

IN-MEMORY-COMPUTING CNN ACCELERATOR

EMPLOYING CHARGE-DOMAIN COMPUTE

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Unai Echeverria Olaiz

In partial fulfilment

of the requirements for the degree of

MASTER IN ELECTRONICS ENGINEERING

Advisor: Francesc de Borja Moll Echeto

Codirector: Xavier Aragones Cervera

Barcelona, November 2020

 1

Title of the thesis:

In-Memory-Computing CNN accelerator employing

charge-domain compute

Author:

Unai Echeverria Olaiz

Advisor:

Francesc de Borja Moll Echeto

Advisor:

Xavier Aragones Cervera

Abstract

High-dimensional matrix-vector-multiplications (MVM) are the main operations of deep

neural networks (DNN). As the size of DNNs increases, data movement becomes a

problem and limits their performance. Analog in-memory computing accelerators are one

of the most promising solutions to reduce this problem.

This project designs an in-memory computing solution that employs charge-domain

compute using 22FDX technology. The design, called multiplying bit cell (M-BC), consists

of an 8T bit cell and a MOM capacitor. The design is part of an architecture of 8x8 = 64

neuron tiles that performs the filtering operation of up to 3x3x512 input activation (IA). Each

neuron tile is composed of 64x64 = 4096 neuron patches. The design achieves energy

efficiency of 1170 TOPS/W and throughput of 18876 GOPS.

Keywords

AI, ML, DL, NN, CNN, SRAM, M-BC, MVM, MAC

 2

Acknowledgements

First of all, I would like to thank my advisor and co-director Francesc Moll and Xavier
Aragones for all the help and support given during the realization of the thesis. I would
especially like to thank you for the support offered and the trustful shown in the first weeks
of the project.

I would also like to thank Isidro Martín and Francesc Rey for his great professionalism and
for always helping me solving any doubts related the master’s degree and the entire
procedure of the final thesis. Also thank you for all the advice offered in the search for the
project.

Finally, I would like to thank my family, my friends and my colleagues, especially to Paula,
for the unconditional support.

 3

Revision history and approval record

Revision Date Purpose

0 07/09/2020 Document creation

1 13/11/2020 Document revision

2 16/11/2020 Document revision

3 18/11/2020 Document approved

Written by: Reviewed and approved by:

Date 17/11/2020 Date 18/11/2020

Name Unai Echeverria Olaiz Name Francesc Moll

Position Project Author Position Project Supervisor

 4

Table of contents

Abstract .. 1

Keywords .. 1

Acknowledgements .. 2

Revision history and approval record .. 3

Table of contents .. 4

List of Figures ... 6

List of Tables .. 9

1. Introduction .. 10

1.1. Motivation ... 10

1.2. Objectives .. 11

1.3. Thesis Organization .. 11

2. State of the art and context .. 13

2.1. Neural Networks ... 13

2.1.1. Convolutional Neural Network ... 14

2.1.2. Review of Architectures ... 21

2.1.3. Binarized Neural Network .. 26

2.1.4. Digital vs Analog .. 28

2.2. In-Memory Computing .. 29

2.2.1. Charge-based memory .. 30

2.2.2. Resistance-based memory .. 34

3. In-Memory-Computing CNN Accelerator Structure .. 39

3.1. Static Random-Access Memory (SRAM) .. 40

3.1.1. Introduction ... 40

3.1.2. Hold Data .. 41

3.1.3. Read Operation ... 42

3.1.4. Write Operation ... 42

3.1.5. SRAM Cell Stability ... 43

3.1.6. SRAM Area and Power ... 45

3.2. Multiplying Bit-Cell (M-BC) .. 45

3.2.1. Introduction ... 45

3.2.2. Multiply and Accumulate (MAC) operation ... 46

3.2.3. M-BC Stability .. 48

 5

3.2.4. M-BC Area and Power ... 48

3.3. CMOS Technology ... 49

3.3.1. Moore’s Law .. 49

3.3.2. M-BC Technology Overview .. 49

4. M-BC Schematic Design .. 51

4.1. SRAM Design ... 51

4.1.1. UHVT SRAM ... 52

4.1.2. UHVT and RVT SRAM .. 52

4.1.3. ULL SRAM .. 53

4.1.4. SRAM Testbench .. 54

4.1.5. Comparison ... 56

4.1.6. Results .. 56

4.2. M-BC Design .. 59

4.2.1. Single M-BC Design .. 59

4.2.2. Neuron Patch .. 63

4.2.3. Neuron Filter.. 67

5. M-BC Layout and Post-Layout Results .. 69

5.1. M-BC Layout Design .. 69

5.1.1. Single M-BC .. 69

5.1.2. Neuron Patch .. 73

5.2. Post-Layout M-BC Results ... 78

5.2.1. Single M-BC .. 78

5.2.2. Neuron Patch .. 80

5.3. Final Design vs Paper Design... 82

6. Conclusions and future improvements ... 84

6.1. Conclusions .. 84

6.2. Future improvements .. 84

Bibliography .. 86

Glossary ... 89

 6

List of Figures

Figure 1 Taxonomy of AI [48] .. 10

Figure 2 A, a neuron cell; B, a simple perceptron [45] ... 13

Figure 3 Several Neural Network architectures [50] .. 14

Figure 4 Standard model of a CNN [4] .. 15

Figure 5 Input image and kernel [6] .. 16

Figure 6 Convolution operation in the pixel 1,1 [6] .. 16

Figure 7 Convolution operation in the pixel 2,1 [6] .. 17

Figure 8 Final Feature Map [6] .. 17

Figure 9 Zero-padding technique [6] ... 18

Figure 10 Example of a convolution in three-dimensional images [6] 18

Figure 11 Example of a convolution in three-dimensional image with many kernels [6] .. 19

Figure 12 Example of applying a pooling layer [6] ... 20

Figure 13 Max-pooling [6] ... 20

Figure 14 LeNet-5 architecture [8] .. 21

Figure 15 AlexNet Architecture [11] .. 22

Figure 16 VGG-16 architecture [12] .. 23

Figure 17 Inception module [14] ... 24

Figure 18 GoogleNet architecture [14] .. 24

Figure 19 Residual block [16] ... 25

Figure 20 ResNet residual blocks [16] .. 25

Figure 21 ResNet architecture [17] ... 26

Figure 22 XNOR operation in BNN [1] .. 27

Figure 23 Conventional computing system vs in-memory computing system [27] 29

Figure 24 Memory types for In-Memory Computing [27] ... 30

Figure 25 Multiplying Bit Cell circuit [30] ... 31

Figure 26 SRAM architecture based on current-mode in-memory computing [31] 31

Figure 27 WLDAC circuitry and MAC operation [31] ... 32

Figure 28 Column-based classifier [31] ... 32

Figure 29 SRAM architecture based on voltage-mode in-memory computing [32] 33

Figure 30 Bit cell design and MAC operation [32] ... 33

Figure 31 PU/PD general circuit to calculate VRBL [32] .. 34

Figure 32 RRAM device [27] ... 35

Figure 33 PCM device [27] ... 35

 7

Figure 34 STT-MRAM device [27] ... 36

Figure 35 Memristor crossbar architecture [34] ... 36

Figure 36 MAC operation with memristors [34] ... 37

Figure 37 Architecture of Hidden Layer (HL) [30] .. 39

Figure 38 Structure of a neuron tile [30] .. 40

Figure 39 SRAM memory array [37] ... 41

Figure 40 Block diagram and schematic of a 6T-SRAM [35] ... 41

Figure 41 ‘0’ read operation for SRAM cell [35] ... 42

Figure 42 ‘1’ write operation for SRAM cell [35] .. 43

Figure 43 Circuit to find the Hold Static Noise Margin (HSNM) [35] 43

Figure 44 Butterfly curves indicating the Hold Static Noise Margin (HSNM) [35] 44

Figure 45 Circuit to find the Read Static Noise Margin (RSNM) [35] 44

Figure 46 Butterfly curves indicating the Read Static Noise Margin (RSNM) [35] 44

Figure 47 Circuit to find the Write Static Noise Margin (WSNM) [35] 45

Figure 48 Butterfly curves indicating the Write Static Noise Margin (WSNM) [35] 45

Figure 49 M-BC schematic [30] .. 46

Figure 50 M-BC complete schematic .. 46

Figure 51 MAC operation performed by 3 M-BCs in 3 phases [30] 48

Figure 52 Transistors size reduction during the last years [51] 49

Figure 53 Cross section of the regular transistor and FDSOI transistor [42] 50

Figure 54 Body Biasing in regular transistor and FDSOI transistor [43] 50

Figure 55 UHVT SRAM Schematic ... 52

Figure 56 UHVT and RVT SRAM Schematic .. 53

Figure 57 ULL SRAM Schematic .. 54

Figure 58 SRAM Testbench .. 54

Figure 59 Precharge_PMOS Schematic ... 55

Figure 60 Signals used in SRAM Simulation ... 55

Figure 61 Storage nodes simulation in SRAM... 57

Figure 62 Zoomed view of state change in SRAM .. 57

Figure 63 SRAM HSNM .. 58

Figure 64 SRAM RSNM .. 58

Figure 65 Single M-BC schematic... 60

Figure 66 Single M-BC Testbench .. 60

Figure 67 External signals used in M-BC Simulation... 61

 8

Figure 68 Single M-BC PA and Vcap pre-layout simulation .. 62

Figure 69 Storage nodes pre-layout simulation in M-BC ... 62

Figure 70 Neuron Patch Schematic .. 64

Figure 71 Neuron Patch Testbench .. 65

Figure 72 Pre-layout Neuron Patch PA simulation with all XNOR operation ‘1’ and ‘0’ 66

Figure 73 Pre-layout Neuron Patch PA simulation with 5 and 4 XNOR operations resulting

‘1’.. 67

Figure 74 Neuron Filter PA pre-layout simulation with all XNOR operation ‘1’ and ‘0’ 68

Figure 75 Single M-BC Layout .. 70

Figure 76 Single M-BC Standard Cell Layout ... 71

Figure 77 Zoomed and reduced view of single M-BC layout ... 72

Figure 78 Neuron Patch Layout .. 74

Figure 79 Zoomed view of input activations connections in a row 75

Figure 80 Zoomed view of the position of the discharge transistor 75

Figure 81 Neuron Patch Standard Cell Layout .. 76

Figure 82 First row neuron patch Standard Cell Layout .. 77

Figure 83 Single M-BC PA and Vcap post-layout simulation ... 79

Figure 84 Storage nodes post-layout simulation in M-BC ... 79

Figure 85 Post-layout Neuron Patch PA simulation with all XNOR operation ‘1’ and ‘0’ .. 80

Figure 86 Linearity of post-layout neuron patch PA linearity ... 81

Figure 87 M-BC part for area comparison [30] .. 82

Figure 88 Paper chip dimensions [30] ... 83

 9

List of Tables

Table 1 Comparison of different types of in-memory computing solutions 37

Table 2 Summary of general design characteristics .. 51

Table 3 SRAM type comparison ... 56

Table 4 Single M-BC results in pre-layout simulation .. 63

Table 5 Neuron Patch results in pre-layout simulation .. 67

Table 6 Neuron Patch results in pre-layout simulation .. 68

Table 7 Metal Layer configuration ... 69

Table 8 Dimension of single M-BC Standard Cell ... 73

Table 9 Dimension of Neuron Patch Standard Cells ... 78

Table 10 Approximate dimension of the Neuron Array .. 78

Table 11 Single M-BC pre-layout and post-layout comparison .. 80

Table 12 Neuron Patch pre-layout and post-layout comparison 81

Table 13 Reference paper results ... 82

Table 14 Comparison between this project design and paper design 83

Table 15 Suggested future improvement to increase throughput 85

 10

1. Introduction

1.1. Motivation

Artificial Intelligence (AI) is the science of producing machines that have some similarities

with human intelligence. It is very difficult to determine the exact date AI was born, but

many people claim that it was created in 1956 by the mathematician John McCarthy. From

that date until present days, AI has reached unimaginable levels, and its evolution is

expected to continue increasing in the coming years. According to an Accenture research,

“AI has the potential to boost rates of profitability by an average of 38% by 2035 and lead

to an economic boost of US$14 trillion across 16 industries in 12 economies by 2035” [44].

This increase is largely due to digitalization of information and the improvement of

computers. AI can be divided into different subfields, but in recent years many companies

and researchers are focusing on a branch of AI called Machine Learning (ML). Machine

learning is an AI technique that gives systems the ability to learn and improve automatically

from experience. ML is divided into many subsets that are on raise in recent years, such

as Neural Networks (NN). Normally, when talking about NN, it is normal to talk about Deep

Learning (DL), since they are closely related. DL is a type of ML that through algorithms

inspired by the way the biological brain operates, learn from a large amount of data.

Nowadays, this technique is used in countless applications such as autonomous driving,

computer vision or image recognition. Figure 1 shows the taxonomy of AI [45, 46,47].

Figure 1 Taxonomy of AI [48]

In recent years, neural networks have become essential in many applications, especially

in those that work with a large amount of data, such as image and character recognition. A

standard NN is composed by an input layer, several hidden layers and an output layer. In

each of its hidden layers, the main operation of a NN is performed: the Matrix-Vector-

Multiplication (MVM). The MVMs are performed between the weight matrixes, that are

generally stored in SRAM memories, and the input vectors of each layer. In a standard

solution, the SRAM memories are separated from the computation units, causing massive

movement of data when performing the MVMs. This problem is known as “memory wall”.

The evolution and performance of NNs have been so great in recent years that they have

exceeded the capabilities of humans to perform some tasks. This achievement is very

important for some applications, such as image recognition. For example, the image

 11

recognition system used in vehicles as an Advanced Driver Assistance System (ADAS),

requires very high accuracy, because a small failure can have critical consequences. To

obtain high accuracy, it is necessary to have very complex networks. That is, to work with

a huge amount of data. When this happens, the time and energy spent moving the data

becomes a problem. Therefore, it becomes a necessity to fix the “memory wall” problem.

To avoid this problem, several researchers have focused on finding solutions to minimize

the movement of data to perform this operation. Nowadays, there are several NN

accelerator designs that manage to reduce the impact of this problem. The most promising

NN accelerators are those that use the concept of in-memory computing. The main idea of

in-memory computing solutions, as the name suggests, is to move computing to memory

and thus eliminate the expensive data movement between the memory and the

computation units [33, 48].

