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Universitat de Barcelona (UB)
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Abstract

Assisted reproductive technologies (ARTs) are a set of invasive medi-
cal techniques that attempt to induce a pregnancy. In vitro fertilization
(IVF) is the most common and effective type of ART. Embryo selection
is a difficult and complex task. There is a morphological evaluation crite-
ria and a categorization into scales for each of the various embryo stages.
From these results, clinicians have to select which embryos to transfer, as
the clinical procedure can produce excess embryos. The transferred em-
bryos have to be carefully selected among the ones that show best quality
according to this morphological classification, as the aim of the process
is to achieve a pregnancy. In this project, we present a novel probabilis-
tic graphical model that, for the first time, accounts for the uncertainty
that represents all the unknown factors that can drive to a failure even
though all the components that take part in the ART process seem to be
favorable. In an ARTs’ dataset it is not always possible to know which
embryo was implanted. Among others, this uncertainty source forces us
to use an EM strategy, as well as the consideration of hidden variables in
our model. The experiments carried out show that much more informa-
tion can be obtained from this type of model than from previous simpler
approaches. The database for this work have been collected by the Unit
of Assisted Reproduction of the Hospital Donostia (Spain) throughout 18
months (January 2013–July 2014) where 604 patients participated in the
IVF-ICSI program compiling a total number of 3125 embryos.
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1 Introduction

1.1 Approximation to the embryo selection problem

Assisted reproductive technologies (ARTs) are a set of invasive medical tech-
niques that attempt to induce a pregnancy. In vitro fertilization (IVF) is the
most common and effective type of ART. Each trial of a treatment is known as
a cycle. The woman must follow a treatment of ovarian stimulation for some
weeks to induce the development of multiple follicles with a large number of
oocytes. Those oocytes are retrieved, and the matures ones are fertilized. The
resulting embryos are cultured for several days and clinicians must select which
embryos will be transferred to the woman’s uterus[9].

Embryo selection is a difficult and complex task. There is a morphological eval-
uation criteria and a categorization into scales for each of the various embryo
stages. The first decision to be made in dealing with embryo quality is the selec-
tion of the working tool. The most common method is the use of morphological
parameters, although other criteria, such as the study of aneuploides, are prov-
ing to be also effective[9]. The second decision is choosing the developmental
stages for these morphological parameters. The most common practice is to use
the second or third day of culture for the embryo or the fifth or sixth for the
bastocyst stage.

Once all the morphological data has been collected the final embryo classification
needs to be decided. The most extended classification option is by category,
although it also exists a scoring measurement. From these results, clinicians have
to select which embryos to transfer, as the clinical procedure can produce excess
embryos. The transferred embryos have to be carefully selected among the ones
that show best quality according to this morphological classification, as the aim
of the process is to achieve a pregnancy. Multiple transference is considered risky
for the woman as well as for the developing fetus(es). Besides, there exist legal
restrictions limiting the maximum number of transferred embryos (in Spanish
law this is limited to three).

This process is physically and psychologically tough, specially for women, and
does not guarantee that any of the transferred embryos implant in the uterus.
The latest report from the Spanish Society of Fertilization (SEF), published in
2018, shows that only 35.6% of the IVF processes end up in pregnancy[11].

The Artificial Intelligence approach to ARTs uses Machine Learning techniques
(see Section 2) to try to solve the embryo selection problem, as well as other
problems presented in IVF. In the case of the embryo selection, different features
of the embryos at different stages of the culture, and some characteristics of the
cycle, are used to train different classifiers and predict whether a transferred
embryo will succeed in implantation. This would relieve some of the stress to
the couples wanting to become parents, as the predictions would assist clinicians
in the selection of the embryos that most likely would lead to pregnancy.
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All these techniques take embryos and cycles’ characteristics, and the medical
treatment that has been followed, as responsible for the success or failure of
an IVF process. Yet, there is a recurrent problem in assisted reproduction
units: there exist unknown factors that affect the success of an ART cycle.
Many times, the uterus of the patient is healthy and has received the proper
ovarian stimulation, and the embryos have high quality, nevertheless, none of
the transferred embryos implant.

In this project, we present a novel probabilistic graphical model (see Section
4.4) that, for the first time, accounts for the uncertainty that represents all the
unknown factors that can drive to a failure even though all the components that
take part in the ART process seem to be favorable. In an ARTs’ dataset it is
not always possible to know which embryo was implanted. Among others, this
uncertainty source forces us to use an EM strategy, as well as the consideration
of hidden variables in our model. The experiments carried out show that much
more information can be obtained from this type of model than from previous
simpler approaches.

We have developed a learning algorithm specifically for this model. It is based on
the Expectation-Maximization (EM) strategy and uses two probabilistic classi-
fiers to approximate the probabilistic distribution of the quality of embryos and
cycles given the respective descriptive features. This is a comprehensive model,
as cycles, embryos and also those unknown factors (represented by a Bernoulli
distribution) are taken into account.

This model adds more detail describing reality as it shows the likelihood of
a successful result when all the components are favorable. It represents the
relationship between the cycles, the embryos belonging to the cycles, and this
uncertainty factor that affects the outcome and helps define the behaviour of
the whole system.

1.2 Motivation

Embryo implantation is a complex process involving maternal hormonal changes,
immune responses and maturational events in the embryo. A pregnancy could
fail when these events are not synchronized[rif04]. Despite the great improve-
ments in ovarian stimulation protocols and fertilization procedures, implanta-
tion rates per embryo remain at approximately 15% and many couples are still
left frustrated following multiple failed attempts[rif02]. Recurrent implanta-
tion failure (RIF) is a condition resulting from repetitive unsuccessful cycles of
IVF or intracytoplasmic sperm injection (ICSI) treatment [rif03], and it is the
clearest evidence that there exist still unknown factors that affect the success
of an ART cycle.

A percentage of 35.6% of success in an IVF process can be seen as hope for
couples who expect to have a baby, as well as a failure for scientists who try
to perfect a technique. The unknown factors that affect those processes are on
continuous study, and integrating its representation in a model adds information
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about the data the clinicians are working with. Knowing how a given set of
cycles and embryos behaves is key for decision, not only for embryo selection but,
for instance, the study of different morphological characteristics or modification
of the ovarian stimulation treatment.

The ASEBIR committee for ”the definition of morphological evaluation criteria
and their categorization, from Oocyte to Blastocyst”[9] was created in 2004 to
try to respond to the need for the unification of embryo evaluation criteria. Its
goal was to set out a proposal for morphological evaluation criteria and their
categorization into scales for each of the various embryo stages.

This categorization is a grading system that divides the expected implantation
potential of the embryo into 4 categories from A (an embryo with optimal quality
and the best implantation potential) to D (a poor-quality embryo with a low
chance of implantation). Assigning an embryo to a particular category depends
on its morphological parameters. The final selection of the embryos is performed
taking into account this categorization and the number of embryos the clinicians
decide to transfer. The low percentage of success in IVF shows that nowadays
clinicians have not found a proper algorithm for such task.

The model proposed, that shows the likelihood that the transfer of any selected
embryo willing to implant to a healthy uterus results in pregnancy, can be
used as a support for the clinicians to select the number of embryos to transfer
depending on how high this likelihood is. A low likelihood would tell that, even
with perfect conditions, that would be difficult for a high quality embryo to
implant. Thus, likelihood would be something to consider.

