

Definition of new WAN
paradigms enabled by smart

measurements

Francesco Ciaccia

Directors:
Dr. René Serral-Gracià
Dr. Mario Nemirovsky

Computer Architecture Department
Universitat Politecnica de Catalunya

This dissertation is submitted for the degree of
Doctor of Philosophy

October 2020

A Maria e Salvatore, il nucleo della famiglia nucleare.

Acknowledgements

Writing this dissertation was not just the result of effort and research, but a long
journey during which I met a lot of incredible people: that is what I value the most
of this experience.

This thesis would have not been possible without the support given by my
supervisors, Dr. Mario Nemirovsky and Dr. René Serral-Gracià. Thank you for the
opportunity you gave me, the unconditional support, the knowledge, the mentoring.
My appreciation of you goes beyond the professional and academic side.

A special acknowledgement goes to Dr. Ivan Romero, as one of the main
advisors and contributors to this work. Our endless conversations, investigations, and
collaborations made this thesis possible. Thank you.

To all the people at Clevernet, for their feedback, cooperation, and friendship.
Especially I would like to thank: Dr. Rodolfo Milito for his mentoring; Dr. Oriol
Arcas Abella for his precious feedback and help in development; Dr. Diego Montero
for his great efforts and methodic contributions; Genís Riera Pérez for his continuous
support to my research and close friendship. And to everybody else in the office who
made my day-to-day lighter, funnier, better (with the risk of forgetting somebody):
Roberto Barreda, Arnau Verdaguer, Lluis Castillo, Fernando Stecconi, Francesco
Carrella, David Rodríguez, Judit Gonzáles, Tugberk Arkose. I learnt a lot from each
one of you; working at Clevernet has been one of the best experiences of my life.

I want to give a special thank to the people that have been very close to me and
supported my work throughout all these years: to Alberto, for being the best friend
somebody could ever aspire to have. You supported me mentally and physically in
many, many occasions; thank you for always being there. To Raquel, for having been
such an important part of my life during this journey. To Josue, for his great advise,

vi

friendship, and for sharing the joys and pains of pursuing a Ph.D. To my Bros: Doc,
Toyo, Teddy. Our friendship does not know distance limits.

Finally, my biggest thank goes to my parents, Maria and Salvatore. Everything I
am, I owe it to you. I love you.

vii

This work was supported by the Industrial PhD grant 2015DI023 of AGAUR
and Gencat and the project Efficient Smart Multi Connected Networks co-financed
by the Spanish Ministry of Ciencia Innovacioon y Universidades with reference
RTC-2017-6655-7, The Spanish Agenda Estatal de Investigacion and the European
Regional Development Fund (FEDER).

Abstract

Nowadays massive amounts of data are being moved over the Internet thanks to data-
hungry applications, Big Data, and multimedia content. Combined with a reduction
in cost and augmented reliability for high-speed broadband access, the whole Internet
infrastructure is facing new challenges especially when information crosses long
geographical distances. That is the case for Wide Area Networks (WANs), which are
typically traversed in enterprises with multi-site deployments. When a connection
is established between end-points that are geographically distant with high latency
and high bandwidth, data is flowing over a so-called Long Fat Network. Currently,
transport protocols in end-points are not able to exploit the resources of such links,
notably the most common Transmission Control Protocol (TCP) implementations
still stuffer from design flaws that limit their efficiency. More recent developments
still suffer from low fairness in resource sharing and lack of global visibility.

We identify SD-WAN as an SDN use-case that can enable new transport protocols
adoption, improving traffic behavior over WANs, without the need to modify the end-
points. In this Ph.D. thesis, we explore new approaches to network measurements
that will enable both end-points and SD-WAN edge routers, to gain visibility over
the end-to-end network status. Such additional visibility promotes the development
of smarter control mechanisms for network traffic, improving resource utilization.

The preliminary study carried on comprises TCP behavior over WANs and
existing methodologies to control its traffic patterns and enforce rate throttling. We
also identify a specific use case that poses challenges for WAN scenarios: the Split
TCP connections in a Performance Enhancing Proxy (PEP).

New control mechanisms to improve resource utilization and fairness are defined
in this project. Specifically, we propose a new approach called Receive Window
Modulation (RWM) that allows edge-routers to control the sending rate of a TCP

x

connection by modifying the window advertised by the receiver. We prove that such
a controller can improve TCP efficiency and fairness by leveraging local information
and additional contextual information obtained from network measurements. It also
provides a lossless throttling mechanism, allowing for policy enforcement without
hindering TCP throughput. We validate RWM in a real experimental scenario,
showing improvements of up to 70% in TCP throughput when coupled with loss-
based congestion controls. Bufferbloat is also mitigated, reducing the end-to-end
TCP latency measured almost three-fold in some scenarios.

Another contribution of this research project includes a new method to estimate
network available bandwidth from TCP passive probings based on the statistical
analysis of the Inter-Packet arrival time (SABES). The methodology is based on the
packet dispersion model and takes advantage of state-of-the-art machine learning
techniques to improve its accuracy, including Deep Neural Networks and Kernel
Density Estimation. We validate the model in both simulations and real-world
experiments, obtaining a median of the mean absolute error distribution of less than
10% of the network capacity.

We also study network capacity estimation and bottleneck detection with an
innovative active probing approach called HIRE. We propose a new packet dispersion
model that takes into account the packet pairs delay, allowing for precise end-to-end
capacity estimation. HIRE also introduces the concept of Hidden packets Red-shift
Effect, which consists of injecting TTL expiring packets in between probing pairs at
a specific rate. This technique allows locating the narrow link position along the path
and even estimating the capacity of some of the other links located before the narrow
link. We validate the model in simulations obtaining an estimation error of less than
6% in all scenarios, even when reducing the probing traffic considerably.

All these contributions constitute the building blocks of a Stateful Edge Router
Architecture, SERA. Such architecture is presented in the final part of the dissertation,
preparing the ground for future developments.

Table of contents

List of figures xv

List of tables xix

Glossary xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Contributions . 3

1.3.1 Preliminary Work . 3
1.3.2 TCP Control . 4
1.3.3 Smart Measurements for Wide Area Networks 5
1.3.4 Network Control . 5

1.4 Methodology . 6
1.5 Thesis Structure . 6

2 TCP over Wide Area Networks 9
2.1 TCP Control and Self Induced Congestion 10

2.1.1 Loss Based Congestion Controls 11
2.1.2 BBR: Congestion based congestion control 14

2.2 The Split TCP problem in WANs 15
2.2.1 TCP buffer and windows behavior in Split TCP 16

2.3 Conclusions . 19

xii Table of contents

3 Traffic Control in Linux 21
3.1 TCP memory management in the Linux network stack 22
3.2 Traffic Control . 24
3.3 Active Queue Management . 27
3.4 Token Bucket Filter . 29

3.4.1 System tick and high resolution timers 30
3.4.2 TBF evaluation as a pacing shaper 31
3.4.3 TBF limitations . 34

3.5 Conclusions . 35

4 Receive Window Modulation for TCP over WAN 37
4.1 Architecture . 39

4.1.1 Use Cases . 41
4.2 Experiments . 42

4.2.1 Testbed . 42
4.2.2 Evaluation . 44

4.3 Related Work . 49
4.4 Discussion . 50

4.4.1 RWM Compliance with TCP 50
4.4.2 Path Symmetry . 51
4.4.3 Available Bandwidth Estimation 51
4.4.4 Distributed deployment of points of control 52

4.5 Conclusions . 52

5 Packet dispersion model and measurement 53
5.1 Packet dispersion . 54
5.2 Probe-gap curve . 56

5.2.1 Probe-gap Model - PGM 57
5.2.2 Probe-rate Model - PRM 57

5.3 Inter-packet time measurement challenges in Linux 58
5.4 Conclusions . 60

Table of contents xiii

6 Available Bandwidth Estimation 63
6.1 SABES Heuristic . 65

6.1.1 Capacity Estimation . 66
6.1.2 Available Bandwidth Estimation 67

6.2 Heuristic Evaluation . 70
6.2.1 Simulation environment 70
6.2.2 Heuristic simulation results 70

6.3 Related Work in AvBw estimation 72
6.4 Conclusions . 75

7 Deep Neural Networks for AvBw estimation 77
7.1 Neural Network design . 78
7.2 Evaluation over simulation dataset 80
7.3 Evaluation in real testbed . 81

