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1 Introduction

Quantum annealing is one of the most relevant topics among the quantum computing scholars at

the moment. The recent developments in neighboring fields such as quantum memories[1] and error

correction[2] seem to give hope to achieving the desired ”quantum supremacy”, the era when quan-

tum will surpass classical computing. In the last decades, there has been an exponential growth in

computing power, known as the Moore’s law[3], mainly due to the miniaturization techniques devel-

oped and refined these years. But this is bound to reach its physical limitations in the next years[4].

All of this means that quantum computing will probably have a strong position in computationally

expensive applications.

To surpass the classical computing doesn’t only imply faster calculations, it would even mean to

get results to problems that classically would take astronomically large times to solve, such as

NP-hard problems, considered unsolvable in a practical sense. Even though some projects have

brought us nearer to quantum supremacy (such as Google’s Quantum computer[5] or IBM Quan-

tum Experience[6]), there’s still plenty of room to improve. One of the areas of the vast field of

quantum computing that seems most promising in the near future is quantum annealing. The quan-

tum approach gives us new tools that are currently being developed by researchers all around the

globe to tackle more complex problems and try to outperform the classical algorithms. These algo-

rithms have to deal with huge search spaces and datasets, rendering the problem computationally

intensive in the solution search. So, quantum parallelisation is a big intrinsic advantage that is used

to explore the entire solution space in a global approach, leading to avoiding local minima. This is

important because the solution space usually is non-convex, meaning that there might be several

suboptimal solutions, which are not desired (except in some specific cases such as approximation

algorithms). Also, in many problems the search space is discrete, where gradient descent fails to

find the optimal solution, so quantum optimization is an explored option.

In this project, we will be explaining the main concepts of quantum computing, discussing the state-

of-the-art and making a qubit simulation with Rabi drive under continuous measurement. So, the

goal is to make a complete introduction to the foundations of this broad research field.
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2 Main concepts

In this section we will review the main concepts involving quantum annealing and its essential

components to understand the topic. We won’t be explaining all the quantum mechanics concepts,

since it’s background knowledge from Physics Engineering. However, more specific concepts will

be explained. We will start explaining some advanced quantum mechanics concepts, followed by

some Computer Science concepts of interest to our project. We will end explaining some Quantum

Computing terminology to get an in-depth picture.

2.1 Qubit and the Bloch Sphere

A qubit is the basic unit of information, analogous to the classical bit, in the quantum frame. This

is represented by a two-state system. While a bit can only be either 0 or 1, a qubit is a linear

superposition of both states.

|Ψ〉 = α |0〉+ β |1〉 (1)

Since this is a quantum state, it follows the same interpretation as described in quantum mechanics:

α and β are the probability amplitude for each state respectively and they follow the normalization

rule (|α|2 + |β|2 = 1). The pair |0〉, |1〉 form a basis for a single qubit, usually called the compu-

tational basis. In the physical world, this usually corresponds to the ground (|0〉) and excited (|1〉)

states of an electron, a photon or an ion (sometimes it’s used the polarization or the spin). For a

better visualization and understanding of a qubit, it is common practice to use the Bloch Sphere

representation (fig. 2). The Bloch sphere uses the normalisation of α and β to its advantage, because,

by using a change of coordinates and ignoring the global phase of a qubit, one can represent every

pure state in the surface of a sphere. These new coordinates of the Bloch sphere are given by:

α = cos(θ/2) (2)

β = eiφsin(θ/2) (3)

Notice that the angle inside the sine and cosine are divided by 2. So, orthogonal quantum states
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will be antipodal in this representation. For instance, the state |0〉 is at the top of the sphere and

the state |1〉 is at the bottom.

Figure 2: Bloch Sphere representation

All pure states will remain in the surface of the Bloch Sphere. However, if there are perturbations to

the system from the environment and cause decoherence, the qubit might be in a mixed state. Mixed

states are represented inside the Bloch Sphere, so now we have to take into account a third coordinate:

the radius (r). The mixed state or the statistical mixture of incoherent states is represented by

equation [4], where pi is the probability of being in the state |Ψi〉.

ρ =
∑
i

pi |Ψi〉 〈Ψi| =

 ρ00 ρ01

ρ10 ρ11

 (4)

It also has the constraints of Tr(ρ) = 1, it is a positive matrix (so the eigenvalues are all positive

ρ > 0) and it has to be a Hermitian matrix. In the equation [4], we have stated the more general

version of a mixed state and the particular case of a single qubit system.

In order to manipulate qubits, one must use quantum logic gates. These operators are unitary,

and therefore, are reversible. They correspond to rotations to the Bloch sphere. The most notable
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examples are the Pauli matrices.

σx = X =

0 1

1 0


σy = Y =

0 −i

i 0


σz = Z =

1 0

0 −1


(5)

They are rotations of π radians of the Bloch sphere in each respective axis. If we take the compu-

tational basis as stated before, each rotation has a distinct role. The X-gate is called bit-flip, since

it swaps the amplitude probabilities of each state. In the classical limit, if one had a 0 it would be

changed to a 1 after the transformation, corresponding to a NOT gate. The Z-gate is also called

phase-flip, since it shifts the phase of β by π radians. The Y-gate, apart from being the π radians

rotation in the y-axis, can be obtained by applying a X-gate, a Z-gate and a global phase to the

qubit.

Y = iXZ (6)

The global phase of the qubit is not relevant in single-qubit systems but it becomes relevant in

multi-qubit systems, since there will be relative phases between different qubits.

2.2 Von Neumann equation and Lindblad master equation

The time evolution of a closed quantum state is given by the Schrödinger equation.

i~∂t |Ψ〉 = H |Ψ〉 (7)

Where H is the Hamiltonian of the system.

However, many times we have a more complex system and cannot use only pure states. We usually

have to work with mixed states, since there’s decoherence involved in practical scenarios. So, in

order to work with these statistical mixtures we use the density operator and its associated time
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evolution equation: the von Neumann equation. One can derive this equation by differentiating the

density operator and applying the Schrödinger equation to each bra and ket. The von Neumann

equation is:

∂tρ = −i/~[H, ρ] (8)

Sometimes it is expressed in reduced units ~ = 1. One could say that the von Neumann equation is a

more generalized version of the Schrödinger equation. But even if it’s more general and allows us to

work with mixed states, it is derived for closed systems, so it doesn’t take into account all the factors

that may be involved in our system, such as the noise from the environment or the possible quantum

backaction it might have from a detector. For these purposes, one has to use a more general master

equation: the Linblad master equation.

∂tρ = −i/~[H, ρ] +
N2−1∑
n,m=1

hnm

(
AnρA

†
m −

1
2
{
A†mAn, ρ

})
(9)

Where the {An} is an orthonormal basis in the Hilbert space and AN2 = 1, hnm is a component of

the positive semidefinite matrix h and the symbol {A,B} = AB +BA is the anticommutator.