In addition to the implementation of in-memory computing solutions, the power

consumption problem of NN can be reduced using Fully Depleted Silicon-On Insulator

(FDSOI) technologies instead bulk CMOS technologies. This mainly happens because

FDSOI devices present much lower leakage than regular devices [41].

1.2. Objectives

The main objective of this thesis is to analyze and design (schematic and layout) a 3x3

column of an in-memory computing Convolutional Neural Network (CNN) accelerator in 22

nm FDSOI process. Apart from this, the secondary objectives of the thesis are listed below:

• Get familiar with 22FDX technology

• Try to design standard layouts so that they can be reused without big modifications.

• Improve the results obtained by the reference design

This thesis is based on the design proposed in [30]. This design is made with a 65 nm

CMOS technology.

1.3. Thesis Organization

The remainder of this document is organized as follows:

1. State of the art and Context: This chapter is divided into two main parts. In the

first part, it begins explaining the basic concepts and the structure of CNNs and

then continuous reviewing the state of the art in different CNN architectures and in

different types of CNNs. The second part reviews the state of the art in in-memory

computing designs.

2. In-Memory Computing CNN Accelerator Structure: This chapter starts

explaining the operation of the design on which this thesis is based. Then, the two

important parts of the circuit are explained, the SRAM and the M-BC. For each part,

the circuit, the working principle, and some important criteria to design are

mentioned. Finally, some important characteristics of the technology used to design

the M-BC are explained.

3. M-BC Schematic Design: This chapter is divided into two main parts. In the first

part, three different SRAM designs are analyzed, simulated, and compared. In the

second part, the M-BC design is analyzed and simulated.

 12

4. M-BC Layout and Post-Layout Results: This chapter starts explaining how the

layout of the M-BC is made and what characteristics are obtained. Then, the results

of the design obtained before and after the layout are analyzed and compared.

Finally, the results of the project are compared with the results achieved by the

reference design.

5. Conclusions and future improvements: The last chapter discusses the

conclusions of the project and the development of future modifications that could

improve the performance of the design.

 13

2. State of the art and context

2.1. Neural Networks

As mentioned, deep learning uses algorithms inspired by the way the biological brain

operates. Therefore, it is necessary a structure that is based on the structure of the

biological brain. The fundamental units of the brain are the neuron cells. A neuron cell is

composed mainly of three parts: dendrites (inputs), an axon (output), and a cell body. When

a neuron cell receives an input from another neuron, if the signal is accepted, the neuron

may fire. If this happens, a signal is transmitted over the axon of the fired neuron to another

neuron. This way of processing information was tried to mimic in the late 1950s by the

psychologist Frank Rosenblatt with the invention of the perceptron. Figure 2 shows an

illustration of a neuron cell and a perceptron [45, 49].

Figure 2 A, a neuron cell; B, a simple perceptron [45]

As it happens in neuron cells, the perceptron adds its inputs and, if the sum is equal or

greater than the threshold value of the perceptron, the perceptron will “fire” (its output will

have a value of ‘1’). Since the perceptron was introduced, a wide variety of artificial neuron

models have been developed [45].

Nowadays, for most machine learning and deep learning applications, NNs are used, which,

as the name suggests, are inspired in the neural structure of the biological brain. NNs are

typically organized in many layers that are interconnected with each other like neurons.

Depending on the number of neurons and how the connections are made, there are several

types of NNs such as feedforward NN, recurrent NN, and convolutional NN, being the

convolutional neural network one of the most popular networks for deep learning. Figure

3 shows several NN architectures [46, 49].

 14

Figure 3 Several Neural Network architectures [50]

2.1.1. Convolutional Neural Network

The convolutional neural network is a specific type of neural network that receives this

name because it performs a linear mathematical operation called convolution.

This type of network is used to process ordered data such as images and it is one of the

most popular types of NNs, especially for applications that work with high-dimensional data

[1]. The main advantage of CNNs is that they require less variables than other types of

NNs. In fact, it would be impossible to use another type of NN, such as a Fully Connected

Network, to process high resolution images or videos, because the number of parameters

required would be unmanageable for any practical application [2].

In this type of network, as it can be deduced from its name, the convolution operation is its

main characteristic. This operation is performed in a specific layer inside the network, called

convolutional layer. Apart from this layer, the CNN is composed by other layers. In general,

the standard model of a CNN is composed by an input layer, a convolutional layer, a pooling

layer, a non-linear layer and a small number of fully connected layers that are different

depending on the application of the network [3]. Figure 4 shows the standard model of a

CNN.

 15

Figure 4 Standard model of a CNN [4]

2.1.1.1. Input layer

In general, the input of a CNN is a multidimensional array of data that introduces data to

the network. Depending on the application of the network, the input data can be a color

image represented by a three-dimensional matrix, a video signal or a higher dimensional

array composed of training examples [5].

2.1.1.2. Convolutional layer

As introduced before, this layer is the principal block of CNNs. The main objective of this

layer is to detect local features from the previous layers and generate a feature map with

the information obtained. To obtain high-level features of an image it is necessary to use

several convolutional layers. The first layers are responsible for capturing low-level features,

such as lines or edges, and higher layers are responsible for capturing high-level features,

such as paws or eyes to identify the object. To obtain the features of an image, parts of the

input are convolved with one or several filters or kernels.

Convolution process

In general terms, convolution is a mathematical operation that combines two signals

forming a third signal. This combination can be understood as the superposition of the input

signal and a translated and inverted secondary signal. So, in general, for discrete signals,

the convolution of x[n] and h[n] is expressed in (1).

𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑚] · ℎ[𝑛 − 𝑚]

∞

𝑚=−∞

 (1)

Working with images, the convolution can be understood as the sum of all the

multiplications performed between the kernel weights and the corresponding pixel value of

the input image. This operation is commonly known as matrix-vector-multiplication. To

simplify this operation, a two-dimensional image and a unique kernel of M x N dimensions

will be considered. The convolution operation working with images is represented in (2),

where the input image is represented by I, the kernel weights by W and the output feature

map by F. The kernel is placed in the pixel i, j of the input image.

𝑓𝑖,𝑗 = ∑ ∑ 𝑖𝑖+𝑚−1,𝑗+𝑛−1 · 𝑤𝑚,𝑛

𝑁

𝑛=1

𝑀

𝑚=1

 (2)

 16

Once the expression is explained, an illustrative example of the calculation will be shown.

Figure 5 shows the input image and the kernel used in the example.

Figure 5 Input image and kernel [6]

To perform the convolution operation, the kernel is shifted over all the input. At every

location, it will be applied (2), obtaining a unique value that will be placed in the feature

map. Figure 6 shows the convolution operation and the result obtained when the kernel is

placed in the pixel 1,1 of the input.

Figure 6 Convolution operation in the pixel 1,1 [6]

By sliding the kernel into the right one position, a new value is obtained in the feature map

as can be seen in Fig. 7.

 17

Figure 7 Convolution operation in the pixel 2,1 [6]

This process is carried out until the kernel has been placed in all possible positions over

the input. Once this is done, the complete feature map is obtained. Figure 8 shows the

obtained feature map for this example.

Figure 8 Final Feature Map [6]

As it can be deduced, the dimension of the feature map tends to be reduced since it is not

possible to apply the kernel in all positions of the input image. It can also be expected that

when the larger the size of kernel, the larger the reduction of the feature map. The reduction

of the feature map can become a problem in some applications where a dense prediction

at pixel level is required [1]. So, to avoid this reduction, a technique called padding is used.

This technique consists of increasing the size of the input by adding rows and columns of

pixels and therefore, enabling the kernel to reach all positions. The added pixels can take

any value, however, in most cases they take a value of 0. When this happens, the technique

is called zero-padding. Figure 9 shows an input image where zero-padding has been

applied.

 18

Figure 9 Zero-padding technique [6]

If instead of working with a two-dimensional image, a color image is used, that is, a three-

dimensional image, the kernel used must be three-dimensional. The movement of this

kernel over the input image is the same as for two-dimensional images. However, the

calculation of the feature map is different in this case since the depth must be considered.

Equation (3) shows how the feature map is calculated in a color image, placing the kernel

in a specific pixel position, in this case, in pixel i, j, d. In (3), the input image is represented

by I, the kernel with size M x N x D by W and the output feature map by F.

𝑓𝑖,𝑗,𝑑 = ∑ ∑ ∑ 𝑖𝑖+𝑚−1,𝑗+𝑛−1,𝑑 · 𝑤𝑚,𝑛,𝑑

𝐷

𝑑=1

𝑁

𝑛=1

𝑀

𝑚=1

 (3)

Figure 10 shows an illustrative example of the calculation explained above.

Figure 10 Example of a convolution in three-dimensional images [6]

In all the previous examples only one kernel has been used to obtain the feature map.

However, in a real image processing application, multiple kernels are used to process a

single image, because each kernel is usually focused on finding a specific feature of the

image. For example, in the first convolutional layer, a kernel can be in charge of finding

circles and another kernel finding crosses. As the NN gets deeper, the number of kernels

used in each convolutional layer tends to increase, since the level of the features also

increases. Figure 11 shows an example of a convolution in a three-dimensional image

where more than one kernel has been used.

 19

Figure 11 Example of a convolution in three-dimensional image with many kernels [6]

As it can be seen above, the convolution operation for each kernel is performed

independently and the feature maps obtained with each kernel are accumulated along the

depth dimension, creating a “dense” feature map [6].

Non-linearity

A nonlinear activation function is usually applied after the convolution operation. The main

objective of this function is to take the feature map created in the previous layer and to

generate the activation map, which will be the new output. For that, the function takes each

value of the input feature map and changes it according to the type of nonlinear function.

For example, some functions modify the original values by enclosing them within a small

range of values such as [0,1] or [-1,1]. One of the nonlinear functions that is becoming

popular in recent years is the rectified linear unit (ReLU). The ReLU is a simple activation

function which is popular due to its simplicity and its fast computation [1, 5, 7]. This function

“maps the input to a 0 if it is negative and keeps its value unchanged if it is positive” [1].

ReLU function is represented in (4).

𝑓𝑟𝑒𝑙𝑢(𝑥) = max (0, 𝑥) (4)

2.1.1.3. Pooling Layer

Typically, after each convolutional layer, a pooling layer is added. The main objective of

this layer is to reduce the dimensionality of each activation map separately, by applying

one of the reduction techniques. By doing this, it makes the network more robust to small

variations and vibrations. Additionally, applying this layer ensures that the network focuses

on the most important features [5,7].

As mentioned before, in general, pooling layers down sample the input activation map

independently, that is, the reduction technique is applied to each activation map obtained

with each kernel separately. Therefore, only the width and height are reduced, not the

depth. Figure 12 shows an example where it can be seen the result of applying this layer.

 20

Figure 12 Example of applying a pooling layer [6]

Nowadays there are several techniques to apply this reduction, but the most popular

technique is max pooling. This technique consists of taking the maximum value of the area

where the pooling window has been applied. As with the kernels in the convolutional layer,

the pooling window will scroll through the input map, choosing the maximum value in each

area. However, an important difference between the movement of a kernel and a pooling

window is the stride.

The stride specifies how much the window is moved at each step. Since the objective of

pooling is to reduce the size of the input feature map, the stride of the window should be

bigger than 1. Usually a 2x2 pooling window is used with a stride of 2, since using a larger

window size means losing a lot of information. Figure 13 shows an example of applying

max-pooling technique with a pooling window with the characteristics described above.

Figure 13 Max-pooling [6]

2.1.1.4. Fully Connected layers

This is the last stage of a CNN. Usually, after all the previous layers, a couple of fully

connected layers are applied. As these layers expect as an input a one-dimension feature

map, it is necessary to flatten the output of the previous pooling layer. As convolutional

layers, fully connected layers also apply kernels to the flattened input map. Therefore, the

kernels used in this layer are of size 1x1 [1].

 21

2.1.2. Review of Architectures

Convolutional neural networks are one of the most popular neural networks used in

complex applications such as image recognition and AI models for computer vision, due to

their efficiency and performance. However, to obtain an efficient and well-performing

network, the architecture of these CNNs is decisive. Usually for this type of applications,

how layers are structured, how many layers are used, how these layers are designed and

the number of kernels used in each layer directly affects the speed and accuracy of the

network.

Over the years, CNNs have evolved considerably, achieving results that a few years ago

not many people would have imagined. All this evolution has brought a wide variety of

architectures. However, most of these modern architectures have a base architecture that

has been the benchmark for many years. This first important architecture is known by the

name of LeNet-5.

2.1.2.1. LeNet-5

 LeNet was introduced in 1989 and was one of the first CNN architectures defined. This

architecture had several versions, being the LeNet-5 the most popular. LeNet-5 was

created by Yann LeCun in 1998 and it was used to digitize 32x32 pixel grey scale images

such as hand-written numbers recognition. Figure 14 shows the LeNet-5 architecture.

Figure 14 LeNet-5 architecture [8]

LeNet-5 architecture is a simple architecture composed by 7 layers, not counting the input.

The first 5 layers are 3 convolutional layers and 2 subsampling or pooling layers that

alternate as follows: C1-S2-C3-S4-C5. The number of kernels, as explained in section 2.1.1,

increases as the depth of the network increases. In LeNet-5 the number of kernels is 5, 16

and 120 from the first to the last convolutional layer. The size of the kernel is 5x5 and no

padding is applied in these convolutional layers. For non-linearity, in these layers, a sigmoid

function is used. In the pooling layers, instead of using the max polling reduction technique

explained in section 2.1.1, an average pooling reduction technique is used. This technique,

instead of choosing the maximum value, performs the average of all the values. The last 2

layer are fully connected layers [8].

During those years, the performance of CNNs used for image recognition was not very

realistic. This was mainly because the labelled image datasets were very small, on the

order of tens of thousands of images. Therefore, the number of images per item used to

train the network was very poor. To solve this problem, in 2009 a new labelled image

database called ImageNet was introduced. At the beginning, the database contained a total

of 3.2 million images. However, in 2019 the number of images increased to 14 million

divided in 22 thousand visual categories [9].

 22

During those years, due to the advances made in computing of modern computers and in

memory technology, several new architectures were created. To check the efficiency and

performance of these architectures, ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) was created in 2010. This challenge is an annual computer vision competition

that evaluates networks for image recognition and classification at large scale. In this

competition, two error rates are reported: top-1 error rate and top-5 error rate. The top-5

error rate is the fraction of test images for which the correct label is not included among the

five most probable labels chosen by the architecture. In the first competitions, the best top-

5 error rates were around 26%. In 2012 a new CNN architecture called AlexNet reduced

the previous best top-5 error rate result by 10% [10].

