile forces acting at the opposite free corners. 

Therefore, Equation V.4 as proposed in ASTM E519 [355] is not sufficiently realistic. The 

coefficients found in the research presented herein (αx = -0.56, αxy = 1.04, αI = 0.48) are very 
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similar to those found by Brignola et al. [162], and agree with the elastic solution proposed by 

Frocht [160]. The slight differences between the values obtained with numerical methods and 

those found by Frocht may be due in the consideration of Poisson’s ratio and the incorporation 

into the models of the effect of the loading shoes. 

The confining effect exerted by the loading shoes is evident in the three plots of Figure 

V.7. This effect vanishes towards the centre of the panel, where stresses are more uniform. This 

fact highlights the need of following the prescriptions of the standards with regard to the size 

of the panel and length of the loading shoes. Section 4.3 investigates this effect in more detail.  

Figure V.7c confirms that the highest values of tensile stress appear at the centre of the 

panel, and are distributed on a finite region, as shown in Figure V.8. This figure depicts the 

distribution of maximum principal stresses along the four axes of symmetry of the panel. The 

central fifth of the wall is subjected to tensile stresses very close to the maximum value, 

associated with an αI of 0.48. This observation implies that the real wall of masonry would not 

fail at the central point of maximum tensile stresses, but at the weakest point within the material, 

considering both the high stress level and the local material properties at that specific point. As 

stated in Section V.2, the diagonal compression test is sensitive to the local properties of the 

components, and the global scattering in the experimental results would reflect the variability 

within the constituent materials. 
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Figure V.7 Contour of stresses in the linear range, expressed in terms of normalized stress α. a) Normal stresses 

σx along X-axis [σy are not shown due to the problem’s symmetry], b) shear stresses τxy, and c) maximum 

principal stresses σI. 
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Figure V.8 Distribution of the maximum principal stresses along the axes of symmetry of the panel. Stresses are 

normalized and expressed in terms of the coefficient αI. The X-axis represents normalized lengths. The centre of 

the panel corresponds to the coordinate 0.5. 

V.4.2.2 Non-linear range 

The second stage of the study deals with the non-linear range. Figure V.9a shows the 

numerical evolution of stress components at the central element of the panel with increasing 

load, while Figure V.9b depicts the counterpart curves in terms of coefficient α or normalized 

stresses. The horizontal axes of both figures are normalized with respect to the maximum load. 

The constant slope of the linear curves for the stresses agrees with the linear behaviour of the 

walls detected during the tests, and justifies the experimental procedure adopted herein to 

determine the shear modulus as a slope between load levels of 5 and 30% of the assumed 

maximum load. Figure V.10 illustrates the tensile crack propagation in the panel with increasing 

load.  

From Figure V.9 and Figure V.10, it is evident that cracking starts when the maximum 

principal stresses σI at the centre of the panel attain the level of the input tensile strength of the 

material ft. Reaching the level of the tensile strength triggers the apparition of damage at the 

centre of the panel. As shown in Figure V.10, this damage develops from the central region to 

the corners, and eventually leads to the collapse of the panel with the formation of a complete 
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diagonal crack. This sequence agrees with the experimental behaviour described in Section V.2. 

The localization of initial damage within the central region of the wall is in agreement also with 

the general experimental observations, as reported by Magenes and Calvi [350].  

According to Figure V.9 and Figure V.10, the initiation of damage occurs at a level of 

applied load around 80% the maximum attained load. This value is in agreement with the 

observations in the experimental curves reported in Section V.2. It also agrees with the results 

of other researches that also applied a macromodelling approach. Basili et al. [353] used a 

smeared crack model and the computer code MIDAS-FEA to simulate diagonal compression 

tests. In their analyses, the level of damage initiation was equal to 78% the maximum attained 

load. 

 This finding does not comply with the assumption of the standard [355] that establishes a 

correspondence between the initiation of damage at the centre of the panel and the failure of 

the panel. It has been found that the state of stresses of the panel at failure does not correspond 

to the elastic one, and that a redistribution of stresses occurs after the initiation of damage. The 

most important implication of this observation is that, although the failure of the panel depends 

on the tensile strength of the material as it triggers the damage initiation, the subsequent 

behaviour of the wall is more complex and there is not a direct identification between the 

maximum attained load Pmax and the tensile strength of the material ft.  

Nevertheless, the experimental outcome provided by a diagonal compression test is the 

maximum attained load. As mentioned in Section V.2, it is difficult to precisely define in 

laboratory the exact moment of cracking with common instrumentation. Therefore, in order to 

allow the use of the diagonal compression test to determine mechanical properties of masonry, 

it is necessary to define a possible correlation, even if not univocal, between the maximum load 

and the tensile strength of the material. It is proposed to find the coefficient alpha α that 
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correlates the maximum load with the tensile strength. For a given numerical analysis, the 

coefficient αI,calc is back-calculated with Equation 20, which involves the maximum attained 

load and the tensile strength used as an input parameter in the analysis: 

 𝛼𝐼,𝑐𝑎𝑙𝑐 =
𝑓𝑡,𝑖𝑛𝑝𝑢𝑡∗𝐴

𝑃𝑚𝑎𝑥
  (20) 

In the three cases studied in the calibration section, the coefficient αI,calc is almost constant. 

It takes the values of 0.408, 0.402 and 0.400 for the high, average and low data sets respectively. 

Brignola et al. [162] adopted an equivalent solution and proposed different coefficients α for 

different masonry typologies. Their micromechanical model allowed to incorporate further 

material details into the analyses. More precisely, a coefficient of 0.4 relating the maximum 

load to the maximum principal stress was found for a ratio of mortar tensile strength to joint 

cohesion of 0.5. The macroscopic approach used herein is consistent with the diagonal 

compression test that considers masonry as a macroscopically homogeneous material on which 

global mechanical properties can be determined. The advantage of the model used in this work 

is that it includes these global properties, such as the tensile strength, as input parameters. 