The frame to derive it is as follows. We have our system of interest in a Hilbert space (H) and its

environment (HE). So, we can use the von Neumann equation to the total system, that includes

both the environment and the qubit, and derive the evolution of the subsystem of the qubit. So, the

Hamiltonian is divided into three parts: the environment (HE), the qubit (HS) and the interaction

between them (HI).

HT = HS ⊗ 1E + 1S ⊗HE + λHI (10)

Here, λ is the strength of interaction. When the Lindblad equation is derived, we make several

important assumptions. One is that the strength of this interaction is small (λ << 1). Another

assumption is that at some point in time, there is no correlation between the environment and the

system. Thus, there’s some instant (that is taken as t = 0) where ρT (0) = ρS(0) ⊗ ρE(0), so the

density matrix is separable. A third assumption is that the environment at this starting point is a
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thermal bath, so it follows is a Boltzmann ensemble.

ρE(0) = e−HE/kBT

Tr
[
e−HE/kBT

] (11)

In fact, since the interaction is weak, we also suppose that the environment state will always remain

thermal. This is a big assumption that implies two things. The first one is that the timescale of

the correlation(τC) and relaxation(τI) of the environment are much smaller than the timescale of

the system(τS), so that in the frame of the system we see spontaneous changes. The second thing

implied is that the system and the environment are always decoupled (ρT (t) = ρS(t)⊗ ρE(0)). This

is a strong assumption, since we know that there is an interaction Hamiltonian, so they surely cannot

be fully decoupled. But, since the system and environment work in different timescale regimes, from

a physical point of view it makes sense to take into account only the scale of interest. In fact, this

supposition is what allows us to focus only in the system subspace in the derivation of the Lindblad

master equation.

Finally, the last assumption made is the rotating wave approximation, where the high frequency

terms are neglected and we only keep the resonant terms. This means that the eigenvalues that act

at the interaction timescale, and therefore are much faster than the system timescale (τI << τS)

will be neglected and we only keep the terms that match the system timescale.

Even though the derivation of the Lindblad equation is not the subject of our project, it is important

to understand all the concepts surrounding its formalism and derivation. So, we will take a brief time

to talk about the interaction picture. The interaction (or Dirac) picture is a unitary transformation

applied to the states and operators of a system, similar to the Heisenberg and Schrödinger pictures.

While the Schrödinger picture places all the time dependency on the state vectors and the Heisenberg

picture does it on the observables, the interaction picture remains in the middle ground. It gives part

of the time dependency to observables and another part to the state vector. It is really convenient

to use when the Hamiltonian consists in two or more parts (such as Eq. [10]): one that we can solve

if it were a close system (HS) and one that it is more difficult and generally constitutes part of an

open system(HE and HI). The state and the operators will evolve with the system Hamiltonian,
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which makes it easier to perform calculations on it:

|ψI(t)〉 = eiHSt/~ |ψS(t)〉 (12)

AI(t) = eiHSt/~AS(t)e−iHSt/~ (13)

Where the sub-indexing of the states(ψ) and observables(A) are the Schrödinger(S) and interaction(I)

pictures. Notice that we use the same Hamiltonian as in the Schrödinger picture.

So, this picture is really useful for performing derivations in open systems, since we just use the

part of the Hamiltonian that we know how to work with. It is commonly used as a transition to

be able to perform some integrations of the full system in an easier way and then get back to the

Schrödinger picture of the system we are interested in.

2.3 Weak, continuous measurement

In the Quantum Physics course we saw that to measure a quantum state we had to project it

using an observable. The state would then collapse into one of the eigenstates with the probability

associated to it, as stated in the third postulate. This type of measurements are called von Neumann

measurements. This means that we lose all the other information contained in the quantum system

but obtain a certain result. For many applications, such as in quantum computing, we want to

obtain information from the system but at the same time try to keep the system perturbation to the

minimum. This can be accomplished by methods called weak measurements. Weak measurements

are measurements that use the interactions of the system with an external device to get partial

information and don’t cause the collapse of all the system we are interested in. An important

remark to make before continuing the explanation is that it doesn’t violate any quantum postulate

(as expected), so it can be fully explained by quantum theory.

So, in order to perform the weak measurement, our system has to have a unitary interaction with an

external system. Then, we perform a von Neumann measurement on the external system to obtain a

result from it. This measurement is formalized as generalized measurements called positive operator

valued measure (POVM). With this information and knowing the interaction between both systems
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we can get partial information on the state of our system. If the uncertainty is big, it’s called a weak

measurement. On the other hand, if the uncertainty is small, it’s called a strong measurement.

Having this new approach to measurement, we can perform an almost continuous measurement

by dividing the time in small timesteps (∆t → 0) and performing weak measurements in each of

them. Therefore, we obtain an information of the state of our system in an almost continuous way.

However, in this process of taking the limit to 0 we have to approximate the measurement into a

stochastic parameter, in Eq. 14 it’s αs (see [7] for a mathematical derivation).

αs = 〈X〉+ ∆W
(8k)1/2∆t

(14)

Where 〈X〉 is the mean of the non-stochastic variable, W is a zero-mean random Gaussian variable

with variance ∆t and k is a measurement strength parameter (the higher the value of k, the stronger

the measurement is).

This is the price to pay for continuous information, a non-deterministic result. Now, the evolution of

the system will be governed by a stochastic master equation (SME) and it will define the quantum

trajectory (ρ(t)).

Even more uncertainty arises when the detector is used in a real scenario where it does an inefficient

measurement. An inefficient measurement occurs when the detector isn’t able to pick all the signal

measurement or when this signal is comparable to the thermal noise and it’s not distinguishable.

When this happens, the way to tackle this problem is as if there was two measurements at the same

time but one is unknown. This way, we take into account that there are some timesteps that the

system evolves due to the interaction of a detector but we don’t know the result of it. This procedure

leads to the rise of a new parameter: detector efficiency (η), that is the ratio of known signal to

total signal of the measurement performed.

Taking into account all these conditions, one can derive a general master equation for continuous

measurements (assuming they form Gaussian noise as consequence of the detector-system interac-

tion), as done in [7](p.12). This is the most general version with uncorrelated Wiener noise.

dρ = − i
~

[H, ρ]dt+
∑
n

(
D [cn] ρdt,+η1/2

n H [cn] ρdW
)

(15)
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We see that the first part is the same as in the von Neumann deterministic equation. Afterwards, we

get the summed terms over the n observers: D are the disturbance terms caused by the backaction

and the H are the information terms that we gained by each detector. The differential dW are

uncorrelated Wiener processes. Notice that even if we gain information or not, the detector makes

a disturbance just for being there.

2.4 Quantum backaction

The quantum backaction is the disturbance generated by a detector making a measurement on the

system. It must be taken into account in any weak measurement device, since it will change the

dynamics of our qubit. It is the first step to introducing the dynamics of open quantum systems,

that commonly cause decoherence in some way.