1.3 Structure of the document

This work starts introducing the state of the art in this subject (see section 2)
where different approaches to solve the embryo selection problem are described,
along with other problems related to IVF processes.

Afterwards a description of the features for each of datasets used to create
the model are presented (see section 3). There is a dataset for cycles and a
related one for embryos, both provided by the University of the Basque Country
UPV/EHU. Not all the data provided is used and some transformations for some
of the features are performed.

The work continues with a broader description of the proposed model and the
learning technique (see section 4) used to predict the probability of implantation
for an embryo selected to be transferred. First, an introduction to the probabilis-
tic model for IVF and to the general probability model for ARTs is presented.
An ART can carry out more than one transfer per cycle, although this work only
consider one transfer per cycle. In the graphical description of the model the
reader can see how the different variables of this system interact, discovering the
role of the latent variables in the whole system, the observed variables and also
the hyper-parameters for each of the classifiers and the Bernoulli distribution.
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Next, the derivation of the EM algorithm used to learn our particular model is
presented which provides a measure to evaluate how is the data in the system
in terms of chances to succeed in the process in perfect conditions.

Some experimentation has been performed (see section 5) where the model
proposed is tested with different probabilistic classifiers to be able to see which
one is able to define the reality of the datasets more accurately, and is also
able to perform better at predicting the success of an embryo selected to be
transferred. As the EM algorithm needs some iterations to perform, and it is
tested with different probabilistic classifiers, the evolution of this convergence
has been studied with different measures. The loss and the recall, along with
the probability of implanting given perfect conditions is also computed for all
of these probabilistic classifiers. In order to see how good the proposed model
would perform, it is compared with a baseline model which consists only in a
probabilistic model. The latest also predicts the probability of implantation for
an embryo selected to be transferred, and the AUC-ROC score is computed for
each of the probabilistic classifiers.

As a closure for this work, some conclusions (see section 6) are discussed and
ideas for future work (see section 6.1) presented. Machine learning method-
ologies applied to heterogeneous sets of data, and a proper modelling of the
system that this data is representing, can assist clinicians in decision making
and improve performance of IVF processes.
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2 State of the art

Ranking algorithms[paperdeu], statistical models, ensemble techniques, neural
networks, classification and regression tree, and regression analysis, discriminant
analysis and case based reasoning systems are some of the IA techniques used in
in-vitro fertilization (IVF)[papernou]. However, there is not a single AI method
that is useful for solving a particular problem and fits in all cases[papercinc].
We have to consider the data and labels available, and the output desired. It is
important to carefully analyse the dataset and model the problem properly.

AI methods are being investigated as a promising means for improving embryo
selection and predicting implantation and pregnancy outcomes. As happend in
any field, there are studies that wonder about the inclusion of ”machines” to
perform such tasks[5]. On the other hand traditional morphokinetic grading
by trained clinicians can be subjective and variable, but other complementary
techniques, such as time-lapse imaging, which would be more objective, re-
quire costly equipment, and they have not demonstrated sufficient predictive
ability[papercatorze].

These objective, standardized and efficient tools for evaluating human em-
bryos are demanded in laboratories, not only for embryo selection but for other
needs, such as assessing patient reproductive potential and individualizing go-
nadotropin stimulation protocols[8]

Images can be used to feed a neural network. Specifically the texture descriptors
from a given image, based on morphological analysis of the embryos[paperset].
The features incorporated in the texture of images are not usually perceived by
the human eye, and might be very useful for the recognition of viable embryos.
There are works[7] that are capable to classify, from images, embryos, pronuclei
or oocytes suitable for procreation.

Deep Neural Networks can be applied to combine spatial and temporal infor-
mation to predicting blastocits quality, given the information provided by time-
lapse imaging[paperquatre]. A Convolutional Neural Network is trained to
predict inner cell mass (ICM) and trophectoderm (TE) grades from a single
image frame, and a Recurrent Neural Network is used to incorporate temporal
information for multiple frames.

A Bayesian Network model[paperdos], based on EU assumption, can improve
parameter estimates. The EU model estimates the probability of pregnancy
after the transfer of a single embryo, assuming the independence of viability
and receptivity; when dealing with the transfer of multiple embryos, each em-
bryo is assumed to implant independently from the others. It takes a reduced
subset of feature variables related to embryo morphology and clinical data of
patients, which is the same that expert embryologists take into account in nor-
mal practice[papersis]. Different Bayesian classifiers take into account diverse
dependencies between variables; using information extracted from embryo im-
ages[3], the viability to succeed in implantation on woman’s uterus can be pre-
dicted.
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In a multi-variate data analysis, all the collected features, describing cycles and
embryos, are considered[papertres]. As mentioned before, it is important to
create an appropriate modeling of the problem to improve Machine Learning
techniques for embryo selection. Learning from label proportions considers all
the availability data, as there are also embryos whose fate can not be certainly
established; those are the cases where the number of embryos implanted are less
than the number of embryos transferred. This is incomplete information that
is used to train the classification models. Once again Bayesian classifiers are
used, as this is a model that can be calibrated to balance the contribution of
each predictive feature.

The Area Under the ROC curve is a measure that is used in some works[1]
[papervintiquatre] to evaluate Machine Learning Algorithms. It is a good way
of visualizing a classifier’s performance in order to select a suitable operating
point or decision threshold.
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3 Data

The database have been collected by the Unit of Assisted Reproduction of the
Hospital Donostia (Spain) throughout 18 months (January 2013–July 2014).
604 patients participated in the IVF-ICSI program compiling a total number of
3125 embryos.

It is composed of two spreadsheets, one for cycles and another for embryos,
related by a one-to-n relationship: for one cycle, the n embryos transferred in
that procedure. Each cycle is described by 25 features, including characteristics
of the patient, stimulation treatment and statistics of the associated embryos.
Each embryo is described by 20 features: oocyte/embryonic morphological char-
acteristics and quality grades.

Both datasets have a feature, TasaExito, that determines the percentage of
success of the cycle or the embryo. In the case of the cycles, this feature indicates
the percentage of transferred embryos belonging to that cycle that have succeed
in implantation. In the case of the embryos, this feature indicates whether
that transferred embryo has been implanted or if it belongs to a selection of
transferred embryos where some of them have been implanted and some do not.

As detailed in Table 1, 412 cycles failed to induce pregnancy (839 embryos), and
only in 57 cycles all the transferred embryos resulted implanted (108 embryos).
In the remaining 135 cycles, only a subset of the transferred embryos were
implanted (307 embryos) but it is not possible to know which specific embryos
are the ones implanted. There are, still, 1871 embryos not selected for transfer,
which are low quality embryos or surplus, due to the maximum number of
embryos that the law allows to transfer (in Spain this number is limited to
three).

Failed pregnancy 412 cycles 839 embryos
All embryos implanted 57 cycles 108 embryos

Some embryos implanted 135 cycles 307 embryos
604 cycles 1254 embryos

1871 embryos not selected for transfer
3125 embryos in the dataset

Table 1: Success number of cycles and related number of embryos

According to this database, women that undergo an IVF process ranges from
21 to 40 years old, being the average 34.43 (see Figure 1a). The average number
of embryos in a cycle is 5 although a variability from 1 to 18 is seen (see Figure
1b).
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(a) Range of women’s ages (b) Number of embryos in cycles

Figure 1: Range of ages from women undergoing an IVF process, and count for
the number of embryos in cycles

More important than the number of embryos per cycle is the quality of the
embryos. The ASEBIR grading system assign each embryo a category based on
different morphological qualities. These are the categories considered:

• Category A: An embryo with optimal quality and the best implantation
potential.

