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ABSTRACT

This paper proposes a system-level prognostic approach for power electronic systems with slow degradation
profiles. Although a model-based approach has been adopted to deal with such multivariable dynamical systems
with degradation properties, the forecasting of the Remaining Useful Life (RUL) is independent of prior
knowledge of degradation profiles. Thus, this proposition is mainly based on the estimation of the degraded
parameters. A robust and well-known technique, the Adaptive Joint Extended Kalman Filter (AJEKF), has been
used in previous publications for degradation estimation. Consequently, a deep comprehension of the fault
mechanisms of the critical electronic components such as Electrolytic Capacitors (ECaps) and power switching
devices such as MOSFETs is needed to define their fault precursors and their degradation behaviors for analytical
modeling. The developed forecasting methodology highlights the importance of the historical degradation data
in the modeling and estimation stages. The main goal is to increase the reliability of the Prognostics and Health
Management (PHM). Thus, this technique has been fully applied to a DC-DC converter used in electric vehicles to

forecast its RUL on system-level from component-level basis and the simulation results are then presented.

1. Introduction

Electronics-rich systems are interestingly gaining attention in some
applications with critical decisions and harsh operating conditions.
Their increasing important role in critical applications such as electric
vehicles, aircrafts industry and huge industrial applications lead the
scientific researchers to consider the reliability assessment study which
helps to provide high operational availability [1,2]. Mainly, faults and
scheduled maintenance could affect the operation of such systems. In
this study, only faults with slow degradation profiles are considered to
be predicted. Thus, the intermittent faults could not be considered in
such studies due to their unpredictable occurrence [3]. Harsh en-
vironmental and working conditions could be described as thermal and
electrical overstresses which will affect the reliability of the system
during the time and lead to a complete failure [4,5]. Consequently,
targeting high efficiency and reliability in electronics-rich systems
needs high-fidelity modeling, advanced monitoring, diagnosis and
preventive maintenance techniques and strategies which all could be
followed in an organized and specific Prognostics and Health Man-
agement (PHM) methodology. The methodologies and techniques on

which the diagnostics rely are considered as strong enough to be
standardized. However, there is not a single methodology that discusses
and covers all the prognostics aspects so far. Thus, the prognostics
technology is changing the health management standards and con-
sidered as the most challenging in the domain [6].

The failures in power electronics systems and their consequences
have been widely discussed in [7-9]. To be more specific, in the lit-
erature there exists component-level approaches for prognostics as in
[4,5,10] for ECaps and in [11-13]. Their proposed methods normally
require the failure modes derived from statistical studies, designers,
reliability engineers, measurements and Accelerated aGing Tests (AGE).
Therefore, the common behavior in the followed prognostics techniques
is that a damage estimation is vital at a certain level for the RUL pre-
diction. Thus, they propose filter approaches for damage estimation
such as Kalman and particle filters depending on the complexity of the
system and its type. Additionally, for the RUL prediction they use the
degradation models in order to predict their future states subject to
current degradation estimation and other measurements. Based on
these algorithms, the degradation models and trends should be known
for each and every parameters in the system, which also could give
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efficient estimation and prediction results but limited by the knowledge
of the degradation models. There exist also other RUL prediction
methods that do not require prior knowledge of the degradation profiles
and applied on mechanical systems as in [14,15] which are based on
the degradation speed and its distance from the ideal parameter value.
Although these prediction techniques have shown efficient results, one
depends on full knowledge of the degradation profile and works on a
component-level prognostics and the second requires real-time mea-
surements for monitoring process in addition to the ideal case for the
RUL computation.

In this context, this paper contributes to the PHM with a different
point of view. First, it aims to deal with a multicomponent approach
instead of single-component which also can be called system-level
prognosis, for more robustness, better reliability and projection to
realistic applications. Second, the RUL prediction is only based on the
degradation estimation with unknown degradation behaviors.
Explicitly, the stochastic estimators as Kalman Filter (KF) deal with
linear systems in presence of Gaussian white noises, whereas for non-
linear systems, Extended Kalman Filter (EKF) can be applied by com-
puting the covariances using Jacobian of nonlinear functions.
Moreover, the prediction matrices are updated by real-time measure-
ments with stochastic noises. Therefore, a power electronic system is
adopted as a case study for the proposed PHM methodology. Thus, the
system is modeled and described as Linear Parameter Variant (LPV)
dynamical system due to the degradation of the parameters over time.
Furthermore, a proposition of a three-stage PHM methodology has
taken place in this study in order to achieve the aforementioned RUL
prediction goals. In addition to the model-based approach, statistical
degradation data are needed to create analytical models for each and
every degraded parameter in order to infect the healthy system with
slow degradation profiles. The latter is only needed in the absence of
real application, and the goal here is to validate the proposed metho-
dology by running and testing the studied system in simulation. There
exists an open access database for the failure mechanisms and mea-
surements of the most critical power electronic devices provided by
Nasa prognostics center.

This paper points out the necessity of system-level PHM and pro-
poses a methodology for model-based prognostics and RUL forecasting
for systems with unknown degradation behaviors. Thus, Section 2 states
the concerned problem and explains the scientific contribution of the
work. The application to a DC-DC converter with both healthy and
degraded operations is presented in Section 3. In the absence of the real
system, it is important to understand the failure mechanisms of the
power electronic devices and model their degradation for simulation
validations which Section 4 explicitly explains. Section 5 is dedicated
for the proposed PHM algorithm and the RUL prediction. The simula-
tion results are analyzed and explained in Section 6. Finally, the con-
clusions and perspectives are provided in the last section.

2. Problem statement

Since the safety in critical engineering process and applications
plays an important role in the maintenance of the systems, the system
operation should be continuously monitored to avoid catastrophic lives
losses and project abortions. Thus, ensuring the reliable operations
counts on the system failure mechanisms probabilities and online sur-
veying. Consequently, the prognostics techniques intend to forecast the
RUL either by model-based or data-driven methods, depending on the
probability of faults and the complexity of systems. Moreover, the PHM
takes place to resolve the problems of cut-offs due to optimistic pro-
tection and expensive maintenance caused by over-protection.