One of the consequences of quantum backaction is the degradation of purity of the system. As we

are using the Lindblad master equation, the purity fulfills that d
dt

(
Tr
[
ρ2]) ≤ 0. This means that

any pure state will become more and more mixed as time passes.

2.5 Quantum Zeno effect

Another interesting concept that appears in quantum computing research is the quantum Zeno

effect. When we make a measurement, we project the state into an eigenstate of the observable.

Therefore, if one is able to make fast enough measurements, the state of the system will remain in

the eigenstate and the system won’t be able to evolve in time. This is an interesting phenomena

that has been explored as a tool to control qubit trajectories [8]. They made a setup that allowed to

perform measurements along different axis of the Bloch sphere. Then, by doing continuous enough

measurements one can drag the state in the eigenstate. However, this approach has its limitations.

The time-energy uncertainty principle (the alternative form of the uncertainty principle) imposes an

intrinsic restriction to this problem.

∆E ·∆t ≥ ~
2 (16)
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One could think of making measurements with a difference in time of ∆t and make it as small as

possible to accomplish a continuous measurement. But this principle inherent in quantum mechanics

shows that it would lead to making the energy fluctuate to the point where it could jump from the

ground state to the excited state, thus rendering the qubit uncontrollable. So, overall, there are

some limitations to this approach if one was trying to take this to the limit.

In [8], Hacohen-Gourgy et al. explore the capabilities of quantum Zeno effect in dragging a state

as they desire while suppressing the motion due to Hamiltonian evolution. Using a continuous

measurement (as we have explained in section 2.3), they are able to keep the qubit in an eigenstate

and know if it has escaped the desired trajectory, as a form of error detection. Therefore, they use

the measurement not only to drag the state, but also to maintain the information of its position

updated. Their results indicate that there was a dragging rotation speed that was optimal for high

fidelity results, meaning that going faster lead to more stray trajectories and going slower didn’t

improve the performance. They also remarked that if the goal is to reach a certain state faster with

high fidelity, one could also be more restrictive on the post-selection threshold (i.e. be more strict

with the threshold for the stochastic signal, since we diminish the effect of randomness).

2.6 Computing science concepts

In order to get a better picture of the quantum computing research, we will briefly define some of

the most important computing science concepts that we have encountered.

2.6.1 Complexity of a problem

The complexity in computer science refers to the amount of computational resources that are needed

to solve a problem. There are multiple ways to analyze the complexity of a problem. In the early

quantum computing, knowing how many logical gates and qubits were needed to run an algorithm

was of the uttermost importance to set good foundations in the field, since it was a well studied

area in classic computing and we could easily compare with. The classical computing allows for non-

reversible operations, while quantum computing must be performed with reversible transformations
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until the measurement is done. This meant that the classical gates AND, OR, NAND, etc. had to

be reinvented or adapted to fulfill this constraint, since they were not reversible.

But, as stated in [9], one can construct any classical circuit that had t gates and s bits into a

reversible circuit with O(t1+ε) gates and O(s) bits. This way of counting how many gates and

bits are needed to implement an algorithm is what is called quantum circuit complexity. It is the

most common way to refer to the complexity of a problem in quantum computing but not the only

one. When talking about algorithm one can also talk about its quantum query complexity. The

quantum query complexity is the number of calls that are needed to perform to an oracle to perform

a calculation. An oracle is a black-box in a circuit, that given an input it gives an output with

a certain transformation but we don’t know or discuss how it’s done inside of it. Therefore, the

query complexity is usually useful for establishing lower bounds to a problem, since the oracle will

probably increase the complexity. Finally, another type of complexity is given by the communication

complexity, that only takes into account the number of qubits needed to perform a calculation.

More generally, one can classify algorithms by its complexity class. The complexity class denotes

the asymptotic behaviour of an algorithm when an input parameter tends to infinity (N →∞). For

instance, some of the complexity classes are P, NP, NP-hard. The P class stands for polynomial,

meaning it can solve the problem in polynomial time. The class NP stands for non-deterministic

polynomial, and it means that for the instances that solve the problem one can verify it in polynomial

time. If P 6= NP , then NP-hard problems cannot be solved in polynomial time. As its name

indicates, they are the more complex class and, therefore, need the most resources to be soved.

Many optimization problems fall into this category.

2.6.2 Optimization problems

An optimization problem deals with finding the best solution to a problem. By best solution it is

meant to be the minimum or maximum of a certain function (depending if it is a minimization or

maximization problem, respectively). This is a broad field that comprises many different problems.

When the problem is a minimization problem, this function is usually referred to it as error func-

tion or objective function; and when the problem is a maximization problem is usually referred as
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evaluation score function. Formally, these functions f(x) can be as complex as one desires as long as

they map f : Rn → R and the possible results make sense within some boundaries (constraints)[10].

But, usually, the more complex problems have to be simplified in order to be feasible and practical.

Also, notice that there are several optimization problems that deal with discrete functions, such as

the travelling salesman problem (TSP), the minimum spanning tree (MST) or many other combi-

natorial optimization problems. This is relevant because we will see that quantum approximated

optimization algorithm works in discrete environments.

A combinatorial optimization problem (COP) tries to find an optimal object from a finite set of

objects [11]. Usually, the problem scales with exponential or superpolynomial laws, so they are

outside the P complexity class (usually within NP class). Therefore, finding the solution using brute

force by checking all the possible solutions one by one is not a smart approach. This is where the

parallelism in quantum methods gives a hint it could be beneficial to solve these problems. For

instance, the TSP is a problem where you have to choose the optimal path to go to around all the

cities without repetition. So, from all the possible paths we have to choose the shortest one. This

problem scales as O(N !) in a naive approach, so it would be impossible to calculate efficiently in a

completely random way. The most efficient classical algorithm to find an exact solution is of order

O(n22n)[12], so, it is common to use algorithms using heuristics and approximations[13].

2.7 Quantum annealing

Quantum annealing refers to a series of procedures and methods that try to find the solution of a

problem using quantum fluctuations. This is a global procedure, that avoids the local minima of the

function and in the limit of infinite time the system reaches the global minimum of the function. This

differs from classical local approaches very popular to solve many problems in recent days, such as

gradient descent. Quantum annealing’s idea rises from its classical counterpart: simulated thermal

annealing. Thermal annealing is a method that tries to overcome the problems local convergence

methods give. When it usually would get stuck in a local minima, we induce a stochastic fluctuation

(as if it were a thermal fluctuation, hence the name) in order to jump a potential barrier and be able to

search new minimum. In the case of quantum annealing, these fluctuations are quantum fluctuations
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that imitate quantum tunneling. So, it is expected that for steep potential barriers, quantum

annealing outperforms its classical counterpart. Quantum annealing is usually implemented using

adiabatic quantum computing (AQC), that is based on the adiabatic theorem[14]. The adiabatic

theorem was formulated by M. Born and V. Fock in 1928 and it stated:

”A physical system remains in its instantaneous eigenstate if a given perturbation is

acting on it slowly enough and if there is a gap between the eigenvalue and the rest of

the Hamiltonian’s spectrum.”