• Category B: An embryo of good quality and a high implantation potential.

• Category C: An acceptable embryo with an average chance of implanta-
tion.

• Category D: A poor-quality embryo with a low chance of implantation.

Figure 2 shows that more than half of the embryos belong to the lowest quality
categories (37.056% for category C 22.464% for category D). The best quality
embryos represent a 24.352% for category A and 16.032% for category B. The
remaining 0.096% are embryos without assigned category.

Figure 2: Count for ASEBIR categories
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3.1 Dataset of cycles

The features collected for each of ART cycles are shown in the following table
(see Table 2):

Feature Description Possible values

Codigo Code of the cycle numeric

TEsteril Time since infertility was detected numeric

Features related to Female

Indicac Indication of the cycle endometriosis, fracasoia, tubarico,
masculino, mixto, otros,
desconocido

Edad Age of the patient numeric

IMC Body mass index numeric

EmbPrev
Whether the patient has got previous preg-
nancies

No, Yes

AboPrev
Whether the patient has got previous mis-
carriages

No, Yes

FSH Quantity of follicle-stimulating hormone numeric

Ciclosprevios
Number of previously undergone ART cy-
cles

numeric

AMH Quantity of anti-mullerian hormone numeric

folAntral Number of antral follicles numeric

E2 Quantity of estradiol numeric

P4 Quantity of progesterone numeric

lEnd Endometrial thickness numeric

Features related to Male

caSemen Quality of the semen A, N, O, OA, OAT

REM Total pregressive sperm recovery numeric

Features related to Stimulation

Protocol Stimulation protocol PC+Agon, PC+Ant, PL

Estimul Stimulation treatment
FSHrec, FSHrec+hMG, FSHur,
hMG, FSHur+hMG, FSH+Lhrec

dEst Number of days of stimulation numeric

unidFSH Units of FSH numeric

unidLH Units of LH numeric

Features related to Embryos

nEmbObten Number of embryos numeric

TasaFertil
Number of embryos / Number of mature
oocytes (MII state)

numeric

nEmbTrans Number of transferred embryos numeric

TasaExito
Percentage of success in the transfer, given
all the embryos belonging to the same cycle

numeric

Table 2: Features collected for each ART cycle
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3.2 Dataset of embryos

The features collected for each of the embryos are shown in the following table
(see Table 3):

Feature Description Possible values

CodigoCiclo Code of the cycle the embryo belongs to numeric

CodigoOvoc Code of the embryo numeric

Tecnica Fertilization technique IVF, ICSI

Features related to Oocytes

Vac Presence of vacuoles No, Few, Many

REL
Presence of smooth endoplasmic reticulum clus-
ters

No, Yes

Epv Description of the perivitelline space Normal, Augmentado

CP Description of the first polar body Normal, Anormal

PN Tesarik and Greco’s pronuclear grade numeric

Features related to Oocytes at D+1

CP.1 Number of polar bodies numeric

Z Scott’s pronuclear grade Z1, Z2, Z3, Z4

Features related to Oocytes at D+2

nCel+2 Number of cells numeric

frag+2 Percentage of cell fragmentation numeric

simet+2 Are the blastomeres symmetric? No, Yes

ZP+2 Zona pellucida Normal, Abnormal

vac+2 Presence of vacuoles No, Few, Many

multiNuc+2 Presence of multi-nucleation in a cell No, Yes

CALIDAD+2 ASEBIR quality grade A, B, C, D

Features related to Embryos

Transfer Embryo selected to be transferred No, Yes

Vitrificado Surplus’ embryos to froze No, Yes, Surplus

TasaExito
Percentage of success in the transfer, given all the
embryos belonging to the same cycle.

numeric

Table 3: Features collected for each oocyte/embryo
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3.3 Pre-processing

In the following lines a description of how the data stored in both datasets is
processed before being used to create the proposed model (see Section 4) is
reported.

Both datasets have heterogeneous features and, to create the model, all the
categorical features need to be converted into numerical features. There are
binary categorical variables can be converted into numerical by assigning 0 to
one of the values and 1 to the other one (i.e, No=0 and Si=1, or Anormal=0
and Normal=1). Multi-value categorical variables need to be converted via
one-hot encoding, which will produce one new variable for each of the possible
categorical values (see Tables 4 and 5).

Features related to Cycles

Original Converted numerical feature

Binary categorical variables

EmbPrev 0, 1

AboPrev 0, 1

Multi-value categorical variables

Indicac Indicac endometriosis, Indicac fracasoia, Indicac tubarico,
Indicac masculino, Indicac mixto, Indicac otros,
Indicac desconocido

caSemen caSemen A, caSemen N, caSemen O, caSemen OA, caSemen OAT

Protocol Protocol PC+Agon, Protocol PC+Ant, Protocol PC+PL

Estimul Estimul FSH+Lhrec, Estimul FSHrec, Estimul FSHrec+hMG,
Estimul FSHur, Estimul FSHur+hMG, Estimul hMG

Table 4: Categorical features from cycles converted into numerical features

Features related to Embryos

Original Converted numerical feature

Binary categorical variables

REL 0, 1

Epv 0, 1

CP 0, 1

Simet+2 0, 1

ZP+2 0, 1

multiNuc+2 0, 1

Multi-value categorical variables

Tecnica Tecnica IVF, Tecnica ICSI

Vac Vac No, Vac Escasas, Vac Abundantes

Z Z Z1, Z Z2, Z Z3, Z Z4

Vac+2 Vac+2 No, Vac+2 Escasas, Vac+2 Abundantes

Calidad+2 Calidad+2 A, Calidad+2 B, Calidad+2 C, Calidad+2 D

Table 5: Categorical features from embryos converted into numerical features
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Even so, some of these variables will not be used as their possible values are
already reflected in the value of some other variables (i.e, Indicac otros and
Indicac desconocido would be activated when the rest of Indicac’s variables are
not, which would be redundant).

Moreover, general variables have been created to connect embryos with their be-
longing cycles and the count of embryos transferred and implanted (see Table 8).
The use of those variables will also make the use of some features useless. And
there also variables that, for some reason, do not provide relevant information
in defining the model (see Tables 6 and 7).