Environmental aspects such as temperature and working conditions
affect the system functionality and availability. Considering the elec-
tronics-rich systems such as DC-DC converters, the working conditions
are described as voltage surges, current overshoots and high tempera-
ture causing system failures. Mainly, two principal components are

responsible of the failure of the such converters, the switching devices
and ECaps [16]. Hence, a problem of inter-dependency of those com-
ponents arises and predicting the health of the system becomes more
complex. Additionally, most of the systems might be treated as black
boxes with unknown parameters, which turns the problem into higher
level prognosis for RUL prediction with unknown degradation profiles.
Section 5 explicitly explains the proposed algorithm of the complete
PHM technique from modeling to online RUL prediction. Moreover, a
vital estimation-based technique is integrated to overcome the lack of
measurements information in any electronics-rich system.

Fig. 1 illustrates the problem statement and resumes the PHM ar-
chitecture to reach the main objective of online RUL estimation for
system-level prognosis.
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Fig. 1. Problem statement of the system-level PHM.

3. DC-DC converter case study

Switch-mode power converters are widely used in EVs as bi-direc-
tional buck-boost converters. Thus, they experience environmental as
well as operational stress such as heat, current spikes and voltage surges
[4]. Hence, these factors affect the proper operating conditions of the
converters and deteriorate the efficiency of the system including the
internal components. Therefore, the reliability of the system would not
be trustworthy in huge industrial applications such as nuclear power
plants and autonomous vehicles. Consequently, the PHM would prevent
these systems from unnecessary and expensive maintenance [17].

3.1. Boost converter modeling

A bi-directional buck-boost converter would reflect a perfect ap-
plication of the PHM algorithms. A DC-DC converter, rated at 30 kW, is
designed as shown in Fig. 2. For the sake of simplification, only the
Boost application is explained in this paper.

The components parameters and variables are presented in Table 1.

Consider the state-space model of a continuous-time switched linear
system in normal operation as follows:
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Fig. 2. Boost converter circuit.

Table 1

Converter parameters.
Parameter Variable \ Symbol | Value | Units
Input resistance R, 0.01 Q
Input capacitance Cin 80 mF
Input capacitor resistance ESRj, 100 mQ
Inductance L 146 uH
Inductor internal resistance R; 5 mQ
MOSFET internal resistance Ron 0.2 Q
Output Capacitance C, 5 mF
Output capacitor resistance ESR, 80 mQ
Switching frequency fs 15 kHz
Input voltage Vin 200 A\
Output current io 100 A
X(t+1) =Ax () + Bu(t) + w(®),
{Y(t) = Cyx(t) + Du(t) + v(t), @
with:
Vin i V.Cin
|
Ve,

where, s indicates the switching state of the converter. x(t) € R™ re-
presents the state vectors. y(t) € R™ is the output vector and u(t) € R™
denotes the inputs. A, € R™*™ represents the state matrix with dim [A;
()] = 3 X 3, B, € R™*™ is the input matrix with dim [B,(-)] = 3 X 2,
C, € R™*™ is the output matrix with dim [C,(-)] = 2 X 3 and D; €
R™>™ represents the feed-through matrix of the system with dim [D;
()] = 2 x 2; with R" is a set of n-dimensional real numbers. ® € R™
and v € R™ are the process and measurement noises which are assumed
to follow a Gaussian distribution with independent zero mean with
covariances Q and R respectively. Additionally, the variable v;, is the
input source voltage of the circuit, i, is the output load current, i;, is the
input current and v, is the output voltage. Thus, the states are the input
capacitor voltage v¢,, the inductor current i, and v, the output ca-
pacitor voltage.

Therefore, the system splits into two subsystems due to the
switching in the converter, and similarly for the buck operation. The
ON-state of the Boost operation is represented by subsystem 1 as shown
in Fig. 3 and its state-space matrices are derived as follows [18,19]:
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Fig. 3. Boost converter circuit ON-state.

Applying Kirchhoff's Voltage Law (KVL) to subsystem 1, it follows:

-V, + ESROiCO + Ve, = 0, (Za)

— Vin + Rinlin + Ricyy iy, + Ve, = 0, (2b)

— Vin + Riniin + Rpip + vy + Ronir = 0, (20)
next, by applying Kirchhoff's Current Law (KCL) to subsystem 1:

—ijp +ig, + i =0, (3a)
ic, +io,=0, (3b)

the states equations are then obtained from the above equations:

ch- 1
L =———— v, + Rinir — Vinls

dt Co (R + BSRy) LV ¥ Rinlt = Vinl (4a)
di ;
= mmqun — (RinESRin + RrRic;,, + RovRic;,)ir

+ ESRin‘)in]’ (4b)

deO _ —ii

dt Co” (40)

given the measurement equations as follows:

. s dvcin
Iin =i, + Cip dt B (5a)
Vo = V¢, — ESRy . (5b)

Thus, the state-space matrices of the ON-state Boost converter are
represented as follows:

-1 —Rin 0
Cin - Ricy, Cin - Ricy,
A = Rin ~Rin ESRin + Rp - Riciy + RON - RiGy, |,
L-Ricy, L - Ricy,
0 0 0
L 0
Cir; jiCi,, S BSR
Bi=| R:Z- 0|, C =|Rcn R s
" 0 0 1
0 -1
Co
1
D, = | Ricin ,
0 —ESR, 6)

Similarly, the OFF-state equations and state-space matrices of sub-
system 2 shown in Fig. 4 are obtained as follows [18,19]:
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Fig. 4. Boost converter circuit OFF-state.

Applying Kirchhoff's Voltage Law (KVL) to subsystem 2, it yields to:
— Vip + Riniin + v + RLiL + Ve, + ESROiCO =0, (7)

analogously, applying Kirchhoff's Current Law (KCL) to subsystem 2 it
follows:

—iL+ic0+i0:0, (8)

hence, the state-space matrices of the OFF-state Boost converter are
represented as follows:

di_ R, _ RnBSRin+RiRicy+ESRoRicy; _ VCo | ESRm, . ESRo;

dr LRicy, ©in LRicy, L7 7 IR, ™ L
(92)

deo i i

d ~ C, G’ (9b)



Vo = ESR, if, + ve, — ESR, o (9¢)

Thus, the state-space matrices of the OFF-state Boost converter are
represented as follows:

[ —Rin 0
Cin - Ricyy Cin - Ricy,
A, = Rin —Rin - ESRin + RL - Ricin + ESRp - Ricin ;1
2 L-Ricy, L-Ricy, Ll
0 1 0
L CD
L 0
Cin " Ricip -1 ESRim
ESR; ESR, o R
Bz = # I 0 N Cz = RiCin Rlcin .
o 0 ESR, 1
0 -1
L Co
o 0
D2 = | RiCin .
| 0 —ESR, 10)

where Ricin = Rin + ESRj,.