In practice, this means that if one lets evolve a system with a sufficiently slow pace, it will remain in

the ground state throughout the whole process. This is really useful in Quantum annealing, in fact,

it’s the principle that allows this techniques. The system is initially prepared in the ground state

of a Hamiltonian H0. It is usually a simple Hamiltonian that makes it easy to prepare its ground

state. If it’s possible, it is useful to use a superposition of all states as a primer(the initial guess), so

the solution will naturally explore the whole space of solutions. The system is then evolved through

a time-dependent Hamiltonian until it reaches the final Hamiltonian H1. The ground state of H1

needs to have encoded the information of the desired solution. So, the whole Hamiltonian is usually

represented as follows:

H(s) = (1−A(s))H0 +A(s)H1 (17)

Where s is a re-scaled time that goes from 0 (corresponding to the initiation of the annealing t0) to 1

(corresponding to the ending of the annealing tf ) and A(s) is a monotonically increasing function that

satisfies A(0) = 0 and A(1) = 1. It is not the only structure proposed to perform Adiabatic Quantum

Computing but a simple case to start with[15]. There are many difficult parts in this process. One of

them is finding the right Hamiltonian H1 that will have the solution encoded in it. Many problems

can be reformulated in other terms as long as they are mathematically equivalent. This is done

in many combinatorial problems as we will see in later sections of this project. Another problem

one can encounter is that during this transition from the H0 Hamiltonian to the H1 Hamiltonian

the energy gap between the ground state and the first excited state becomes too small. When this

happens, we have to slow down the computation to remain in the ground state. This will also be

discussed in later sections with some recent research.
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2.8 Quantum Approximate Optimization Algorithm(QAOA)

QAOA is a computational method that combines classical and quantum designs to tackle difficult

problems such as combinatorial optimization problems[16]. It was first proposed in 2014, by Edward

Farhi and Jeffrey Goldstone with promising results. From there, many other algorithms combining

quantum and classical computation have been proposed. These methods usually try to get a result

close to the optimal result, but they don’t ensure the optimal result in a better time than other

algorithms. In order to understand how it works, lets analyze the original QAOA. As a maximization

problem, it can be written as:

zf = arg max
z

C(z) where C(z) =
m∑
α=1

Cα(z) (18)

Each Cα is a logical clause. A logical clause is a combination of bits (that can be negated with a

NOT gate) that are united with AND gates. For instance, a clause would be: C1 = b1 ∩ b6 ∩ b̄9, and

it would mean that this clause would be TRUE(1) only if the bits 1 and 6 are equal to 1 and the

bit 9 is equal to 0. Any other combination would output a 0 for this clause. The C(z) function that

we want to maximize is the sum of all causes. Then, we define the unitary cost function operator

U(C, γ) as:

U(C, γ) = e−iγC =
m∏
α=1

e−iγCα (19)

We also define another unitary operator U(B, β) as:

U(B, β) =
n∏
j=1

e−iβσ
x
j (20)

This operator is the product of commuting single bit σx operations. Notice that the eigenstate of

this operator is the |s〉 =
∏n
i=1 |+〉i, so it’s a mixing-state Hamiltonian.

We start the algorithm by applying p times these two operators (one can apply different rotations

by changing γ and β at each step):

|γ, β〉 = U(B, βp)U(C, γp)...U(B, β1)U(C, γ1) |s〉 (21)
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In an intuitive sense, this last step is applying the cost function and then remixing the system many

times in small steps. Then we calculate the mean value of C(z) in the current state.

Fp(γγγ,βββ) = 〈γ, β|C |γ, β〉 (22)

Finally we can define the magnitude Mp as the maximum of Mp over the angles. One can prove (as

done in [16]) the following:

lim
p→∞

Mp = max
z

C(z) (23)

Therefore, if one evaluates that magnitude several times (in fact is of order O(m logm) to get a good

enough result with high probability) and obtains the maximum, it will approximate asymptotically

the solution that we are looking for.

To obtain the optimal constant angles (γγγ,βββ) one has to solve a simple optimization problem (by

solving a linear system) classically before doing any quantum calculation.

This algorithm was proven to beat the classical algorithms at that time (2014). Unfortunately

for QAOA, a few months later, in 2015, a new classical algorithm was released that outperformed

QAOA’s results [17]. However, the QAOA set an important precedent that inspired many other

methods.

QAOA is really useful for MaxCut problems. A MaxCut problem is stated as trying to find a cut that

partitions a graph in two subsets of vertices with the maximum number of edges cut. An interesting

and useful fact about MaxCut problems is that it is equivalent to minimizing the Hamiltonian of an

Ising Model of spin glass:

H(s) = −
∑
i,jNN

Jijsisj (24)

So, this was an indicator that maybe this method (QAOA) or some variant could be implemented

in similar complex physical systems and other areas. In fact it has been useful for other problems,

such as a new method for calculating the eigenvalues using a quantum approach [18] or in a method

called Quantum Alternating Operator Ansatz that is a generalisation of QAOA’s operators [19].

One of the variants of QAOA was implemented in quantum neural networks(QNN) [20]. However,
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in a 2018 article [21], it was demonstrated that classical-quantum hybrid large systems that started

with a random circuit, without a better prior, could get easily stuck in barren plateaus. A barren

plateau is a part of solution space where the gradient is exponentially small and at the same time is

a wide potential barrier so it doesn’t update in any direction and gets trapped. So, one of the main

issues is finding a good prior considering the architecture of the QNN to avoid these areas.

2.9 Adiabatic & diabatic

Adiabatic quantum annealing, as explained before, is the process of finding the minimum of a

function using a process where the quantum state remains always on the ground state to achieve

the result. It is the most largely explored branch of the field, since the adiabatic theorem ensures

a good theoretical asymptotic convergence and there’s an efficient classical simulation of quantum

annealing associated with it. On the other hand, diabatic quantum annealing permits to make the

optimization using excited states that have a non-zero energy gap between them. It is not as widely

researched as the adiabatic counterpart but, as we will see in a state-of-the-art comparison, it seems

to be the most promising for future research.

2.10 Stoquastic Hamiltonians

A term one can find in the literature of quantum simulations is the stoquasticity of a Hamiltonian.

It should not be confused with stochasticity (that refers to a randomly induced Hamiltonian). A

stoquastic Hamiltonian is characterized by having their off-diagonal matrix elements in the stan-

dard computational basis as real and non-positive values. This is really important in the fields of

condensed matter and quantum chemistry, where one needs to simulate fermions and the ”sign-

problem” arises. The sign-problem occurs when one tries to map from quantum to classical a sys-

tem of fermions, because it produces a partition function with some positive, negative and complex

Boltzmann weights, that have no physical meaning. Therefore, one cannot perform a Monte Carlo

simulation on this system (unless one can find a suitable change of basis that avoids this problem).