The features removed for the dataset of cycles are the following (see Table 6):

Features related to Cycles

Feature Reason why this feature is discarded

Codigo
The relation between cycles and embryos will be recorded in
general variables

AMH Too skewed variable

nEmbTrans Information recorded in general variables

TasaExito Information recorded in general variables

Indicac desconocido Redundant

Indicac otros Redundant

Table 6: Features discarded from the dataset of cycles

The features removed for the dataset of embryos are the following (see Table 7):

Features related to Embryos

Feature Reason why this feature is discarded

CodigoCiclo
The relation between cycles and embryos will be recorded
in general variables

CodigoOvoc
The relation between cycles and embryos will be recorded
in general variables

Transfer This information will be recorded in general variables

Vitrificado Feature not relevant

TasaExito This information will be recorded in general variables

Vac No Redundant

Vac+2 Normal Redundant

Table 7: Features discarded from the dataset of embryos
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The variables created to keep a record of the relations of the embryos with its
belonging cycles, and used for computation when creating the model, are the
following (see Table 8):

Variable Description

num cycles number of cycles

num embryos number of embryos

embryo belong to cycle which cycle each embryo belongs to

embryo was transfered whether an embryo was transfered

embryo was implanted whether an embryo was implanted

num emb transf per cycle number of embryos transferred per cycle

num emb implanted per cycle number of embryos implanted per cycle

cycle has embryos which embryos belong to each cycle

cycle has trans embryos
which are the embryos belonging to one cycle
that have been transferred

Table 8: Variables created to keep a record of the relations of the embryos with
its belonging cycles

After all these processes the dataset of cycles has 36 features and the dataset
of embryos has 24 features. They all are important as they take part in the
definition of the model that will show the behaviour of the whole system of
cycles, embryos, and the unknown factors that cause an implantation to fail
when there are perfect conditions.

The success rate (feature TasaExito) indicates the percentage of transferred em-
bryos, belonging to the same cycle, that have been implanted, and will determine
which class an embryo is assigned (0, 1, -1):

• TasaExito == 1: all the embryos selected for transfer have been implanted;
class 1 will be assigned.

• TasaExito == 0: none of the embryos selected for transfer have been
implanted; class 0 will be assigned.

• Otherwise: only a percentage of the embryos selected for transfer have
been implanted and, although it is not possible to know which one(s)
were successful, they also provide information about the behaviour of the
system. class -1 will be assigned.
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4 Proposed model and learning technique

The objective of the model proposed is to describe reality taking into account
as many factors as possible. The datasets of cycles and embryos are linked, as
each cycle produces a set of embryos. Both, cycles and embryos have its specific
morphological characteristics.

The characteristics of the cycle of a woman that undergoes an IVF process can
be enhanced, for instance, with the ovarian stimulation, or some other factors
out of the scope of the work at hand. All the tasks conducted to improve the
characteristics of one cycle to achieve pregnancy will also be called configuration
of the cycle. Clinicians play a part in performing some modifications that will
alter the next cycle the woman will have and the embryos related to it.

However there are factors, out of the scope of cycles and embryos, that affect
whether an embryo selected to transfer will be implanted or will fail. Those are
factors that do not depend on the quality of the cycle neither the embryos’, and
can be named unknown factors, as we do not know their origin or relation with
the cycles or embryos, but have a role in implantation or failure.

For this work, it has been decided that the random manner those unknown
factors show, can be modelled by a Bernoulli distribution, θ, which is split into
two distributions, θ1 and θ0.

The first one, θ1, codifies the perfect conditions: the probability that in a cycle
that has been properly configured, an high quality embryo, selected for transfer,
is implanted. In a perfect world, where there were no unknown factors that
caused a failure, θ1 would be set to 1 and the pregnancy will always occur.
However this is not the case for this work, where θ1 < 1 and no one can assure
when a pregnancy will take place.

To second one, θ0, exists to complement θ1, and codifies quite the opposite to θ1.
This is needed so that the model can be exemplified, and represents the cases
when the embryo selected for transfer has low quality, the cycle the embryo
belongs to has a bad configuration, or, simply, the embryo has not been selected
to be transferred. Its value is always 0, as in this cases there is no chance for
pregnancy.
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4.1 Notation

The following notation has been created for this work:

c index for cycle
e index for embryo
C Set of cycles
Ec set of embryos associated to cycle c
Sc set of embryos selected for transfer in cycle c

xe characteristics of embryo e
vc characteristics of cycle c

we
Boolean random variable that represents whether embryo e is willing to
implant

rc
Boolean random variable that represents whether a cycle c is willing to
let embryos implant

ice
Boolean random variable that represents whether the uterus of the pa-
tient is willing to accept embryo e in cycle c

yc
Integer random variable that represents the number of embryos im-
planted in the cycle c

4.2 A probabilistic implantation model for IVF

A widely accepted assumption for IVF is that the individual characteristics of
an embryo (xe), such as the embryo morphokinetic traits, are relevant in order
to predict the probability of an embryo implanting in the uterus.

Here we assume that this can be quantified by means of a probability distribution

p(we | xe;α) (1)

that measures the probability of the embryo to implant provided that the uterus
is willing to accept it. That is, the probability for the embryo to implant in a
“perfect uterus”.

On the other hand, it is also accepted that the individual characteristics of a
patient and the treatment performed exert an influence into the likelihood of an
embryo to implant into her uterus. We also consider the simplifying assumption
that only one transfer (of multiple embryos) is carried out in each cycle.

Here we assume that this can be quantified by means of a probability distribution

p(rc | vc;β) (2)

which encodes how the characteristics of the patient influence the ratio of ac-
ceptance of embryos. An embryo willing to be implanted in the uterus of a
willing-to-accept cycle, following

ice ∼ Bernoulli(θwe∗rc∗sce) (3)

where sce is 1 when and embryo e is transferred in cycle c; 0 otherwise.
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This implies that we accept the (highly unlikely but practical) assumption that
the probability of acceptance by the uterus is statistically independent from the
embryo characteristics. Provided that these hypothesis hold, we can assess the
number of embryos implanted as:

yc =
∑
e∈Ec

ie (4)

4.3 General probability model for ARTs

Despite the fact that each cycle can carry out more than one transfer, this work
only considers one transfer (of multiple embryos) for each cycle (see Section
4.2).

The system we expect to model is as shown in the following Figure 3:

wce ice rc

xce sce vcα

β

θ

yc

e ∈ Ec

c ∈ C

Figure 3: Graphical description of the simplified model. Shadowed nodes rep-
resent observed variables. Double line denotes a deterministic variable.

Shadowed nodes (x, v, s and y) represent observed variables. x and v define the
characteristics of embryos and cycles. Their values can be directly measured. s
determines if an embryo was selected; that is, a physicians’ decision. And y is
the outcome of the cycle: the number of implanted embryos.

White nodes inside the cycle box (w, r and i) represent latent variables, the
value of which need to be inferred, which play an important role in defining the
representation of the world, as they are connected to the observed variables.

White nodes outside the cycle box (α, β and θ) are the hyper-parameters for
the cycles’ and embryo’s classifiers (Eq. 8 and 9) and for Bernoulli model (Eq.
10).
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The joint probability is

p(x,w,v, r, s, i,y;α, β, θ) = p(w|x;α)p(x)p(r|v;β)p(v)p(s)p(y|i)p(i|w, r, s; θ)
(5)

The relationship between i and y is deterministic and, by marginalizing i out,
we can reduce the previous expression to the assignments of i that match the
corresponding yc outcome:

p(x,w,v, r, s,y;α, β, θ) =
∑
ĭ∈Is,y

p(w|x;α)p(x)p(r|v;β)p(v)p(s)p(̆i|w, r, s; θ)

(6)
where Is,y is the set of valid vectors that assign value to all the embryos (im-

planted or not) according to the known outcomes {yc}NC
c=1 and the selections

{sc: }
NC
c=1. A valid vector assigns value ice to all non-transferred embryos (sce = 0)

and, for every cycle c,
∑
e∈Ec

ice = yc.