7.3.1 Real testbed results . 82
7.3.2 Comparison with ASSOLO 82

7.4 Improving SABES-NN: a direct estimation approach 84
7.4.1 Time series analysis . 84
7.4.2 SABES-KDE . 85
7.4.3 SABES-KDE results evalution 87
7.4.4 SABES-KDE limitations and future work 88

7.5 Related Work in DNN and ML usage for AvBw estimation 89
7.6 Conclusions . 90

8 Narrow link estimation and location 91
8.1 Theoretical bases . 92

8.1.1 Smallest Link Capacity Set 92
8.1.2 Packet pair dispersion . 93
8.1.3 Packet pair dispersion-delay 94

8.2 Narrow link capacity determination 98
8.2.1 Capacity estimation evaluation 99

8.3 Hidden red-shift effect . 101
8.3.1 Narrow link location . 102

xiv Table of contents

8.3.2 SLCS capacity determination 103
8.4 Related Work . 104
8.5 Conclusions . 105

9 Towards a Stateful SD-WAN traffic controller 107
9.1 Stateful Edge Router Architecture 108
9.2 Takeaways and final remarks . 110

References 113

Appendix A TCP Internals 119
A.1 Flow Control . 119
A.2 Zero Windows and the Persist Timer 121
A.3 Slow Start . 122
A.4 Congestion Avoidance . 122
A.5 Fast Retransmit . 123
A.6 Fast Recovery . 123

List of figures

1.1 The research project areas covered and contributions. 3

2.1 Chapter contribution to the dissertation. 9
2.2 Schematic behavior comparison of Reno and CUBIC loss-based

congestion controls. 12
2.3 The connection RTT is heavily affected by the Reno congestion control. 13
2.4 BBR and CUBIC transferring the same file in the same environment. 14
2.5 Split TCP connections. 15
2.6 Full Split TCP connections behavior with a proxy close to a sending

server. 17
2.7 RTT evolution in the Split TCP scenario. 18

3.1 Chapter contribution to the dissertation. 21
3.2 TCP queues in the kernel are collections of socket buffer pointers. . 22
3.3 TCP receive buffer in Linux and its relationship with the advertised

receive window. 23
3.4 Simplified Linux networking stack up to the transport layer. 26
3.5 Simplified representation of the Token Bucket Filter. Source: [1]. . . 29
3.6 Testing environment for TBF evaluation. 32
3.7 File transfer with and without a TBF shaper. 34

4.1 Chapter contribution to the dissertation. 37
4.2 Receive Window Modulation example deploy scheme. 39

xvi List of figures

4.3 Network topology and configuration for the experiments (RWM only
in the client-side router). 43

4.4 Flow completion time for one (4.4a) and then four (4.4b) downloads
starting simultaneously with or without the controller for different
values of RTT. 45

4.5 Throughput of four concurrent transfers. In 4.5a a legacy TCP
CUBIC scenario. In 4.5b the same experimental environment is
being controlled by RWM. 46

4.6 Maximum flow completion time of each set of four concurrent down-
loads with or without the controller, for different values of RTT. . . 47

4.7 Tail drops caused in the intermediate router queue for one (4.7a) and
then four (4.7b) concurrent downloads with or without the controller
for different values of RTT. 48

5.1 Chapter contribution to the dissertation. 53
5.2 Packet dispersion. Source: [45]. 55
5.3 Packet dispersion distributions. Source: [16] 56
5.4 Representation of the probe gap curve. The C�l point marks the

available bandwidth. 57
5.5 GRO/GSO/TSO mechanisms maximize network throughput. 58
5.6 Inter-packet rate measurements in NFV for a 1Gbps link. 60

6.1 Chapter contribution to the dissertation. 63
6.2 The Inter-Packet Rate is the rate of the originally sent data packets

that is possible to infer from their TCP acknowledgments spacing. . 65
6.3 Capacity estimation following SABES heuristic. 67
6.4 The number of samples selected to build the statistic depends on the

last measured RTT. 68
6.5 Example of IPrate distribution that matches SABES criteria obtained

with the dynamic sliding window. 69
6.6 Simulated topology with one single 100 Mbps bottleneck and hop-

persistent cross-traffic flowing in the same direction of the main TCP
data flow. 70

List of figures xvii

6.7 Heuristic application to a single TCP flow, single bottleneck scenario.
The mean absolute error of B is 7.4Mbps. 71

6.8 Mean absolute error results of the estimations applying SABES in a
simulated environment with 100Mbps bottleneck for different values
of cross-traffic link utilization and latency. 72

7.1 Chapter contribution to the dissertation. 77
7.2 The DNN classification problem. 78
7.3 Deep Neural Network acting as histogram classifier for available

bandwidth estimation. 79
7.4 Estimation results for SABES and SABES-NN applied to our valida-

tion data-set. 80
7.5 Real testbed topology with one single 300Mbps bottleneck. 81
7.6 SABES-NN running in a real testbed. Estimations mean absolute

error is 8% of the bottleneck capacity. 82
7.7 SABES-NN compared to ASSOLO estimations. 83
7.8 Different type of moving window for time series analysis; the tum-

bling window reduces the resolution but improves scalability. Source:
[66]. 85

7.9 SABES-KDE function obtained during a single tumbling window. . 86
7.10 Validation set estimation error using the tumbling window and differ-

ent estimation strategies. 87

8.1 Chapter contribution to the dissertation. 91
8.2 Smallest Link Capacity Set - SLCS. Capacities are expressed in Mbps. 93
8.3 Packet pair delay dispersion representation under different network

conditions. Cross-traffic is one-hop persistent. 96
8.4 Red dashed line represents OWD2 = OWDdet +Dbu f f er. Blue dashed

line is OWD1 = OWDdet , not affected by additional delays. Vertical
black dashed line is the capacity of the bottleneck on the path, O1. . 97

8.5 Capacity determination with Kernel Density Estimation based on the
Bsel selection obtained with the proposed heuristic. 99

xviii List of figures

8.6 Schematic example of the Hidden Inter-packet Red-shift Effect
(HIRE) over a non-congested path. 101

8.7 HIRE applied with Nt = 20 and #Hp = 5. The narrow link position
is detected when the probing train dispersion behavior changes due
to hidden packets expiration. 103

8.8 Capacity determination of the O2 link of the SLCS. 104

9.1 The research project final proposal for a Stateful Edge Router Archi-
tecture. 107

9.2 Software Stateful Edge Router Architecture. 109

A.1 TCP State Machine in Linux. 120

List of tables

1.1 Mapping of document contributions to the thesis chapters. 7

3.1 Throughput achieved by TBF according to the R and B parameters set. 33

4.1 Quartiles and standard deviation for the 20 ms RTT for some combi-
nations of number of concurrent flows and intermediate buffer size
(in packets). Statistics for the scenarios controlled at the nominal
BDP value are shown. 47

7.1 All SABES flavours estimation error compared. 88

8.1 ppdd narrow link capacity estimation summary. Nominal Cn is
300Mbps. Cn; f is the estimation obtained with fixed cross-traffic
packet size of 1500B, while Cn;r with variable size cross-traffic packets.100