Nevertheless, the coefficient αI,calc may only apply to the specific material and walls studied in 

the experimental campaign described in Section V.2. The sensitivity of the coefficient αI,calc to 

different parameters is analysed in Section V.4.3, while its use is validated with experimental 

campaigns carried out by other authors in Section V.4.4. 
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Figure V.9 a) Evolution of stresses and b) relevant normalized values  in the centre of the panel with 

increasing load. The load is normalized with respect to the maximum load attained during the analysis. 
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Figure V.10 Evolution of tensile damage contour for different levels of imposed displacement δ. The tensile 

damage index d+ ranges from 0 (intact material) to 1 (completely damaged material). a) δ = 0.198 mm, P = 

0.82Pmax, b) δ = 0.216 mm, P = 0.89Pmax, c) δ = 0.230 mm, P = 0.95Pmax, d) δ = 0.244 mm, P = Pmax, e) δ = 

0.247 mm, P = 0.92Pmax 

V.4.3 Sensitivity analysis 

This section investigates the sensitivity of the back-calculated coefficient αI,calc to different 

input parameters and boundary conditions. In each sensitivity analysis, the parameter 

investigated was varied, while the rest of properties and conditions were kept constant at the 
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reference values. The average data set defined in the calibration Section V.4.1 was taken as 

reference. 

V.4.3.1 Material properties 

Given the features of the problem, the compressive parameters, such as the compressive 

strength and the compressive fracture energy, have little influence in the maximum attained 

load and the coefficient αI,calc. The Poisson’s ratio has a negligible influence as well. The 

material properties involved in the sensitivity analysis were the Young’s modulus, the tensile 

strength, and the tensile fracture energy. The influence of the numerical parameter κ1, which 

constitutes a special feature of the numerical model that controls the shear response, was also 

investigated. 

Table V.5 reports the values of the parameters that were considered in the sensitivity 

analyses. Either three or four variations were studied for each parameter, whose values were 

chosen as follows. The reference value for the Young’s modulus, E = 3477 MPa, represents a 

ratio of 534 with respect to the compressive strength of masonry (Table V.1, fc = 6.5 MPa). As 

indicated by Tomazevic [305], the ratio E / fc usually ranges between 200 and 1000 in common 

masonry. The values of Young’s modulus reported in Table V.5 correspond to ratios of 200, 

400 and 1000. Similarly, the reference value for the tensile strength, ft = 0.155 MPa, 

corresponds to a ratio of 2.5% with respect to the compressive strength. Common values for the 

tensile strength of masonry range from 1 to 10% the compressive strength [69]. The values of 

tensile strength in Table V.5 stand for 1%, 4% and 5% of the compressive strength. Greater 

percentages were considered unrealistic in this case. The choice of the values of tensile fracture 

energy relied on different approaches. The reference value, which allowed a good calibration 

in Section V.4.1, was obtained by means of Equation V.17 adapted in [69] from the Model 
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Code 1990 [388]. The other two higher values correspond to the unmodified expression of 

Model Code 1990 [388], and to Equation V.18 obtained from the Model Code 2010 [389]. The 

lowest value corresponds to a ductility index of 0.029 mm suggested for bricks by Angelillo et 

al. [69]. Last, the parameter κ1 of the constitutive model proposed by Petracca et al. [31,378] 

was varied within its extreme possible values, 0 and 1. 

Table V.5 Values of the parameters investigated in the sensitivity analyses. 

Input parameter 
E, Young’s 

modulus (MPa) 

ft, Tensile strength 

(MPa) 

Gft, Tensile fracture 

energy (N/m) 
κ1 (-) 

Reference value 3477 0.155 10.85 0.16 

Variation 1 1302 0.065 4.73 0 

Variation 2 2604 0.26 18.5 0.1 

Variation 3 6510 0.325 56.2 0.3 

Variation 4 - - 102 1 

 

Figure V.11 shows the results of the sensitivity analyses in terms of load – strain curves 

and influence on coefficient αI,calc. The effects were qualitatively predictable. Variations in the 

Young’s modulus changed the stiffness of the curves and affected slightly the maximum 

attained load (Figure V.11a). Variations in the tensile strength of the material were strongly 

related to the maximum attained load while the slope of the curves was maintained (Figure 

V.11b). The influence of varying the tensile fracture energy was restricted to the postpeak range 

(not shown in Figure V.11c), and the maximum attained load was only slightly affected.  
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Figure V.11 Sensitivity of the model to variations of different parameters, in terms of load – strain curves and 

coefficient αI,calc. a) Variation of input Young’s modulus, E. b) Variation of input tensile strength, ft. c) Variation 

of input tensile fracture energy, Gft. d) Variation of parameter κ1. 

Quantitatively, the impact of the properties variation on the value of coefficient αI,calc was 

limited, taking into account the wide range of variation investigated. In overall, the coefficient 

αI,calc spanned from 0.38 to 0.45, with the exception of the highest value assigned to the tensile 



CHAPTER 6 

 

PAPER V    

 

264 

 

strength, and remained always below the value associated to the elastic response (0.48). An 

increase of 87% in the reference value of Young’s modulus produced a decrease of only 2.5% 

in the coefficient αI,calc. An increase of 840% in the reference value of tensile fracture energy 

involved a decrease of 5% in the coefficient αI,calc. The influence of the tensile strength was 

greater, as an increase of 110% in the reference value produced an increase of 16% in the value 

of the coefficient αI,calc. This is further evidence of the intimate relation between this parameter 

and the result of the diagonal compression test. For high values of tensile strength, the 

redistribution of stresses is reduced and the load of initial damage is closer to the maximum 

attained load. Figure V.11d illustrates the influence of the parameter κ1 of the adopted 

constitutive model. 