A stoquastic Hamiltonian avoids the sign problem, so are more easy to simulate [22].
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In a more rigurous way, a k-local stoquastic Hamiltonian is

H =
M∑
i=1

Hi (25)

where every Hi matrix is a hermitian operator that acts on, at most, k qubits and satisfies that

〈x|H |y〉 ≤ 0 ∀x, y ∈ {0, 1}n with x 6= y (26)

The notation {0, 1}n is used for a n-bits string. Notice that the Boltzmann exponential operator

e−βHi (that is used for Monte Carlo simulations) has non-negative matrix elements for any positive

inverse temperature (β). Also, 〈x| e−βHi |y〉 depends only non-trivially on the bits of x and y.

Therefore, one can approximate its quantum partition function (Tre−βH) using a classical partition

function with local non-negative Boltzmann weights using the Suzuki-Trotter formula, for instance.

So, one can make more easily a classical simulation of a quantum system when it has a stoquastic

than a non-stoquastic Hamiltonian.

This means that Quantum Monte Carlo simulations are able to follow the instantaneous ground

state of the said Hamiltonian and, therefore, produce the similar results at a similar computational

cost as adiabatic quantum computing, differing by a polynomial law.

3 Current State-of-the-art and discussion

In this section we will talk about the current state of the art on several fields surrounding quan-

tum annealing and its applications. We will cover a recent discovery concerning stoquastic and

non-stoquastic Hamiltonians, a discussion between quantum approximate optimization algorithms

and quantum annealing, the state-of-the-art of adiabatic quantum computation and a comparison

between adiabatic and diabatic quantum computation.
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3.1 Stoquastic vs non-Stoquastic Hamiltonians

As we saw in one of the previous sections, stoquastic Hamiltonians are easier to implement in a clas-

sical setup because they have an almost direct way to be simulated in classical Quantum Monte Carlo

methods[23]. And the standard quantum adiabatic optimization has been demonstrated to work in

stoquastic Hamiltonians. So, there were speculations that the increased complexity of non-stoquastic

Hamiltonians could give a quantum speedup advantage for adiabatic quantum optimization.

In ”De-Singing Hamiltonians for Quantum Adiabatic Optimization”, E. Crosson et al.[24] find a way

to compare its possibilities and share its conclusions. They introduce a one-on-one mapping trans-

formation for every non-stoquastic Hamiltonian (H(s) in previous notation) that ends in a classical

Hamiltonian (H1) to a stoquastic adiabatic path. They found that non-stoquastic Hamiltonians had

a smaller spectral gap than stoquastic Hamiltonians. This means that on an adiabatic quantum

computation, the stoquastic Hamiltonians will take less time than non-stoquastic ones, in a general

scenario.

Figure 3: Intuitive comparison between the non-stoquastic and stoquastic eigenvalues shown in [24]

The conclusion of the study was that non-stoquastic Hamiltonians do not have an implicit advantage

over stoquastic Hamiltonians. However, carefully crafted non-stochastic paths, have been demon-

strated to be more efficient in some cases [25]. So, every case must be carefully studied but, in a

general case, it has been refuted that non-stoquastic Hamiltonians will be the key that will inherently

give an enormous advantage to adiabatic quantum computing.
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3.2 QAOA vs Quantum Annealing

As we have seen, QAOA and Quantum Annealing have some similarities. In fact, in the limit p→∞

the QAOA is equivalent to Adiabatic Quantum Computing (Eq.23). QAOA is largely explored for

low p values, but remains unclear its performance on p >> 1. As stated in this article [26], when

the minimum spectral gap is very small, QAOA’s results are much better than those acquired by

Adiabatic Quantum Annealing (in fact several orders of magnitude). This is because it can be

optimized to use a diabatic procedure, overcoming the problem of having to stay on the ground

state when the gap is so small. In this sense, the QAOA behaves like an optimized path of diabatic

Quantum Annealing, discretized via trotterization. Trotterization is the process of breaking the sum

of exponentiated non-commuting Hamiltonians into repeated products of the different Hamiltonians

applied in small angles.

e(A+B) = lim
n→∞

(
e
A
n e

B
n

)n
(27)

QAOA is similar to a finite trotterisation of the Quantum Annealing system. One could think of

applying Adiabatic quantum annealing more quickly so the probability of finding the global minimum

is diminished but run it several times and then take the minimum of those results. To see what is

the optimal balance there is a parameter called time-to-solution (TTS).

TTS ∝ log[1− pd]
log[1− ps(tf )] (28)

It depends on the desired probability of being in the ground state (pd) and the success probability

of a single-instance run of the algorithm at the end of the attempt(ps(tf )). In really small spectral

gaps the TTS is independent of the energy gap in both Quantum Annealing and QAOA (Fig.4).

This result also suggests that TTS in Quantum Annealing could be improved exponentially if they

were implemented diabatically instead of adiabatically. In this sense, the future research could focus

on this aspect.
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Figure 4: Results from the article [26], where we can see the relation between TTS and the minimum
spectral gap. Notice that for small gaps the TTS remains almost constant

3.3 Adiabatic Quantum computing

The key of Adiabatic Quantum Computing is the gap between the excited state and the ground

state during all the annealing. As derived in this review on Adiabatic Quantum Computing by A.

Lidar and T. Albash[27], the time needed to successfully perform an annealing can be estimated to

be proportional to the inverse gap squared (tf ∝ 1/(∆E)2). If the gap becomes small, it is easier

to jump and leave the ground state, therefore not being Adiabatic Quantum Computing. In this

case, if one wants the computation to stay guided by the adiabatic principle, the computation has

to be slowed down to let it relax all the times to the ground state. It is in these scenarios where the

Adiabatic Quantum Computing doesn’t provide a speedup on classical computing.

Another interesting fact is that it has a direct comparison with a classical metaheuristic: thermal

annealing or simulated annealing(SA). In thermal annealing the jumps are randomly generated by

simulating thermal fluctuations. This means that it is easier for the system to make low energy

leaps, but if the potential profile is high it will be difficult to surpass it and it is more likely to

remain in a local minimum. In Quantum Annealing, the jumps are probabilistic governed by the

laws of QM. This means that the solution is able to jump higher potentials, rendering Quantum

Annealing more powerful in several instances than SA, as seen in the article by B. Heim et al.[28].
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Adiabatic quantum computing has been largely explored because it is sustented by the Adiabatic

theorem, that ensures asymptotical convergence of the method. Even though it hasn’t delivered yet

the promise speedup, it has set a good theoretical foundation that enables to continue exploring its

capabilities and can be used in neighbooring fields.