Glossary

Acronyms / Abbreviations

ANN Artificial Neural Network

AQM Active Queue Management

BDP Bandwidth-Delay Product

DNN Deep Neural Network

ECN Explicit Congestion Notification

HIRE Hidden Packets Red-shift Effect

IXP Internet Exchange Point

LFN Long Fat Network

ML Machine Learning

MPLS Multiprotocol Label Switching

MPTCP Multipath TCP

MTU Maximum Transmission Unit

NIC Network Interface Card

OS Operating System

PEP Performance Enhancing Proxy

xxii Glossary

QDISC Queueing Discipline

RED Random Early Detection

RWM Receive Window Modulation

RWND Receive Window

SABES Statistical Available Bandwidth Estimation

SD-WAN Software Defined Wide Area Network

SDN Software Defined Networking

SERA Stateful Edge Router Architecture

SLA Service Level Agreement

TBF Token Bucket Filter

TC Traffic Control

TCP Transmission Control Protocol

ToS Type of Service

VPN Virtual Private Network

WAN Wide Area Network

XDP eXpress Data-Path

Chapter 1

Introduction

Over the last decade, the interest in Software Defined Networking (SDN) has in-
creased both in academia and in industry. The main idea behind SDN is leveraging
software to increase network devices programmability, and ease deployment and
management. In the industry, the most relevant use-case for SDN that surged during
the years is represented by the Software Defined Wide Area Network, SD-WAN.
WANs are computer networks which are geographically extended. In enterprises,
WANs usually connect branch offices and head-quarters where centralized services,
databases, or private clouds are provided. Branch-to-branch topologies are also
common. Over such long distances, Internet performance is usually unstable, given
that the traffic could cross multiple administrative domains and exchange points;
in remote deployments, last mile connections could also be very poor in terms of
reliability, connectivity and throughput.

MPLS dedicated connections are the usual choice to provide bounded perfor-
mance in terms of latency and bandwidth for critical use-cases, according to specific
Service Level Agreements (SLA). However, their cost is usually prohibitive, es-
pecially when the bandwidth grows. MPLS connections are often encrypted and
allow for the establishment of Virtual Private Networks (VPNs). SD-WAN solutions
objective, between others, is to allow companies to migrate from expensive MPLS
connections, to the use of legacy Internet, while retaining most of the MPLS features
(namely ease of deployment, security and SLA compliance).

2 Introduction

1.1 Motivation

While most SD-WAN solutions in the market address the problems of enterprise
networks management and deployment over WAN effectively, providing bounded
performance guarantees over the legacy Internet still represents a challenge. One of
the main reasons is its higher congestion level than the one of a dedicated MPLS
link, that, combined with the typical high latency of WANs, translates in poor data
transfer throughput, often hindering mission critical applications response time. This
is particularly true when using the Transmission Control Protocol (TCP), because
of its design principles. While other transport protocol such as QUIC are becoming
more popular, TCP still moves most of the bytes transmitted over the Internet [50].

Legacy Internet access links do not provide guarantees in terms of availability
either, which could cause complete business disruptions and considerable economic
losses. To compensate such scenarios, SD-WAN solutions try to increase availability
by leveraging multiple Internet access links at the same time and seamlessly migrating
traffic in case of connectivity disruption. More sophisticated systems are also able to
detect brownouts, where connectivity is still provided but the Quality of Service in
terms of specific metrics is not met; however their visibility over the network status
is limited to conventional metrics such as jitter, latency and packet loss.

1.2 Objectives

The objective of this research project is to investigate innovative solutions to address
SD-WANs criticalities in terms of performance and network visibility. To achieve it,
we identify current flaws in the TCP transport protocols and propose a new scheme
to improve its performance behavior that can be deployed in an edge router (which
represent the typical topological deployment of an SD-WAN solution). Further-
more, new methodologies to estimate the network congestion level are proposed,
introducing state of the art machine learning algorithms in processing well known
passive measurements such as inter-packet time to extrapolate the end-to-end avail-
able bandwidth. Another technique based on active probing is exposed, establishing
a new paradigm in the interpretation of packet-pairs dispersion that allows for precise
narrow link capacity estimation and location on path. All this additional visibility

1.3 Contributions 3

6'�:$1�
,PSURYHPHQWV

7&3�LQ�:$1V 6PDUW�PHDVXUHPHQWV

5HFHLYH�:LQGRZ�
0RGXODWLRQ7UDIILF�&RQWURO $YDLODEOH�%DQGZLGWK�

(VWLPDWLRQ
&DSDFLW\�HVWLPDWLRQ�DQG�

ERWWOHQHFN�ORFDWLRQ

Fig. 1.1 The research project areas covered and contributions.

is finally exploited in combination with the previously described TCP controller to
achieve resource sharing and performance optimization over the traffic handled by
an SD-WAN device.

1.3 Contributions

Following the motivation and objectives described, the research project focused on
different areas in computer networks, with the final intention of designing innovative
SD-WAN devices that can leverage additional end-to-end visibility of the network to
improve network resources utilization. The project preliminary work included the
study of TCP in WAN scenarios and other related topics, and resulted in a granted
patent. One of the two core phases of this PhD explored new mechanisms in TCP
control that can be implemented in an edge router, resulting in a conference paper.
Smart measurements were the focus of the third phase of the project, providing
material for two conference papers and a journal. Finally, an architecture for an SD-
WAN device based on the rest of the work is proposed as the last part of the project,
which was included as part of a second patent filing. Documentation distributed
internally at the hosting company was also part of the project output and were used
to elaborate this dissertation. Figure 1.1 provides a visual overview of the areas
investigated in the project and their inter-dependencies.

1.3.1 Preliminary Work

The preliminary work carried out for the project resulted in two main documents:

4 Introduction

[PAT1] Nemirovsky, M., Serral-Gracià, R., Ciaccia, F., & Romero, I. (2017). Intelli-
gent adaptive transport layer to enhance performance using multiple channels.
U.S. Patent Application No. 15/626,130. Patent Granted. [52]

[INT1] Arcas Abella, O., Ciaccia, F., & Montero, D. (2018). TCP Insights Analysis
and Operative Recommendations from the Technology Group. Clevernet
Internal Documentation.

The topics in analysis include the exploration of standard TCP and Multi-Path
TCP (MPTCP) protocols behavior in WAN scenarios, and the study of new WAN
measurements to identify path diversity and exploit multi-connectivity. To fully
understand the advances in MPTCP development, an extensive study about TCP and
its behavior in Linux system was carried on internally at the company and resulted
in [INT1]. The MPTCP advances resulted in the development of a prototypal
MPTCP path-manager for the Linux Kernel. Contributions were provided to the
patent filing [PAT1], specifically in specifying innovative traceroute techniques. A
framework for flexible network assessment through active probing was implemented
and integrated in the company product in this first part of the project. An analysis
tool leveraging eBPF technology to collect detailed TCP statistics from the Linux
kernel was developed and will be open-sourced in the future.

1.3.2 TCP Control

A considerable part of the thesis focuses on TCP; this part of the research project
generated the following documents:

[INT2] Ciaccia, F. (2018). Linux Token Bucket Filter Implementation analysis. Clev-
ernet Internal Documentation.

[PAP1] Ciaccia, F., Arcas-Abella, O., Montero, D., Romero, I., Milito, R., Serral-
Gracia, R., & Nemirovsky, M. (2019, July). Improving TCP Performance and
Reducing Self-Induced Congestion with Receive Window Modulation. In 2019
28th International Conference on Computer Communication and Networks
(ICCCN) (pp. 1-6). IEEE. [11]

1.3 Contributions 5

From the preliminary work studies and needs of the company, surged the idea
to research established and new mechanisms to limit TCP self-induced congestion
to improve throughput and reduce bufferbloat. An analysis was carried on state
of the art mechanisms implemented in the Linux kernel to control flow burstiness
and resulted in [INT2] . A new approach to mitigate TCP self-induced congestion
in WANs was presented in [PAP1], representing one of the main contributions of
this research project. The Receive Window Modulation controller proposed also
represents an effective mechanism to throttle TCP flows without inducing packet
loss.