V.4.3.2 Size and confinement effect 

As mentioned in Section 2, the American standard ASTM E519 [355] and the RILEM 

recommendation LUMB6 [157] differ in the prescriptions of panel size and depth of the loading 

shoe. Although the minimum size of 1.2 m prescribed by ASTM E519 [355] is generally 

respected, a number of researches have considered smaller panels, mainly due to economical 

and practical reasons. In fact, the Chilean norm NCh 2123 [159] allows testing wallets with a 

minimum length of 0.6 m. Similarly, the depth of the loading shoe also presents a great 

variability in practice in spite of the recommendations. It is therefore necessary to investigate 

the effect of the size panel and the loading shoe depth on the maximum attained load and the 

coefficient αI,calc. A series of numerical analyses were performed with identical material 

properties to the average data set defined in the calibration in Section V.4.1, but varying these 

two dimensions. 
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Figure V.12 shows the values of the coefficient αI,calc for the different panel sizes 

considered: 0.4 m, 0.6 m, 0.8 m, 1 m, 1.1 m, 1.2 m, the reference panel of 1.27 m, 1.3m, and 

1.4 m. The influence of the panel size revealed to be negligible and was only significant for 

very small panels. A constant value of 0.4 would apply for panels from 0.6 to 1.4 m. This 

numerical finding is consistent with the very limited experimental evidence available in 

literature. Knox et al. [307] did not find statistically significant differences between the 

strengths attained in walls 0.6 m and 1.2 m wide. In a seminal research, Fattal [390] investigated 

walls 1.2 m, 0.8 m, 0.6 m and 0.4 m wide. Only the smallest walls 0.4 m wide showed an evident 

size effect in the results. 

 

Figure V.12 Effect of the panel side length on the coefficient αI,calc. Triangle dot indicates the value 

corresponding to the side length recommended in ASTM E519 [355] (1200 mm). 

Figure V.13 illustrates the effect of the loading shoes depth on the coefficient αI,calc. With 

respect to the panel side length, the values investigated were 1/12th (0.083), 1/11th (0.091), 1/10th 

(0.1, as recommended by RILEM LUMB6), 1/9th (0.111, the reference panel), 1/8th (0.125, as 

recommended by ASTM E519), 1/7th (0.143), 1/6th (0.167), 1/4th (0.25), and 1/3rd (0.333). From 

1/12th to 1/7th, there was no apparent influence, and the coefficient αI,calc remained almost 

constant and equal to 0.4. Conversely, larger shoes depths exerted such a confinement effect 
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that the final results were affected. In the cases of 1/4th and 1/3rd, the failure mode of the wall 

changed and a compressive strut was formed between the two loaded corners, with parallel 

diagonal cracks connecting the edges of the shoes. The latter are extreme cases but may be 

found in practice. 

 

Figure V.13 Effect of the loading cap depth on the coefficient αI,calc. The X-axis indicates the loading cap depth 

normalized with respect to the panel side length. The triangle dot indicates the value corresponding to the ratio 

recommended in ASTM E519 [355] (1/8th). 

The coefficient αI,calc has shown little sensitivity to the size and confinement effects, 

provided that the panel length and the loading shoes depth lay within certain limits. This 

conclusion may depend on the specific dimensions of the blocks and joints conforming the 

walls, especially on the relative dimensions of the blocks with regard to the global geometry of 

the wall and setup. 

V.4.4 Validation 

This section studies the applicability of the former findings to other masonry typologies 

and specimen sizes. Eight experimental campaigns carried out by other authors have been 

simulated [165,169,321,348,391,392]. The numerical analyses included the modelling of the 
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specific geometries of the walls, and the selection of proper input material properties, according 

to the procedures described below. The maximum loads predicted numerically were compared 

to the experimental ones. 

Table V.6 presents the features of the eight selected campaigns. The different combinations 

of materials included clay bricks, concrete blocks, tuff blocks, and rubble masonry, combined 

with aerial lime, hydraulic lime, and cement mortars. The size of the analysed panels ranged 

from 0.9 to 1.63 m, and the thickness from 0.079 to 0.7 m. The input data were selected as 

follows. The compressive strengths fc were directly obtained from the references. The 

compressive fracture energies were calculated by applying the same ratio Gfc / fc used in this 

research. The Young’s moduli E were derived from the experimental shear moduli G, which 

were calculated from the experimental data by using the coefficient αxy equal to 1.04 that is 

proposed in this research to calculate the shear stresses. The values of tensile strength ft were 

obtained from the experimental maximum loads by means of the coefficient αI,calc equal to 0.4 

that is proposed in this study. Finally, once the tensile strengths were defined, the tensile 

fracture energies Gft were calculated by means of Equation 17.  

Table V.6 includes in the last three columns the comparison between the experimental 

maximum loads and the numerically predicted loads. The average error was of 5.9%. This 

difference was very satisfactory, taking into account the great variety of geometries and 

materials being investigated. This good result validates the proposed coefficients αI,calc=0.4 and 

αxy =1.04 to determine the tensile strength and the shear modulus of masonry from the 

experimental outcomes of diagonal compression tests. 

The validation with campaigns carried out by other authors leads to the following remarks. 

First, a value of 0.4 for the coefficient αI used to compute the tensile strength of masonry ft has 

provided good estimations of the maximum experimental loads. This value takes into 
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consideration non-linear effects, cracking, and stress redistributions. Even if it only constitutes 

an approximation to the complexity of the real behaviour of masonry, it provides estimations 

on the safe side with respect to the elastic solution (αI = 0.48) and the ASTM E519 proposal (αI 

= 0.707). Second, the use of a coefficient αxy equal to 1.04 to calculate the shear stresses has led 

to satisfactory estimations of the shear modulus of masonry G. Third, Equation V.17 proposed 

by Angelillo et al. [69] to estimate the tensile fracture energy Gft from the tensile strength has 

provided good results for this type of problem characterized by a single localized crack.  