To exemplify this, let’s consider a cycle with 10 embryos, where e1 and e7 are
the 2 embryos selected to transfer and only one of them is implanted. As it is
not possible to know which of the embryos is the one that is implanted, there
would be 2 possible vectors defining the possible implants, with value 1 for and
embryo implanted and 0 otherwise. The embryos not selected for transfer would
be set to 0. The two vectors defining the possible implants would be:

• vector 1: [1, 0, 0, 0 , 0, 0, 0, 0, 0, 0]

• vector 2: [0, 0, 0, 0 , 0, 0, 1, 0, 0, 0]

The complete probability of generating the data from x, v and y, that is, the
likelihood of the observed data, is

p(x,v, s,y;α, β, θ) =
∑
w,r

p(x,w,v, r, s,y;α, β, θ)

=
∑
w

∑
r

∑
ĭ∈Is,y

p(w|x;α)p(x)p(r|v;β)p(v)p(s)p(̆i|w, r, s; θ)

= p(x)p(v)p(s)
∑
r

p(r|v;β)
∑
ĭ∈Is,y

∑
w

p(̆i|w, r, s; θ)p(w|x;α)

from which we can define the probability of generating the outcome y as

p(y|x,v, s;α, β, θ) =
∑
r

p(r|v;β)
∑
ĭ∈Is,y

∑
w

p(̆i|w, r, s; θ)p(w|x;α) (7)
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By assuming independence among instances given the parameters, we add more
structure:

p(w|x;α) =

NC∏
c=1

∏
e∈Ec

p(wce|xce;α) (8)

where p(wce|xce;α) is the a priori probability that an embryo x is willing to
get implanted, controlled by parameter α. We call this the embryo model or
classifier.

p(r|v;β) =

NC∏
c=1

p(rc|vc;β) (9)

where p(rc|vc;α) is the a priori probability that a cycle v is prepared for implan-
tation, controlled by parameter β. We call this the cycle model or classifier.

And

p(y|w, r, s; θ) =

NC∏
c=1

∑
ĭ∈Isc: ,yc

∏
e∈Ec

p(̆ice|wce, rc, sce; θ) (10)

where p(̆ice|wce, rc, sce; θ) is the probability that embryo e gets implanted in cycle
c, which we model by means of a Bernoulli distribution.

We are interested in finding the parameters 〈α, β, θ〉 which maximize the like-
lihood in Eq. 5. Equivalently, we look for the parameters that maximize the
probability of the outcome y given by Eq. 7,

α∗, β∗, θ∗ = arg max
α,β,θ

p(y|x,v, s;α, β, θ) (11)

4.4 EM algorithm

An expectation–maximization (EM) algorithm is an iterative method to find
(local) maximum likelihood of parameters in statistical models, where the model
depends on unobserved latent variables. In our model, those latent variables are
the ones that we do not know: wce, rc and ice, and the model hyper-parameters
α, β, θ.

The EM iteration alternates between performing an expectation (E) step, and
a maximization (M) step.

• E step: the weights for cycles and embryos are computed taking into
account all the current fit of the model and all the hidden variables (Eqs.
12, 13 and 14).

• M step: computes parameters maximizing the expected log-likelihood
found on the E step.

These parameter-estimates are then used to determine the distribution of the
latent variables in the next E step.
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The specific EM algorithm for our particular model is defined in the following
terms:

Note that we have a set of parameters η = 〈α, β, θ〉 such that

p(h, z; η) = p(h, z;α, β, θ) = p(h; θ)p(z|h;α)

or, specifically,

p(y,w, r|x,v, s;α, β, θ) = p(w|x;α)p(r|v;β)p(y|w, r, s; θ)

To compute the E-step, we need the likelihood of a cycle:

p(yc|ic)p(ic|wc, rc, s
c; θ)p(wc|xc;α)p(rc|vc;β)

If we marginalize out the variables ic:(∑
ic

p(yc|ic)p(ic|wc, rc, s
c; θ)p(wc|xc;α)

)
p(rc|vc;β)

and ( ∑
ic∈Isc: ,yc

p(ic|wc, rc, s
c; θ)p(wc|xc;α)

)
p(rc|vc;β)

and ( ∑
ic∈Isc: ,yc

∏
e

p(ice|wce, rc, sce; θ)p(wce|xce;α)
)
p(rc|vc;β)

The expected value of rc is:

q(rc = r) ∝
( ∑

ic∈Isc: ,yc

∏
e

∑
wc

e

p(ice|wce, rc = r, sce; θ)p(w
c
e|xce;α)

)
p(rc = r|vc;β)

(12)
Note that when there is a pregnancy (yc ≥ 1), q(rc=1)=1 and q(rc=0)=0: the
probability that the cycle is willing to accept an embryo is 1, and the probability
that the cycle is not willing to accept an embryo is 0.

The expected value of wc
e is:

q(wce = w) ∝
∑
rc

( ∑
ic∈Isc: ,yc

p(ice|w, rc, sce; θ)p(w|xce;α)·

∏
e′ 6=e

∑
wc

e′

p(ice′ |wce′ , rc, sce′ ; θ)p(wce′ |xce′ ;α)

)
p(rc|vc;β)

(13)

Note that when the number of transferred embryos is the same as the number
of implanted embryos, q(wce)=1: the probability for all the embryos of the cycle
to be willing to implant is 1. However, when the number of transferred embryos
is different than the number of implanted ones, this value is unknown and its
expected value has to be computed.
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The expected value of ic is:

q(ic = i) ∝
∑
rc

(∏
e

∑
wc

e

p(ie|wce, rc, sce; θ)p(wce|xce;α)
)
p(rc|vc;β) (14)

where i ∈ Isc
: ,yc

.

This is the probability for each of the ic vectors to be the one that defines the
embryos implanted. In the example posted after Eq. 6, each of the vectors
would have a probability to be the one that defines the single embryo that is
implanted among the two transferred.

To compute the update of the model parameters α, β, θ (M-step) we want

arg max
α,β,θ

E(w,r)∼q log p(y,w, r|x,v, s;α, β, θ)

Let us imagine that we do know the real value of all hidden variables. Thus,
the likelihood would be

∏
c

∏
ic′

[∏
rc′

[
p(rc′ |vc;β)

∏
e

∏
wc

e′

[
p(ice′ |wce′ , rc′ , sce; θ)p(wce′ |xce;α)

]I[wc
e′=w

c
e]
]I[rc′=rc]

]I[ic′=ic]

and the log-likelihood:

∑
c

∑
ic′

I[ic
′

= ic]

[∑
rc′

I[rc′ = rc]
[

log p(rc′ |vc;β)+

∑
e

∑
wc

e′

I[wce′ = wce]
[

log p(ice′ |wce′ , rc′ , sce; θ) + log p(wce′ |xce;α)
]]]

But, if the real values are unknown, we need to resort the expected values as,

∑
c

∑
ic′∈Isc: ,yc

q(ic
′
)

[∑
rc′

q(rc′)
[

log p(rc′ |vc;β)+

∑
e

∑
wc

e′

q(wce′)
[

log p(ice′ |wce′ , rc′ , sce; θ) + log p(wce′ |xce;α)
]]]

Note that the variables i follow a Bernoulli distribution:

ice ∼ Bernoulli(θrc·wc
e·sce)

where, in practice, θ0 fixed to θ0 = 0 (whenever rc, w
c
e, or sce are zero –no

transfer, or bad cycle/embryo) and θ1 determines the probability of implantation
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in perfect conditions. To find the parameter θ1, we derive the log-likelihood with
respect to θ1, and set it to 0:

∂

[∑
c

∑
ic′∈Isc: ,yc

q(ic
′
)

[
q(rc = 1)

[∑
e q(w

c
e = 1)

[
ice′ log θ1 + (1− ice′) log(1− θ1)

]]]]
∂θ1

= 0

∑
c

∑
ic′∈Isc: ,yc

∑
e

q(ic
′
)q(rc = 1)q(wce = 1)

[
ice′

θ1
− (1− ice′)

(1− θ1)

]
= 0

∑
c

∑
ic′∈Isc: ,yc

∑
e

q(ic
′
)q(rc = 1)q(wce = 1) [(1− θ1)ice′ ] =

∑
c

∑
ic′∈Isc: ,yc

∑
e

q(ic
′
)q(rc = 1)q(wce = 1) [(1− ice′)θ1]

∑
c

∑
ic′∈Isc: ,yc

∑
e

q(ic
′
)q(rc = 1)q(wce = 1)ice′ =

∑
c

∑
ic′∈Isc: ,yc

∑
e

q(ic
′
)q(rc = 1)q(wce = 1)θ1

θ1 =

∑
c

∑
ic′∈Isc: ,yc

∑
e q(i

c′)q(rc = 1)q(wce = 1)ice′∑
c

∑
ic′∈Isc: ,yc

∑
e q(i

c′)q(rc = 1)q(wce = 1)
(15)

This is the value that gives meaning to the model, as it expresses its goodness.
It shows the probability that a high-quality embryo selected for transfer in a
well-configured cycle, results in pregnancy. The higher this probability is, the
more reliable the model is predicting outcomes for new cycles.

The resulting method is shown in Algorithm 1:

Algorithm 1 Our EM algorithm

1: procedure EM(α(0), β(0), θ(0))
2: α, β, θ ← α(0), β(0), θ(0)

3: while q not converged do
4: q ← p(i, w, r|y, x, v;α, β, θ) . Update q: E-step (Eqs. 12, 13, 14)
5: α← arg maxα Ew∼q log p(w|x;α) . Update α: M1-step
6: β ← arg maxβ Er∼q log p(r|v;β) . Update β: M2-step
7: θ ← arg maxθ Ei∼q log p(y|...; θ) . Update θ: M3-step (Eq. 15)
8: end while
9: return η = 〈θ,α〉

10: end procedure

In this method, we propose to roughly model p(w|x;α) and p(r|v, β) by means
of probabilistic classifiers. Thus, steps 5 and 6 in Algorithm 1 would be just
the learning steps of those classifiers, given the corresponding weights of Equa-
tions 13 and 12 respectively. Step 7 is the calculation of the probability of
implant in perfect conditions (Eq. 15).
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4.5 EM algorithm for IVF model

As EM algorithm iterates, the weights and probabilities are computed and the
final model will, eventually, be defined. The algorithm starts by filling the gaps
for the latent variables with random values that, as iterations go on, will be
adjusted and will finally stabilize. At each iteration a new definition of the
reality is being defined.

The EM algorithm is computed on the training set until the system converges, as
this is a learning strategy that wants to understand the behaviour of the dataset.
While the procedure does not converge, the Estimation and the Maximization
steps will be iterated and the model will evolve. Once it has converged, the
model is stable. As a product of this learning procedure, the classifier for cycles
and the classifier for embryos will have been learnt, and will be capable to
predict outcome from new data and estimate their performance.

The main steps for the algorithm are:

1. Initialization: weights for cycles and embryos are initialized.

2. E-step: estimates the new weights from the whole formulas of the system.

3. M-step: model learning with the estimated values from E-step.

Steps 2 and 3 will iterate until the weights converge. The final θ1 will be
computed providing the probability that, given a properly-configured cycle, a
good-quality embryo selected to transfer will implant.

4.5.1 Initialization step

There are two strategies for the initialization of the EM algorithm: (i) estimate
the probabilities (qr for cycles, qw for embryos and qi for implantation vectors)
and use them to learn the first fit of the model, or (ii) assign random values to
parameters α, β and θ1.

In this work, the first strategy is taking into account the model, composed by
cycles, embryos, and unknown factors the probabilities that need to be initialized
are:

• q(w = 1): probability that an embryo is classified as class 1.

• q(w = 0): probability that an embryo is classified as class 0.

• q(r = 1): probability that a cycle is classified as class 1.

• q(r = 0): probability that a cycle is classified as class 0.

• q(ic = 1): probability that a specific implantation vector is classified as
class 1.

• q(ic = 0): probability that a specific implantation vector is classified as
class 0.
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Using the dataset completed with the previously computed weights, the classi-
fiers for the cycles and the embryos can be learnt again and θ1 computed.

4.5.2 Estimation step

With the current fit of the model, the probability distribution for each of the
classifiers (p(r|v) for cycles and p(w|x) for embryos) can be calculated.

These probability distributions are now used to update the weights (qr, qw and
qi) that are computed with Eqs. 12, 13 and 14.

4.5.3 Maximization step

Using the dataset completed with the previously computed weights (qr, qw and
qi), the classifiers for the cycles and the embryos can be learnt again. θ1 is
computed at this step too. At this point, we can consider that a new fit of the
model have been learnt.

25



5 Experiments

Given the model described in section 4.5, we aim to perform a solid validation,
in which we test each of the probabilistic classifiers, to ensure that we choose the
most suited for the selection of the best embryos; the ones with more probability
of implantation once transferred to the uterus in one cycle.

Recall that we assume we have two types of embryos (class 1 and class 0) and
two types of cycles in a uterus (class 1 and class 0), being:

• class 1: Positive embryos or cycles. Embryos willing to implant in the
uterus, or cycles in which the uterus is receptive to the implantation of a
selected embryo.

• class 0: Negative embryos or cycles. Embryos not willing to implant in the
uterus, or cycles in which the uterus is not receptive to the implantation
of a selected embryo.

5.1 Goals

Our goal here is to evaluate the behaviour of the model. Using test data, we
will detect whether there could be benefits from using our model, that uses EM
strategy, to estimate the implantation probability of an embryo in an uterus,
with perfect conditions, against a baseline probabilistic classifier.

A cycle is considered to be in perfect conditions if the uterus is receptive to the
implantation of embryos, and the embryos selected to be transferred are willing
to be implanted in the uterus.

We present two sets of experiments:

• Experiment 1: Find the best model in EM strategy: Which is the prob-
abilistic classifier that provides higher positive recall and lower level pro-
portion loss.

• Experiment 2: Compare the model with a baseline classifier, which uses a
non-EM strategy at all.

5.2 Probabilistic classifiers

Given the heterogeneity of the data, there is not a probabilistic classifier that
we can advocate for as the best to use for the selection of the best embryos
in a cycle. Each variable, due to its own characteristics, will be suitable for a
different probabilistic classifier.

The following probabilistic classifiers are considered in this work:

• LR: Linear regression is a type of regression analysis where the number
of independent variables is one and there is a linear relationship between
the independent(x) and dependent(y) variable.
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• LRCV: Logistic Regression that uses Cross-Validation to optimize the
hyper-parameters such as the regularization strength.