2.1.2.2. AlexNet

AlexNet was created in 2012 by Alex Krizhevsky, Ilya Sutskever and Geoffrey E.Hinton. In

that year, AlexNet was the first CNN to win the ILSVRC 2012 with an incredible top-5 error

rate of 15.3 % and a top-1 error rate of 36.7 %. Figure 15 shows the AlexNet architecture.

Figure 15 AlexNet Architecture [11]

The general scheme of AlexNet is very similar to LeNet-5, but it has some important

differences. AlexNet architecture is much larger and deeper than LeNet-5, and instead of

working with grey scale images, it works with color images. AlexNet is composed by 11

layers, not counting the input. The first 8 layers are 5 convolutional layers and 3 pooling

layers that alternate as follows: C1-P2-C3-P4-C5-C6-C7-P8. The number and size of the

kernels the in convolutional layers varies depending on the depth of the layer. As it can be

seen in Fig.15. the number of kernels varies from 96 to 384 and the size from 11x11x3 to

3x3x3. In the pooling layer, unlike LeNet-5, AlexNet uses the max pooling reduction

technique. The last 3 layers are fully connected layers [10].

Apart from these differences, there are two more important modifications that considerably

increase the computing speed of the network. The main difference between AlexNet and

its more popular predecessor is the application of a ReLU non-linear activation function in

all the outputs of the convolution and fully connected layers. The second difference is that

in the first convolutional layer the feature maps are split into two groups as it can be seen

in Fig.15 [7].

 23

After AlexNet achieved successful results at the ILSVRC, many researchers began

designing new CNN architectures for image recognition and classification. The most

popular CNN architectures will be mentioned below.

2.1.2.3. VGG-16

VGG-16 was created in 2014 by Karen Simonyan and Adrew Zisserman. This architecture

participated in the ILSVRC 2014 obtaining the second place with a top-5 error rate of 7.3%

and a top-1 error rate of 24.7%. This architecture became popular due to its homogeneity

and its simplicity. Figure 16 shows the VGG-16 architecture.

Figure 16 VGG-16 architecture [12]

The architecture of VGG-16 shares certain similarities with AlexNet, but this new

architecture goes much deeper. VGG-16 is composed of 21 layers, not counting the input.

The first 18 layers are 13 convolutional layers and 5 pooling layers that alternate as follows:

[C1-C2-P3]x2-[C7-C8-C9-P10]x3. The number of kernels used in the convolutional layers,

as in previously analyzed architectures, increases depending on the depth of the layer. In

this case it varies from 64 to 512. One of the important differences between VGG-16 and

AlexNet is the size of the kernels. As the VGG-16 network goes very deep, the number of

weights and the MVMs to process is huge. To balance this problem, large kernels, such as

the 11x11 or 5x5 kernels used in AlexNet, are built by multiplying smaller kernels of 3x3.

So, all the kernels used in the convolutional layers in VGG-16 are of equal size. In the

pooling layers, a pooling window of 2x2 and a stride of 2 is used. As in AlexNet, the last 3

fully connected layers have the same configuration [7, 13].

2.1.2.4. GoogleNet

GoogleNet or Inception-V1 was created in 2014 and is the winner of the ILSVRC 2014 with

a top-5 error rate of 6.7%. The main goal of this design is to achieve high accuracy with a

lower computational cost. This architecture is quite different from the previously analyzed

architectures. The main difference is that instead of having a single serial connection,

GoogleNet introduces inception modules which are composed of parallel connections.

Figure 17 shows the inception module.

 24

Figure 17 Inception module [14]

In the inception modules the input that comes from the previous layer is connected in

parallel with three different kinds of convolution and pooling operations. In each

convolutional layer (blue blocks) a different sized kernel is used; 1x1, 3x3 and 5x5. For the

pooling operation (red block) a 3x3 max pooling technique is used. The output of these

operations is concatenated together depth-wise. To reduce the number of weights and

therefore, the computational cost, “bottleneck” layers are used (yellow blocks”). These

blocks perform a 1x1 convolution to reduce the depth of the output feature map, avoiding

this depth from increasing much after the application of each inception module [14].

Once the inception module has been analyzed, the general scheme of GoogleNet

architecture is going to be explained. Figure 18 shows the GoogleNet architecture.

Figure 18 GoogleNet architecture [14]

The architecture of GoogleNet is composed by more than 100 individual layers, but

regarding the depth, GoogleNet is 27 layers deep, not counting the input. The first 5 layers

are 3 convolutional layers and 2 pooling layers that alternate as follows: C1-P2-C3-C4-P5.

In future versions of this architecture, this group of 5 layers is named as stem module. The

next 21 layers are 9 inception modules and 3 pooling layers. The last layer is a fully

connected layer, that is the classifier output. So, in comparison with previous analyzed

architectures, the computationally expensive fully connected layers were removed. All the

convolution and fully connected layers are followed by a ReLU activation function. Apart

from this, two auxiliary classification outputs are used. The goal of theses auxiliary outputs

is to speed up the convergence rate and to combat the vanishing gradient problem [14, 15].

Since the creation of AlexNet, the trend was to increase the depth to develop more complex

networks and to increase their performance and accuracy classifying and recognizing

images. However, researchers found that increasing depth makes training more difficult.

This happens because it is more difficult to propagate the gradients to the end of the

 25

network and problems such as the vanishing gradient problem appeared. As a result of this

problem, the accuracy of the networks gets saturated and then degrades rapidly. In order

to eliminate these problems, in 2015 ResNet was published [16].

2.1.2.5. ResNet

ResNet or Residual Net was created in 2015 by Kaiming He et al. and is the winner of the

ILSVRC 2015 with a top-5 error rate of 3.57%, the first CNN in ILSVRC exceeding the

human-level accuracy. The main difference of this architecture is the use of residual blocks.

These residual blocks solve the gradient vanishing problem and the accuracy problem

mentioned before. Figure 19 shows a general scheme of the residual block used in ResNet.

Figure 19 Residual block [16]

Residual blocks introduce an identity or skip connection that allows skipping one or more

weight layers such as a convolutional layer. In case of ResNet, the main idea is to

backpropagate through the identity function using a vector addition. With this technique

the gradient is preserved in each layer avoiding the vanishing of the gradient. To this

residual block some “bottleneck” layers are added as it happens in the inception modules

in GoogleNet. As it can be seen in Fig. 20, the bottleneck design contains an extra 1x1

convolutional layer. This layer is responsible for increasing and decreasing the dimensions

of the 3x3 convolutional layers [7,16].

Figure 20 ResNet residual blocks [16]

Once the residual block has been analyzed, the general scheme of ResNet architecture is

going to be explained. Figure 21 shows the ResNet architecture. As it can be seen in the

upper right corner of Fig.21, depending on the number of total layers, the number of each

cfg block will vary.

 26

Figure 21 ResNet architecture [17]

The architecture of ResNet is composed by up to 152 layers. The first layer is made up of

a 7x7 convolutional layer that uses 64 kernels and a 3x3 max-pooling layer. The next 150

layer are made up with 4 types of residual block. The last layer is a fully connected layer,

that is the classifier output. Apart from these residual blocks, in this architecture two

important techniques were applied to reduce the problem of gradient vanishing. The first

technique is the ReLU activation function, a technique already used by several previously

analyzed architectures. However, the second technique was used for the first time in this

architecture. ResNet applies batch normalization technique after each convolutional layer.

Batch normalization was applied to speed up learning and to obtain a faster convergence,

thus reducing the problem of gradient vanishing. This is achieved by normalizing the output

of the convolutional layer to obtain a zero mean and a unit standard deviation. [16, 54]

Nowadays, the researchers are focused on the creation of simpler architectures to be able

to integrate them into low power devices such as mobile phones. The architecture analyzed

above require a high computational cost, which makes their implementation in this type of

system impossible. In the next chapter, a solution to this problem will be discussed.

2.1.3. Binarized Neural Network

During the last years, the growth of AI in countless applications such as sound or image

recognition has been huge. This increase is mainly due to the evolution of deep neural

networks. As explained before, these neural networks have been able to achieve great

accuracies carrying out certain tasks, such as image recognition. However, in order to

achieve this performance, the computational power and storage capacity required by the

network has been impaired. Nowadays, these powerful deep neural networks are generally

trained on GPUs with enormous power consumption, making their implementation almost

impossible in low-power or limited-power devices such as IoT systems or mobile devices.

This is one of the most challenging goals of researchers; being able to create a neuronal

network keeping all the capabilities that deep neural networks offer, while reducing

computational power and memory. To date, several proposals are being studied to satisfy

these demanding requirements, being binary neural networks (BNN) one of the most

promising solutions.

The main difference of BNNs over the CNNs is that the weights and activations are

binarized to ±1. This considerably reduces the memory requirement and computational

complexity to perform the matrix-vector-multiplication operation, since binarized weights

and activations, convert the MVM operation into a bitwise operation. So, by binarizing the

weights and activations, the multiplication operation is equivalent to a simple XNOR

operation, as it can be seen in Fig. 22. To perform this operation, first the signed binary

values are encoded with a 0 for -1 and 1 for +1 [18,19].

 27

Figure 22 XNOR operation in BNN [1]

To perform the MVM operation, the results obtained in the XNOR operations must be

added. This summation is performed by using a population count (popcnt) instruction. This

instruction counts the number of 1s obtained in a group of XNOR operations. Once this

value is known, it is multiplied by 2 and subtracted by the amount of XNOR operations done

in the group. This operation is represented in (5), where a and b are two vectors with length

n, and the elements of this vector are encoded binarized values (0,1) [18, 20].

〈𝑎, 𝑏〉 = 𝑛 − 2 × 𝑝𝑜𝑝𝑐𝑛𝑡(𝑋𝑁𝑂𝑅(𝑎, 𝑏)) (5)

This bitwise operation is much simpler and more efficient than the Multiply-and-Accumulate

(MAC) operation used in a deep neural network, providing faster execution times with less

hardware resources [18].

After this operation, a Batch Normalization (BN) layer is used. BN is very important for

BNNs, because apart from accelerating the training it also reduces the overall impact of

the weight scale. Usually, BN layers are combined with activation layers [18, 21].

Another important feature of BNNs is the robustness against external perturbations. In DNN

when an input image shows small disturbances, it can provoke an erroneous classification

of the image, especially in CNNs. However, in BNNs, these small perturbances will have a

lower impact on the network activations because discrete values are used [18].

BNNs also have some negative aspects that are important to mentioned. The main

drawback of this type of network is the accuracy. In general, the accuracy shown by BNNs

in image recognition challenges, such as ILSVRC, are much lower than any of the CNNs

analyzed in previous sections. However, in recent years researchers have proposed

several improvements that manage to increase the accuracy of this type of network to more

reasonable values in comparison to CNNs. For example, the BNN proposed in [21] shows

a top-5 accuracy rate of 60.1% using AlexNet architecture, whereas the original AlexNet

architecture achieves a top-5 accuracy rate of 84.6%. [18, 22].

In conclusion, BNNs can lead to great improvements related to power consumption,

computation speed and required memory and accesses. These improvements are mainly

due to the fact that the arithmetic operations of MVM are replaced by bitwise operations.

Some studies indicate that power efficiency can be improved by more than one order of

magnitude. However, the precision of these networks, despite of the improvements, do not

reach the levels of CNNs. So, BNNs can be considered as an interesting solution to

implement neural networks in low-power devices [18, 20, 23].

 28

2.1.4. Digital vs Analog

In 1945 von Neumann presented a computer architecture that has been used and will

continue to be used in modern computer systems. The von Neumann architecture is a

simple computer architecture that consists of separating the central processor unit (CPU)

from the main memory. So, during data processing, data movement is needed between the

CPU and the storage device through a transmission line. This principle of operation has

not changed in all these years. Despite of the advancement of technology, this architecture

has become more complex. However, since in the last years the data volume has increased,

the high latency and the energy consumption of data transmission have become the

architecture bottleneck, called, “von Neumann bottleneck” or “memory wall” [24].

This problem has a direct impact on deep neural networks, where the amount of data to

transfer between the CPU and the memory is huge, especially performing the matrix-

vector-multiplication, one of the most important computational tasks. That is why in recent

years, several researchers have been trying to solve this problem looking for different

alternatives and finding new computational methodologies. In this search, most

researchers have focused on two types of solutions.

The first type of solutions is in favor of keeping the von Neumann architecture. These

solutions have been proposed and implemented for several years. The main idea of all

these proposals consists of reducing or eliminating the limitations that von Neumann’s

architecture presents, maintaining its principle of operation. This type of solutions is usually

called digital accelerators. One of the first solutions to mitigate the von Neumann bottleneck

was the implementation of fast GPUs. With the introduction of these devices, researchers

were able to train neural networks 10-20 times faster [25]. Until present days, more

solutions have been studied, such as using compressing techniques to reduce the amount

of data that has to be transferred, but the most popular solution is known as near-memory

computing and dates to the 1990s. Near-memory computing consists of placing processing

and memory in a single package, thus greatly reducing the power required to move data.

The concept known as near-memory computing has been improved in recent years due to

advances in die stacking technology and commercialization of advanced memory modules

such as hybrid memory cube (HMC), high bandwidth memory (HBM) and Wide I/O.

However, despite of improving the characteristics of neural networks, there is still physical

separation between memory and compute units [26, 27, 28].

The second type of solutions works on a new computer architecture where the expensive

data movement between the memory and the computation units is eliminated. This solution

is called in-memory computing and it is one of the most promising alternatives to von

Neumann architecture. The main difference between near-memory computing and in-

memory computing is that the first one focuses on moving data to computing, whereas the

second one focuses on moving computing to data. In-memory computing solutions are

usually called analog accelerators because when the processing is moved into the memory,

analog computing is typically used. To perform analog computing, a large variety of

nanoscale memory devices are investigated and each one offers different advantages and

disadvantages. These circuits will be explained in detail in the next section.

In general, In-memory computing reduces power consumption and computing times by

orders of magnitude compared to some digital accelerators, especially for layers with a lot

of weights per neuron, like fully connected layers. For example, Ambragio S. et al in [29],

demonstrated that the computational energy efficiency and the throughput per area

obtained with their analogue in-memory computing design exceeds today’s GPUs by two

 29

orders of magnitude. However, not everything is positive. The complexity of this type of

memory is much greater than the ones that are available in the market. In addition, as it is

a relatively new technology, there are many problems that need to be solved before the

true potential of these memories is reached. That is why there is still a lot of work to do, so

that in-memory computing can replace the solutions offered nowadays.