This model describes a dynamical system with two operating states
which can be expressed as 1) averaged model or 2) alternating model.
The first model results the average of the signals in the two operating
states with respect to the duty cycle, while the alternating model keeps
the ripples of the signals. However, the latter could be beneficial for
some applications but previous work shows that the averaged model
consumes less computational time and effort and it is more efficient [1].

The following state-space equations represent the averaged model:

Agg =Ard + Ay(1 — d),
Bwe =Bid+ By(1 - d),
Cog =Crd+ Cx(1 - d),
Dag =Di-d + Dy(1 — d), 11

where d = 0.35 is the duty cycle that commands the switch.

4. Failure mechanisms of power electronic devices
4.1. Causes of electronics-system failure

Modern power electronic devices have discrete characteristics and are
expected to live longer due to the advanced technologies in this field [20].
However, they are exposed to harsh operating conditions which lead to
system failure throughout the time. Whereas, the intermittent faults fall
outside the scope of this paper, the focus is on the slow deterioration of the
most effective power electronic components in the system. Thus, statistical
studies have shown that the power switching devices are the most fragile
followed by the ECaps [1]. Both of them have been tested by run-to-failure
experiments in order to establish the main causes of the occurred faults.
Hence, their fault precursors are categorized to facilitate the analytical
study. Furthermore, due to the collected results, the experts have categor-
ized the failure mechanisms and types for the power switching devices as in
Refs. [9,21]. Similarly, the ECaps have been examined to outline their
features [4,5,10]. Henceforth, only the slow parameter variations will be
focused on as a type of causes of electronic-systems failure. Thus, the fun-
damental interest for such failure identification is by pointing out the AGE.

4.2. Accelerated aging experiments

Also known as Accelerated Life Test (ALT), the AGE is a powerful
technique to build a data-base of the degradation behavior of the
electronic components. Although the power electronic devices run
through harsh operating conditions and degrade, they serve the system
for a relatively long time. The AGE allow easier investigation of the
faults and test the capabilities of the components under test.
Furthermore, the reliability assessment is based on the run-until-failure

tests with several measurements. These measurements indicate various
fault precursors which will be used in the analytical study. Moreover,
in-situ measurements are required for the accelerated aging process for
both capacitors and power switches [9,16].

The MOSFET module is utilized in the case study of this article.
Thus, to analyze its Physics of Failure (PoF), the switching devices
should experience electrical and mechanical over-stress. From an en-
gineering point of view, these tests are performed throughout power
and thermal cycling to shorten the timescale of the power switching
devices. The performed in-situ measurements reports the occurred
variations to illustrate their evolution [11-13,22-24].

Moreover, the assessment of the ECaps require special in-
strumentation. The experiments of the thermal cycling are emulated in
a controlled temperature chamber where the temperature is raised over
the rated threshold [5]. The age of the ECaps is also accelerated by
applying a square voltage higher than its rated with very small fre-
quency [4]. Thus, the thermal over-stress test environment is similar to
what has been explained for the MOSFET accelerated aging.

4.3. Failure mechanisms and fault precursors of IGBTs & MOSFETs

The AGE is engaged in the identification of the fault precursors of
the tested components. Several experiments have shown that the best
indicator of degradation identification in power MOSFETs is the in-
crease in its ON-resistance (Roy) [25] with a margin of 10% to 17%
[26]. Another fault precursor for MOSFETs is the increase of the gate
threshold voltage [23,27]. Therefore, the fault precursors of IGBTs can
be characterized as increase in threshold voltage [28]. The turn-OFF
time was also considered as a latch-up indicator in Ref. [29]. In addi-
tion, ON-state voltage was also used as a fault precursor for IGBTs in
[28,30,31]. More studies that discuss the fault precursors, fault me-
chanisms and their measurements, are presented in the literature.
Consequently, the researchers have categorized the failures of power
switching devices into extrinsic (package-related) such as bond-wire
fatigue [32,33], solder fatigue [9,16] and Aluminum reconstruction [9]
and intrinsic (chip-related) faults such as electrical overstress, electro-
migration, latch-up and dielectric breakdown [9,21,23,24,33].

4.4. Failure mechanisms and fault precursors of ECaps

Similar to the power switches, the ECaps are one of the major re-
sponsible of the electronic-system failures. Therefore, the electrical and
thermal over-stress cause major perturbation in the capacitor normal
functionality. The electrolyte inside the capacitor unit evaporates which
increases the pressure and decreases the oxide area. Physically speaking, the
Equivalent Series Resistance (ESR) of the capacitor increases while its ca-
pacitance decreases throughout the degradation process [1,5].

4.5. Failure mechanisms methodologies

Each and every failure mechanism is assigned to fault causes and an
affected parameter. Analytical studies require the application of empirical
models and knowledge of the Physics-of-failure (PoF). Moreover, these
parameters can be assigned to the threshold voltage (Vi) and collector
emitter voltage (Vcron) of the power switches. Hence, electrical and thermal
over-stress might increase the leakage current, cause short circuit, open
circuit and loss of gate control for power switching devices [9,33].

Moreover, the degradation effects of the ECaps could be detected by
observation of the electrolyte, leakage current and/or increase in the
internal pressure [1,10].

In many cases, the instrumentation needed to measure and detect
these small variations in all applications could be expensive and im-
possible to apply. Therefore, the RUL identification of these devices
could be estimated depending on simulating the failure mechanisms. A
few methods exist in the literature that help on estimating the current
operating state of the electronic devices without direct measurements in



real applications. Moreover, these analytical studies require real in-
formation of the deteriorated devices for all the types of failure sup-
ported by the AGE [9,34].

4.6. Empirical failure identification of power electronic devices

Lifetime prediction analysis is based on the empirical models to
simplify the reliability assessment. The PoF-based lifetime models could
be used to derive the empirical model of thermal failures [9]. In this
article, the failure precursor-based lifetime models are adopted. Con-
sequently, due to extensive data acquisition from the AGE, empirical
models have been developed for all the possible failure mechanisms.