• RF200 and RF500: Random Forest with 200 or 500 trees. It is a meta esti-
mator that fits a number of decision tree classifiers on various sub-samples
of the dataset and uses averaging to improve the predictive accuracy and
control over-fitting

• GBOOST: Gradient Boosting for classification. It builds an additive
model where it allows for the optimization of arbitrary differentiable loss
functions. In each stage n (number of classes) regression trees are fit on
the negative gradient of the binomial or multinomial deviance loss func-
tion. Binary classification is a special case where only a single regression
tree is induced.

• DTREE: Decision Tree classifier.

• ETREE: Extremely randomized tree classifier. When looking for the best
split to separate the samples of a node into two groups, random splits are
drawn for each of the max features.

• ETREES: Extra-trees classifier that fits a number of randomized decision
trees (extra-trees) on various sub-samples of the dataset and uses averag-
ing to improve the predictive accuracy and control over-fitting.

5.3 Performance measures

In both experiments some of the following performance measures will be com-
puted:

• Euclidean Distance: As this is computed between two 1-D arrays, we com-
pute this for each variable’s weight or probability between two iterations
of the EM strategy, then we compute the mean for all the variables. [4]

The Euclidean distance between 1-D arrays u and v, is defined as:

(
∑

(wi|(ui − vi)|2))1/2 (16)

• Relative Entropy: As this is an element-wise computation, we compute
this for each element of each variable’s weight or probability between two
iterations of the EM strategy, add the results, then we compute the mean
for all the variables. [6]

Element-wise function for computing relative entropy

rel entr(x, y) =


x·log(x/y) x>0, y>0

0, x=0 y≥0

∞ otherwise

(17)
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• Level Proportion Loss: bag loss (lp loss): Applied to embryos. Given a
set of transferred embryos, when not all the embryos are implanted and
my prediction is the same as the real data, the loss is 0. The aim is that
the implanted proportion for the prediction and for reality is the same.

• Pseudo-Recall: ps recall : Applied to cycles. Its is and estimation of the
real recall as it is the recall only for the set of positive cycles. From the
cycles that are positive, which percentage has been predicted as such.

• AUC-ROC score: Area Under the Receiver Operating Characteristic Curve,
is a graphical plot that illustrates the diagnostic ability of a binary clas-
sifier system as its discrimination threshold is varied. The ROC curve
is created by plotting the true positive rate (TPR or recall) against the
false positive rate (FPR or fall-out) at various threshold settings. The
true-positive rate is the number of embryos classified as positives, over
the total number of positives (class 1). The false-positive rate is the prob-
ability of false alarm, the number of embryos mis-classified as positive,
over the total number of negatives (class 0)[10].

– When AUC = 1, then the classifier is able to perfectly distinguish
between all the Positive and the Negative class points correctly. If,
however, the AUC had been 0, then the classifier would be predicting
all Negatives as Positives, and all Positives as Negatives.

– When 0.5 < AUC < 1, there is a high chance that the classifier will
be able to distinguish the positive class values from the negative class
values. This is so because the classifier is able to detect more numbers
of True positives and True negatives than False negatives and False
positives.

– When AUC = 0.5, then the classifier is not able to distinguish be-
tween Positive and Negative class points. Meaning either the clas-
sifier is predicting random class or constant class for all the data
points.

5.3.1 Reference measures

There are two measures that are not used to test the performance of a proba-
bilistic classifier, but to provide more information about the behaviour of the
model using such classifier.

• Proportion of Predicted Positive (ppr): Applied to cycles as well as em-
bryos. It indicates how often the classifier is predicting the positive class.
This is not a real measure, but we can use it to see the behaviour of the
model.

• theta1: probability of an embryo to implant in perfect conditions. This is
an hyper-parameter for the model.
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5.4 Experiment 1: Best model in EM strategy

The aim for this experiment is to test our model with different probabilistic
classifiers.

The datasets of cycles and embryos have been split into 5 folds using 5K-Fold
cross-validation to avoid possible problems like over-fitting or selection bias are
avoided[2].

To initialize the EM algorithm all the instances of the embryos, as well as cycles,
are randomly assigned to a class that, eventually, will define if an embryo is
willing to implant or if an uterus is willing to accept embryos for her cycle
(class 1), or not (class 0). Some general variables (see Section 3) have been
created to keep track of the relations between cycles and embryos.

For each of the probabilistic classifiers, and each of the Fold combinations, the
EM algorithm (which is run for a maximum of 100 iterations or until conver-
gence) is run for 20 executions. After those, the best model for this fold and
probabilistic classifier can be found. This would be the one with lower level
proportion loss (lp loss), meaning that the number of embryos predicted and
implanted are the same as shown in real data.

The probabilistic classifiers that have been tested with our EM model are the
ones described in Section 5.2, from which some performance measures have been
computed (see section 5.5).

In the process of learning the best model, the weights and probabilities for cycles
and embryos stabilize through the iterations of the EM algorithm.

• weights: cycle’s and embryo’s viability estimations

• probabilities: cycle’s and embryo’s probabilities according to the respec-
tive probabilistic classifier

To show how the model converges as iterations go on, Euclidean Distance and
Relative Entropy have been computed for each of the weights and probabilities’
matrices along the EM steps.

Figure 4 and Figure 5 show the plots for the mean of the folds, for all the
probabilistic classifiers that have been tested. Each of the figures show a different
behaviour, and the plots are shown in normal-scale and logaritmic-scale to help
the reader comprehend them.

The SVC probabilistic classifier (Support Vector Classifier) was also tested,
although its results are not competitive and it was very time consuming, so
they are not shown.

As seen in the following figures, Euclidean Distance, as well as Relative Entropy,
show that the EM model converges faster with the LRCV probabilistic classifier.
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(a) qr: cycle’s viability estimation
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(b) log qr: cycle’s viability estimation
in log-scale
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(c) qw: embryo’s viability estimation
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(d) log qw: embryo’s viability estimation
in log-scale
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(e) pr: cycle’s probability according to the
respective probabilistic classifier
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(f) log pr: cycle’s probability according to the
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Figure 4: Euclidean Distances measured between the consecutive iterations of
the EM algorithm (mean of the k-folds), for each of the estimations and proba-
bility’s matrices.
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(b) log qr: cycle’s viability estimation in log-scale
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(d) log qw: embryo’s viability estimation in log-
scale
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(g) pw: embryo’s probability according
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respective probabilistic classifier in log-scale

Figure 5: Relative Entropy measured between the consecutive iterations of the
EM algorithm (mean of the k-folds), for each of the estimations and probability’s
matrices.
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As in EM strategy there are some latent values, it is not possible to compute
some measures such as accuracy. The following are the measures used to see
the performance of each of the probabilistic classifiers applied to our EM model
(see Table 9):

Pr.Classifier lp loss ppr cycles ps recall ppr embryos theta1

DTREE 0.6301 0.6324 0.4209 0.4475 0.7356
±0.0502 ±0.0371 ±0.0423 ±0.0455 ±0.0313

ETREE 0.6096 0.5994 0.4223 0.4436 0.7356
±0.0528 ±0.0585 ±0.0459 ±0.0518 ±0.0313

ETREES 0.9651 0.9636 0.4069 0.4244 0.7356
±0.0374 ±0.0237 ±0.0394 ±0.0470 ±0.0313

GBOOST 0.9784 0.9884 0.4851 0.4137 0.5198
±0.0191 ±0.0084 ±0.0646 ±0.0793 ±0.0054

LRCV 1.0 1.0 0.2768 0.0869 0.4825
±0.0 ±0.0 ±0.1309 ±0.1738 ±0.0057

LR 0.9684 0.9751 0.4040 0.3079 0.5307
±0.0286 ±0.0156 ±0.0435 ±0.0309 ±0.0065

RF200 1.0 1.0 0.6661 0.6982 0.4836
±0.0 ±0.0 ±0.1745 ±0.1728 ±0.0001

RF500 1.0 1.0 0.6846 0.7231 0.4832
±0.0 ±0.0 ±0.1685 ±0.2748 ±0.0056

Table 9: Performance measures for the model using EM strategy

The lower results in lp loss are for ETREE classifier and DTREE classifier,
which are the lower values. The higher results in ps recall is for the RF500 and
RF200 classifiers.