Figure 23 shows a general architecture of a conventional computing system and of an in-

memory computing system.

Figure 23 Conventional computing system vs in-memory computing system [27]

2.2. In-Memory Computing

Over the last years, the amount of information required by AI or machine learning systems

to perform all tasks increases. This change has caused a dramatic increase in the amount

of data stored in memories and especially in the amount of data transferred between

different devices, such as from the memory to compute unit and vice versa. As technology

evolved and the size of transistors decreased, the energy consumption due to computation

decreased too. This reduction has reached a point where the energy consumption due to

computing is orders of magnitude smaller than the energy consumption due to data transfer.

So, to reduce the enormous cost of energy and delay produced by this data movement,

many companies and researchers focused on this new concept.

The concept of in-memory computing exists since several years. However, it is starting to

become real nowadays. This is mainly due to two reasons. The first reason is the

introduction of new memory technologies and new memory architectures, which facilitate

the implementation of in-memory computing. The other reason is that machine learning, AI

and neural networks are becoming more and more important, and this in-memory

computing concept can improve the performance of these systems.

The main idea of in-memory computing is to eliminate the data movement between the

memory and computing unit by modifying the memory cell to embed the computation in the

memory array. To achieve this, most circuits use analog rather than digital computing.

 30

Analog circuits limit robustness, present nonidealities that limit computational SNR and in

general, they are more complex.

Nowadays, there are three different ways of performing analog computing in this type of

architecture: charge-mode analog in-memory computing, current-mode analog in-memory

computing, and voltage-mode analog in memory computing. The main difference between

these modes is the way in which they perform the MAC operation. However, even though

there are solutions for each mode mentioned before, nowadays, the charge-mode is

usually used to perform analog in-memory computing.

As mentioned in previous sections, the principal operation in neural network is the high-

dimensionality matrix-vector-multiplications. To perform this MVMs, a lot of data needs to

be moved from the memory to the computation, resulting in excessive power consumption.

That is why most researchers focus on designing different circuits to perform this MVMs.

Nowadays, there are two main groups of memories that perform this type of operation.

Figure 24 shows the concept of in-memory computing and the two main groups of memory

types.

Figure 24 Memory types for In-Memory Computing [27]

2.2.1. Charge-based memory

The charge-based memories are divided into three principal types: Static Random-Access

Memory (SRAM), Dynamic Random-Access Memory (DRAM) and Flash memories. From

these three types of memories, the most used for in-memory computing is the SRAM, which

gives 12 times greater energy savings compared to off-chip SRAM [7]. This type of memory

can be implemented using the computing modes mentioned above.

2.2.1.1. Charge-Mode Computing

One of the main advantages of the charge-mode SRAM is that the additional components

required to perform the MAC operation can be directly introduced into the bit cell of an

SRAM without significantly increasing the size of the cell. Figure 25 shows a modified

SRAM bit cell, called multiplying bit cell (M-BC), based on charge-mode computation [30].

 31

Figure 25 Multiplying Bit Cell circuit [30]

The M-BC consists of a six-transistor (6T) SRAM, 2 PMOS and a MOM capacitor. The

binary values -1 and +1 are represented as GND and VDD respectively. To perform the

MAC operation, the weights are stored in the standard 6T-SRAM cell. By adding the PMOS

transistors driven by the input activation (IA) signals, an XNOR is built. This XNOR performs

the multiplication operation between the IA and the weight. Since the weights and the input

activations are binarized to ±1, the XNOR operation is equivalent to a multiplication. Then,

the result obtained in this operation is sampled as charge on a MOM capacitor. The use of

this MOM capacitor is due to two main reasons. The first reason is that it does not occupy

any additional area since the capacitor is placed above the bit cell. The second reason is

that the MOM capacitors allow highly linear and stable operations as they present excellent

matching characteristics. This creates a design that achieves a high computational SNR

[30].

2.2.1.2. Current-Mode Computing

As previously mentioned, most of the SRAM memories used for in-memory computing are

based on charge-mode computation. However, there are other solutions such as those

based on current-mode computation. In this solution, the standard 6T-SRAM cell is not

modified, but to perform the MAC operation it is necessary to introduce some external

components. Figure 26 shows this architecture.

Figure 26 SRAM architecture based on current-mode in-memory computing [31]

As it can be seen in Fig.26, the architecture has two operation modes. In the SRAM Mode,

the weights (wi) are stored in the 6T bit cells as in a standard digital SRAM cell. In the

Classify Mode, the MAC operation between the binary weights stored in SRAM and the 5-

 32

bit input (xi) is performed. For that, first the BL/BLB are precharged to VDD. Then, the 5-bit

input is converted to analog with a current-mode DAC (WLDAC). Figure 27 shows the

working principle of this operation and the WLDAC circuitry.

Figure 27 WLDAC circuitry and MAC operation [31]

The 5-b digital values X[4:0] are introduced in the WLDAC, formed by binary-weighted

PMOS current sources. Then, the total current, IDAC, runs through an upsized bit cell replica,

formed by transistors MA,R and MD,R. This circuitry only works in the Classify Mode, when

the signal CLASS_EN is VDD, activating the driver transistor replica MD,R and thus,

representing a pull-down condition in a bit cell. The access transistor replica MA,R, is self-

biased to create a WL voltage related to IDAC, creating a current mirror of this current as it

can be seen in Fig.27. So, with this circuitry, an IBC current that is roughly linear with the

inputted digital value is achieved. Depending on the weight value stored in the SRAM, the

cell will generate this discharging current IBC in BL or BLB, as it can be seen in Fig.28. To

finish the MAC operation, all the currents generated by the cells in a column will be added

and the sense amplifier will compare the voltages in BL and BLB [31].

Figure 28 Column-based classifier [31]

This architecture, as the charge-mode architecture, shows several advantages in terms of

latency and bandwidth over traditional architectures. However, the current-mode

architecture presents an important drawback compared to the charge-mode architecture.

This problem is related to the SNR. As explained before, in the charge-domain architecture,

with the introduction of a MOM capacitor a high computational SNR is achieved despite of

working with an analog circuit. However, in current-mode architecture, the important non-

linearities, offsets and variations provoke the degradation of the SNR. To reduce the effect

of these disturbances some techniques are used such as some training algorithms, or the

Error-Adaptive Classifier Boosting (EACB) [31].

 33

2.2.1.3. Voltage-Mode Computing

To finish with the SRAM memories used for in-memory computing, a solution based on

voltage-mode computation will be discussed next. In this solution, as in the current-mode

solution, the architecture has two operation modes. In the Memory Mode, the weights are

stored in the standard 6T-SRAM cell, as a regular SRAM. In the XNOR Mode, it performs

the binary MAC operations activating all rows simultaneously. One important characteristic

of this architecture is that it allows binary and ternary inputs, but only the operation with

binary inputs will be analyzed. Figure 29 shows the voltage-mode architecture [32].

Figure 29 SRAM architecture based on voltage-mode in-memory computing [32]

As it can be seen in Fig.29, this architecture consists of 256x64 bit cell array and

peripherals. To perform the binary MAC operation, this solution uses a 12T bit cell: a

standard 6T-SRAM cell composed of transistor T1-T6, an additional pull-up (PU) and pull-

down (PD) network formed by transistors T7-T10 and transistors T11 and T12, which are

used to enable or disable the PU/PD circuits. Figure 30 shows a detailed view of the bit cell

and how the MAC operation is performed [32].

Figure 30 Bit cell design and MAC operation [32]

 34

As it can be seen in the RWL Driver Logic table above, depending on the value of each

input bit, the WL controller will set values to 4 different read wordlines (RWL). Then, the

value of the weight stored in each 6T-SRAM cell will activate or deactivate some transistors

in the PU/PD network. For example, if the stored weight is +1, then the transistor T7 and

T10 will be activated. Once the PU/PD network is activated, the XNOR operation between

the RWLs and the binary weights is performed, producing a “+1” with a strong (PMOS) or

weak (NMOS) PU or producing a “-1” with a strong (NMOS) or weak (PMOS) PD, as it can

be seen in the “XNOR Value Mapping Table” above. So, in other words, when the XNOR

operation is “1” the bit cell will behave as a PU and when the XNOR operation is “0” as a

PD [32].

As mentioned before, in this architecture, 256 bit cells are connected to RBL in a column.

So, each bit cell in the column will behave as a PU or a PD. Figure 31 shows a general

circuit to calculate the final output voltage, VRBL.

Figure 31 PU/PD general circuit to calculate VRBL [32]

If the number of rows is N, the result of the MAC operation will range from -N to +N.

Assuming that u indicates the number of bit cells that behaves as a PU among N cells and

d indicates the number of bit cells that behaves as PD, (5) and (6) can be considered.

Observing Fig.31, VRBL can be represented as in (7), as a voltage divider, that shows a

linear relationship with the MAC value. Finally, each VRBL is read by a 3.46-bit flash ADC

[32].

𝑁 = 𝑢 + 𝑑 (5)

𝑀𝐴𝐶 = 𝑢 − 𝑑 (6)

𝑉𝑅𝐵𝐿 =
2𝑢

2𝑢 + 2𝑑
=

𝑀𝐴𝐶 + 𝑁

2𝑁
 (7)

The principal problem of this architecture is the mismatch, and the non-linearity produced

by the PU/PD resistances. Some of these problems are solved by placing non-linear ADC

levels and by tuning the PMOS body bias in the bit cell array. Compared to charge-mode

architecture, energy efficiency is approximately 38% lower. However, the voltage-mode

architecture shows higher accuracy and smaller area than the other architectures analyzed

[30, 31, 32].

2.2.2. Resistance-based memory

The resistance-based memories are divided into three principal types: Resistive Random-

Access Memory (RRAM), Phase Change Memory (PCM) and Spin Transfer Torque

Magnetoresistive Random Access Memory (STT-MRAM). These devices have different

 35

trade-offs in terms on speed, write current, density, and endurance. However, the main

advantage of all these types of memories is that they show multilevel programmability by

applying electrical pulses, which makes it ideal for in-memory computing applications [7,

27].

2.2.2.1. RRAM

RRAM technology dates back to at least the 1960s and nowadays is the most popular and

mature memory among those mentioned above. RRAM consists of a metal-insulator-metal

(MIM) structure, where the formation and dissolution of conductive filaments (CF) through

the insulator provides a high or low conductance state, in other words, a low or high

resistance state, respectively. The CF formation and dissolution are reversible, and it is

induced by an electric pulse. Figure 32 shows an RRAM device in the low resistance state

and some general characteristics of this type of devices [27, 33].

Figure 32 RRAM device [27]

2.2.2.2. PCM

PCM technology also dates back to 1960s. PCM is based on the property of certain types

of materials known as chalcogenide material, such as Ge2Sb2Te5. When these materials

are exposed to the Joule effect, the material switches in a reversible and rapid manner

from a highly resistive amorphous phase to a highly conductive crystalline phase. Usually,

the bottom electrode confines heat and current. Figure 33 shows a typical mushroom-type

PCM device in the high resistance state and some general characteristics of this type of

devices [27, 33].

Figure 33 PCM device [27]

 36

2.2.2.3. STT-MRAM

STT-MRAM is a relatively new technology. STT-MRAM consists of a magnetic tunnel

junction structure composed by two ferromagnetic metal layers, such as CoFeB, separated

by a thin tunnel oxide such as MgO. One of the metal layers (pinned layer) has the magnetic

polarization structurally fixed whereas the polarization of the other one (free layer) is free.

The pinned layer behaves as a reference. So, depending on whether the two magnetic

polarizations are parallel or antiparallel, the device assumes a low or high resistance,

respectively. To change the magnetic orientation of the free layer, an opposite voltage is

applied. Figure 34 shows an STT-MRAM device and some general characteristics of this

type of devices [27].

Figure 34 STT-MRAM device [27]

Each one of these memories has its own advantages and disadvantages. RRAM has the

advantage of using well known materials in semiconductor manufacturing. Apart from this,

RRAM and PCM have larger resistance ranges than STT-MRAM, allowing to store

intermediate resistance at array level. However, these two memory types present worse

cycling endurance and access times or write speeds than STT-MRAM [27].

Resistance-based memories can be used to perform in-memory computing, concretely to

perform the MAC operation, since these memories can be used as programmable resistive

elements by applying SET or RESET voltage pulses. The most compact and popular

architecture used to perform this operation is a crossbar array. Figure 35 shows a

memristor crossbar architecture used to perform MVM operation achieving high levels of

parallelism performing all the dot products in a single step.

Figure 35 Memristor crossbar architecture [34]

 37

As it can be seen above, every bitline is connected to every wordline via resistive memory

cells. To perform the multiplication the weight is stored as the conductance of the resistor,

𝐺𝑖 =
1

𝑅𝑖
 , and the input activation is the signal 𝑉𝑖 entering the resistance. So, the current that

goes through each resistor represents the multiplication between the input activation and

the weight. The MAC operation finishes by adding all the currents that go through each

memristor in a column. Figure 36 shows a detailed view of how this MAC operation is

performed [34].

Figure 36 MAC operation with memristors [34]

There are several works where cells composed of resistive memory technology are used

in convolutional neural network. One of the most interesting proposals is ISAAC

architecture [34]. Figure 35 shows this architecture. ISAAC researchers used RRAM

memories to develop their cells because it allows better precision than PCM [34].

Once the most important computation modes have been analyzed, the characteristics of

the previously analyzed solutions will be compared. Table 1 compares some general

characteristics of four architectures that have been explained previously.

Device
Charge-Mode

SRAM

Current-

Mode

SRAM

Voltage-Mode

SRAM

RRAM

(AnIA)

CMOS technology 65 nm 130 nm 65 nm 22 nm

Accuracy

MNIST/CIFAR-10
98.6 %/84.1 % 90% 98.8 %/88.8 % -

Energy efficiency

(TOPS/W)
866 11.5 403 1050-1500

Throughput (GOPS) 18876 57.1 600 23500

Reference [30] [31] [32] [53]

Table 1 Comparison of different types of in-memory computing solutions

 38

As it can be seen in the table above, the energy efficiency, throughput and the accuracy

are considerably worse for the architecture using current-mode SRAM. These values would

improve using a smaller CMOS technology, but they would surely still be much worse than

the other architectures, especially the energy efficiency. As for the other two types of in-

memory computing SRAM architectures, it can be seen that the charge-mode architecture

offers the best features, especially in terms of throughput.