3.4 General quantum annealing approaches

We have focused on adiabatic quantum annealing, but there exist other types, such as diabatic

quantum annealing. Even though it’s not the goal of our project to go in-depth in this topic, we will

explain a little bit what it consists on and the future possibilities. As explained in [29], the diabatic

quantum annealing allows the state to jump to excited states in the Hamiltonian path to obtain the

result. The key to this method is to have an energy gap in some of the excited states. This way, we

can restrict the ”solution path” to a subspace: a band (with a bandgap to higher states). As stated

in the theorem given in [30] for a diabatic path, the error is bounded proportionally to the inverse of

run-time (∝ 1
tf

). Also, the more states there are in the band(d) and the bigger that band is (δ), the

more error one will have. So, diabatic computation, in order to be practical and be able to perform

efficient results it has to fulfill d = O(1) & δ = O(1). This way, we have a more general definition

compared to the adiabatic quantum computing (that only allows δ = 0).

Diabatic quantum annealing opens a new world of possibilities, since there are not known classical

simulations associated with it. In the adiabatic case, one can make approximations to the quantum

Monte Carlo method (as we have seen in a previous section). So, it suggests that it might allow

for algorithms that have an enhanced performance: the quantum speedup. For instance, some steps

have been made in [31], where they implemented a MAX-2-SAT problem (a NP-hard problem)

with 20 qubits and outperformed the adiabatic procedure with a computation time several orders of

magnitude smaller. They noticed the gap between the ground state (which had encoded the solution)

and the first state was really small at one point, an avoided crossing. If they had started in the

ground state and wanted it to remain in it, they would have had to go slow, in order to avoid a jump.

However, they prepared the prior in the first excited state. And when it arrives at the crossing, the

population of states change. This change is caused by a phenomena called Landau-Zener effect. The
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Landau-Zener effect for a two-state system is characterized by the transition probability:

P = exp
(
−2π |H12|2

~(dE/dt)

)
(29)

where H12 is the off-diagonal matrix element that controls the transition probability, usually given

by thermal fluctuations or other perturbations. We can see that as dE/dt→ 0, P → 0. That means

that the faster we perform the annealing, the bigger the transition probability of its population. So,

an adiabatic transition can only be performed in a slow procedure. So, in their experiment, they

arrived with a 5% probability of being in the ground state in a time 3 orders of magnitude smaller

than in the adiabatic case. This made the diabatic process far more efficient, because one could

repeat the process until having the desired solution with a time-efficient process. What it was a

disadvantage for adiabatic annealing, converted into a new possibility for the diabatic annealing.

In [29], there is a more extensive analysis on the possibilities offered by diabatic quantum anneal-

ing. But some studies[32], seem to show that the optimal angle of QAOA approximates to the

parametrization of a continuous annealing path, i.e. that it converges to a diabatic quantum anneal-

ing protocol. So, there is a good reason to be hopeful for the future of diabatic quantum annealing.

4 Simulation of a qubit

4.1 Introduction

The goal of the practical part of this project is to get an understanding to the most basic element of

quantum computation, a qubit. We work with a stochastic environment, with quantum back action

and continuous measurements involved. We will simulate a continuous measurement on a qubit with

a Rabi drive. The Rabi drive is a type of cyclic behaviour given in certain two-level systems that

induces the state to be oscillating. It usually occurs when a particle is in the presence of a field in

its excitation frequency. In our system, the rotation will be undergoing in the y-axis. Therefore, as

we will see, all states that start in the x-z plane will remain there.

22



4.2 Calculations

In this simulation we will consider only one measurement channel. So, as we saw before in Eq.15,

for the particular case of n = 1, the equation is given by:

dρ = −i[H, ρ]dt+D[c]ρdt+ η1/2H[c]ρdW (30)

where the Hamiltonian (H) is defined by the Rabi drive in the y-axis H = ω
2 Y , the dissipative

term (D[c]ρ or Lρ) is given by the Lindbladian for a measurement in the z-axis [33], D[c]ρ = Lρ =
Γm
2 (ZρZ − ρ) and the stochastic term is given by H[c]ρ =

√
2Γm

(
Zρ+ρZ

2 − zρ
)

. Remember that

we have set ~ = 1. Notice that the amplitude of the Wiener process will depend on its variance. In

our case, this variance is given by the measurement time: τm = 1
2Γmη .

To derive the equations we started with a simpler case, with only Rabi drive. The motion is described

by the Von Neumann Eq.8, since there’s only coherent evolution.

The state is written in terms of the Bloch vector as:

ρ(t) = 1
2 [I + x(t)X + y(t)Y + z(t)Z] (31)

The way to derive the equations is by differentiating on both sides over time, and applying the

operator for which we want to know the equations of motion and make the trace over it, in order to

get the time dependence of the expectation value of the operator.


ẋ = Tr(Xρ̇) = Tr

(
X 1

i [H, ρ]
)

= ωz

ẏ = Tr(Y ρ̇) = Tr
(
Y 1
i [H, ρ]

)
= 0

ż = Tr(Zρ̇) = Tr
(
Z 1
i [H, ρ]

)
= −ωx

(32)

We can clearly see that they set the equations of motion of a uniform cirular movement in the x-z

plane, as expected from Rabi oscillations.

Then, we introduce the dissipation terms. We proceed as before, applying the Pauli matrices and
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tracing over them.

ẋ : Tr(XL[Z]ρ) = Tr
(
X
(Γm

2 (ZρZ − ρ)
))

= −ΓmTr(Xρ) = −Γmx

ẏ : Tr(Y L[Z]ρ) = Tr
(
Y
(Γm

2 (ZρZ − ρ)
))

= −ΓmTr(Y ρ) = −Γmy

ż : Tr(ZL[Z]ρ) = Tr
(
Z
(Γm

2 (ZρZ − ρ)
))

= 0

(33)

To perform the calculations we have used linearity(Tr(αA + βB) = αTr(A) + βTr(B)) and cyclic

property of the trace(Tr(ABC) = Tr(BCA) = Tr(CAB)). Notice that x and y have a negative

term in the derivative. This means that it will have an exponential decay along those axis from

these terms. This phenomenon it’s called decoherence and it’s an important phenomenon in open

quantum systems. Decoherence is formed due to quantum backaction of the measurement device. It

brings the qubit to a mixed state (remember that the center of the Bloch sphere is the fully mixed

state). Also, notice that since we are measuring along the z-axis, the decoherence doesn’t affect the

motion along this axis. Finally, we do the same with the stochastic terms.