Table V.6 Validation analyses of additional experimental campaigns from literature. Comparison between 

experimental and numerically predicted maximum load. 

Data-set Input data Comparison exp - num 

Reference Typology 
Wall size 

(mm³) 

ft 

(MPa) 

fc 

(MPa) 

Gft 

(N/m) 

Gfc 

(N/m) 

E 

(MPa) 

Pexp 

(kN) 

Pnum 

(kN) 
Δexp-num 

Babaeidarab
ad et al. 

[391]  

Clay brick + 
cement 

1145 × 1220 
× 92 

0.263 24.0 15.70 36000 1769 70.0 66.6 +4.8% 

Mahmood 
and Ingham 

[165] 

Clay brick + 
cement lime 

1170 × 1170 
× 225 

0.054 5.4 5.18 8100 3141 36.0 40.3 -12.0% 

Milosevic et 
al. [321] 

Rubble stone 
+ air lime 

1200 × 1200 
× 700 

0.014 7.41 1.98 11115 204 29.0 29.8 -2.6% 

Milosevic et 
al. [321] 

Rubble stone 
+ hydraulic 

lime 

1200 × 1200 
× 700 

0.162 8.01 11.2 12015 868 339.0 303.6 +10.4% 

Parisi et al. 
[169] 

Tuff block+ 
pozzolana 

1230 × 1230 
× 310 

0.127 3.96 9.43 5940 1100 121.0 112.1 +7.4% 

Rezaie et al. 
[348] 

Rubble stone 
+ hydraulic 

lime 

900 × 900 × 
400 

0.060 0.76 5.58 1140 1191 53.0 52.5 +0.88% 

Silva et al. 
[392] 

Concrete 
block + 
cement 

1626 × 1626 
× 79 

0.399 16.8 21.02 25200 8600 128.0 123.8 +3.4% 

Silva et al. 
[392] 

Clay brick + 
cement 

1219 × 1219 
× 92 

0.289 13.2 16.78 19800 2700 81.0 76.5 +5.5% 

 

V.5 Conclusions 

This paper has presented a combined experimental and numerical investigation on the use 

of the diagonal compression test to characterize the tensile strength and the shear modulus of 

masonry. A numerical macromodel has been calibrated with an experimental campaign that 
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involved tests in 5 brickwork walls built in Flemish bond. The following conclusions can be 

drawn from the numerical analyses carried out: 

 In the linear range of the analyses, the numerical solution coincides qualitatively 

with the solution that Frocht derived theoretically for the elastic problem by 

photoelasticity. The numerical study has allowed showing that a wall compressed 

diagonally does not present a pure shear state of stresses. The approach of ASTM 

E519 has shown to overestimate the maximum principal stresses (σI = 0.707*P/A 

versus σI = 0.48*P/A) and to underestimate the shear stresses (τxy = 0.707*P/A 

versus τxy = 1.04*P/A) at the centre of the panel. 

 Damage initiation is triggered when the maximum principal stresses at the centre 

of the panel reach the masonry tensile strength. Afterwards, a complex 

redistribution of stresses takes place until the maximum load is attained and the 

panel fails.  

 A coefficient that correlates the maximum attained load and the input tensile 

strength has been back-calculated based on the numerical investigation. The tensile 

strength is calculated as the maximum applied load times a coefficient αI equal to 

0.4, divided by the transverse area of the wall. The calculation of the coefficient αI 

accounts for cracking and stress redistributions, and allows the practical application 

of the experimental results to determine the tensile strength of masonry.  

 The sensitivity of the coefficient αI to the variation of several parameters has been 

investigated numerically. The coefficient αI has resulted sensitive to the variation 

of the Young’s modulus and tensile strength. Its value ranged from 0.38 to 0.45, 

and always remained below the corresponding elastic value of 0.48.  
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 The coefficient αI has shown little sensitivity to the variation of the size panel and 

the size of the loading shoes, provided that these dimensions were similar to the 

ones suggested by the standards. The coefficient has remained almost constant for 

walls between 0.6 m and 1.4 m wide, and for loading shoes depths spanning from 

1/6th to 1/12th the length of the panel side. 

 These findings have been validated by considering experimental results from eight 

campaigns carried out by other authors and available in literature. These campaigns 

covered a wide range of dimensions and components properties. The assumptions 

of a coefficient αI equal to 0.4 to compute the tensile strength of masonry from the 

experimental maximum load, and of a coefficient αxy equal to 1.04 to compute the 

shear stresses and determine the shear modulus, have allowed the numerical 

simulations to represent correctly the experimental loads.  

 The experimental campaign presented herein involving brickwork walls has shown 

the particularities of the Flemish bond, as the development of the diagonal cracks 

through both mortar joints and bricks. With the coefficients proposed in this paper, 

the average tensile strength of the investigated masonry has been estimated equal 

to 0.15 MPa, while the average shear modulus has been estimated equal to 1890 

MPa. The compressive strengths of the component materials were 18 MPa and 2.2 

MPa for bricks and mortar respectively.  

 The numerical model adopted in the research, based on an ad-hoc constitutive 

model for masonry and a crack-tracking technique for tensile crack localization, 

has proven to constitute a reliable tool for the assessment of masonry homogenized 

properties by means of comparisons with experimental results. 
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6.4. Discussion  

The two previous sections have presented Papers IV and V on the characterisation of 

masonry in shear. This section exposes some remarks that can be drawn from the comparison 

of both papers, and include further comments in relation to Papers II and III. The individual 

conclusions of each paper are restated in Chapter 7. 

A certain parallelism can be traced among papers of Chapter 5 and Chapter 6. This 

parallelism justifies the internal thematic coherence of the thesis. Paper II and Paper IV studied 

the standard procedures for the characterisation of masonry in laboratory, under compression 

and shear, respectively. Paper III and Paper V investigated techniques that could be used in situ 

to inspect existing buildings. 