Regarding the RRAM, it can be seen that the energy efficiency and throughput obtained

are better than those obtained in the three in-memory computing SRAM solutions. In

addition, as previously mentioned, area is one of the most important advantages of this

type of solutions compared to SRAM solutions. There is no information about the accuracy

that this solution provides, but based on [53], this solution does not improve the accuracy

with respect to other solutions. However, this comparison is not entirely fair, since the

technology used in the design of the RRAM solution is much smaller than the technology

used in the SRAM solutions. Even so, the characteristics shown by this solution are

impressive.

 39

3. In-Memory-Computing CNN Accelerator Structure

In recent years, researchers have been focusing on finding solutions to perform the

dominant computational task in CNNs, the MVM, in the most efficient way. Previous studies

demonstrated that in order to avoid high energy consumption and delay caused by the

movement of data in CNNs, it is necessary to introduce the concept of in-memory

computing. In the previous section, different ways of performing MVM using the concept of

in-memory computing have been explained. In this section, a solution to perform MVM

using the concept of in-memory computing will be explained and designed.

The CNN accelerator designed in this thesis is the charge-domain architecture that has

been analyzed in the previous section. This architecture was proposed by Hossein Valavi

et al. in 2018 [30]. In this proposal, the MVM is performed in the neuron array, concretely

in the neuron tile, inside the Hidden Layer (HL) of a deep CNN. Figure 37 shows the

architecture of this hidden layer.

Figure 37 Architecture of Hidden Layer (HL) [30]

As it can be seen above, before performing neuron filtering to each pixel, of depth up to

512, of the input feature map, these pixels must be restructured. This is done through 3

components. The input shift register is used to facilitate the testing interface. The IA SRAM

works as a line buffer and consists of 4 sets of 512 columns. Then, the three out of four IA

columns to be processed are shifted to an IA buffer which consists of 3-b shift registers

with round-robin input interface. Finally, the 3x3xd (depth up to 512) IAs to be filtered are

transmitted in parallel over the neuron array, where the MVM operation is performed. Once

the MVM operation is performed, the 512 computed pre-activations (PA) are introduced in

parallel to a binarizing batch normalization circuit to obtain the binary output activation for

the pixel [30].

The neuron array consists of 8x8 neuron tiles and each neuron tile consist of 64x64 neuron

patches. Each of the 64 columns of the neuron tile corresponds to a different neuron filter,

so the 64 neuron patches in each column belong to a single neuron filter. Figure 38 shows

the structure of a neuron tile and a neuron patch.

 40

Figure 38 Structure of a neuron tile [30]

As it can be seen above, each neuron patch processes 3x3 binary input activations (IAs)

from the IA BUF. For that, each IA is processed by a multiplying bit cell. The M-BC

multiplies the corresponding 1-b IA with a previously stored 1-b filter weight and stores the

result as charge on a local capacitor. When all the multiplications are performed, all

capacitors are shorted together to perform the charge accumulation completing the MVM

operation [30].

As explained in section 2.2.1, the M-BC is a modified SRAM based on charge-mode analog

in-memory computing. The M-BC has two main functions: to store a 1-b filter weight and to

perform the MAC operation. For that, the M-BC consist of a 6T-SRAM, 2 additional PMOS

transistors and a MOM capacitor. Figure 25 shows the schematic of the M-BC. The 6T-

SRAM takes care of storing the filter weight for the MAC operation, whereas the 2 PMOS

and the MOM capacitor are used to perform the multiplication and accumulation,

respectively. So, when designing the M-BC it is very important to consider these two

functions [30].

As introduced, the MAC operation starts with the storage of pre-trained weights on each

M-BC of the neuron array. Once the pre-trained weights are stored on the neuron array,

these values will not change again until the neural network is retrained again. This

operation is performed via SRAM read/write circuitry. In the next section, the design of a

SRAM cell is going to be explained.

3.1. Static Random-Access Memory (SRAM)

3.1.1. Introduction

Nowadays SRAM occupies a large segment of modern System-on-Chips (SoC) and

microprocessors, and they are widely used in many applications. The SRAM memories are

composed by a memory cell and some peripheral circuits which are in charge of controlling

the write and read operations of the memory. During write operations, incoming data is

driven on the bitlines to be stored in the enabled bit cell. During read operations, the internal

data of the previously enabled bit cell is sensed in the bitlines and translated to the output

[35, 36].

The conventional architecture for an SRAM consists of an array of memory cells along with

the circuitry needed to access each bit cell in the array and to perform the read write

operations. Each row in the array corresponds to a concrete address in the array, and each

 41

pair of columns are set to different voltages to perform write and read operation. For read

operation, usually a sense amplifier is placed at the end of each pair of columns to detect

voltage differences rapidly. Figure 39 shows a conventional architecture of an SRAM

memory array.

Figure 39 SRAM memory array [37]

The most important element of the SRAM is the memory cell. This memory cell must be

able to read, write and hold data as long as the power is applied. There are several types

of SRAM cells, but the most common is the 6T-SRAM. The 6T-SRAM cell contains a pair

of cross-coupled inverters wired in a positive feedback loop creating a bistable storage

element and a pair of access or pass transistors (A1, A2) controlled by a wordline and

connected to the two bitlines to read and write the state. Figure 40 shows the schematic

and the block diagram of a 6T-SRAM [35].

Figure 40 Block diagram and schematic of a 6T-SRAM [35]

As introduced before, the SRAM bit cell must perform three operations: hold data, read

data and write data. Next, these three operations will be explained in detail.

3.1.2. Hold Data

As introduced before, the SRAM bit cell should provide a stable storage as long as there

is power in the circuit. This work is performed by the two looped inverters when the access

transistors are switch off, that is, where the wordlines are tied to ground. When this happens

 42

the value of each storage node will be reinforced, ensuring that the value of the SRAM cell

is maintained. To better explain the operation, it is assumed that in the storage node Q_b

there is a one. As there is a one in Q_b, the lower inverter will drive the node Q to zero and

this zero will drive Q_b to one, ensuring the initial values.

3.1.3. Read Operation

The read operation starts by precharging all the bitlines to VDD and then disconnecting and

leaving them floating at one. Once this is done, the wordline is raised activating the access

transistors and connecting the storage nodes of all the bit cells in a row to their bitlines.

When this happens, one of the bitlines in each memory cell will be pulled down to ground.

This transition is normally slow because the line has a very large capacitance compared to

the size of the inverter transistor. So, in order to not have to wait for the complete discharge

of the bitline, a sense amplifier is usually placed on the periphery, since this device is

capable of detecting voltage differences around 10% of the supply voltage.

When the wordline is raised, one of the bitlines will be discharged through the access and

pull-down transistors. However, when this happens, the current going through the access

transistor will try to raise the storage node to one. So, to minimize this effect, the pull-down

transistor (D1, D2) needs to be much stronger than the pass transistor. This requirement is

known as read stability and it must be considered when designing an SRAM, because it

can cause many problems. Figure 41 shows the waveforms of the SRAM cell when reading

the value ‘0’ [35].

Figure 41 ‘0’ read operation for SRAM cell [35]

3.1.4. Write Operation

To perform the write operation, instead of precharging the bitlines to VDD and then leaving

them floating, the bitlines are forced to the desired voltages. Once this is done, as in the

read operation, the wordline raises, activating the access transistor and connecting the

bitlines with the storage nodes. When trying to write the opposite value to the one already

stored in the SRAM cell, the access transistor is forcing a value in the storage node while

the inverter is trying to hold the previous value. In order to perform the write operation

correctly, the access transistor should be stronger than the inverter. However, according

to the read stability requirement, the access transistor should be weaker than the pull-down

transistor of the inverter. Therefore, to ensure the proper performance during write

operation, the access transistor must be stronger than the pull-up transistor (P1, P2) of the

inverter. This requirement is known as writability or write stability. Figure 42 shows the

waveforms of the SRAM cell when writing the value ‘1’ [35].

 43

Figure 42 ‘1’ write operation for SRAM cell [35]

Therefore, when designing an SRAM cell, it must be considered that during a read

operation the access transistor has to modify as little as possible the storage node of the

cell, and that during a write operation the access transistor has to be able to modify the

value of the storage nodes imposed by the inverters. As mentioned before, this tradeoff is

usually achieved by making inverters with weak pull-ups and strong pull-downs.

3.1.5. SRAM Cell Stability

One of the most important criteria when designing and SRAM cell is the stability, especially

when reading or holding a value in the memory. If the SRAM cell is not stable during these

operations, it can result in a loss of data. To measure the stability of the cell, the Static

Noise Margin (SNM) is calculated. The SNM measures the amount of noise that can be

applied to the inputs of both inverters before the stable state is lost. The most important

measures according to the stability of the SRAM are the Hold Static Noise Margin (HSNM)

and the Read Static Noise Margin (RSNM). Apart from the fact that the SRAM must be

stable when reading and holding, it must be also stable when writing, although this measure

is less important than the previous ones. The Write Static Noise Margin (WSNM) measures

the minimum voltage required to flip the state of an SRAM to the desired value [35, 38].

3.1.5.1. Hold Static Noise Margin (HSNM)

During hold operation the pass transistors are off, so the bitlines and the storage nodes are

not connected. Figure 43 shows the test circuit used to determine the HSNM. A noise

source Vn will be applied at the input of each inverter. To measure the HSNM of the SRAM

cell, first it is necessary to obtain the static voltage transfer characteristics (VTCs) of the

two inverters. These curves are usually called butterfly curves due to its shape. Once the

VTCs are obtained, the HSNM “will be determined by the length of the side of the largest

square that can be inscribed between the curves” [35]. Figure 44 shows an example of the

calculation of the HSNM.

Figure 43 Circuit to find the Hold Static Noise Margin (HSNM) [35]

 44

Figure 44 Butterfly curves indicating the Hold Static Noise Margin (HSNM) [35]

3.1.5.2. Read Static Noise Margin (RSNM)

During read operation the bitlines are precharged and the access transistors are activated

to connect the bitlines with the storage nodes. Figure 45 shows the test circuit used to

determine the RSNM. As mentioned before, during read operation, the pass transistor will

try to pull the low storage node up. This effect will distort the VTCs and therefore, will reduce

the SNM compared to HSNM. A solution to increase the RSNM of the SRAM, is to increase

the size of the pull-down transistor of the inverters. However, this will also increase the total

area of the SRAM cell. Figure 46 shows and example of the calculation of the RSNM [35].

Figure 45 Circuit to find the Read Static Noise Margin (RSNM) [35]

Figure 46 Butterfly curves indicating the Read Static Noise Margin (RSNM) [35]

3.1.5.3. Write Static Noise Margin (WSNM)

During write operation, the bitlines are set to a desired value and the pass transistors are

activated to connect the bitlines with the storage nodes. Figure 47 shows the test circuit

used to calculate the WSNM, that is very similar to the one used to calculate RSNM. As

 45

mentioned before, during write operation, the pass transistor must overpower the pull up

transistor of the inverter without breaching the read stability requirement. This will also

modify the VTCs, reducing the SNM compared to HSNM. Unlike the previous two

measurements, the WSNM will be “the size of the smallest square inscribed between the

two curves” [35]. Figure 48 shows and example of the calculation of the WSNM.

Figure 47 Circuit to find the Write Static Noise Margin (WSNM) [35]

Figure 48 Butterfly curves indicating the Write Static Noise Margin (WSNM) [35]

3.1.6. SRAM Area and Power

Apart from the stability of the SRAM cell, it is very important to consider the area and the

power consumption when designing an SRAM cell. As explained before, usually a memory

array is composed of a large number of memory cells. For example, in the circuit being

analyzed, the neuron array is composed of more than 2 million modified SRAM cells. So,

a small difference in the size or power consumption of these modified SRAM cells can

become very important. Usually, the energy per read and write operation is also calculated.

3.2. Multiplying Bit-Cell (M-BC)

3.2.1. Introduction

As mentioned before, to perform the MAC operation, apart from the SRAM cell, the design

proposed by Hossein Valavi et al. [30] includes 3 extra elements: 2 PMOS transistors driven

by the input activation signals and a 1.2 fF MOM capacitor. Figure 49 shows the schematic

of the M-BC.

 46

Figure 49 M-BC schematic [30]

Apart from these extra elements necessary to create the M-BC, two more components

must be added to perform the MAC operation correctly. To store the result of the XNOR

operation in the MOM capacitor, Valavi et al. proposed the use of PMOS transistor. These

PMOS transistors will have no problem storing a ‘1’ in the capacitor. However, when the

XNOR result is a ‘0’, the PMOS transistor will not be able to store a strong ‘0’ in the

capacitor. This is because when the transistor has to pass a ‘0’, the parasitic capacitances

of the source are discharged until 𝑉𝐺𝑆 = |𝑉𝑡ℎ𝑝|. At that moment, the transistor tuns off and

the MOM capacitor will not reach a strong ‘0’, reducing considerable the voltage range of

the M-BC. To solve this problem, the paper adds a single NMOS transistor that discharges

all the MOM capacitors of a neuron filter before performing the MAC operation. So, if the

result of the operation is ‘0’, the capacitor will be already discharged [30].

Apart from this discharge transistor, the paper also adds a transmission gate between the

MOM capacitor and the PA signal. The main purpose of this component is to isolate the

MOM capacitor from the output and thus not influence the XNOR operation of each M-BC.

Figure 50 shows the schematic a M-BC and the necessary extra elements mentioned

above [30].

Figure 50 M-BC complete schematic

3.2.2. Multiply and Accumulate (MAC) operation

The MAC operation is performed in three steps. The total duration of this operation

proposed in [30] is of 250 ns. These three steps will be explained below.

 47

3.2.2.1. Reset Phase

First, as mentioned above, all MOM capacitors in a neuron filter are discharged to GND.

For that, the transmission gate (via TSHORT/TSHORTb) and the discharge transistor (via

PRE) are activated. This will connect all the MOM capacitors with the PA node. The SRAM

will be disconnected during this phase by keeping IA and IAb high. This phase lasts 100

ns [30].

3.2.2.2. Binary-Multiply Phase

After discharging all the capacitors, the binary multiplication or XNOR operation will be

performed. For this, the transmission gate and the discharge transistor will first be

deactivated to not interfere with the operation. Then, IA and IAb will take their

corresponding values, activating a single PMOS and charging or holding the capacitor to

VDD or GND respectively, depending on the result of the operation. This phase lasts 100 ns

[30].

So, during this phase, depending on the result of the XNOR operation, a different charge

will be stored on the capacitor. Equation (8) shows how this operation is performed, where

outi indicates the binary result of the XNOR operation.