1.3.3 Smart Measurements for Wide Area Networks

The other main area that was covered during the project development was network
measurements, resulting in the following publications:

[PAP2] Ciaccia, F., Romero, I., Arcas-Abella, O., Montero, D., Serral-Gracià, R., &
Nemirovsky, M. (2020). SABES: Statistical Available Bandwidth EStimation
from passive TCP measurements. IFIP Networking 2020. [12]

[PAP3] Ciaccia, F., Romero, I., Serral-Gracià, R., & Nemirovsky, M. (2020). HIRE:
Hidden Inter-packet Red-shift Effect. 2020 IEEE Global Communications
Conference. [13]

[PAP4] Ciaccia, F., Romero, I., Serral-Gracia, R., & Nemirovsky, M. (2020). AI-
enhanced End-to-end Network Assessment. To be submitted to Q1 Journal.

A series of innovative approaches and techniques were presented in [PAP2],
[PAP3], and [PAP4], focusing on end-to-end available bandwidth assessment and
end-to-end capacity estimation. The information provided by such smart measure-
ments can be exploited effectively to improve the behavior of the controller developed
during the first part of the project.

1.3.4 Network Control

The mechanisms described in the smart measurements publications were included in
the patent:

6 Introduction

[PAT2] Romero, I., Ciaccia, F., Nemirovsky, M., & Serral-Gracià, R. (2020). Auto-
matic Communication Network Control. PCT/US Patent Application submit-
ted 05/2020. Patent Pending. [60]

The patent [PAT2] also prepared the ground describing coordination mechanisms
to achieve a better bandwidth management in a controlled network. An architecture
for such an integrated controller is presented in this thesis dissertation and will be
the subject of a future publication.

1.4 Methodology

The research methodology employed in the research project encompasses a wide
variety of tools. The TCP behavior study and the proposed mitigation scheme have a
system design approach, with a qualitative and quantitative evaluation achieved by
prototyping the controller and testing it in a real world scenario.

The available bandwidth estimation proposal focuses on a data driven approach,
with massive amount of different scenarios generated through simulation, which were
then used to train a neural network model whose generalization has been validated
both in simulations and real world scenarios.

The narrow link active-probing based tool called HIRE, is based on an analytical
model which is validated in simulations.

1.5 Thesis Structure

Table 1.1 shows how the research project contributions map to this dissertation
chapters.

The remainder of this manuscript is structured as follows.
Chapter 2 outlines the behavior of modern TCP implementations in WAN scenar-

ios, and exposes the main problem this work addresses.
Chapter 3 shows state-of-the-art solutions in the Linux networking stack that

mitigate some TCP flaws, and poses the background to better understand the solutions
proposed subsequently.

1.5 Thesis Structure 7

Chapter Title Contributions

Chapter 2 TCP over Wide Area Network [INT1]
Chapter 3 Traffic Control in Linux [INT2]
Chapter 4 Receive Window Modulation for TCP over WAN [PAP1], [PAT2]
Chapter 5 Packet-pair dispersion models and measurement [INT2]
Chapter 6 Available Bandwidth Estimation [PAP2], [PAT2]
Chapter 7 Deep Neural Networks for AvBw estimation [PAP2], [PAT2], [PAP4]
Chapter 8 Narrow link estimation and location [PAP3], [PAT2], [PAP4]
Chapter 9 Towards a Stateful SD-WAN traffic controller [PAT2]

Table 1.1 Mapping of document contributions to the thesis chapters.

Chapter 4 highlights a proposal to mitigate TCP self-induced congestion and
throttle TCP flows losslessly. The system exploits the protocol flow control mecha-
nisms, in a scheme called Receive Window Modulation (RWM).

Chapter 5 discusses network measurements of interest and the challenges posed
by their collection in modern virtualized environments, with emphasis on packet
dispersion.

Chapter 6 evaluates a proposal to estimate end-to-end available bandwidth from
inter-packet time, called SABES. It is based on the packet dispersion model and
implemented with a heuristic approach.

Chapter 7 extends the heuristic developed in 6 by means of Deep Neural Net-
works, improving the available bandwidth estimation obtained.

Chapter 8 delve deeper in the end-to-end capacity estimation problem describing
an approach based on active probing and exposing a new model for packet-pairs
dispersion analysis, called HIRE.

Chapter 9 summarize the main contributions of the project, and proposes an
architecture for a stateful software edge router based on the technology presented in
the rest of the dissertation. It also sets the discussion for future developments with
some final remarks.

Chapter 2

TCP over Wide Area Networks

The Internet is a packet-switched network of networks that interconnects the world.
Instead of a centralized management, it uses relatively simple algorithms in au-
tonomous nodes that have emergent properties as a whole. In contrast to other types
of networks, it does not intrinsically provide some guarantees to the users, such
as integrity and reliability of the communications. The TCP/IP suite of protocols
provides these guarantees, in particular error-free, ordered and reliable delivery of
the data. Specifically, TCP is a transport protocol that uses an Automatic Repeat
Request mechanisms to retransmit data that is corrupt or lost, and sliding windows
to control how much data to send to not saturate the receiver (Flow Control) or the
network (Congestion Control). A more comprehensive and detailed overview about
generic TCP concepts is provided in Appendix A.

In this chapter we will analyse how classic TCP implementations can cause self-
induced congestion in WAN scenarios, also causing a phenomenon called bufferbloat.

7&3�LQ�:$1V

Fig. 2.1 Chapter contribution to the dissertation.

10 TCP over Wide Area Networks

Opposed to loss based TCP congestion control algorithms, we also review more
modern approaches providing better network resources estimation. Finally we present
a specific scenario of interest called Split TCP, which presents challenges that we
address with the proposal presented in Chapter 4.

2.1 TCP Control and Self Induced Congestion

TCP is the transport protocol of choice for many of the distributed application being
developed. It provides guarantees in terms of data integrity and delivery; it controls
and modulates the sending rate according to estimated network conditions by means
of two mechanisms: i) congestion control and ii) flow control. The former is a sender
mechanism aimed at adjusting the sending rate, according to congestion events in the
network as estimated by the congestion control algorithm. The latter provides the
receiver with a mechanism to signal to the sender the amount of data it can receive.
In fact, TCP flow control relies on explicitly signaling the available receive window
in the protocol header. It was designed considering slow receivers, which were not
able to process all the received data because of constrained computational resources.
However, TCP flow control is rarely involved in a normal TCP connection in modern
Internet era, as processing power has increased dramatically since the protocol
definition, preventing the receiver to become the bottleneck. That is generally true,
except for cases where the maximum receive window advertised is smaller than the
path Bandwidth-Delay Product (BDP). This can happen even in modern operating
systems that are equipped with receive window scaling options and receive window
auto-scaling mechanisms such as Linux, Microsoft Windows, Android, and macOS.
In these cases, the maximum buffer allocated by the operating system binds the
maximum advertised TCP receive window, causing flows than could generate higher
throughput to be flow-controlled. However, this is easily overcome by a correct setup
of the maximum TCP allocated buffer, and is configurable in most operating systems.
To explain the phenomenology of TCP self-induced congestion we will assume that
the advertised TCP receive window is big enough to accommodate the flow BDP, so
that we are not limited by TCP flow control.

Opposed to that, while network infrastructure has evolved, TCP design choices in
congestion control can still represent a limitation in network resources exploitation.

2.1 TCP Control and Self Induced Congestion 11

Many congestion control proposals, e.g. CUBIC [28], act too aggressively, contribut-
ing to what we define as self-induced congestion: intermediate routers start dropping
packets causing consistent throughput reduction, especially in the presence of loss-
based congestion control algorithms. Then, when big buffers are present along the
path, bufferbloat manifests, reducing the responsiveness of latency-sensitive concur-
rent flows, such as those of interactive applications. In the following sections we will
analyze how loss-based congestion controls operate and affect the network behavior;
later we will present a recent development in congestion control that follows a better
control scheme based on the estimation of the path BDP, called BBR.