4.6.1. Empirical lifetime modeling for MOSFETSs

Referring to the aforementioned experimental tests, the Roy is the
parameter in use for the degradation estimation. Thus, the measure-
ments are interpreted by the numerical analysis methods to fit them in
an empirical function [35]. As a result, the ON-resistance variation
indicates the degradation variation for the MOSFET. The empirical
variation ARy is described by the following equation an its evolution is
shown in Fig. 5:

ARoy = ay (et — 1), 12)

where a; = 3.7.10"* and b; = 3.24.10™ 2 are the fitted parameters of
the ON-resistance degradation extracted from the AGE measurements.
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Fig. 5. MOSFET ON-resistance variation due to degradation using empirical
model.

In the literature, the researchers tend also to model the fault pre-
cursors based on failure mechanisms and PoF as in Ref. [9].

4.6.2. Empirical lifetime modeling for ECaps

The lumped model of the ECaps is expressed by a capacitance and
ESR. Hence, for model-based applications, the empirical modeling is
interpreted using numerical curve-fitting methods for illustration. Here
follows the equations of the capacitance and the ESR of the ECaps
[5,36].

C= 2 e & Ao’
ty (13a)

Pe to Pg

ESR = ——,
2L W (13b)

where ¢z is the relative dielectric constant, ¢, is the permittivity of free
space, A, is the oxide area, t, is the oxide thickness, pg is the electrolyte
resistivity, L and W are the physical parameters of the anode area, P is
the correlation factor related to electrolyte space porosity and average
liquid path-away [5]. Fig. 6 shows the equivalent circuit of lumped
ECaps.

The empirical models of capacitance loss and ESR increase ac-
cording to [17] are given by the following equations:

Fig. 6. Lumped model of electrolytic capacitor.
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(a) Evolution of capacitance degradation using empirical model.
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(b) Evolution of ESR using empirical model.

Fig. 7. Evolution of the lumped model of ECaps.

Caeg (1) = €®' + by, (14a)

ESRinc(f) = asze®’ + cze®, (14b)

similarly to the aforementioned parameters of the ON-resistance,
a; = 0.0163, b, = — 0.8398, a3 = 2191, b3 = 0.005117,
c3 = — 222 and d3 = — 0.02211 are the fitted parameters of the
capacitor degradation extracted from the AGE measurements. Fig. 7a
and b show the evolution of the empirical models considering the ca-
pacitance degradation and ESR increase percentages.

It should be noted that the maximum threshold of the capacitance
degradation is 20% of the initial capacitance value, based on the
aforementioned experiments. Consequently, the ESR increases by 57%
for a 20% of capacitance degradation.

5. Proposed PHM approach
5.1. Degradation estimation using adaptive joint extended Kalman filter

The aforementioned intrinsic and extrinsic failures have been de-
fined to employ the simulation of the empirical models in order to es-
timate the degradation of the components as well as the overall system.
Moreover, the reliability assessment should be trustworthy based on
efficient estimation method. Therefore, due to the characteristics of
each electronic device, the deterioration speed of the components ob-
lige to split the system into different manifolds. Hence, the fast mani-
fold is directly related the states of the system on which linear filtering
techniques could be applied. Whereas, the slow manifold emulates the
degradation of the internal parameters which are characterized by
smooth variations. Consequently, the slow manifolds impose an as-
sumption of 841 = 8k + rr, where § denotes the variations of the



parameters and 14 is a small white noise.

To reflect the degradation of the internal components on the whole
system, the variations should be measured. Hence, dealing with a black
box system, the internal components are not accessible for sensor
measurements. Therefore, the proposed estimation is employed for
auto-adaptive parameters update. To do so, the model-based im-
plementation allows to augment the states with the parameters. In Ref.
[1], two estimation techniques were employed where the AJEKF tech-
nique shows better results than the ADKF. Thus, it will be described and
utilized for the case study.

It should also be noted that infecting the model by the empirical
degradation models is only used for simulation validation purposes in
the absence of real system degradation.

Consider the parameter-variant nonlinear discrete model of the
following form:

Xer1 = A (Ge)xx + Bi (6 )uy + wy,
Ve o =Cix + Di(Guk + v, a5)

Henceforth, this model will be denoted as the augmented system
due to the augmented parameter §. where, i = 1 indicates the selection
of subsystem 1, i = 2 indicates the selection of subsystem 2, and
i = avg is the average model used for parameter estimation.

After augmenting the system with the parameter §, the states vector
becomes:

x,f“g _ [ xold]
8 (16)

For simplification purposes, k|lk — 1 is denoted as k™ and k|k + 1 is
denoted as k", A ™8 as A, with the rest of the state-space matrices.
Hence, the dimensions of the state-space matrices change as follows:

dim [A(-)] = 4 X 4, dim [B(-)] = 4 X 2,dim [C(-)] = 2 X 4 and
dim [D()] = 4 x 2.

The filtering of the non-linear augmented system is solved by ap-
plying the conventional Kalman filtering method with a few modifica-
tions (AJEKF). Hence, the linearization process involves the Jacobian of
f and g denoting the matrices A and C. The Jacobian matrices are cal-
culated for each subsystem first and then the average model is com-
puted. The model is discretized and a conventional KF is applied for the
average subsystem as shown in the following equations:

The state estimate time update:

Xy = Ap—Xp~ + Br-ug~ + wi-, 17)
The prediction error covariance:

A

P, = _
k ax"k"ax

+Q,
Xk~ (18)

Kalman gain:

og. _\ og. _ og. _ !
Ki = P Bam | o | [ B P X Exy +R
ox ox ox 19)

The output equation:

Yk = CeXk= + D—ug= + vy, (20)
The filter equation:
X = Xk + K (Y = ), (21)

The filter error covariance:

3
P+ = (1 — K Sxe )Pk,
ox

(22)

5.2. PHM architecture

The early warnings are considered as the fundamental features of

the prognostics. Although the decision-making process has never been
an easy mission, there are historical and current signs that help fur-
nishing the prediction links and provide a complete life-cycle update on
a component-level and henceforth a system-level [6].

Algorithms alternate among many engineering disciplines for the
reason of optimizing the reliability by involving the fault detection,
identification, isolation and lately the fault prognostics mostly bene-
fiting the maintenance management.