𝑄𝑖 = 𝑜𝑢𝑡𝑖 · 𝑉𝐷𝐷 · 𝐶𝑀𝑂𝑀

𝑜𝑢𝑡𝑖 ∈ {0,1}
(8)

3.2.2.3. Accumulate Phase

Once the results of every M-BC are stored in each MOM capacitor, the SRAM will be

disconnected again by keeping IA and IAb high and the transmission gate will be activated

connecting all the capacitors in a neuron filter. When this happens, the charges of all the

MOM capacitors will be added depending on the result of each XNOR operation. This

operation is represented in (9)

𝑄𝑂𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑄𝑖 = ∑ (𝑜𝑢𝑡𝑖 · 𝑉𝐷𝐷 · 𝐶𝑀𝑂𝑀)
𝑁

= 𝑉𝐷𝐷 · 𝐶𝑀𝑂𝑀 · ∑ 𝑜𝑢𝑡𝑖
𝑁𝑁

𝑜𝑢𝑡𝑖 ∈ {0,1}

(9)

So, considering a column with a total of N M-BCs, the voltage of the entire output column

is defined by (10).

𝑉𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑉𝑃𝐴 =
𝑄𝑂𝑢𝑡𝑝𝑢𝑡

𝐶𝑡𝑜𝑡𝑎𝑙
=

𝑉𝐷𝐷 · 𝐶𝑀𝑂𝑀 · ∑ 𝑜𝑢𝑡𝑖𝑁

𝑁 · 𝐶𝑀𝑂𝑀
=

𝑉𝐷𝐷 · ∑ 𝑜𝑢𝑡𝑖𝑁

𝑁
 (10)

As it can be observed, the output voltage only depends on the power supply, the number

of M-BCs and the results of each XNOR operation. Therefore, considering the neuron filter

in the deeper Hidden Layer, with depth equal to 512, PA can take (3𝑥3𝑥512) + 1 = 4609

levels between GND and VDD, centered at mid-rail, which corresponds to an approximate

resolution of 12-bits. This phase lasts 50 ns [30].

 48

Figure 51 shows the phases explained above for three M-BCs.

Figure 51 MAC operation performed by 3 M-BCs in 3 phases [30]

3.2.3. M-BC Stability

As mentioned before, the weights stored in the SRAM are pre-trained values that are not

changed regularly. That is why the stability of these values is crucial for a good performance

of the neural network. During reset phase, the storage nodes are exposed to a pull-down

condition, so when designing the M-BC it must be taken into account that the node that

stores a ‘1’ does not invert its value [30].

Apart from the stability of the storage nodes, it is important to consider the parasitic

elements that will be introduced, especially in the PA signal, due to the great length of the

line and the routing. These parasitic elements are important, because they will produce a

reduction in the dynamic range of the PA signal. This problem will be explained in more

detail later [30].

3.2.4. M-BC Area and Power

As with the SRAM cell design, one of the most important criteria are the area and the power

of the device. In order not to increase the area excessively, [30] proposes to add the

capacitor above the bit cell, using higher metal layers. Apart from this, they have also

decided to choose p-type transistors instead of n-type transistors to perform the XNOR

operation. By choosing p-type transistors, the number of PMOS and NMOS transistors

match and thus make the design denser. With the design proposed in [30], they have been

able to design the M-BC only 80% larger than a standard SRAM cell.

 49

3.3. CMOS Technology

3.3.1. Moore’s Law

CMOS technology was invented in 1963 by Frank Wanlass and to this day it is the dominant

technology in electronics, especially in integrated circuits. One of the most important

benefits that CMOS technology shows is the ability to improve the performance with

reduced power consumption by scaling the technology. Gordon Moore in 1965 published

an article where he predicted the evolution of the electronics industry and it became one of

the most popular “laws”. It is known as Moore’s law. The Moore’s law stated that the

number of transistors on an integrated circuit would double every 2 years (1 year at the

beginning). So, to continue with this prediction, the transistor width, length, and oxide

dimension were scaled down by 30% every two-three years. Through this scaling, not only

a denser design is obtained, but per technological node, parasitic capacitances are

reduced by 30%, energy and active power per transition are reduced by 65% and 50%

respectively, and the gate delay is reduced by 43%, allowing a 30% increase in maximum

clock frequency. Figure 52 shows how the CMOS technology has been reduced during the

last years [39,40].

Figure 52 Transistors size reduction during the last years [51]

3.3.2. M-BC Technology Overview

The design of the M-BC explained above, was manufactured with 65nm CMOS technology,

which is a technology that began to be used around 2003. In accordance with the Moore’s

law, in this project the M-BC circuit has been redesigned using a more recent CMOS

technology to improve the characteristics of the original circuit. For that, a 22nm FDSOI

technology has been used.

The technology used to design the M-BC circuit is 22FDX®, from GlobalFoundries. This

technology employs Fully Depleted Silicon-On Insulator (FDSOI) devices which presents

several advantages over common bulk CMOS devices. One of the main advantages is that

 50

SOI technologies present much lower leakage than the bulk technologies which makes it

ideal for IoT systems and also for M-BC as it will be explained later in the design section.

To reduce the leakage, a Buried Oxide (BOX) layer is added below the diffusion regions

creating a fully depleted channel. By placing this BOX layer, the electric flow between drain

and source is confined in a smaller area that is very close to the gate, thus reducing the

leakage. Also, by adding this BOX layer, the depth of the source and drain junction

becomes smaller, which reduces the junction capacitances of the transistors. Figure 53

shows a cross section of the regular transistor and FDSOI transistor [41].

Figure 53 Cross section of the regular transistor and FDSOI transistor [42]

Another important advantage of SOI devices over bulk devices is that the body is

electrically isolated from the drain and source, allowing the transistor threshold voltage to

be controlled. In these devices, the body can be considered as a second gate, which

depending on the voltage applied in the bulk, it can control the leakage and the switching

frequency of the transistor. Figure 54 shows a cross section of the regular transistor and

FDSOI transistor with bulk connection [42].

Figure 54 Body Biasing in regular transistor and FDSOI transistor [43]

 51

4. M-BC Schematic Design

In this section the design of the CNN accelerator analyzed in the previous section will be

explained. As mentioned, for this design a much smaller technology has been used. With

this change, it is expected to improve the main characteristics of the design, such as area

and energy efficiency. As technology has changed, certain general characteristics of the

circuit have also been changed. Table 2 summarizes the general characteristics of the

circuit.

Technology 22 nm FDSOI 65 nm CMOS

Clock frequency 100 MHz 100 MHz

Operating VDD 0.8 V 0.94 V

Table 2 Summary of general design characteristics

At the end of the design, a comparison will be made between the original results obtained

in the paper [30] and the results obtained in this project to see if these improvements have

been achieved.

As previously mentioned, the M-BC has two main functions, to store the pre-trained weights

and to perform the MAC operation. First, the SRAM has been designed, which will later be

implemented in the M-BC.

4.1. SRAM Design

The SRAM is the responsible of storing the pre-trained weights (W, Wb) used for the

filtering of the input activations. As mentioned before, the area, the stability and the power

consumption have been considered for the memory design.

22FDX technology offers several types of transistors depending on the threshold voltage

(Vth). All the transistors support a nominal voltage VDD of 0.8 𝑉 ± 10%. During the SRAM

design, two types of transistors have been used:

• Regular Vth (RVT: nfet and pfet): This type of transistors, as the name indicates,

have a regular Vth compared with the rest of the transistor. Regarding the size, the

minimum length of the transistor is 20nm and the minimum width is 80nm.

• Ultra-low Leakage High Vth (UHVT: uhvtnfet and uhvtpfet): This type of transistor,

as the name suggests, have a higher Vth than the regular Vth transistors. Apart from

this, this type of transistors offers lower leakage than the regular Vth transistors.

Another difference between the two types is the minimum length of the transistor,

which in this case is 28nm.

Using these transistors, two different SRAMs have been designed and analyzed in this

project. However, there is another SRAM that has been analyzed with these designs. The

technology offers three 6T-SRAM bit cell models where some specific transistors are used.

22FDX offers an Ultra-Low Leakage (ULL) SRAM, a High Density (HD) SRAM and a High

Current (HC) SRAM. From these types of SRAMs, during the test carried out, two of them

were discarded, because the behavior regarding the previously mentioned criteria was

worse. Therefore, in the following sections three different SRAMs will be analyzed and

 52

compared. Two of them designed in this project and the third one the ULL SRAM, offered

by the technology. In order to be able to compare properly and to facilitate the design of

the layout, it has been decided to use a length of 28nm for all transistors.

4.1.1. UHVT SRAM

The UHVT SRAM has been designed using UHVT transistors. As area and stability are

one of the main criteria for the SRAM design, the width of the pull-up transistor of the SRAM

has been set to the minimum value, which is 80nm. Once this value was set, the widths of

the pull-down and pass-gate transistors were set to 110nm and 90nm respectively, taking

into account the writability and read stability requirements. The width of the pull-down

transistor was intended to be 150nm instead of 110nm, since the reading stability of the

SRAM bit cell was better. However, due to some problems encountered during the layout

design, the width of this transistor was changed. One of the main advantages of this SRAM

is that the storage nodes remain constant because the transistors suffer low leakage.

Figure 55 shows the schematic of UHVT SRAM.

Figure 55 UHVT SRAM Schematic

4.1.2. UHVT and RVT SRAM

The UHVT and RVT SRAM has been designed using UHVT and RVT transistors.

Specifically, the pass-gate transistors are UHVTs and the transistors that make up the

bistable storage element are RVTs. This configuration offers several advantages. The

UHVT pass-gate transistors will maintain the storage node constant and the RVT

transistors will improve the read and hold stabilities of the SRAM bit cell. This happens

because RVT transistors are stronger than UHVTs. So, the pull-down transistor does not

let the current flowing through the access transistor raise the storage node. However, this

configuration shows two important drawbacks over UHVT SRAM. On the one hand, since

the RVT transistors are stronger, the power consumption is higher, especially when writing

a value. On the other hand, the area of this SRAM is larger, since the necessary distance

between two transistors of different type is greater than the distance between two

 53

transistors of the same type. Regarding the size of the transistors, they are the same as

those used in the UHVT SRAM. Figure 56 shows the schematic of UHVT and RVT SRAM.

Figure 56 UHVT and RVT SRAM Schematic

4.1.3. ULL SRAM

The ULL SRAM is one of the designs that the technology offers. One of the main

advantages of this SRAM is that the area is much smaller than the previous designs. This

happens because the technology has some special rules for its SRAM that ignore or relax

some design restrictions, such as the minimum width of the transistors. However, this is

also a problem, because these rules only apply to SRAM and not to the additional

transistors needed for the M-BC. So, the SRAM area is much smaller, but the M-BC area

will be much larger than with other SRAM models. Figure 57 shows the schematic of ULL

SRAM.

 54

Figure 57 ULL SRAM Schematic

4.1.4. SRAM Testbench

To select the SRAM that will be used in the M-BC, the criteria mentioned in the previous

section have been used. To measure all the necessary characteristics for the comparison,

the testbench shown in Fig.58 has been used.

Figure 58 SRAM Testbench

As it can be seen in the testbench, the bitlines BL and BLB are connected to two capacitors

that simulate the parasitic capacitors of the bitlines. The value of these capacitors is quite

large because the bitlines are normally connected to several SRAM bit cells and their length

is usually big. Apart from these capacitors, the bitlines are also connected to a circuit called

“Precharge_PMOS”. This circuit simulates the operation of the driver that sets the

necessary values of the bitlines to perform read and write operation in an SRAM array.

Figure 59 shows the schematic of the Precharge_PMOS circuit.

 55

Figure 59 Precharge_PMOS Schematic

This circuit can be divided in two parts. The first part is formed by the transistors P0 and

P1 and they are used to precharge the bitlines to start a reading operation. The second

part is composed by the other transistors and they are used to set the desired value in the

bitlines to perform write operations. Specifically, the transistors P2 and N0 sets BL to VDD

and GND respectively, and the transistors P3 and N1 sets BLB to VDD and GND,

respectively. During read operation, after the precharge of the bitlines, all transistors remain

off. As it can be seen in the circuit above, the transistors are much bigger than the

transistors used in the SRAM. This is because the transistors of the “driver” must be

stronger than the SRAM transistors. Figure 60 shows the different waveforms of the signals

used in the testbench.

Figure 60 Signals used in SRAM Simulation

 56

The simulation that can be seen in the figure above is divided in two parts. From 0 to 20ns,

the bitlines BL and BLB are set to VDD and GND respectively to write the value ‘1’ in the

memory. This is done with the signals HBL and LBLB. Then, from 20ns to 40ns, the reading

operation begins by precharging the bitlines with the signal Pre. In the next 20 ns, it can be

seen the discharge of bitline BLB indicating that there is a ‘1’ stored in the SRAM. Then,

from 80ns to 140ns the process is repeated but writing a ‘0’.

4.1.5. Comparison

Using the previous testbench, various features have been obtained from the SRAMs, such

as the RSNM, the HSNM and the energy per read and write operation. In addition, the area

of each SRAM bit cell has been estimated during layout process, since, as mentioned

before, it is a very important characteristic. Table 3 shows the most important features for

each type of SRAM.

SRAM Type
HSNM

(mV)

RSNM

(mV)

Energy per

Read

operation

(aJ)

Energy per

Write

operation (aJ)

Estimated

Area (μm2)

UHVT 420 180 22.7 246.35 0.28

UHVT and

RVT
390 290 32.4 295.7 0.37

ULL 415 210 22.1 284.9 0.11

Table 3 SRAM type comparison

As it can be seen in the table, each SRAM has its own advantages. The ULL SRAM shows

very good values in all the parameters that have been calculated, especially in the area.

However, as this SRAM is a cell given by the technology, during the layout process, it was

realized that it was not feasible to design the M-BC with this SRAM. As for the other two

designs, the UHVT SRAM presents better characteristics than the UHVT and RVT SRAM

except the RSNM. Although this value is lower, it is an acceptable RSNM. So, after

analyzing the three SRAM models, the UHVT SRAM has been chosen for the M-BC design.

4.1.6. Results

In this section, the results of the UHVT SRAM simulations are shown. For that, the

testbench explained above is used. Figure 61 shows the waveforms of the storage nodes

of the SRAM during the simulation.

 57

Figure 61 Storage nodes simulation in SRAM

As it can be seen above, the performance of the SRAM is as expected. During the read

operation, it can be seen that as explained in section 3.1.3, the storage node with the low

level tries to increase its value due to the current going through the pass transistor.