All four papers have investigated up to a certain extent the influence of the type of 

specimen. Paper IV found that couplets tested with a simple setup provided higher shear 

estimates than triplets. Paper V investigated the size effect of the specimens although only 

numerically. A minimal influence was found, except for very small specimens. 

Paper V dealt with the determination of an elastic parameter, the shear elastic modulus. 

The experimental procedure included a loading protocol similar to the one applied in Paper II. 

The protocol consisted in the application of three loading cycles at low load levels, and the 

subsequent computation of the shear modulus as the chord modulus on the stress-strain curves, 

between two limits calculated according to the actual maximum attained load.  

A further remark on the characterisation in shear is that experimental results presented a 

higher variability than those obtained in compression. This is especially true in the case of the 

variability observed in the determination of the tensile strength of masonry in Paper V, with a 

coefficient of variation above 20%, if compared with the variability observed in the 
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determination of the compressive strength in Paper II, with a coefficient of variation under 10% 

for specimens built with the same type of masonry and materials. This difference could be 

explained by the different brittleness associated to compression and shear failures, and by the 

type of failure. In compression tests, stresses are better distributed and the local variation of 

material properties is lumped through the whole section. In diagonal compression tests, the 

weakest-link postulate may apply and local properties may have a higher influence on the final 

performance of the specimen. As a result, the latter tests present this higher variability. 

With regard to the use of Papers IV and V to characterise the traditional type of brickwork 

of Barcelona, the experimental values of cohesion, angle of friction, and tensile strength, 

seemed to compare well with the very few researches available in literature for similar 

materials. The values of cohesion and angle of friction laid between the limits proposed by the 

Italian Circolare for existing materials [62]. The value of the tensile strength was of the same 

magnitude that values found in situ on existing buildings made of brickwork. This is further 

evidence of the appropriateness of the selected component materials to replicate the behaviour 

of historical-like masonry. 

In addition, Papers IV and V provided data about fracture energies, a sort of parameter 

which is often neglected in experimental characterisation. Paper IV provided new estimations 

for the cohesive fracture energy at zero normal stress, with a value of 15.2 N/m. Among the 

different empirical relationships available to determine the tensile fracture energy of masonry 

from the tensile strength, Paper V found numerically that the best fit was obtained by means of 

a modification from the Model Code 1990 expression [69]. The average result evaluated with 

this expression was 10.85 N/m. Last, Paper II had provided two estimations of the compressive 

fracture energy, which yielded an average value of 9750 N/m. Given the uncertainties around 

the experimental definition of these parameters, the values provided herein of cohesive fracture 
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energy at zero normal stress, tensile fracture energy, and compressive fracture energy, should 

be taken only as a qualitative reference for the type of material being investigated.    
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7.1. Summary 

This thesis has presented five experimental campaigns related to the characterisation of 

masonry. These campaigns constituted the base of five publications, which have been identified 

in this work as Papers I to V. Each campaign pursued specific scientific objectives, combined 

with the more general objective of replicating and characterising the historical type of 

brickwork traditionally used in Barcelona.  

Chapter 2 has offered a literature review on the mechanical properties of masonry, the 

characterisation needs, and the current experimental procedures. Chapter 3 has presented the 

specific objectives of the thesis derived from the literature review.  

Chapter 4 has described the materials used along the experimental campaigns. The need of 

having a historical-like mortar with a relatively fast hardening and low mechanical properties 

motivated the research included in Paper I (Section 4.4). 

Chapter 5 has covered two investigations on the compressive characterisation of masonry. 

The first of them, constituting Paper II (Section 5.2), has dealt with the standard tests on 

prismatic specimens. The second one, presented as Paper III in Section 5.3, has delved into the 

use of extracted cylindrical specimens to characterise the mechanical behaviour of existing 

masonry structures. 

Chapter 6 has included two additional papers on the shear characterisation of masonry. 

Paper IV (Section 6.2) has investigated the possibility of using couplets as an alternative to 

standard triplets for the determination of the cohesion and angle of friction of mortar bed joints. 

Finally, Paper V (Section 6.3) has studied the interpretation of the diagonal compression test, 

by means of numerical analyses calibrated with a specific experimental campaign. 
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7.2. Conclusions 

The conclusions of this work can be summarized as follows. 

Literature review 

 The mechanical properties that are required to perform a structural analysis depend 

on the level of detail considered in the modelling strategy. Based on the properties 

that are necessary for strategies that consider masonry as a homogeneous material, 

and on the properties required by the strength criteria provided in common building 

codes, the following six properties have been studied in detail: the compressive 

strength, the Young’s modulus, the cohesion at zero normal stress, the coefficient 

of friction, the diagonal tensile strength, and the shear elastic modulus. 

 Given the complex mechanical behaviour of masonry, its characterisation is 

complex and the procedures are not exempt of uncertainties. These uncertainties 

can be related to the geometry of the specimens, the boundary conditions, the 

loading protocol, the necessary instrumentation, and the interpretation of the results 

and post-processing of the tests. 

 A review on the available characterisation techniques for masonry reveals the need 

of improvement or further definition for most of the studied testing procedures. 

This need of improvement may be related to contradictions between standards, 

inconsistent provisions, or lack of specific official standards for some tests. The 

uncertainties are related, in general, to the size of the specimen and the boundary 

conditions in the case of strength properties, and related to the loading protocol and 

instrumentation in the case of elastic properties. In most cases, uncertainties with 

regard to the interpretation and post-processing of results have been detected. 
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 The industrial and urbanistic development of Barcelona in the 19th century and first 

half of the 20th century motivated the proliferation of constructions based on 

masonry load bearing walls. The preferred type of masonry was brickwork made 

of lime mortar and handmade solid bricks. These bricks had average dimensions of 

300 × 150 × 50 mm², which constitute a difference with respect to common smaller 

bricks of other places around the world. This type of masonry is in need of extensive 

characterisation, given that the current available information, although valuable, is 

scarce and incomplete. 