2.1.1 Loss Based Congestion Controls

Historically, TCP congestion control algorithms reacted to packet loss interpreting
it as a congestion signal. This caused a reduction in the sending rate to alleviate
pressure over the network infrastructure. The most common causes for packet losses
on the Internet are:

• congestion in intermediate router queues,

• routers Active Queueing Management (AQM) policies,

• targeted throughput throttling,

among others. In the beginning of TCP history, congestion in intermediate routers
could be attributed to slow links, high access concurrency, and small buffers in routers
queues. In these cases, packet loss represents an actual signal of network congestion,
especially when related to tail-drop in small router queue buffers.

TCP congestion control was designed to react to losses as shown in Figure
2.2. To exemplify the different congestion controls response in this figure, we
assume that a loss is always triggering a Retransmission Timeout (RTO), causing
the algorithm to restart from the Slow Start phase (SS). The consolidated Reno
congestion control reduces its congestion window by half when a packet loss is
detected, impacting the flow throughput considerably. Its congestion avoidance phase
is linear, causing a slow recovery of the actual optimal throughput. More modern
loss-based congestion controls such as CUBIC, have increased their efficiency by

12 TCP over Wide Area Networks

688 77 6IRS '9&-' 0SWW
� �
� �
� �
� �
� �� �� �� �

�� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �

��
�
�
�
� � � �

� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �
�� ���� �
�� ����������� ��

��
� ����

�� ����������� �
�� ����������� �
�� ���� �
�� ����������� �
�� ����������� �

Fig. 2.2 Schematic behavior comparison of Reno and CUBIC loss-based congestion
controls.

reducing less the congestion window in case of a loss event and growing faster during
their congestion avoidance (following a cubic shape spline function). CUBIC is the
default congestion control in the Linux kernel.

Along the years, to cope with higher demand and higher capacity links, and thanks
to a reduced price in memory technology, routers manufacturers started increasing
the queues buffer size. However, congestion control algorithms did not change, still
probing the network for packet loss before reducing their sending rate. In the absence
of active queueing management in the routers, packets are tail-dropped once the
buffer has been filled. In presence of such bigger buffers, a huge quantity of packets
is queued before any actual loss takes place, while the sender is still increasing its
sending rate. The excess of packets buffered in the router queue causes other flows
crossing the same router, and the congesting flow itself, to perceive a considerable
increment in round-trip latency. This phenomenon called bufferbloat is disruptive
for most interactive and latency-sensible applications, while greatly reducing TCP
bulk data throughput because it usually triggers RTOs [25]. Bufferbloat is especially
perceived in WAN scenarios characterized by naturally big propagation delays. This
is because the TCP acknowledgements take more time to be received by the sender,
whose response to congestion is delayed. In Figure 2.3 an example of bufferbloat
is shown. A TCP bulk data transfer of a 50MB file using the Reno congestion
control is competing for a WAN link of 100Mbps of capacity and a nominal RTT

2.1 TCP Control and Self Induced Congestion 13

2 4 6 8 10 12
0

20

40

60

80
Th

ro
ug

hp
ut
 [M

bp
s]

TCP Reno

2 4 6 8 10 12
Time [s]

0.15

0.20

0.25

0.30

RT
T
[s
]

sRTT

Fig. 2.3 The connection RTT is heavily affected by the Reno congestion control.

of 140ms. Cross-traffic is occupying approximately the 20% of the link capacity.
The slow-start growth curve of Reno is aggressive and causes a massive packet loss
around second 4. The connection RTT grows up to 350ms, more than doubling the
nominal propagation delay. An RTO is triggered because the ACKs notifying the
missing packets are delayed considerably. As a consequence the congestion control
reduces its congestion window to zero, starting with the slow start process all over
again. The network available resources are not efficiently utilized, and the flow takes
13s to complete the file transfer. If the same file would have been transmitted with an
average throughput corresponding to the 80Mbps of available bandwidth, it would
have finished in approximately 5s, less than half the time.

The key takeaway is that loss-based congestion controls are not able to fully
and efficiently exploit WAN network resources as they react to packet loss and not
other type of signaling to detect network congestion. Ideally, an efficient congestion
control should adapt the sending rate to the path available BDP.

14 TCP over Wide Area Networks

Time [s]
0

100

200

300

400
Th

ro
ug

hp
ut
 [M

bp
s]

BBR CUBIC

0 10 20 30 40 50
Time [s]

0.050

0.075

0.100

0.125

0.150

RT
T
[s
]

BBR CUBIC

Fig. 2.4 BBR and CUBIC transferring the same file in the same environment.

2.1.2 BBR: Congestion based congestion control

Recently, Google has proposed a new hybrid scheme for congestion control called
BBR [9]: its objective is to characterize the current BDP of the connection. It
accomplishes so by estimating the minimum RTT and the end-to-end available
bandwidth, by periodically inducing queueing and then draining the buffer. BBR
operates on the Kleinrock’s optimal operating point [44] in which the available
bandwidth and the round trip time, RTT, are estimated in order to determine the
bandwidth-delay product (BDP). The endpoint probes periodically to estimate the
tight link available bandwidth by pacing packets at higher rates than the previous
estimation.

Figure 2.4 shows a comparison between CUBIC and BBR in terms if throughput.
The same 1GB file is transferred in two separate moments in time, first with CUBIC,
then with BBR. The testing environment RTT is approximately 50ms, with an
Internet access link nominal capacity of 700Mbps symmetric. BBR terminates the
file transfer in less than half the time than CUBIC, with a more consistent behavior.
Both congestion control algorithms have impact on the connection RTT. However,

2.2 The Split TCP problem in WANs 15

7&3�,QVLJKWV ���

QRUPDO�

&DVH������� ���0ESV� ����� ���PV���PV�
GLVWULEXWLRQ�
QRUPDO�

���0%� KXJH�

&DVH����'HFRXSOHG�7&3V�FRQQHFWLRQV�ZLWK�D�SUR[\�LQ�WKH�PLGGOH�

7KLV FDVH VWXGLHV WKH LPSOLFDWLRQV RYHU D 7&3 FRQQHFWLRQ ZKHQ D 3UR[\ LQWHUDFWV DV D� � � � � � � � � � � � � � �
PDQ�LQ�WKH�PLGGOH EHWZHHQ WKH &OLHQW DQG WKH 6HUYHU� 7KH RYHUDOO FRQQHFWLRQ LV EHWZHHQ WKH� � � � � � � � � � � � �
&OLHQW DQG WKH 6HUYHU IROORZLQJ D 7&3�OLNH WUDQVDFWLRQ� KRZHYHU JLYLQJ WKDW WKH SUR[\ DFWV� � � � � � � � � � � � � �
WUDQVSDUHQWO\� WZR GLIIHUHQW 7&3 FRQQHFWLRQV DUH HVWDEOLVKHG� (DFK 7&3 FRQQHFWLRQ LV� � � � � � � � � � �
VXEMHFWHG WR WKH QHWZRUN DQG HQGSRLQWV FRQGLWLRQV� DQG WKH MRE RI WKH 3UR[\ LV WR FRXSOH� � � � � � � � � � � � � � � �
WKHP IRU WKH SXUSRVHV RI WKLV VWXG\� 1R RWKHU WDVN� VXFK DV ILOWHULQJ� LV SHUIRUPHG LQ WKH� � � � � � � � � � � � � � � � �
3UR[\��

�

�

)LJXUH �� &DVH � FRQVLGHUV D 7&3�OLNH WUDQVDFWLRQ EHWZHHQ WKH &OLHQW DQG WKH 6HUYHU� � � � � � � � � � � � � �
ZLWK D 3UR[\ LQ WKH PLGGOH� ,W UHVXOWV LQ WZR 7&3 FRQQHFWLRQV� ZKHUH WKH SUR[\ KDV WR� � � � � � � � � � � � � � � � �
VWLWFK WKH GDWD EHWZHHQ WKHP� 7KH 3UR[\ DFWV RQ EHKDOI RI WKH &OLHQW ZKHQ IRUZDUGLQJ� � � � � � � � � � � � � � �
WKH UHTXHVW� 6LPLODUO\� WKH 3UR[\ IRUZDUGV GH GDWD VHQW IURP WKH 6HUYHU WRZDUG WKH� � � � � � � � � � � � � �
&OLHQW��7KLV�SURFHVV�LV�UHIHUUHG�DV�FRXSOLQJ�7&3��	�7&3���

:H DUH SDUWLFXODUO\ LQWHUHVWHG LQ WKH FDVH GHSLFWHG LQ)LJXUH �� ZKHUH WKHUH LV D :$1� � � � � � � � � � � � � � � �
EHWZHHQ�WKH�FOLHQW�DQG�WKH�SUR[\��ZKLOH�WKHUH�LV�D�/$1��EHWZHHQ�WKH�SUR[\�DQG�WKH�VHUYHU���

7KLV VHWXS EULQJV XS WKH LQWHUDFWLRQV EHWZHHQ WKH)ORZ &RQWURO DQG WKH &RQJHVWLRQ &RQWURO� � � � � � � � � � � � � �
PHFKDQLVPV� 7KH 3UR[\ EHKDYHV DV D VORZ UHFHLYHU� VWUXJJOLQJ WR FRXSOH WZR GLVVLPLODU 7&3� � � � � � � � � � � � � �
FRQQHFWLRQV� :KLOH)ORZ &RQWURO GRPLQDWHV WKH EHKDYLRU RI WKH �ORVVOHVV� YHU\ ORZ ODWHQF\�� � � � � � � � � � � � �
/$1 7&3 FRQQHFWLRQ� WKH &RQJHVWLRQ &RQWURO GHWHUPLQHV KRZ IDVW WKH GDWD LV SXVKHG LQWR� � � � � � � � � � � � � �
WKH�:$1�� �

)ORZ�&RQWURO�	�&RQJHVWLRQ�&RQWURO�
7KH�IROORZLQJ�WDEOH�GHVFULEHV�WKH�VFHQDULRV�GHILQHG�WR�VWXG\�WKH�7&3�FRXSOLQJ�FDVH��)RU�WKH�
/$1�DQG�:$1�HQYLURQPHQW��GLIIHUHQW�EXIIHUV�VHWWLQJV�DUH�FRQVLGHUHG��)XUWKHUPRUH��ZH�
FRQVLGHU�D�,QWHUQHW�OLNH�577�DQG�D�KLJK�ORVV�UDWH�SHUFHQWDJH�WR�WULJJHU�WKH�&RQJHVWLRQ�
&RQWURO�ZLWK�GLIIHUHQW�EXIIHUV�FDVHV��
�
� 7&3��>/$1@� 7&3��>:$1@�

1DPH� %:� %XIIHUV� %:� /RVV� 577� %'3� %XIIHUV�

&OHYHUQHW��,QF��

Fig. 2.5 Split TCP connections.

BBR impact is limited in time and corresponds with its bandwidth probing phase,
when the queues are filled on purpose. CUBIC on the other hand, is consistently
filling the queues with many peaks up to three times the nominal propagation delay
especially. While BBR addresses many of the problems of loss-based congestion
controls, studies have found a few flaws. BBR has been proven to build long-term
standing queues that can cause misleading BDP estimations [30]. This causes the
algorithm to often overestimate the BDP while not being fair to other competing
flows, especially loss-based congestion control TCP flows [46].

2.2 The Split TCP problem in WANs

A specific use case of interest for Clevernet are Performance Enhancing Proxies
(PEPs). PEPs are very useful in mitigating link related degradation as specified in
the RFC [5]. Consistent performance improvements over WANs can be achieved by
using the Split TCP connections mechanism. In a Split TCP connection scenario, a
proxy located close to a receiving or sending end-point, terminates the connection of
that end-point and opens another connection towards the final connection destination.
This allows the proxy to take control over the TCP connection and apply specific
optimization such as Window Scaling (when it is not enabled in the endpoint),
improved congestion control algorithms, ACK filtering and retransmission, etc. . . .
In the case of PEP being deployed in an WAN edge router (as an SD-WAN device
usually is), a connection impairment happens as shown in Figure 2.5.

We are particularly interested in the case depicted in Figure 2.5, where there is a
WAN between the client and the proxy, while there is a LAN between the proxy and
the server. This setup brings up the interactions between the Flow Control and the
Congestion Control mechanisms. The Proxy behaves as a slow receiver, struggling to
couple two dissimilar TCP connections. While Flow Control dominates the behavior

16 TCP over Wide Area Networks

of the (lossless, very low latency) LAN TCP connection, the Congestion Control
determines how fast the data is pushed into the WAN.

2.2.1 TCP buffer and windows behavior in Split TCP

To verify the Split TCP behavior we conducted a test in a controlled environment,
replicating the deployment of Figure 2.5. To achieve this, we used two Linux devices
acting as server and client of an HTTP file transfer, with a third Linux device acting
as a router in between the two. We emulate the desired environment by adding
a shaper in the proxy that enforces a rate limiting of 100Mbps with 120ms RTT
over the WAN link. The WAN RTT has a variability of �20ms and the link has an
additional 0.2% of packet loss, exacerbating the characteristics of a bad WAN link,
causing a strong LAN-WAN impairment. The test consists of a download initiated
by the client that acts as receiver and provided by the server that acts as a sender. The
receive buffers and windows in the Linux systems are tuned so to accommodate the
maximum nominal BDP of the connection, so that unnecessary flow control over the
WAN will not limit the maximum throughput. The congestion control in use is the
Linux default, CUBIC.

We developed a tool that takes advantage of the eBPF technology [23] in the
Linux kernel to easily extract information from the operating system, specifically
about the network stack status and TCP connections. Figure 2.6 shows the behavior
in terms of TCP throughput, receive buffer utilization, TCP windows, and RTT as
perceived by the server, the proxy, and the client. The eBPF tool was deployed in all
three nodes participating in the connection. We will dig deeper into the Split TCP
system by looking at each metric in analysis first in the LAN connection and then in
the WAN:

• Throughput: from Figures 2.6a and 2.6d, we can see that throughput is loosely
coupled between the two connections. This is because the proxy tries to match
the amount of data it is receiving from the sender over the LAN with the speed
it is able to achieve over the WAN. The bad WAN conditions however, limit the
congestion control growth as shown in Figure 2.6f, thus the WAN throughput.

2.2 The Split TCP problem in WANs 17

0 5 10 15 20
Time [s]

2

4

6

8

10

12

Th
ro
ug

hp
ut
 [M

bp
s]

throughput

(a) Server throughput - LAN.

0 5 10 15 20
Time [s]

250000

500000

750000

1000000

1250000

1500000

1750000

Bu
ffe

rs
 si

ze
 [B

yt
es

]

rcv_buffer rcv_buffer_utilization

(b) Proxy buffer - LAN.

0 5 10 15 20
Time [s]

0

25000

50000

75000

100000

125000

150000

W
in
do

w
Si
ze
 [B

yt
es
]

proxy_rwnd
server_cwnd

zero_wnd_event

(c) LAN TCP Windows.

0 5 10 15 20
Time [s]

0

2

4

6

8

10

Th
ro
ug

hp
ut
 [M

bp
s]

throughput

(d) Proxy throughput - WAN.

0 5 10 15 20
Time [s]

0

500000

1000000

1500000

2000000

Bu
ffe

rs
 si

ze
 [B

yt
es

]
rcv_buffer rcv_buffer_utilization

(e) Client buffer - WAN.

0 5 10 15 20
Time [s]

0

200000

400000

600000

800000

1000000

W
in
do

w
Si
ze
 [B

yt
es
]

client_rwnd proxy_cwnd

(f) WAN TCP Windows.

Fig. 2.6 Full Split TCP connections behavior with a proxy close to a sending server.