However, this value is not critical as it is very far from the value necessary to change the

memory state. Specifically, the peak reaches a maximum value of 88.8 mV, which is much

lower than the Vth of the transistors used. In addition, it can be also seen that at 80ns, the

SRAM state changes correctly, confirming that the SRAM meets the writability requirement.

Figure 62 shows a zoom where it can be seen that the change of state in the SRAM lasts

approximately 1 ns.

Figure 62 Zoomed view of state change in SRAM

 58

In the comparison of the SRAM types, the HSNM and RSNM of each model have been

taken into account. To obtain these values, as explained in section 3.1.5, the VTCs of the

two inverters have been obtained. Figure 63 and Fig. 64 show the butterfly curves were

the HSNM and RSNM have been obtained, respectively.

Figure 63 SRAM HSNM

Figure 64 SRAM RSNM

 59

4.2. M-BC Design

4.2.1. Single M-BC Design

After selecting the SRAM, the M-BC can be designed. One of the most important parts of

the circuit is the charge stored in the MOM capacitor, which is the result of the XNOR

operation. Therefore, it is important that this charge remains constant and that there are no

losses during the binary-multiply phase and accumulate phase. If this does not happen,

the PA obtained in the accumulation phase may be a wrong value, especially when there

are many M-BCs connected. To ensure that the charge remains constant, UHVT type

transistors have been used. The use of this type of transistors has another important

advantage related to the area. As in SRAM, if different types of transistors were used in

the design, the size of the M-BC would be much larger than if the same type of transistors

were used. In addition, to reduce leakage and area even more, the PMOS transistors used

to perform the XNOR operation and the transistors used in the transmission gate have a

width of 80nm, which is the minimum width. The length of those transistors, as in SRAM,

is 28nm.

When designing the M-BC, the MOM capacitor is also very important. In section 3.2.2 it

was said that the PA voltage of the M-BC does not depend on the MOM capacitor.

Specifically, the PA voltage is represented in (11).

𝑉𝑃𝐴 =
𝑉𝐷𝐷 · 𝐶𝑀𝑂𝑀 · ∑ 𝑜𝑢𝑡𝑖𝑁

𝑁 · 𝐶𝑀𝑂𝑀
=

𝑉𝐷𝐷 · ∑ 𝑜𝑢𝑡𝑖𝑁

𝑁
 (11)

However, this only happens in an ideal case. In fact, the output voltage range of the M-BC

is highly dependent on the value of the MOM. This happens because, as with bitlines, the

parasitic at the output are usually important, mainly due to its length. Equation (12) shows

the output voltage considering the parasitic capacitors.

𝑉𝑃𝐴 =
𝑉𝐷𝐷 · 𝐶𝑀𝑂𝑀 · ∑ 𝑜𝑢𝑡𝑖𝑁

𝑁 · 𝐶𝑀𝑂𝑀 + 𝐶𝑝𝑎𝑟
 (12)

These parasitic capacitors cause the reduction of the dynamic range of the PA, thus

reducing the output voltage range of the M-BC. To mitigate this problem, the capacity of

the MOM should be made as large as possible. However, increasing the capacity of the

MOM means increasing the size of the MOM, that is, increasing the area of the M-BC.

Apart from this, by increasing the MOM, the stability of the M-BC worsens. This is because

the storage nodes are going to be exposed to a stronger pull-down condition. So, to choose

a value for the MOM capacitor, it is necessary to take these conditions into account. The

MOM capacitor value has been modified during the design phases, especially in the layout

phase. Finally, the value of the MOM capacitor has been set to 2.84 fF, which is 136%

bigger than the capacitor selected in the reference paper. Figure 65 shows the schematic

of a M-BC.

 60

Figure 65 Single M-BC schematic

4.2.1.1. Single M-BC Testbench

To simulate the circuit, the testbench shown in Fig.66 has been used.

Figure 66 Single M-BC Testbench

As it can be seen in the testbench, the bitlines BL and BLB, as in the SRAM testbench, are

connected to two capacitors and to a circuit that simulates a driver. However, the operation

of this circuit is now different because to simulate the M-BC, it is only necessary to write a

value in the SRAM. Therefore, this circuit is only used to write values in the SRAM. In this

case, a ‘1’ is stored in the memory.

It can be also seen that the M-BC output is connected to the discharge transistor and to a

capacitor. This capacitor, as the capacitors connected to the bitlines, simulates the parasitic

capacitors of the output due to its length and routing. In this case, it has been decided that

the value of the parasitic capacitor is 10% the value of the MOM. Surely, due to the

technology that is being used, this percentage could be lower, but it has been decided to

keep this value so that the simulation is not too optimistic.

 61

4.2.1.2. Simulation

Figure 67 shows the waveforms of the external signals used to simulate the M-BC.

Figure 67 External signals used in M-BC Simulation

As mentioned before, the first 100 ns of the simulation are used to write the value ‘1’ in the

SRAM. Then, the MAC operation begins. As explained in section 3.2.2, in the first 100 ns,

the discharge transistor is activated by PRE signal, discharging the MOM capacitor. Then,

in the next 100 ns, the binary-multiplication is performed. For that, the transmission gate

controlled by TSHORT/TSHORTb is deactivated and a PMOS is activated, in this case with

the signal IAb. Therefore, in this case the output is represented in (13).

𝑂𝑢𝑡 = 𝑊 · 𝐼𝐴 =′ 1′ ·′ 1′ = ′1′ (13)

Finally, in the next 50 ns, the transmission gate is activated again, thus connecting the

MOM capacitor with PA. This sequence is repeated but inverting the values of IA/IAb and

obtaining a different output. This operation is represented in (14)

𝑂𝑢𝑡 = 𝑊 · 𝐼𝐴 =′ 1′ ·′ 0′ = ′0′ (14)

Between the two operations, there is a 100 ns wait. This is done to simplify the simulation

and to separate the two different operation.

Figure 68 shows the voltage at the MOM capacitor and at the PA output obtained in the

simulation.

 62

Figure 68 Single M-BC PA and Vcap pre-layout simulation

In the image above, it can be seen several things that have been already discussed. First

of all, it can be seen that the MOM is discharged successfully. It can be also seen that

when the result of the XNOR operation is ‘1’, the PA is not able to reach VDD due to the

parasitic capacitors. In this case, the drop is a little higher than expected, because the

discharge transistor is slightly oversized. Otherwise, the M-BC works as expected.

However, to ensure that the M-BC works properly, it is necessary to check the stability of

the circuit. Figure 69 shows the storage nodes of the SRAM during the simulation.

Figure 69 Storage nodes pre-layout simulation in M-BC

 63

As it can be seen above, the storage node that stores the high value tends to decrease at

the beginning of the binary multiplication phase due to the pull-down condition of the MOM.

However, as it can be seen, this value only drops approximately 10% of its value and it

recovers very quickly, without affecting the stability of the circuit.

4.2.1.3. Results

In this section the most important characteristics obtained in the simulation of a single M-

BC are summarized. Table 4 shows these characteristics.

Pre-Layout

Simulation

Maximum PA

voltage (mV)

Minimum PA

voltage (μV)

Maximum

energy per

operation (fJ)

Minimum

energy per

operation (fJ)

Single M-BC 706.22 10.08 2.07 0.05

Table 4 Single M-BC results in pre-layout simulation

The maximum PA voltage and maximum energy per operation correspond to the case in

which the XNOR operation is ‘1’ and the minimum values to the case in which it is ‘0’. This

is consistent, since when the result of the operation is ‘1’, the MOM capacitor has to be

charged, whereas when the result is ‘0’, it is already discharged.

4.2.2. Neuron Patch

Once the M-BC is designed, a 3x3 M-BC column can be designed, also called Neuron

Patch. The circuit does not have any significant change since no new components have to

be added. Figure 70 shows the schematic of a Neuron Patch.

 64

Figure 70 Neuron Patch Schematic

As it can be seen in the schematic, as in an SRAM array, each column inside the neuron

patch has its own wordline and each row its pair of bitlines. Apart from this, the transmission

gates of all the M-BCs in the neuron patch are controlled by the same TSHORT/TSHORTb

signal. As it can be expected, the PA signals of each M-BC are connected to perform the

accumulation operation and each M-BC in the neuron patch has its own input activation.

4.2.2.1. Neuron Patch Testbench

The testbench used to simulate the neuron patch is almost the same than the one used for

a single M-BC. For example, if the total capacity at the output increases, the parasitic

capacitor at the output increases by the same proportion. Figure 71 shows the testbench

used to simulate the neuron patch.

 65

Figure 71 Neuron Patch Testbench

4.2.2.2. Simulation

The external signals (IA/IAb, PRE, TSHORT/TSHORTb) are the same as those used in the

simulation of a single M-BC. These signals are represented in Fig. 67. Therefore,

considering that all the weights stored in the M-BCs of the neuron patch are ‘1’, the output

obtained is shown in Fig. 72.

 66

Figure 72 Pre-layout Neuron Patch PA simulation with all XNOR operation ‘1’ and ‘0’

As it can be seen, when the result of the XNOR operation in all the M-BCs is ‘1’, the output

still does not reach VDD, but the value obtained is better than when only one M-BC was

simulated. However, the value obtained when the result of the XNOR operation in all the

M-BCs is ‘0’, is worse.

Figure 73 shows the resulting PA values obtained, when the result of the XNOR operation

in the MBCs is not ‘1’ or ‘0’ for all of them. The specific cases that are shown in Fig. 73, are

the following two:

• The first example simulates 5 XNOR operations resulting in ‘1’ and the rest XNOR

operations resulting in ‘0’.

• The second example simulates 4 XNOR operations resulting in ‘1’ and the rest

XNOR operations resulting in ‘0’

 67

Figure 73 Pre-layout Neuron Patch PA simulation with 5 and 4 XNOR operations resulting ‘1’

4.2.2.3. Results and Comparison

In this section, the most important characteristics obtained in the simulation of a neuron

patch are summarized. Table 5 shows these characteristics.

Pre-Layout

Simulation

Maximum PA

voltage (mV)

Minimum PA

voltage (μV)

Maximum

energy per

operation (fJ)

Minimum

energy per

operation (fJ)

Single M-BC 706.22 10.08 2.07 0.05

Neuron Patch 720.8 2256 23.34 0.67

Table 5 Neuron Patch results in pre-layout simulation

As mentioned before, the maximum and the minimum PA voltages are higher than for a

single M-BC. So, as expected, the dynamic voltage range of PA increases by adding more

M-BC, since the effect of parasitic capacitors becomes smaller. Regarding energy, the

increase in energy is consistent with the increase in M-BCs.

4.2.3. Neuron Filter

A neuron filter in the neuron array is composed of 4608 M-BCs. So, it is interesting to

evaluate the PA that will enter in the binarizing batch normalization circuit to obtain the

binary output activation. In order to simulate this circuit, it is necessary to make an important

change. In previous simulations, the discharge transistor has always a width of 80nm.

However, as the number of M-BCs increases, the width of this transistor must also increase,

since otherwise it would not be able to discharge all the MOM capacitors. For the neuron

filter, a discharge transistor with width of 1μm has been used. Figure 74 shows the output

of a neuron filter.

 68

Figure 74 Neuron Filter PA pre-layout simulation with all XNOR operation ‘1’ and ‘0’

As mentioned above, the PA signal is discharged much slower than in previous simulations,

since the total capacitance in the output is much bigger. Despite this, increasing the width

of the transistor, the MOM capacitors are discharged properly. Apart from this, it can be

seen that the voltage range of the PA is slightly higher than in previous simulations.

4.2.3.1. Results and Comparison

In this section, the most important characteristics obtained in the simulation of a neuron

filter are summarized. Table 6 shows these characteristics.

Pre-Layout

Simulation

Maximum PA

voltage (mV)

Minimum PA

voltage (μV)

Maximum

energy per

operation (fJ)

Minimum

energy per

operation (fJ)

Single M-BC 706.22 10.08 2.07 0.05

Neuron Patch 720.8 2256 23.34 0.67

Neuron Filter 729.2 535.1 12150 349.8

Table 6 Neuron Patch results in pre-layout simulation

As mentioned before, the voltage range of PA is higher than in previous cases, but it still

does not reach the full range. Regarding consumption, it can be seen that the filtering

operation consumes a maximum of 12.15 pJ and a minimum of 0.35 pJ.

 69

5. M-BC Layout and Post-Layout Results

5.1. M-BC Layout Design

After finishing the design of the circuit and verifying that it works correctly, the layout design

has been carried out. The first idea was to use the first three metal layers to do the routing

and use the next two metal layers to place the MOM. However, as explained in previous

sections, by increasing the capacity of the MOM, the effects produced by parasitic

capacitors at the output are also reduced. That is why it was decided to increase the

capacity of the MOM using three metal layers instead of two. In this way, the capacity of

the MOM is increased, without increasing its size.

By reducing the metal layers for routing, the area of the design increases. However, this

increase is not so critical, since a technique called double patterning is applied in these first

layers. This technique consists of dividing a layer into two different masks. The main

advantage of having two masks is that the design rules between two different masks on

the same layer are much more flexible than the design rules between the same mask on

the same layer. These masks are differentiated by the subscript “_E1” and “_E2”.

Table 7 shows the final configuration used for the circuit design.

Metal Layer 1

(M1_E1,

M1_E2)

Metal Layer 2

(M2_E1,

M2_E2)

Metal Layer

3 (C1)

Metal Layer

4 (C2)

Metal Layer

5 (C3)

Routing Yes Yes No No No

MOM

capacitor
No No Yes Yes Yes

Table 7 Metal Layer configuration

5.1.1. Single M-BC

The design of the M-BC layout is largely determined by the size of the MOM capacitor. The

MOM used in the design has a width of 1 μm and a length of 1.05 μm, which equates to a

capacity of 2.84 fF. However, the dimensions of the MOM, specifically the length, is slightly

bigger due to the thickness of the pins. Both the length and the width of the MOM are quite

large compared to the rest of the components in the circuit, that is why they greatly affect

the final size of M-BC.

Figure 75 shows the layout of a single M-BC.

 70

Figure 75 Single M-BC Layout

The red vertical lines are the polysilicon gate contacts. As it can be seen, there are several

extra polysilicon on both sides of the design. This is because to perform the QRC (Cadence

parasitic extraction tool) correctly, it is necessary to add some dummies on the sides. Apart

from this, at the right side of the figure, it can be seen the body contacts for both types of

transistors. This design is only used to simulate a single M-BC, since to extract the parasitic

components of the circuit the QRC and layout-versus-schematic (LVS) must not have any

error. However, the design shown above is not useful when several M-BCs have to be

connected together. For that, it is necessary to create a standard design. Figure 76 shows

the layout of a standard M-BC.