Here follows the proposed PHM architecture for online RUL fore-
casting as shown in Fig. 8:

LEVEL 1
Modeling of Switched State-Space models
DC-DC Converter |~ | Healthy operation
Stored

Degradation
Data J-----------==-f=---=----= ECaps & MOSFETs

System's
Characteristics

Global Modeling electrical and thermal overstress

Empirical Modeling

. {Degraded operation due to

- {AJEKF technique
-- {System's status

State & Parameter
Estimation

Anomaly?

=z
o

Online RUL
icti Online RUL
It Prognosis 000 4,‘ Prediction :
D Algorithm Forecasting

Fig. 8. Proposed PHM architecture.

5.2.1. Level 1: system modeling and features extraction

+ The modeling of the plant comes in the healthy operating mode as
a first step of the analytical study. Thus, it is crucial to specify the
sensors and the measurement devices precision and noise power for
further applications. As shown before, the DC-DC converter was split
into two state-space models describing its functionality with respect to
the process and measurement noises.

 The system characteristics are important to extract the environ-
mental working conditions, the limitations of the parameters in order to
establish a study about their physics of failure.

+ The AGE help building a database used for statistical analysis of
the behavior of the power electronic components. Thus, the degrada-
tion analysis is numerically calculated for the next step. The degrada-
tion data are available online from the data repository of the prog-
nostics center of Nasa.

 The previous step leads to generalize degradation equations for
each and every tested electronic components. Hence, empirical models
adapt the healthy operation mode to create the degraded state-space



models of the whole power electronic system.

« Lately in level 1 of the prognosis study, a global model has to be
generated either in model-based or data-driven techniques for the si-
mulation study of the PHM.

5.2.2. Level 2: parameter estimation and health monitoring

» The AJEKF technique is responsible of estimating the states of the
global model for the k + 1 state. In parallel, the slow-variation are also
estimated using advanced filtering techniques since their degradation
could not be directly detected.

+ Prior knowledge of the system could help to define an end-of-life
threshold based on the experimental results.

+ The system is continuously monitored to detect any sudden fault,
allocate it and then isolate it. This process is traditionally known as
fault diagnosis and it is based on the estimation done in the previous
step. In case of a fault, the system will take decision by a human in-
terface or it could be self-cleared depending on its intensity. However,
for the non-faulty condition, the prognosis algorithm will take place in
order to estimate the RUL of the system.

5.2.3. Level 3: RUL forecasting

Independently of the degradation knowledge, the RUL forecasting
algorithm considers the estimated parameters only. At each time step,
the fault prognosis algorithm fits the measured parameter with a
polynomial equation which updates its variables at each iteration. A
linear EoL-RUL equation is optimistically assumed in the prognosis
profile. Moreover, the algorithm runs in online mode and it converges
at each iteration. It is also assumed that the component break-through
threshold is the stopping criterion, the EoL of the system. Therefore, the
expected results are the RUL in function of operating time. The simu-
lation results in Section 6, numerically explains the robustness of this
proposed technique. Additionally, the EoL of the whole system is as-
sumed at the time where one critical device in the system fails. Thus,
the system-level RUL is the RUL of the first-to-fail component. Here
follows the algorithm to compute the RUL:

Algorithm 1. RUL forecasting algorithm.
Output: forecasting of the prognosis horizon.
Prerequisites :

e Atk = 1, assume that the EoL of the system is
the same as the expected operation time by the
user.

The previously assumed time is considered as
the threshold of the parameter degradation.
Consequently, the system is then considered
as 100% degraded from its initial state.

1: for k =1to Ndo

2:  The polynomial equation will consider the
estimated state with the current
deviation of the initial state

3:  Computation of the variables of the polynomial
equations

4:  Update and calculation of the EoL

5: Deduction of the value of RUL:
“EoL—kxsimulation time”

6:  Update the variables and repeat until reaching
the threshold

7: end for

8: return the RUL at each measurement.

6. Simulation results

Algorithm 1 of RUL forecasting is mainly implemented for the final level
of the proposed PHM algorithm and it is based on the parameter estimation.
Therefore, it is essential to run simulation tests in order to assess the validity
of the proposed prognostics algorithm. Both of the degradation cases were
tested on the DC-DC converter in Boost operation mode. The AJEKF tech-
nique was applied for states and parameter estimation. The ESR of the

output capacitor and the ON-resistance of the MOSFET are considered as the
degraded parameters that infect the model. It should be noted that the
empirical models of the degraded parameters are only used in simulation to
infect the model with slow degradation data which are already measured by
real AGE. Two different colors are used to visualize the simulation results in
order to differentiate between ECaps and MOSFET degradation. The states
are initialized with random values such as 50, 100 and 200 for input ca-
pacitance voltage, inductor current and output capacitor voltage respec-
tively while their ideal values in normal operation mode are 200 V, 150 A
and 300 V. Thus, the input voltage is set to 200 V and the output current is
100 A. At k = 1, the state-space matrices are computed with the initial
value of the degraded parameter §, = ESR, = 80 mQ or
8o = Roy = 0.2 Q.

6.1. DC-DC converter parameters estimation during capacitor degradation

As known, the output capacitor has a direct effect on the output
voltage value as well as the voltage ripples. However, the proposed
estimation technique ignores the voltage ripples by averaging the
equations of the two subsystems.

Fig. 9a shows the degradation occurring at the output capacitor
voltage during the capacitor degradation along with Fig. 9b that re-
presents the output voltage. Thus, it can be seen that the output com-
ponents voltages are directly affected by the degradation and both re-
present a voltage drop of around 4 V. The small box shows a zoomed
view of the degraded as well as the estimated states.
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(a) Output capacitor voltage during capacitor degradation.
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Fig. 9. Output components voltages during capacitor degradation.

The input capacitor voltage is independent of the degradation of the
output capacitor as shown in Fig. 10. However, Fig. 11 shows the 2 A
drop of the inductor current from its initial real and estimated value.
Thus, this can be explained by the second element of the input vector u,
the output current. Since the load is constant, the output current drops
with the output voltage. Consequently, most of the components are
affected due to the inter-connections of the system.