• TCP Windows: as a consequence of the connection impairment, the proxy
tries to limit the amount of data the server is delivering over the very low-BDP
LAN connection. It does so by activating TCP flow control as shown in Figure
2.6c. The proxy receive window oscillates continuously, advertising a receive
window of zero bytes, every time it needs the server to stop sending data. The
congestion window of the server is not relevant in the LAN connection as
the dominant factor is the proxy flow control (red line) Fig. 2.6c. As already
anticipated instead, in the WAN connection between proxy and client, the
situation is completely different. The driving factor of the WAN rate is the
proxy congestion control (green line), which is always operating far below the
client advertised receive window threshold as shown in Figure 2.6f.

• Buffers: in the intent of containing the sender rate, the proxy uses flow control
at the TCP level. In the meanwhile it is coping with memory pressure on its
receive buffer over the LAN, storing as much data as it can while trying to
send it to the final client over the WAN slow link as shown in Figure 2.6b: the
green line represents the buffer utilization while the red line is the maximum

18 TCP over Wide Area Networks

0 5 10 15 20
Time [s]

0

10

20

30

40
RT

T
[m

s]
snd_sRTT

(a) RTT as seen by server - LAN.

0 5 10 15 20
Time [s]

0

25

50

75

100

125

150

RT
T
[m

s]

snd_sRTT

(b) RTT as seen by proxy - WAN.

Fig. 2.7 RTT evolution in the Split TCP scenario.

buffer size, which is auto-tuned by the operating system according to the
connection needs. On the other hand, the client receive buffer is barely used
as shown in Figure 2.6e, with some occasional spike related to the storage of
the out-of-order packets that are stored in case of losses over the WAN, while
waiting for retransmission from the proxy.

Finally, we show the RTT recorded for this TCP connection from the server over
the LAN (Figure 2.7a) and from the proxy over the WAN (Figure 2.7b). Is notable
the behavior shown in the LAN: the back-pressure operated from the proxy over the
sender, and the consequent buffering in the proxy, causes a clear case of bufferbloat.
The proxy is operating local TCP acknowledgements, so that the sender is not bound
to the WAN latency. The propagation delay of this LAN is less than 1ms, but the
TCP connection is perceiving up to 40ms RTT between the server and the proxy.

As seen, the split TCP case study presented poses some challenges:

• reducing the consistent memory pressure over the proxy due to the low LAN
BDP and slow processing of the proxy;

• mitigating the consequent bufferbloat over the LAN;

• improving the inconsistent performance over the WAN due to lossy links and
poor congestion control performance.

2.3 Conclusions 19

2.3 Conclusions

In this chapter we have introduced how modern TCP implementations behave in
WANs. We have seen that loss-based congestion controls, which use is still wide-
spread, have some limitations: they can be too aggressive causing bufferbloat and
massive tail-drops in routers, which hinder final connection throughput and latency;
on the other hand they can be very inefficient in exploiting the available bandwidth
in presence of losses, even tough no actual cross-traffic is present (e.g. in case of
random losses such as over wireless). While new developments in congestion control
seem promising, their short-term wide deployment seems unlikely as they are still
affected by a few quirks and require end-points operating systems adoption and
migration.

SD-WAN edge devices represent a solution to address most of these problems
without the need to modify the end-points, while providing consistent optimizations in
traffic engineering and management, for example by using a Performance Enhancing
Proxy (PEP). We studied a specific use case for PEPs over WANs, that presented us
with different issues. Between them, reducing bufferbloat over low-BDP scenarios in
presence of a slow consumer (such as the proxy forwarding over the WAN).

With the objective of addressing such challenges in mind, we investigated already
existing mechanisms that could help us, including Active Queueing Management,
policing, and throttling techniques as exposed in Chapter 3, before realizing the need
to develop a more comprehensive system as exposed in the rest of the dissertation.

Chapter 3

Traffic Control in Linux

The Linux operating system has evolved over the years, at each iteration supporting
new features with its networking stack. A Linux-based system is able to cope
with almost any networking protocol and task, from switching and routing, up to
application level deep packet inspection. It provides a layered system that allows
any developer or network administrator to take as much control as needed over any
networking-related task. As shown in Figure 3.1, in this chapter we will focus on the
traffic control system of the Linux kernel, with special attention on how it interacts
with the TCP stack and how it can be used to enforce bandwidth throttling and
mitigate bufferbloat. This will provide the needed context to understand the proposal
of Chapter 4.

7&3�LQ�:$1V

7UDIILF�&RQWURO

Fig. 3.1 Chapter contribution to the dissertation.

22 Traffic Control in Linux

7&3�,QVLJKWV ��

7KH ODVW YDOXH RQ WKH VHFRQG OLQH �PHP ����� LV WKH QXPEHU RI SDJHV DOORFDWHG WR 7&3� ,Q� � � � � � � � � � � � � � � � � �
WKLV FDVH ZH FDQ VHH WKDW ���� LV ZD\ EHORZ �������� VR WKHUH
V QR ZD\ ZH FDQ SRVVLEO\ EH� � � � � � � � � � � � � � � � � � �
UXQQLQJ�RXW�RI�7&3�PHPRU\��

3HU�6RFNHW�0HPRU\�$OORFDWLRQ�DQG�%XIIHULQJ�

7KH 7&3 VHQG DQG UHFHLYH ZLQGRZV DUH GLUHFWO\ UHODWHG WR WKH DYDLODEOH PHPRU\ EXIIHU� +HUH� � � � � � � � � � � � � � �
ZH ZLOO EULHIO\ GHVFULEH KRZ WKH EXIIHUV FDQ EH GHILQHG� KRZ WKH\ DUH XVHG DQG KRZ WKH\� � � � � � � � � � � � � � � � �
GHWHUPLQH�WKH�ZLQGRZ�VL]H��

�

7&3 6RFNHW DQG LWV VHQG� UHFHLYH DQG RXW�RI�RUGHU TXHXHV RI 6RFNHW %XIIHUV� 6RFNHW� � � � � � � � � � � � �
%XIIHUV DUH SDFNHWV DXJPHQWHG ZLWK PHWDGDWD� 2QFH DOORFDWHG� /LQX[WULHV WR� � � � � � � � � � �
PLQLPL]H FRSLHV DQG GDWD PRYHPHQWV� DQG XVXDOO\ WKH\ UHPDLQ LQ WKH VDPH PHPRU\� � � � � � � � � � � � �
ORFDWLRQ��2QO\�SRLQWHUV�WR�6RFNHW�%XIIHUV�DUH�WUDQVIHUUHG�EHWZHHQ�TXHXHV��

,W LV LPSRUWDQW WR XQGHUVWDQG WKDW LQ /LQX[SDFNHWV DUH DOORFDWHG DV 6RFNHW %XIIHUV �6.%��� � � � � � � � � � � � � � �
7KHVH 6.%V DUH QRW PRYHG RU FRSLHG� H[FHSW IRU VRPH FDVHV OLNH GHIUDJPHQWDWLRQ RU� � � � � � � � � � � � � �
PHPRU\ RSWLPL]DWLRQ� DQG SRLQWHUV WR WKHP DUH SXVKHG DQG SRSSHG IURP LQWHUIDFH RU VRFNHW� � � � � � � � � � � � � �
TXHXHV�GHQRWLQJ�WKHLU�RZQHUVKLS��

&OHYHUQHW��,QF��

Fig. 3.2 TCP queues in the kernel are collections of socket buffer pointers.

3.1 TCP memory management in the Linux network stack

The memory used by the TCP stack has two important aspects. First, how much of
this finite resource is used, and what to do when it becomes scarce. Second, how the
memory buffers are related to the protocol’s windows, and how their size affect the
connection.

For instance, a TCP connection without enough memory will under-perform in
a network with big latency. On the other hand, a connection with huge windows
may bloat the buffers of the Internet and become too aggressive and unstable, even
suffering from unnecessary losses.

The TCP connections have system-wide and per-socket limits. If any of them are
reached, or will be soon, the kernel may consider that there is memory pressure and
might start performing optimizations, which can consume CPU time and affect the
connection throughput. In severe cases, to alleviate memory pressure, packets may
be dropped.