ẋ : Tr(XH[c]ρ) = Tr
(
X
(
Zρ+ρZ

2 − zρ
))

= −Tr(Xρ)Tr(Zρ) = −xz

ẏ : Tr(YH[c]ρ) = Tr
(
Y
(
Zρ+ρZ

2 − zρ
))

= −Tr(Zρ)Tr(Y ρ) = −zy

ż : Tr(ZH[c]ρ) = Tr
(
Z
(
Zρ+ρZ

2 − zρ
))

= Tr(Xρ) + Tr(Xρ)− Tr(Xρ)Tr(Xρ) = 1− z2

(34)

So, overall the equation of motion describing the state evolution of the system under continuous

measurement is: 
ẋ = ωz − Γmx−

√
2Γmη xz dWdt

ẏ = −Γmy −
√

2Γmη yz dWdt
ż = −ωx+

√
2Γmη

(
1− z2) dW

dt

(35)

As we predicted, the states that start in the x-z plane stay enclosed in that surface their whole

trajectory, since stochastic term for the y direction depends on the y component being non-zero

at some initial time. So, this means (x0, 0, z0) → (x(t), 0, z(t)). In the x component, we have an

interesting behaviour. The first two terms have opposing behaviours, in the sense that the Rabi

drive will be performing a motion that in certain conditions it will increase the value of x, while

the dissipative term will always try to decrease it exponentially to 0. The stochastic part in the x
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direction is analogous to the stochastic part in the direction of y. In the z component, the behaviour

is completely different. The first term is the expected from a Rabi cycle, that will lead to a circular

motion. However, notice that there’s no decoherence. This is expected, because the measurement

is along the z-axis and therefore the system tries to ”pull” towards the eigenstates of the observable

(since it’s a Z gate, towards |0〉 or |1〉).

In general, we will see that the system has different regimes and that parameter affects its behaviour

greatly and in different ways. The relation ω-Γm will be decisive for the x coordinate and, therefore,

for the system.

4.3 The Pierre Rouchon Method

To perform our calculations, we have used a numerical method developed by Pierre Rouchon et al.

in [34]. We have chosen this method because it gives a result contained in the space of semi-definite

positive Hermitian matrices and has unitary trace (Tr(ρ) = 1). It is derived for a general scenario,

that is the following. We have a measurement defined by the stochastic equation:

dyt = √ηTr
((
L+L†

)
ρt

)
dt+ dW t (36)

where L is the Lindblad operator, η is the efficiency of the measurement, dt is the timestep and dWt

is a Wiener process, formed by a Gaussian noise with variance equal to dt (Wdt −W0 ∼ N(0, dt)).

The system is governed by the Lindblad equation, written as:

dρt =
(
− i

~ [H,ρt] +
∑
ν LνρtL

†
ν − 1

2

(
L†νLνρt + ρtL†νLν

))
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

((
Lν +L†ν

)
ρt

)
ρt

)
dWν,t

(37)

It is shown in his research[35] to be equivalent to:

ρt+dt =
MdytρtM

†
dyt

+
∑
ν (1− ην)LνρtL†νdt

Tr
(
MdytρtM

†
dyt

+
∑
ν (1− ην)LνρtL†νdt

) (38)
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with

Mdyt = I +
(
−I
~
H − 1

2L
†
νLν

)
dt+

∑
ν

√
ηνdyν,tLν (39)

This method ensures that the solution remains in the semi-definite positive Hermitian matrices

space, that it has a unique solution, that the trace is unitary (Tr(ρt+dt) = 1) and it provides a

time-discretized approach for a solution. So, overall, it’s a method that will ensure the solution is

well-defined according to quantum mechanics. Order 4 Runge-Kutta methods could be also used to

find approximate results at a similar computational cost, but they are not trace-preserving. That’s

why we have opted for this method in our project.

Notice that Eq.38 & Eq.39 are formulated for several observers (ν), and hence several Lindblad

operators, but in our case we only use one inefficient measurement. By comparing Eq.37 with Eq.30

we can see that for our specific case, the Lindblad operator is:

L =
√

Γm
2 Z (40)

In this project, we mainly use the Hamiltonian of the Rabi cycles in the x-z plane(H = ω
2 Y ). But,

we will make a comparison with a Rabi driven system along the x-y plane (H = ω
2Z), so now the

measurements and the Rabi drive are along the same axis.

4.4 Results

The calculations were done in reduced units. We set as a reference parameter the measurement

strength: Γm = 1. The timestep was fixed at dt = 5 · 10−3Γm and we varied the length of the

simulation (Nt) depending on the situation, longer times for setups that had longer timescales and

shorter times for setups with shorter ones.
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Figure 5: Trajectory of the state for ω = 0.5Γm, Nt = 6000 and varying η: top η = 1, middle η = 0.5
and bottom η = 0.01

In these setups, we have a regime where ω and Γm are of the same order, so we get rich dynamics

(that we will explain later). We have varied the efficiency of the measurement. The run at the top

is one performed with an ideal measuring device, the one in the middle is done with an efficiency

of 50% and the lower one is performed with a really inefficient device, with only 1% efficiency. As

we can see from Eq.35, the efficiency parameter helps to modulate the amplitude of the stochastic

term of the trajectory. On one hand, if the measuring device is perfect, the system exhibits its rich

dynamics between the noise and the Rabi cycles. On the other hand, if the measuring device is

really inefficient, the state tends to end in the center of the Bloch sphere, i.e. in a completely mixed

state. The dissipative terms govern mainly the system. This means that an inefficient device will

get a state more mixed. It’s a problem for many applications, because for quantum computation we

usually want the qubits to be more pure to be able to control them. This is the reason it is really

important to achieve technological improvements in measuring detectors for qubit applications.
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Figure 6: Trajectory of the state for η = 0.6 varying ω and Nt: top ω = 0.05Γm, Nt = 2 ·105, middle
ω = 0.5Γm, Nt = 2 · 104 and bottom ω = 5Γm, Nt = 2 · 103

In Fig.7, we present three different setups. In this occasion we have let the measurement efficiency

be a constant at a value of 60% and instead, we have varied the ω
Γm relation. For the lowest graphic,

we had set a fast Rabi drive: ω = 5Γm. The decoherence terms lose strength when compared against

the Rabi drive. We see a cyclic motion in the x-z plane, with some disturbances. But one can clearly

see the sinusoid pattern on the graph. In fact, in the limit case ω
Γm →∞, we recover the equations
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of the Rabi drive for the x and z components:


ẋ = ωz

ẏ = −Γmy −
√

2Γmη yz dWdt
ż = −ωx

(41)

In the middle graph, we cannot longer see clearly the dynamics of the Rabi cycle. The stochastic

terms have become prominent and there are large fluctuations. We can also notice that the z com-

ponent starts to be of greater amplitude than the x component. This is something one couldn’t

appreciate in the lower graph scenario. So, the slower the Rabi cycles are compared to the mea-

surement strength, the more the state tends to get closer to its eigenstates. In the top graph we

have a measurement strength two orders of magnitude above the angular speed of the Rabi cycles:

ω = 0.05Γm. Here, we can appreciate that the qubit tends to ”stick” to its eigenstates. This is the

phenomenon called quantum Zeno effect that we explained in a previous section. The amplitude of

x is fairly smaller than that of the z component and it seems that the system evolves by jumps from

one eigenstate to the other one. In fact, in the limit ω
Γm → 0 we get the equations of a telegraph

signal for the z component. The probability of jump after a jump is done is given by a Poisson point

process Eq.42. The calculations are done in the Appendix A.