205 285
— Degraded|
200 i
> 3
€195 B 3 280 i
© [3)
> >
198.464 282.9
190 198.462 4 282.85
198.46 282.8
20 95 100
D , ‘ ‘ ‘ 275 ‘ ‘
0 50 100 150 200 250 Y 50 . 1.00 150
Accelerated aging cycles (hours) Accelerated aging cycles (minutes)

Fig. 10. Input capacitor voltage during capacitor degradation. (a) Output capacitance voltage during MOSFET degradation.
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Fig. 11, Inductor current during capacitor degradation. Fig. 13. Output components voltages during MOSFET degradation.
Moreover, as detailed in the empirical models, the ESR increases 205

with the capacitance degradation. Thus, the AJEKF proves its ability to
estimate the small-varied parameter of the system as shown in Fig. 12.
Only the values of the parameter estimation will be used in the level 3 2001
of the PHM algorithm for RUL forecasting.
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Fig. 14. Input capacitance voltage during MOSFET degradation.
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The empirical models were simulated with the AJEKF estimation 1421 145,62 N
technique and the results are presented below: 1456
iy . . o
Similar to the capacitor degradation case, only the output voltage 140 :

100 150

and output capacitor voltage are affected by the capacitor degradation Accelerated aging cycles (minutes)

as shown in Fig. 13a and b.

Despite the system inter-connections, Fig. 14 shows intact input Fig. 15. Inductor current during MOSFET degradation.
capacitor voltage during the degradation process. Thus, similar to the
case of the capacitor degradation, the inductor current is also affected L . . .
by the degradation of MOSFET where Fig. 15 shows 2 A current drop used for Fhe estimation algorlthm. in the case of .MOSFET degradation.
for the same reasons explained in the capacitor degradation case. Hence, Fig. 16 demonstrates the increase in resistance by 0.03 Q and

As the MOSFET is characterized by its ON-resistance, the latter is the parameter estimation as well.
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6.3. Online RUL forecasting

The essential results of the PHM algorithm are demonstrated in
Fig. 17. The RUL prediction algorithm runs in parallel with the para-
meter estimation process. At each time-step, the proposed polynomial
fit of the earlier estimation computes the current RUL based on the
aforementioned assumptions and conditions. As clearly shows the blue
line, the prediction converges to the empirical ideal EoL in red which is
only used in simulation as a base to compare the proposed method with
the ideal EoL-RUL function.
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Fig. 17. Online RUL forecasting during capacitor degradation. (For inter-
pretation of the references to color in this figure, the reader is referred to the
web version of this article.)

Furthermore, Fig. 18 shows the prediction error at each measure-
ment time between the empirical RUL-EoL used only for simulation
purposes and the predicted RUL. Moreover, researchers in [4,10,14,15]
used the relative accuracy as an indicator of prediction accuracy. Thus,
the latter is also computed and showed in Fig. 19.
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Fig. 18. Error of online RUL prediction.

90 -

RA (%)

85

80 I I I I I I I
0 20 40 60 80 100 120 140 160

Time (hours)

Fig. 19. The relative accuracy of the RUL prediction with respect to the em-
pirical model.

the higher the RA percentage is, the more the prediction with respect to
RUL is accurate.

7. Conclusion

This paper highlights the proposed methodology of RUL prediction
of an electronics-rich system from a component to system-level without
prior knowledge of the degradation behaviors of the components. It is
crucial to understand the failure mechanisms of the power electronic
components to deal with system-level prognostics especially in simu-
lation to be able to infect the model with empirical degradation models.
The proposed model-based PHM methodology splits the architecture
into three stages: modeling, estimation and prediction. Thus, Extended
Kalman filtering is applied in order to estimate the states and the de-
graded parameters by augmenting the states vector. Straightforward to
the problem, the RUL prediction of the whole system is based on the
first-to-fail critical device in the system such as MOSFETs/IGBTs and
ECaps. Finally, the simulation shows high accuracy estimation and
prediction enhanced by the proposed PHM technique to deal with such
systems. Current and future work will focus on other techniques such as
interval predictors and zonotopes which will be validated on a real test
bench with the previous research.

Credit author Statement.

Ahmad Al-Mohamad: term, Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Resources, Data
curation, Writing - original draft, Writing - review & editing,
Visualization.

Ghaleb Hoblos: Conceptualization, Validation, Resources, Writing -
review & editing, Supervision, Project administration, Funding acqui-
sition.

Vicen¢ Puig: Conceptualization, Validation, Resources, Writing -
review & editing, Supervision, Project administration, Funding acqui-
sition.

Declaration of competing interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

CRediT authorship contribution statement

Ahmad Al-Mohamad:Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing - original draft, Writing - review & editing, Visualization.Ghaleb
Hoblos:Conceptualization, Validation, Resources, Writing - review &
editing, Supervision, Project administration, Funding
acquisition.Viceng  Puig:Conceptualization, Validation, Resources,
Writing - review & editing, Supervision, Project administration,



Funding acquisition.

Acknowledgement

This work is co-funded by European Union and Normandy Region.

Europe is involved in Normandy through the European Funds for
Regional Development.

References

[1]

[2

—

[3]

[4]

[5]

[6]

71
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Al-Mohamad, G. Hoblos, V. Puig, A model-based prognostics approach for RUL
forecasting of a degraded DC-DC converter, 2019 4th Conference on Control and
Fault Tolerant Systems (SysTol), 2019, pp. 312-318 , https://doi.org/10.1109/
SYSTOL.2019.8864778.

K. Tidriri, S. Verron, T. Tiplica, N. Chatti, A decision fusion based methodology for
fault prognostic and health management of complex systems, Appl. Soft Comput.
105622 (2019) 1568-4946, https://doi.org/10.1016/j.as0c.2019.105622 ISSN.
M. Pecht, A Prognostics and Health Management for Information and Electronics-
Rich Systems, (2011), pp. 19-30, https://doi.org/10.1007/978-0-85729-493-7.
C.S. Kulkarni, J.R. Celaya, G. Biswas, K. Goebel, Prognostics of power electronics,
methods and validation experiments, 2012 IEEE Autotestcon Proceedings, 2012, pp.
194-199, , https://doi.org/10.1109/AUTEST.2012.6334578 ISSN 1558-4550.

C. Kulkarni, J. Celaya, G. Biswas, K. Goebel, Prognostic modeling and experimental
techniques for electrolytic capacitor health monitoring, Structural Health
Monitoring 2011: Condition-Based Maintenance and Intelligent Structures —
Proceedings of the 8th International Workshop on Structural Health Monitoring,
National Aeronautics and Space Administration MOFFETT Field CA AMES Research
Center, 2011, pp. 1225-1232.

H.M. Elattar, H.K. Elminir, A.M. Riad, Prognostics: a literature review, Complex
Intell. Syst. 2 (2) (2016) 125-154 ISSN 2199-4536 https://doi.org/10.1007/
s40747-016-0019-3.