In Linux, packets are allocated as Socket Buffers (SKB). Socket Buffers are
packets augmented with metadata. SKBs are not moved or copied, except for some
cases like de-fragmentation or memory optimization, and pointers to them are pushed
and popped from interface or socket queues denoting their ownership. Figure 3.2
shows the main queues of a TCP socket in the Linux kernel: send, receive and
out-of-order queues. TCP queues in Linux are colletions of pointers to SKBs. Once
allocated, Linux tries to minimize copies and data movements of SKBs, and usually
they remain in the same memory location, while only pointers to SKBs are transferred

3.1 TCP memory management in the Linux network stack 23

7&3�,QVLJKWV ���

�

6LPSOLILHG GLDJUDP RI WKH QHWZRUNLQJ GDWD SDWK LQ WKH /LQX[NHUQHO� $SSOLFDWLRQ GDWD� � � � � � � � � � � � �
FRQVLVWV LQ SXUH E\WH VWUHDPV� 6RFNHW %XIIHUV �6.%� DUH SDFNHWL]HG EXIIHUV RI E\WHV� � � � � � � � � � � � �
ZLWK PHWDGDWD� DQG SRLQWHUV WR WKHP DUH SXVKHG WR DQG SRSSHG IURP 6RFNHW DQG� � � � � � � � � � � � � �
7UDIILF &RQWURO TXHXHV� 7KH QHWZRUN GULYHUV WUDQVODWH EHWZHHQ 6.% DQG IUDPHV� 7KH� � � � � � � � � � � �
/LQX[1$3, FDQ UHGXFH WKH QXPEHU RI LQWHUUXSWV JHQHUDWHG E\ WKH QHWZRUN FDUG E\� � � � � � � � � � � � � �
VZLWFKLQJ�WR�EXV\�SROOLQJ��

7KH WRWDO PHPRU\ XVHG E\ D 7&3 FRQQHFWLRQ LV LWV 6RFNHW VWUXFWXUH DQG DOO WKH 6.%V SRLQWHG� � � � � � � � � � � � � � � � �
LQ LWV TXHXHV� 7KH PD[LPXP PHPRU\ WKDW WKH 7&3 FRQQHFWLRQ FDQ XVH LV GHWHUPLQHG E\� � � � � � � � � � � � � � �
YDULRXV�V\VFWO�SDUDPHWHUV��DQG�PXVW�EH�VKDUHG�ZLWK�WKH�UHFHLYH�ZLQGRZ��

�

7KH 7&3 UHFHLYH EXIIHU LV VKDUHG EHWZHHQ WKH UHFHLYH DQG WKH RXW�RI�RUGHU TXHXHV RI� � � � � � � � � � � � � �
6RFNHW %XIIHUV DQG WKH UHFHLYH ZLQGRZ �UZQG�� 7KH PD[LPXP VL]H RI WKH UZQG LV� � � � � � � � � � � � � �

&OHYHUQHW��,QF��

Fig. 3.3 TCP receive buffer in Linux and its relationship with the advertised receive
window.

between queues. The total memory used by a TCP connection in Linux can consists
of its socket structure and all the SKBs pointed in its queues.

Particularly relevant in the context of this dissertation, is the Linux TCP receive
buffer, and how it is implemented and correlated with the TCP receive window
advertised in the protocol header. This is because we leverage TCP flow control in a
scheme called Receive Window Modulation (RWM) as exposed in Chapter 4. One of
the possible RWM implementations uses socket options to modify the TCP receive
window advertised on a flow according to the RWM criteria. Another implementation
foresees the per-packet modification of the advertised TCP window of a flow, in
which case we have to guarantee that the end-point buffers boundaries are respected
to avoid breaking TCP semantics and the endpoint memory management. A good
understanding of the receive window and buffer mechanisms in Linux is then needed.
Figure 3.3 shows a graphical representation of the Linux TCP receive buffer. The
TCP receive buffer is shared between the receive and the out-of-order queues of
SKBs and the receive window (rwnd). The maximum size of the rwnd is denoted by
the window clamp. The queues may grow and occupy part or all of the rwnd space,
which will force the receiver to announce a smaller advertised window (awnd) in the
packet header (window update).

https://www.excentis.com/blog/use-linux-traffic-control-impairment-node-test-environment-part-2
https://www.excentis.com/blog/use-linux-traffic-control-impairment-node-test-environment-part-2
https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp

https://tools.ietf.org/html/rfc3168

https://docs.wavefront.com/query_language_windows_trends.html
https://tools.ietf.org/html/draft-cheng-tcpm-rack-00

	Table of contents
	List of figures
	List of tables
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.3.1 Preliminary Work
	1.3.2 TCP Control
	1.3.3 Smart Measurements for Wide Area Networks
	1.3.4 Network Control

	1.4 Methodology
	1.5 Thesis Structure

	2 TCP over Wide Area Networks
	2.1 TCP Control and Self Induced Congestion
	2.1.1 Loss Based Congestion Controls
	2.1.2 BBR: Congestion based congestion control

	2.2 The Split TCP problem in WANs
	2.2.1 TCP buffer and windows behavior in Split TCP

	2.3 Conclusions

	3 Traffic Control in Linux
	3.1 TCP memory management in the Linux network stack
	3.2 Traffic Control
	3.3 Active Queue Management
	3.4 Token Bucket Filter
	3.4.1 System tick and high resolution timers
	3.4.2 TBF evaluation as a pacing shaper
	3.4.3 TBF limitations

	3.5 Conclusions

	4 Receive Window Modulation for TCP over WAN
	4.1 Architecture
	4.1.1 Use Cases

	4.2 Experiments
	4.2.1 Testbed
	4.2.2 Evaluation

	4.3 Related Work
	4.4 Discussion
	4.4.1 RWM Compliance with TCP
	4.4.2 Path Symmetry
	4.4.3 Available Bandwidth Estimation
	4.4.4 Distributed deployment of points of control

	4.5 Conclusions

	5 Packet dispersion model and measurement
	5.1 Packet dispersion
	5.2 Probe-gap curve
	5.2.1 Probe-gap Model - PGM
	5.2.2 Probe-rate Model - PRM

	5.3 Inter-packet time measurement challenges in Linux
	5.4 Conclusions

	6 Available Bandwidth Estimation
	6.1 SABES Heuristic
	6.1.1 Capacity Estimation
	6.1.2 Available Bandwidth Estimation

	6.2 Heuristic Evaluation
	6.2.1 Simulation environment
	6.2.2 Heuristic simulation results

	6.3 Related Work in AvBw estimation
	6.4 Conclusions

	7 Deep Neural Networks for AvBw estimation
	7.1 Neural Network design
	7.2 Evaluation over simulation dataset
	7.3 Evaluation in real testbed
	7.3.1 Real testbed results
	7.3.2 Comparison with ASSOLO

	7.4 Improving SABES-NN: a direct estimation approach
	7.4.1 Time series analysis
	7.4.2 SABES-KDE
	7.4.3 SABES-KDE results evalution
	7.4.4 SABES-KDE limitations and future work

	7.5 Related Work in DNN and ML usage for AvBw estimation
	7.6 Conclusions

	8 Narrow link estimation and location
	8.1 Theoretical bases
	8.1.1 Smallest Link Capacity Set
	8.1.2 Packet pair dispersion
	8.1.3 Packet pair dispersion-delay

	8.2 Narrow link capacity determination
	8.2.1 Capacity estimation evaluation

	8.3 Hidden red-shift effect
	8.3.1 Narrow link location
	8.3.2 SLCS capacity determination

	8.4 Related Work
	8.5 Conclusions

	9 Towards a Stateful SD-WAN traffic controller
	9.1 Stateful Edge Router Architecture
	9.2 Takeaways and final remarks

	References
	Appendix A TCP Internals
	A.1 Flow Control
	A.2 Zero Windows and the Persist Timer
	A.3 Slow Start
	A.4 Congestion Avoidance
	A.5 Fast Retransmit
	A.6 Fast Recovery