5.4.1 Discussion

Euclidean Distance show smaller distances between iterations than Relative
Entropy. The TREE models show the same behaviour, which is a convergence
worse than LRCV and LR but does not present any jump in the plots.

For the cycle’s and embryo’s probability to the respective probabilistic classifier,
LRCV present some jump between states that seem of no importance in the final
convergence. On the contrary, there are probabilistic classifiers like GBOOST,
RF200 or RF500 that, in the first iterations start to converge as fast as the
other classifiers, but there is a point when they remain in an almost flat plot
jumping between two states not being able to converge so properly.

To find the best probabilistic classifier for the EM model, a balance between
lp loss and ps recall has to be found. Although RF500 and RF200 present the
higher values for ps recall, they have a very high value for lp loss (1.0) which
invalidate these results. DTREE and ETREE, on the other hand, have a lower
value of ps recall, but the lower values in lp loss.
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There are two references in the same table of results, ppr for cycles and ppr for
embryos, that indicate how often the classifier predict a positive class, for cycles
as well as for embryos. Our best interest is that those values are close to 0.5.
We can see again that for RF500 and RF200, the ppr for cycles is 1.0 which
means that this classifier is always predicting positive classes, which invalidates
the ps recall result.

Thus, the best combination in performance measures and references is for ETREE
and DTREE probabilistic classifiers, which balance the lp loss (0.6301 and
0.6096) and ps recall (0.4209 and 0.4223) with the ppr for cycles 0.6324 and
0.5994) and embryos (0.4475 and 0.4436) close to 0.5 for both cases.

Given the plots generated in 4 and 5, ETREE, DTREE are two of the proba-
bilistic classifiers that converge continuously, although slow. On the other hand,
RF200 and RF500 are two of the probabilistic classifiers that do not converge.

Moreover, the other reference to take into account is theta1, which tells us the
percentage of uncertainty that the model tolerates. The higher the value the
better its tolerance, which means that for a well-configured cycle, the probability
of implantation for an embryo selected for transfer will be high. In this example,
ETREE and DTREE have also a high value (0.7356) for theta1.

5.5 Experiment 2: EM strategy vs Baseline classifier

The aim for this experiment is to compare the model with a baseline classifier,
which uses non-EM strategy at all.

The Baseline classifier is a probabilistic classifier used to test the same dataset
as the EM model. The difference in how the data is treated in this case is that
the embryos that belong to a cycle where the number of transferred embryos
is different than the number of implanted embryos, are considered as failed
embryos. Those embryos can be used for training the baseline classifier but,
only the embryos belonging to cycles where all the embryos were implanted or
all the embryos failed implanting, are used to test it.

For each of the probabilistic classifiers described in Section 5.2, we compute the
AUC-ROC score from predicted embryo classes, which allows us to compare our
EM model with the baseline model. The higher the AUC value for a classifier,
the better its ability to distinguish between positive and negative classes.

The results for the mean for all folds for AUC-ROC score are shown in Table 10:
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Prob.Classifier EM model Baseline classifier

DTREE 0.6606 0.7107

ETREE 0.6618 0.7137

ETREES 0.6567 0.7089

GBOOST 0.7290 0.7406

LRVC 0.7111 0.7373

LR 0.6792 0.7224

RF200 0.7350 0.7423

RF500 0.7338 0.7435

Table 10: AUC-ROC score comparison for EM model vs Baseline classifier

The results shows that the baseline classifier is better than the EM model for all
the probabilistic classifiers tested. RF500 is the classifier with higher AUC-ROC
score for baseline (0.7435) and RF200 is the classifier with higher result for the
EM model (0.7350).

5.5.1 Discussion

Although the results for the baseline classifier are better than the results for the
EM model, there is a small difference in results. Four of the eight probabilistic
classifiers (RF200: 0.7350, RF500: 0.7338, GBOOST: 0.7290, LRVC: 0.7111),
which is half of the classifiers, perform better with EM model than the worse
baseline classifier (ETREES:0.7089).

Although the best results for AUC-ROC score in EM model are for RF200,
RF500, GBOOST and LRCV, we have seen in Table 9 that these classifiers are
the ones with better ps recall but, at the same time, have the higher values of
ppr per cycles, which invalidate its performance.

Additionally, the better performance measures for the model using EM strategy,
coincide with three of the lower results for AUC-ROC score using EM model.
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6 Conclusions

In this work, we propose a novel probabilistic graphical model to deal with the
embryo selection problem in assisted reproduction. This is a complex problem
where, not only the characteristics of each cycle and its belonging embryos take
part in the problem. The proposed model is, to the extent of our knowledge, the
first one that takes into account three different possible sources of uncertainty
and, accounts for the unknown factors that can cause that an embryo in perfect
conditions, selected to transfer, fail to implant. We also derived completely a
method based on the EM strategy to learn from the type of data characteristic
of this problem.

The results show that the approximation presented to the embryo selection
problem using an EM algorithm to create a model, present worse performance
results than a Baseline probabilistic classifier, which makes this model worse at
selecting embryos for transfer than a Baseline Model.

We have also noticed that ETREE, DTREE, two of the classifiers with worse
results for the EM model, are two of the probabilistic classifiers that converge
continuously as EM iterations go on. However, RF200 and RF500, which are
the classifiers withe best AUC-ROC results for Baseline classifier, are two of
the probabilistic classifiers that do not converge, and that have worse lp loss
and ppr for cycles in the performance measures using EM strategy, contrary to
ETREE and DTREE.

The main success of this work is that we have been able to compute an estimation
for θ1, something novel, that provides a very valuable information for physicians,
as it helps model reality. As explained in previous sections, θ1 is an hyper-
parameter that estimates the probability of an embryo to implant in perfect
conditions. This means the probability that for a cycle that has been properly
configured, a high quality embryo, selected for transfer, is implanted.

The novelty of the estimation for the hyper-parameter θ1, provides a new mod-
elling of the system, that can assist clinicians in decision making and improve
ARTs.

6.1 Future Work

After finishing this work, many issues have been left open. First of all, the
empirical validation of the method by means of enlarged experimental setting
is still possible. Secondly, although we managed to obtain and use real data,
note that it only involves a single hospital. In order to evaluate more fairly
our approach, data from different sources should be considered. Moreover, our
approach for embryo selection was based on extracting the probabilistic classifier
for p(w|x;α) and using it to make the predictions. An alternative that should
be studied would be the whole model for making predictions. Finally, the most
challenging idea for future work would be to try to validate, in collaboration
with clinicians, the value for θ1 obtained by our model and it relationship with
the proportion of properly configured cycles that fail to implant.
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