B. Saha, J.R. Celaya, P.F. Wysocki, K.F. Goebel, Towards prognostics for electronics
components, 2009 IEEE Aerospace Conference, 2009, pp. 1-7.

M. Pecht, Prognostics and health monitoring of electronics, 2006 International
Conference on Electronic Materials and Packaging, 2006, pp. 1-10.

A. Hanif, Y. Yu, D. DeVoto, F. Khan, A comprehensive review toward the state-of-
the-art in failure and lifetime predictions of power electronic devices, IEEE
Transactions on Power Electronics vol. 34 (5) (2019) 4729-4746.

J. Celaya, C. Kulkarni, G. Biswas, S. Saha, K. Goebel, A model-based prognostics
methodology for electrolytic capacitors based on electrical overstress accelerated
aging, Annual Conference of the Prognostics and Health Management Society 2011,
PHM, Montreal QC, Canada, 2011, pp. 31-39.

Z. Li, Z. Zheng, R. Outbib, A prognostic methodology for power MOSFETs under
thermal stress using echo state network and particle filter, Microelectron. Reliab.
88-90 (2018) 350-354, https://doi.org/10.1016/j.microrel.2018.07.137 (29th
European Symposium on Reliability of Electron Devices, Failure Physics and
Analysis (ESREF 2018).

J.R. Celaya, A. Saxena, S. Saha, V. Vashchenko, K. Goebel, Prognostics of power
MOSFET, 2011 IEEE 23rd International Symposium on Power Semiconductor
Devices and ICs, 2011, pp. 160-163 , https://doi.org/10.1109/1SPSD.2011.
5890815.

J.R. Celaya, A. Saxena, S. Saha, K.F. Goebel, Prognostics of power MOSFETs under
thermal stress accelerated aging using data-driven and model-based methodologies,
Annual Conference of the Prognostics and Health Management Society 2011, 2011,
pp. 443-452.

S. Benmoussa, M.A. Djeziri, Remaining useful life estimation without needing for
prior knowledge of the degradation features, IET Sci. Meas. Technol. 11 (8) (2017)
1071-1078, https://doi.org/10.1049/iet-smt.2017.0005.

M.A. Djeziri, S. Benmoussa, R. Sanchez, Hybrid method for remaining useful life
prediction in wind turbine systems, Renew. Energy 116 (2018) 173-187, https://
doi.org/10.1016/j.renene.2017.05.020 https://doi.org/10.1016/j.renene.2017.05.
020.

A. Alyakhni, A. Al-Mohamad, G. Hoblos, Joint estimation of MOSFET degradation
in a DC-DC converter using extended Kalman filter, 2019 4th Conference on Control
and Fault Tolerant Systems (SysTol), 2019, pp. 319-324 , https://doi.org/10.1109/

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

SYSTOL.2019.8864731.

J.K. Man, S. Perinpanayagam, 1. Jennions, Aging detection capability for switch-
mode power converters, IEEE Trans. Ind. Electron. 63 (5) (2016) 3216-3227,
https://doi.org/10.1109/TIE.2016.2535104.

H. Al-Sheikh, O. Bennouna, G. Hoblos, N. Moubayed, Modeling, design and fault
analysis of bidirectional DC-DC converter for hybrid electric vehicles, 2014 IEEE
23rd International Symposium on Industrial Electronics (ISIE), 2163-51452014, pp.
1689-1695 , https://doi.org/10.1109/1SIE.2014.6864869.

D.W. Hart, Power Electronics, McGraw-Hill, 2010.

H. Qingchuan, C. Wenhua, P. Jun, Q. Ping, A prognostic method for predicting
failure of dc/dc converter, Microelectron. Reliab. 74 (2017) 27-33 ISSN 00262714
https://doi.org/10.1016/j.microrel.2017.05.014.

J.M. Anderson, R.W. Cox, P. O’Connor, Online algorithm for early stage fault de-
tection in IGBT switches, 2013 9th IEEE International Symposium on Diagnostics
for Electric Machines, Power Electronics and Drives (SDEMPED), 2013, pp. 1-8 ,
https://doi.org/10.1109/DEMPED.2013.6645689.

J.R. Celaya, A. Saxena, P. Wysocki, S. Saha, K. Goebel, Towards prognostics of
power MOSFETs: accelerated aging and precursors of failure, Annual Conference of
the Prognostics and Health Management Society 2010, 2010 Portland, OR.

S. Saha, J.R. Celaya, V. Vashchenko, S. Mahiuddin, K.F. Goebel, Accelerated Aging
with Electrical Overstress and Prognostics for Power MOSFETs, 2011 IEEE, 2011,
pp. 1-6, https://doi.org/10.1109/EnergyTech.2011.5948532 EnergyTech.

J.R. Celaya, P. Wysocki, V. Vashchenko, S. Saha, K. Goebel, Accelerated aging
system for prognostics of power semiconductor device, 2010 IEEE AUTOTESTCON,
2010, pp. 1-6, , https://doi.org/10.1109/AUTEST.2010.5613564.

L. Dupont, S. Lefebvre, M. Bouaroudj, Z. Khatir, J. Faugieres, F. Emorine, Ageing
test results of low voltage MOSFET modules for electrical vehicles, 2007 European
Conference on Power Electronics and Applications, 2007, pp. 1-10 , https://doi.
org/10.1109/EPE.2007.4417433.

S. Dusmez, B. Akin, An accelerated thermal aging platform to monitor fault pre-
cursor on-state resistance, 2015 IEEE International Electric Machines Drives
Conference (IEMDC), 2015, pp. 1352-1358 , https://doi.org/10.1109/IEMDC.
2015.7409238.

S. Dusmez, S.H. Ali, M. Heydarzadeh, A.S. Kamath, H. Duran, B. Akin, Aging pre-
cursor identification and lifetime estimation for thermally aged discrete package
silicon power switches, IEEE Trans. Ind. Appl. 53 (1) (2017) 251-260.

N. Patil, D. Das, M. Pecht, A prognostic approach for non-punch through and field
stop IGBTs, Microelectron. Reliab. 52 (3) (2012) 482-488 ISSN 0026-2714 https://
doi.org/10.1016/j.microrel.2011.10.017 (special section on International Seminar
on Power Semiconductors 2010).