Modified hydraulic lime mortar 

 The incorporation of limestone filler additions to hydraulic lime based mortars 

shows several advantages depending on the amount of filler being added. The 

curing time and the mechanical property being analysed also have influence on the 

effect of these additions. 

 Additions in volume between 12.5% and 25% can maximise the compressive and 

flexural strengths of NHL 3.5 based mortars. This improvement is due to the 

nucleation and filling effects offered by the small particles of filler. 

 For a replacement in volume of 50%, the dilution effect prevails and the strengths 

of the mortar decrease with respect to the reference mix. This mortar proportioning 

has been used along the thesis to build masonry specimens with satisfactory results 

in terms of variability and final attained strengths. 

 Limestone filler is an easily available industrial by-product and, thanks to its inert 

nature, it doesn’t affect the composition of the resulting phases in the hardened 

mortar. It is therefore compatible with applications on traditional old mortars.  
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Compression on standard masonry specimens 

 Standard tests on prismatic masonry specimens built in laboratory present 

uncertainties related to: a) the geometry of the specimen for determining the 

compressive strength, and b) the loading protocol and post-processing for 

determining the Young’s modulus. European and American standards differ in the 

type of specimen to be tested. In addition, no specific standard covers the 

determination of Young’s modulus of masonry. 

 For the particular case of masonry studied in this thesis, running bond walls and 

stack bond prisms have yielded similar results in terms of compressive strength and 

Young’s modulus.  

 Provisions of standards specifically devoted to the determination of Young’s 

modulus in other materials have been applied. The application of initial loading-

unloading cycles at low load levels has contributed to stabilise the measurements. 

The Young’s modulus has been calculated as the chord modulus on the stress-strain 

curves, between two limits calculated according to the actual maximum attained 

load. 

 Three masonry prisms were subjected to pseudo-cyclic loading until and beyond 

failure. Scientific literature on this topic for brickwork is scarce. The degradation 

of masonry stiffness for increasing strains was consistently captured. The stress-

strain curves obtained through static loading can be used as a satisfactory estimation 

of the peak envelope of cyclic tests. In addition, the experimental results were 

compared to cyclic constitutive models available in literature. The model by 

Facconi et al. [92] provides a good simulation. The model by Sima et al. [297] has 
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required significant previous calibration to properly simulate the experimental 

results. 

 In this case of the prismatic specimens, the empirical expressions provided by 

European and American codes for the prediction of the compressive strength of 

masonry from the properties of the components have yielded values in agreement 

with the experimental ones. Similarly, well-known analytical expressions derived 

by different authors have also provided good estimations of the compressive 

strength. 

 A simple one-dimensional homogenisation spring model is able to satisfactorily 

evaluate the Young’s modulus of masonry from the elastic properties of the 

components. The experimental characterisation of the latter is, however, 

challenging, given the instrumental difficulties related to the measurement of 

compressive strains in such small thicknesses as those of bricks and mortar joints. 

The ratios proposed by building codes to predict the Young’s modulus of masonry 

from its compressive strength visibly overestimate the experimental results. 

Compression on cylindrical specimens 

 The laboratory testing of cylindrical core samples extracted from masonry walls is 

a promising technique for the evaluation of the compressive parameters of existing 

masonry. This work has studied the possibility of using cylinders with diameter of 

90 mm, in comparison with bigger cylinders of 150 mm that previous researches 

has shown to be able to provide good estimations of the actual masonry properties. 

 Cylinders with diameter of 90 mm, constituted by two brick portions and one single 

mortar joint, are able to reproduce the expected mechanical behaviour of masonry. 
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Tests on these specimens have shown a failure sequence and a failure pattern 

consistent with those obtained on standard prismatic specimens. 

 The reduction of the size of the core sample has a significant effect on the 

evaluation of the compressive parameters. In the case of compressive strength, a 

proportionality constant of 0.75 has been found to relate the results obtained from 

90 mm and 150 mm specimens. That constant would be of application, in principle, 

only to masonry types similar to the ones investigated. In the case of Young’s 

modulus, smaller cylinders also provide higher estimations of this mechanical 

property. 

 In this case of cylindrical specimens, the empirical expressions provided by 

European and American codes for the prediction of the compressive strength of 

masonry from the properties of the components have underestimated the 

experimental values in the cases of low strength materials, while a better prediction 

has been obtained for the type of masonry built with stronger materials. The simpler 

expression by the American code, which depends only on the strength of the 

constituent bricks, seems to be more suitable for these low strength masonry types 

than the expression included in the European code. The latter depends also on the 

strength of mortar. Its predictions might be affected by the quality of the mortar 

strength determination, which is specially challenging for existing mortars. 

 The dry procedure applied to drill the cylindrical cores has shown to be clean and 

efficient. It is therefore suitable for the extraction of specimens in existing 

buildings. The alternative of 90 mm cylinders is advantageous because it reduces 

the damage caused to the structure. In addition, it is easier to identify spots where 

to extract these smaller cylinder within the masonry walls. 
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Shear on triplets and couplets 

 Standard shear tests on triplet specimens present uncertainties in the interpretation 

of the results, due to the non-simultaneous failure of the mortar joints. Complex 

testing setups on couplet specimens can be found in literature as alternatives to the 

triplet test. References dealing with the direct comparison between triplets and 

couplets are scarce. 

 Couplet specimens tested with a very simple setup derived from the triplet testing 

setup are able to provide qualitatively similar results to those obtained with triplets, 

and to predict similar trends with regard to the dependency on the normal 

compression stress and with regard to dilatancy. 

 From a quantitative point of view, tests on couplets provide consistently higher 

values of cohesion and angle of friction than triplets. The rate of increase for each 

one of the latter parameters seems to be related to the type of masonry and the 

dominant response of the materials. For the two types of masonry investigated in 

this particular campaign, the frictional response of rougher bricks motivates a 

higher increase of the angle of friction, while the cohesive response of smoother 

bricks motivates a higher increase of the cohesion value. 