P (t) = ΓJe−ΓJ t (42)

where ΓJ = ω2

Γm is the jump rate and defines jump mean time as τJ = 1
ΓJ = Γm

ω2 .
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4.5 Side remark
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Figure 7: Averaged state of the system with respect to time for two different Hamiltonians

By looking at Fig.7, one could think that we are talking about similar systems, that act similarly,

but that is not the case. They are the averaged results from several runs of two different setups.

In fact, the behaviours of each system on a single run are shown in Fig.8. In both figures, the left

graph is from a system where we measure and perform Rabi cycles in different axis, while in the

right graphs we measure in the same axis as the Rabi cycle occurs. This is why we have used figures

from single runs and not from averages. This behaviour occurs because the autocorrelation decays

exponentially in time (see Appendix A), therefore, since all the stochastic variables are uncorrelated

and independent, it will also decay exponentially as we average with realizations.
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Figure 8: Single realizations for two different Hamiltonians

As a side note, in the case of Rabi drive axis being in the same direction as the measurement axis,

there’s a theorem that ensures that the system will end in an eigenstate and not jump [33].

Theorem. Consider the SME:

dρt = − i
~

[H,ρt] dt+ Γm
4 (σzρtσz − ρt) dt+

√
ηΓm
2 (σzρt + ρtσz − 2 Tr (σzρt)ρt) dWt

(43)

with H = ωeg
2 Z and η > 0.

For any initial state ρ0, the solution ρt converges almost surely as t → ∞ to one of the

states |g〉〈g| or |e〉〈e|.

The probability of convergence to |g〉〈g| (respectively |e〉〈e|) is given by pg = Tr (|g〉〈g|ρ0)

(respectively Tr (|e〉〈e|ρ0))

The convergence rate is given by ηΓM/2.

5 Conclusion

In this project, we have done a broad survey to quantum annealing and its possibilities for the near

future applications. Diabatic quantum annealing seems to be one of the most promising subjects
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of research on the field of quantum simulations to achieve quantum supremacy, since adiabatic

quantum annealing is too restrictive and the non-stoquasticity doesn’t guarantee better results. We

have also described some of the most important concepts on this topic, as an introduction to this

subject. From this point, we have set an introductory base to be able to follow the general lines

of current research. We have also made a simulation of the basic unit of quantum computation, a

qubit, in a general setup that takes into account imperfections on the measurement and random

noise generation while the qubit is also being driven with a coherent field. This demonstrated the

competition between coherent evolution and measurement that is summarized in the Quantum Zeno

effect. We have compared the different interactions within our system. However, this project was

merely an introduction to this topic, since one can go more in-depth into several fields, such as

multiqubit systems, qubit control, state purification, error correction... So, overall, we consider

we have accomplished our objective for this project and await to see how will quantum annealing

develop in the next few years.
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A Autocorrelation and the Telegraph signal

We start deriving the signal as a Poisson Point process, in the limit ω
Γm → 0. We have seen that

the signal jumps between two values, so it either has two values: |0〉 or |1〉. Since it’s symmetric for

both halves of the Bloch sphere, we can assume we start on one of those states just after a jump

(t = 0) and calculate the probability to jump in the time t (P (t)). It is convenient to discretize time

and then perform the limit. In a certain dt one has a probability to jump of ΓJdt and, therefore, a

probability to stay of 1−ΓJdt. Then, after N steps, the probability to jump will be the probability

of not jumping N − 1 times and jumping one time:

P (N∆t) = (1− ΓJ∆t)N−1ΓJ (44)

Now, if we keep the value N∆t = t constant and take the limit dt→ 0:

P (t) = lim
dt→0

(1− ΓJdt)N−1ΓJ = lim
dt→0

(1− ΓJdt)
t
dt−1ΓJ = e−ΓJ tΓJ (45)

We obtain the probability distribution of a Poisson point process. Now we have to derive what is

the value of the jump rate ΓJ . To do this we have to look at our signal and calculate the relaxation

function. The relaxation function can be found by finding the autocorrelation of our signal [36]. So,

we start by calculating K(t) = 〈z(t)z(0)〉. To do so, we derive it on both sides to work with ż that

we have an expresison we can use (Eq.35).

K̇(t) = 〈ż(t)z0〉 =
〈(
−ωx(t) +

√
2Γmη

(
1− z2) dW

dt

)
z(0)

〉
= −ω〈x(t)z0〉+

√
2Γmη

〈(
1− z2) dW

dt
z0

〉
(46)

Since the noise dW
dt is uncorrelated, the second term will have mean 0

〈(
1− z2) dW

dt z0
〉

= 0. So,

K̇(t) = −ω〈x(t)z0〉 (47)

Now, we perform another derivation. Again, we can work with ẋ from Eq.35 but not x directly.
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That’s why we use this method of derivating.

K̈(t) = −ω〈ẋ(t)z0〉 = −ω
〈(

ωz − Γmx−
√

2Γmη xz
dW

dt

)
z0

〉
(48)

Again, we can see that the last term has Gaussian uncorrelated noise, so we will have:

K̈(t) = −ω 〈(ωz − Γmx) z0〉 = −ω2〈z(t)z0〉+ ωΓm〈x(t)z0〉 = −ω2K(t) + ωΓK̇(t)
−ω

(49)

This give us an ordinary differential equation with constant coefficients.

K̈(t) + ΓmK̇(t) + ω2K(t) = 0 (50)

So, after imposing the initial conditions K(0) = z2
0 and K̇(0) = 0,the autocorrelation function will

be

K(t) = C+ exp (λ+t) + C− exp (λ−t) (51)

With λ± = −Γm±
√

Γ2
m−(2ω)2

2 and C± = −Γm∓
√

Γ2
m−(2ω)2

√
Γ2
m−(2ω)2

z2
0 As stated in Kubo theory [37], for a

generalized relaxation function:

φ1(t) = G+(t)−G−(t) (52)

with Gε being:

Gε(t) = 1 + εY + iηX

2Y exp
[
−(1− εY ) |t|2τc

]
(53)

where Y 2 = 1 − X2 + 2iηX and X = Ωτc. Since it’s a symmetrical process η = 0. In our case,

if we want to compare ϕ(t) and K(t) we have the following relations (after a few trivial algebraic

operations, which we have not included): τc = 1
Γm , Y =

√
1−

(
2ω
Γm

)2
, X = 2ω

Γm , Ω = 2ω and a

constant k = 2z2
0 . In the motional narrowing regime (Γm >> ω), one can approximate it, via Taylor

expansion as in [37] to the equation:

φ1(t) ∼ exp
(
−Ω2τc|t|

4

)
(54)
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Substituting by our values using the relations found before it reads:

φ1(t) ∼ exp
(
− (2ω)2|t|

4Γm

)
= exp

(
− ω

2

Γm
|t|
)

(55)

So, looking back at Eq.45 for a Poisson process and compare the terms, one can verify that

ΓJ = ω2

Γm
(56)
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