D.W. Brown, M. Abbas, A. Ginart, I.N. Ali, P.W. Kalgren, G.J. Vachtsevanos, Turn-
off time as an early indicator of insulated gate bipolar transistor latch-up, IEEE
Trans. Power Electron. 27 (2) (2012) 479-489 ISSN 1941-0107 https://doi.org/10.
1109/TPEL.2011.2159848.

Y. Xiong, X. Cheng, Z.J. Shen, C. Mi, H. Wu, V.K. Garg, Prognostic and warning
system for power-electronic modules in electric, hybrid electric, and fuel-cell ve-
hicles, IEEE Trans. Ind. Electron. 55 (6) (2008) 2268-2276 ISSN 1557-9948 https://
doi.org/10.1109/TIE.2008.918399.

V. Smet, F. Forest, J. Huselstein, A. Rashed, F. Richardeau, Evaluation of V.
monitoring as a real-time method to estimate aging of bond wire-IGBT modules
stressed by power cycling, IEEE Trans. Ind. Electron. 60 (7) (2013) 2760-2770 ISSN
1557-9948 https://doi.org/10.1109/TIE.2012.2196894.

M. Ciappa, Selected failure mechanisms of modern power modules, Microelectron.
Reliab. 42 (4) (2002) 653-667 ISSN 0026-2714 https://doi.org/10.1016/50026-
2714(02)00042-2.

N. Valentine, D. Das, P.M. Pecht, Failure mechanisms of insulated gate bipolar
transistors (IGBTs), 2015 NREL Photovoltaic Reliability Workshop, 2015.

W. Denson, The history of reliability prediction, IEEE Trans. Reliab. 47 (3) (1998)
SP321-SP328 ISSN 1558-1721 https://doi.org/10.1109/24.740547.

J.R. Celaya, A. Saxena, C.S. Kulkarni, S. Saha, K. Goebel, Prognostics approach for
power MOSFET under thermal-stress aging, 2012 Proceedings Annual Reliability
and Maintainability Symposium, 2012, pp. 1-6 , https://doi.org/10.1109/RAMS.
2012.6175487.

C.S. Kulkarni, G. Biswas, J.R. Celaya, K. Goebel, Physics based electrolytic capacitor
degradation models for prognostic studies under thermal overstress, European
Conference of the Prognostics and Health Management Society, 4 2012, pp. 1-9 (1).
ISSN 21532648, URL, http://www.phmsociety.org/node/936.


https://doi.org/10.1109/SYSTOL.2019.8864778
https://doi.org/10.1109/SYSTOL.2019.8864778
https://doi.org/10.1016/j.asoc.2019.105622
https://doi.org/10.1007/978-0-85729-493-7
https://doi.org/10.1109/AUTEST.2012.6334578
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0025
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0025
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0025
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0025
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0025
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0025
https://doi.org/10.1007/s40747-016-0019-3
https://doi.org/10.1007/s40747-016-0019-3
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0035
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0035
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0040
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0040
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0045
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0045
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0045
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0045
https://doi.org/10.1016/j.microrel.2018.07.137
https://doi.org/10.1016/j.microrel.2018.07.137
https://doi.org/10.1016/j.microrel.2018.07.137
https://doi.org/10.1109/ISPSD.2011.5890815
https://doi.org/10.1109/ISPSD.2011.5890815
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0060
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0060
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0060
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0060
https://doi.org/10.1049/iet-smt.2017.0005
https://doi.org/10.1016/j.renene.2017.05.020
https://doi.org/10.1016/j.renene.2017.05.020
https://doi.org/10.1016/j.renene.2017.05.020
https://doi.org/10.1109/SYSTOL.2019.8864731
https://doi.org/10.1109/SYSTOL.2019.8864731
https://doi.org/10.1109/TIE.2016.2535104
https://doi.org/10.1109/ISIE.2014.6864869
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0090
https://doi.org/10.1016/j.microrel.2017.05.014
https://doi.org/10.1109/DEMPED.2013.6645689
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0105
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0105
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0105
https://doi.org/10.1109/EnergyTech.2011.5948532
https://doi.org/10.1109/AUTEST.2010.5613564
https://doi.org/10.1109/EPE.2007.4417433
https://doi.org/10.1109/EPE.2007.4417433
https://doi.org/10.1109/IEMDC.2015.7409238
https://doi.org/10.1109/IEMDC.2015.7409238
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0130
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0130
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0130
https://doi.org/10.1016/j.microrel.2011.10.017
https://doi.org/10.1016/j.microrel.2011.10.017
https://doi.org/10.1109/TPEL.2011.2159848
https://doi.org/10.1109/TPEL.2011.2159848
https://doi.org/10.1109/TIE.2008.918399
https://doi.org/10.1109/TIE.2008.918399
https://doi.org/10.1109/TIE.2012.2196894
https://doi.org/10.1016/S0026-2714(02)00042-2
https://doi.org/10.1016/S0026-2714(02)00042-2
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0160
http://refhub.elsevier.com/S0026-2714(19)31239-9/rf0160
https://doi.org/10.1109/24.740547
https://doi.org/10.1109/RAMS.2012.6175487
https://doi.org/10.1109/RAMS.2012.6175487
http://www.phmsociety.org/node/936

	A hybrid system-level prognostics approach with online RUL forecasting for electronics-rich systems with unknown degradation behaviors
	Introduction
	Problem statement
	DC-DC converter case study
	Boost converter modeling

	Failure mechanisms of power electronic devices
	Causes of electronics-system failure
	Accelerated aging experiments
	Failure mechanisms and fault precursors of IGBTs &#x200B;&&#x200B; MOSFETs
	Failure mechanisms and fault precursors of ECaps
	Failure mechanisms methodologies
	Empirical failure identification of power electronic devices
	Empirical lifetime modeling for MOSFETs
	Empirical lifetime modeling for ECaps


	Proposed PHM approach
	Degradation estimation using adaptive joint extended Kalman filter
	PHM architecture
	Level 1: system modeling and features extraction
	Level 2: parameter estimation and health monitoring
	Level 3: RUL forecasting


	Simulation results
	DC-DC converter parameters estimation during capacitor degradation
	DC-DC converter parameters estimation during MOSFET degradation
	Online RUL forecasting

	Conclusion
	Declaration of competing interests
	CRediT authorship contribution statement
	Acknowledgement
	References