 The differences in the estimates obtained from standard triplets and couplets can be 

explained by several causes. These causes include differences in the stress 

distributions, size effects due to the larger area of brick-mortar interface in triplets, 

and bias in the interpretation of the results. The bias in the case of triplets is caused 

by the double peak phenomenon associated to the non-simultaneous failure of the 

two joints. In the case of couplets, the bias is related to the friction of the lateral 

faces of the specimen against the platens of the loading machine. 
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Diagonal compression test 

 Diagonal compression tests are widely used to characterise the shear behaviour of 

masonry. They currently stand as a useful tool to perform comparison campaigns 

of strengthening and repair solutions, and as a valid tool for the inspection of 

existing buildings. The post-processing of the results presents uncertainties related 

to the definition of the actual state of stresses within the masonry panel.  

 According to linear numerical analysis, a wall compressed diagonally does not 

present a pure shear state of stresses. The maximum principal stresses and the shear 

stresses at the centre of the panel do not have the same value but are equal σI = 

0.48*P/A to τxy = 1.04*P/A and respectively. These values are different that those 

assumed by the standard ASTM E519 (σI = 0.707*P/A and τxy = 0.707*P/A). 

 When the maximum principal stresses at the centre of the panel reach the masonry 

tensile strength, damage initiation is triggered, and it is followed by a complex 

redistribution of stresses that eventually leads to the failure of the panel. 

Consequently, there is no a direct univocal correlation between the maximum 

attained load and the masonry tensile strength. A simplified correlation by means 

of a coefficient called αI has been investigated numerically. This coefficient 

accounts for cracking and stress redistributions.  

 The calibration of the numerical analyses that simulate the experimental results 

used as benchmark has provided a value of 0.4 for coefficient αI. Its sensitivity to 

the variation of several parameters has been investigated numerically. The 

coefficient is sensitive to the input variations of Young’s modulus and tensile 

strength, but always remains below the corresponding elastic value of 0.48. The 

coefficient is little sensitive to the variation of the size panel and the size of the 
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loading shoes, provided that these dimensions are similar to the ones suggested by 

the standards.  

 The validity of these findings has been checked with the simulation of experimental 

campaigns carried out by other authors. The input data for the corresponding 

numerical analyses were obtained by applying the coefficients proposed herein for 

the determination of the tensile strength and the shear modulus. Simulations with 

these input data reproduced correctly the actual experimental loads.  

 In addition, the numerical model adopted in this research has proven to constitute 

a reliable tool for the simulation of experimental results considering homogenised 

properties of masonry. This model is based on an ad-hoc constitutive model for 

masonry and a crack-tracking technique for tensile crack localisation.  

Replication of historical-like masonry 

 The replication of historical-like masonry in laboratory is necessary given the 

intrinsic difficulties encountered in the experimental testing of existing masonry. 

Replicating masonry in laboratory could be used, among others, to study the 

structural response of this material under certain actions, to reproduce structural 

elements, to study strengthening solutions, or to provide reference values of 

mechanical properties. The replication presents however some challenges in 

relation to the choice of materials. In particular, the hardening time and final 

strength of the selected mortar are key parameters. 

 Handmade solid fired clay bricks made by a local producer with traditional methods 

has been selected for the experimental campaigns carried out in this thesis, together 

with a modified hydraulic lime based commercial mortar. The combination of these 

two materials has shown to be able to satisfactorily reproduce the behaviour of 
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existing masonry and to quantitatively replicate the mechanical properties of 

existing masonry. The compressive parameters obtained with this replicated 

masonry compare well with those obtained from cylinders extracted from real 

buildings of Barcelona. With regard to the shear parameters obtained with this 

replicated masonry, they compare well with the few values that are available in 

literature and code provisions. 

 In addition, the variability of the results observed for the replicated masonry and its 

components is also of similar magnitude to that of existing and historical materials. 

Characterisation of traditional brick masonry of the city of Barcelona 

 Masonry made of handmade bricks and lime mortar was extensively used as a load 

bearing material in the city of Barcelona during the 19th c. and the first half of the 

20th c. Up to date, this specific type of masonry has been only partially 

characterised. In the need of performing structural analyses due to renovation works 

or preventive studies, this material needs a better characterisation. 

 This thesis presents experimental results from two sources: 1. From existing 

buildings through tests on extracted cylinders, 2. from replicated masonry in 

laboratory through standard tests. The size of the bricks and properties of the 

components make these results specific of the traditional brickwork of Barcelona. 

Nevertheless, brick masonry has been thoroughly used around the world along 

history. Qualitative and quantitative results presented herein may be of application 

to similar brickwork examples from other places. 

 Tests on cylindrical specimens extracted from two existing buildings provide 

values of compressive strength that range from 5.28 to 7.83 MPa. Values of 

Young’s modulus range from 1569 to 2304 MPa. Specimens from a third inspected 
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building provide higher estimations of both properties. The latter are not considered 

as representative of the real range given the exceptionality of this third construction, 

in terms of material and workmanship qualities. 

 Standard tests on replicated masonry have provided the following average values: 

compressive strength 6.5 MPa, Young’s modulus of 2318 MPa, cohesion at zero 

normal stress of 0.167 MPa, angle of friction of 33.71º, and tensile strength of 0.15 

MPa. 

 In addition, values of fracture energies have been estimated, e.g. cohesive fracture 

energy at zero normal stress, with a value of 15.2 N/m, tensile fracture energy of 

masonry of 10.85 N/m, and compressive fracture energy, with a value of 9750 N/m. 

Given the difficulties on the experimentation and interpretation of these properties, 

the range of the values should be assessed in the future with additional experiments.  

 The former campaigns were intended to shed light on the mechanical properties of 

historical-like masonry. Given the variability of this type of material, it is always 

recommended to carry out specific and detailed inspections when dealing with 

existing structures.  

7.3. Main contributions 

This work provides the following main contributions. The first three items of the list refer 

to more general observations. The last four items of the list refer to direct applications. 

 The review of common procedures for the characterisation of basic mechanical 

properties of masonry and the identification of possible uncertainties related to each 

type of test. This identification provides a set of needs for research. Some of them 
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have been studied within this thesis, while some others may be of interest to other 

researchers for future work. 

 The provision of new experimental evidence on two aspects of the characterisation 

in compression: the comparison between types of specimen –running bond walls 

and stack bond prisms-, and the effects of cyclic loading. The interest of this 

contribution is confirmed in the light of new works by other researchers that have 

investigated similar topics and have cited the corresponding publication [308,393–

397].  

 The preliminary investigation on the possibility of using couplet specimens 

composed of only one mortar joint to the standard triplet specimen composed of 

two mortar joints. The obtained results pointed out the need of improving the 

contact between the external faces of the specimen against the loading machine 

platens. 

 The design of a mortar based on a natural hydraulic lime commercial premixed 

mortar that has been modified with the incorporation of limestone filler. This mortar 

combines the advantages of an industrially prepared product –easier to prepare and 

less variable- with convenient low values of compressive and flexural strengths. 

Being based on hydraulic lime, its hardening time adapts well to the schedule needs 

of a common laboratory. After 28 days, the compressive strength is sufficient and 

remains almost constant.  

 The determination of a correlation factor that relates the compressive strength 

values determined with 90 mm cylinders to the values determined with 150 mm 

cylinders. Under the assumption that the latter provide a sufficiently good 

estimation of the actual compressive strength of masonry, which has been 
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calibrated in previous researches, the possibility of using smaller cylinders provides 

several advantages with respect to the bigger cylinders: the damage on the structure 

is reduced, and their extraction is easier, as well as the handling and testing in 

laboratory. In addition, given that the impact is reduced and it is easier to find 

convenient spots where to drill them, it is more feasible to extract a larger sample 

of cylinders from the structure. This fact results in more statistically significant 

determinations. 

 The proposal of coefficients for the post-processing of the outcomes obtained with 

the diagonal compression test. These coefficients apply for the determination of the 

tensile strength and the shear elastic modulus of masonry. Better estimations of 

these parameters result in more accurate structural analyses and more respectful 

interventions.  

 The mechanical characterisation of examples of the traditional type of brickwork 

used in Barcelona during the 19th c. and the first half of the 20th c. This 

characterisation includes results from existing masonry structures and from 

replicated masonry specimens built in laboratory.  

7.4. Suggestions for future work 

In general, when dealing with experimental procedures, the main suggestion should be to 

continue performing experimental campaigns in order to increase the significance of the 

conclusions. These additional campaigns could be either on the same materials, with the aim of 

increasing the statistical validity of the results, or on different material combinations, to expand 

the applicability of the results to other types of masonry. In addition, a general recommendation 

is to investigate and validate the experimental results with theoretical or numerical methods.  
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A last general remark with regard to the investigation on experimental procedures is about 

the coordination between researchers and institutions. An individual disconnected research is 

of interest for the characterisation of a specific type of masonry. The approach should be 

different if the goal is to reach significant sound conclusions and, eventually, reflect the 

experimental findings into a new standard or a modification of existing standards. In that case, 

coordinated campaigns should be performed, with consistent boundary conditions, loading 

protocols, and types of specimen.  

Finally, this thesis closes with the following suggestions for future work.  

 The further study of the size, shape, and slenderness effects on the determination 

of the compressive strength of masonry, preferably as a coordinated effort with the 

creation of a database of results. Individual attempts have been carried out in this 

sense, with the derivation of empirical expressions. These attempts would be much 

relevant if they were focused on the same objective. The study of the influence of 

the specimen type can be also done by means of numerical methods used as a virtual 

laboratory. Given the reduced size of the specimens, 3D micromodels would be 

affordable. 

 The expansion of the database that correlates smaller and bigger cylinders for the 

characterisation of compressive parameters, together with the definitive validation 

of these two specimens as able to reproduce the actual properties of masonry. 

Combined with numerical investigations, this line of research could finalise with 

the implementation of a new standard for the inspection of existing buildings. If 

tests on cylinders in compression are combined with tests on cylinders for shear 

characterisation, a full inspection methodology could be proposed, only by 

considering tests on cylindrical specimens. 
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 The continuation of the study about the possibility of using couplets as an 

alternative to triplets for shear characterisation. New proposals should be done to 

reduce the friction between the lateral faces of the specimen against the 

precompression machine. However, the spirit of these proposals should be kept as 

simpler as possible. Increasing the complexity of the setup hinders its replicability 

by other researchers. 

 The further validation of the coefficients obtained for the interpretation of the 

diagonal compression test. This validation could be done by means of other 

numerical tools, such as FEM micromodels or DEM, which account for the real 

texture of the masonry pattern. These tools would allow studying the influence of 

the masonry texture. In addition, a joint campaign that combines and compares 

experimental results obtained by means of diagonal compression tests and shear 

compression tests would be relevant. 

 The further investigation of the expressions to predict masonry composite 

properties from the properties of the components. This approach remains a 

promising and powerful possibility for the mechanical characterisation of existing 

masonry. However, it still faces a double challenge: 1. The need of increasing the 

validity of the correlations, especially for cases of low strength masonry, 2. The 

difficulties to characterise the mechanical properties of the components. The latter 

constitutes a wide line of research that includes the study of, among others, the size 

of the samples to characterise bricks’ compressive strength, the difficult 

determination of bricks’ Young’s modulus in the direction perpendicular to the 

larger faces, the determination of the actual compressive strength of existing 
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mortars, and the relation between the strength of mortars obtained from standard 

prismatic specimens to the actual strength of the mortar joint. 
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