 71

Figure 76 Single M-BC Standard Cell Layout

As it can be seen above, the design could be divided in two parts: the upper part where

there are 6 horizontal tracks in parallel without any connection, and the rest of the circuit.

The first part is used to connect each IA/IAb signal with each M-BC, and it can be

considered as an external part of the M-BC. In other words, the standard cell could have

been smaller by eliminating these 6 tracks, but later, when designing the Neuron Patch, it

would be necessary to leave an equivalent space between M-BC rows to be able to make

these connections. Therefore, introducing these tracks in the standard cell, the design of

 72

the neuron patch is simplified. The second part of the layout is where the M-BC is located.

However, in the image above it can be only seen the MOM capacitor since the routing and

the transistors are located below it. Figure 77 shows the M-BC layout where some of the

layers and the capacitor have been hidden.

Figure 77 Zoomed and reduced view of single M-BC layout

In the image above, it can be seen a clearer view of the M-BC layout. Regarding the

transistors, the two upper transistors correspond to the transmission gate, while the lower

ones corresponds to the 6T SRAM and the multiplication transistors. Observing the shape

of the capacitor, it can be also seen how the MOM covers almost completely the M-BC,

except for the 6 tracks used for the connections of the input activations, and the

connections of TSHORT and TSHORTb signals.

 73

5.1.1.1. Results

Table 8 shows the dimensions of this single M-BC standard cell layout

 Width (μm) Length (μm) Area (μm2)

Single M-BC

Standard Cell
1.16 1.99 2.31

Table 8 Dimension of single M-BC Standard Cell

The dimensions of the M-BC obtained are slightly larger than expected. This is mainly due

to two reasons. First of all, as mentioned at the beginning of this section, the size of the

MOM has greatly influenced the dimensions of the M-BC, especially the width. As it can be

seen in Fig. 77, in the center of the layout and at the top right there is some free space.

This is because two extra polysilicon must be added to the design, so that the M-BC and

the MOM have similar widths. It is important to remark that the layout of the MOM is offered

by the technology, and the minimum width of this capacitor is 1μm. The second reason

why the dimension of the cell, in this case the length, is greater than expected, is because

the IA/IAb connections have been introduced in the standard cell. If these connections were

made in the neuron patch layout, the M-BC standard cell would have a length of 1.51 μm

and therefore an area of 1.76 μm2.

5.1.2. Neuron Patch

Once the standard cell of the M-BC is designed, is relatively easy to design the layout of a

neuron patch. Figure 78 shows the layout of a neuron patch.

 74

Figure 78 Neuron Patch Layout

Observing the 6 horizontal tracks used for the connections of the input activations, it can

be seen how each M-BC in the same row connects to two different tracks. Figure 79 shows

a zoomed view of these connections.

 75

Figure 79 Zoomed view of input activations connections in a row

As it happens with the M-BC layout, in order to perform the post-layout simulation, it is

necessary to complete the layout by adding the dummy polysilicon and the bulk

connections. To make these body connections, the vertical tracks placed at both sides of

the layout are used. In this layout, unlike in the layout of a single M-BC, what has been

added is the discharge transistor. It is not necessary to add this component, since, as

explained before, only one transistor is required in each neuron filter. However, this

component has been added to the layout to observe what its position would be in the

neuron filter. Finally, the discharge transistors have been placed in the upper left corner of

the layout. Figure 80 shows a zoomed view of the position of the discharge transistor.

Figure 80 Zoomed view of the position of the discharge transistor

As it happens with the layout of a single M-BC, to connect several neuron patches together

it is necessary to create a standard cell. However, in this case there are two types of

standard cells. The only difference between them is that the neuron patches that are placed

in the first row of the neuron array, have the discharge transistor incorporated. Figure 81

and 82 shows these two types of neuron patch standard cells.

 76

Figure 81 Neuron Patch Standard Cell Layout

 77

Figure 82 First row neuron patch Standard Cell Layout

 78

5.1.2.1. Results

Table 9 shows the dimensions of these neuron patch standard cells layout.

 Width (μm) Length (μm) Area (μm2)

Neuron Patch

Standard Cell
3.944 5.976 23.57

First Row

Neuron Patch

Standard Cell

3.944 6.357 25.07

Table 9 Dimension of Neuron Patch Standard Cells

Knowing the dimensions of the neuron patches and the number of neuron patches within

the neuron array, it is possible to estimate the dimensions of the neuron array. The neuron

array is composed of 512 x 512 neuron patches, where 512 of those neuron patches have

the dimensions of the neuron patch in the first row. In addition to the neuron patches, it is

necessary to add the bulk connections of all transistors and the polysilicon dummies.

Taking all this into account, the result of the approximate dimensions of the neuron array

can be seen in Table 10.

 Width (mm) Length (mm) Area (mm2)

Neuron Array 2.1 3.1 6.5

Table 10 Approximate dimension of the Neuron Array

5.2. Post-Layout M-BC Results

After making the layout of the design, it is very important to check that the circuit continues

working correctly. This is very important since when the layout is made, due to the length

of the track, the proximity of different tracks and many other reasons, several parasitic

elements are generated in the design. These parasitic elements are usually not considered

during schematic design, and they can change the behavior of the circuit.

There are two types of extractions of parasitic capacitors: decoupled extraction and

coupled extraction. In the decoupled extraction all the parasitic coupling capacitors are

lumped to the ground. The simulations done with this extraction are less accurate because

some important effects such as cross coupling cannot be simulated. However, in the

coupled extraction all the parasitic capacitors are extracted, increasing the accuracy and

the realism of the simulation. So, due to these differences, it has been decided to carry out

the coupled extraction.

5.2.1. Single M-BC

All the signals and testbench used for the post-layout design are the same as those used

in the schematic design. The only difference is that the parasitic capacitors extracted in the

layout have been added to the circuit. Figure 83 shows the voltage at the MOM capacitor

and at the PA output obtained in the simulation.

 79

Figure 83 Single M-BC PA and Vcap post-layout simulation

As it can be seen in the image above, the behavior of the circuit is very similar to that

obtained in the pre-layout simulation. Observing the voltage range of the PA output, it is

very similar to that obtained in the pre-layout simulation.

To ensure that the M-BC works properly, it is necessary to check the stability of the circuit.

Figure 84 shows the storage nodes of the SRAM during the simulation.

Figure 84 Storage nodes post-layout simulation in M-BC

As it can be seen, the stability of the M-BC has not been affected by the introduction of

parasitic capacitors.

 80

5.2.1.1. Results and comparison

In this section, the result obtained in the post-layout and pre-layout design will be compared.

Table 11 shows these results.

Single M-BC
Maximum PA

voltage (mV)

Minimum PA

voltage (μV)

Maximum

energy per

operation (fJ)

Minimum

energy per

operation (fJ)

Pre-Layout 706.22 10.08 2.07 0.05

Post-Layout 709.39 11798 3.12 0.2

Table 11 Single M-BC pre-layout and post-layout comparison

As it can be seen, even though the maximum PA voltage has increased a little bit, the

voltage range has decreased due to the minimum value of PA. However, this is not very

significant, because, as it has been seen during the schematic design, as the number of

M-BCs increases, the range of PA voltage also increases. What is more important is the

increase in the energy per operation. This is expected because several new components

have been added to the circuit. However, it can be seen that the increase has not been

very large.

5.2.2. Neuron Patch

As in the case of a single M-BC, the signals used in the simulations are the same as in the

schematic design simulations. However, since the pre-charge transistor has been added

to the layout, a small modification has to be made in the testbench. Figure 85 shows an

example of the PA output when the XNOR operation in all the M-BCs are ‘1’ and ‘0’.

Figure 85 Post-layout Neuron Patch PA simulation with all XNOR operation ‘1’ and ‘0’

 81

It is very important that the PA signal is linear for a correct operation of the filtering of the

input activations. For this, all possible PA voltage levels have been calculated. Figure 86

shows a curve that shows the linearity of the output.

Figure 86 Linearity of post-layout neuron patch PA linearity

As it can be seen in the graph, the PA signal does not show any monotonicity problem and

the size of the steps are almost equal. However, this is not enough to state that the design

would not suffer from any linearity problems. For that, the linearity of a neuron filter would

have to be analyzed.

5.2.2.1. Results and Comparison

In this section, the results obtained in the post-layout and pre-layout design will be

compared. Table 12 shows these results.

Neuron Patch
Maximum PA

voltage (mV)

Minimum PA

voltage (mV)

Maximum

energy per

operation (fJ)

Minimum

energy per

operation (fJ)

Pre-Layout 720.8 2.26 23.34 0.67

Post-Layout 709.03 9.76 28.28 2.33

Table 12 Neuron Patch pre-layout and post-layout comparison

As it can be seen above, the PA voltage range decreases when performing the post-layout

simulation. This is largely due to the fact that the number of parasitic capacitors is greater

than in the schematic simulations. This happens, because in the post-layout simulations,

two types of parasitic capacitors are considered, the capacitor added in the testbench (in

both simulations) and the capacitors added by the layout (only post-layout simulation). The

capacitor in the schematic, as previously explained, is introduced in the schematic to

simulate the parasitic capacitance of the PA line. As before, the value of the parasitic

capacitor is 10% of the sum of the MOM capacitors. In this case there are 3x3 MOMs.

Regarding energy per operation, as expected, it can be seen that it is higher when adding

the layout to the simulation, since more elements have been added to the design. However,

the increase is not critical.

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9

P
A

 v
o

lt
ag

e
(m

V
)

n° of MB-Cs with charged MOM capacitors

Post-layout Neuron Patch PA Linearity

 82

5.3. Final Design vs Paper Design

After finishing the complete design of the M-BC and the 3x3 column of M-BCs, the results

obtained are compared with the results of the reference paper [30]. However, before

starting with the comparison, the results offered by the original paper will be analyzed.

Table 13 indicates the most important results shown in the paper.

Single M-BC

Area (μm2)

Neuron Array

Area (mm2)

Energy per

filtering operation

(pJ)

Energy

Efficiency

(TOPS/W)

Throughput

(GOPS)

Paper

design
1.8 ≈ 9 10.6 866 18876

Table 13 Reference paper results

Some of the results shown above are not very well defined in the paper, that is why they

will be explained. First, the paper indicated that the area of a single M-BC is 1.8 μm2.

However, if this value is multiplied by the total number of M-BCs in the neuron array, the

area obtained is much smaller than the final area obtained in the paper. Therefore, this

area value must refer to a smaller part of a M-BC. Figure 87 shows this part of the M-BC.

Figure 87 M-BC part for area comparison [30]

As it can be seen, the value of the area to which the paper refers is an M-BC part without

the MOM capacitor, without the transmission gate, and without the IA/IAb,

TSHORT/TSHORTb, WL and BL/BLB signals.

In addition, regarding the total area of the neuron array, it can be seen that the value shown

in Table 13 is an approximate value. This is because the paper offers the dimensions of

the chip, including the neuron array, the binarizing batch normalization, the IA SRAM and

the IA BUF. So, to obtain an estimated area of the neuron array, a chip image has been

used. Figure 88 shows the image of the chip.

 83

Figure 88 Paper chip dimensions [30]

The estimated dimensions of the neuron array are: 2.8 mm wide and 3.2 mm high.

Considering these dimensions, the area of a complete M-BC could be obtained by dividing

the total area of the neuron array by the total number of M-BCs. However, this result is not

reliable because the inside distribution of this neuron array is unknown.

Finally, the paper indicates that the energy consumption for a filtering operation is 10.6 pJ.

However, it does not specify whether it is an average value or a minimum or maximum

value. Observing the values that have been obtained during the design, it is believed that

the value shown in the paper refers to the average value.

Once the origin of some results of the paper design has been explained, the comparison

of the two design will be made. Table 14 shows the most important results of both designs.

Single M-BC

Area (μm2)

Neuron Array

Area (mm2)

Energy per

filtering operation

(pJ)

Energy

Efficiency

(TOPS/W)

Throughput

(GOPS)

Paper

design
1.8 ≈ 9 10.6 866 18876

This

project
0.87 ≈ 6.5 ≈ 7.9 ≈ 1170 18876

Table 14 Comparison between this project design and paper design

As it can be seen in the table above, the results obtained in the project are much better

than the results announced by the paper. Regarding the area, it has been possible to

reduce a little more than 50% the area of a M-BC and approximately 28% the total area of

the neuron array. As it can be seen, the reduction of a single M-BC is approximately twice

the reduction of the neuron array. This may be due to the fact that the design of the paper

uses more metallic layers for routing than this project. Regarding the energy consumption

for a filtering operation, it has been reduced approximately 25%. This value has been

obtained by scaling the energy consumption of a neuron patch, so the real improvement

could differ a few percentages up or down. Something similar happens with energy

efficiency, since it is inversely proportional to energy consumption per operation. The

expected improvement of the energy efficiency of the design is approximately 35%. Finally,

it can be seen that the throughput has not changed. This is because the original times of

each phase of the MAC operation explained in section 3.2.2 have not been modified.

 84

6. Conclusions and future improvements

6.1. Conclusions

The use of NNs has increased considerably in the past few years. Nowadays, they are

used in many AI applications such as image recognition, robotics, and computer vision,

and often achieving better accuracy than human. However, this accuracy is often related

to very high computational complexity, which degrades the energy efficiency and the

throughput of the NN. Therefore, NN processing techniques are necessary to obtain better

results, and to be able to apply NNs in more applications. One of the most interesting

techniques consists of moving the computation into the memory, saving the expensive data

movement. This technique is called in-memory computing and there are many types of

solutions where different circuits are used.

In this thesis the analysis and comparison of some of the most important in-memory

computing solutions is carried out. After this analysis and comparison, the structure and

operation of the CNN accelerator that has been taken as a reference is explained,

emphasizing the most important criteria when designing. Finally, the design of the CNN

accelerator is performed.

This thesis presents a 3x3 M-BCs column that shows much better results than the design

on which the thesis is based. Specifically, the area and energy efficiency have been

improved by 28% and 35 % respectively. These results are very good since area and

energy efficiency are two of the most important characteristics in a CNN accelerator. This

improvements are mainly due to the employment of the advanced 22 nm FDSOI technology

instead of the 65nm CMOS technology used in [30].

In addition, two types of standard neuron patch or standard 3x3 M-BC column have been

designed to facilitate the design of larger columns.

In conclusion, it can be said that the proposed design has fulfilled all the proposed

objectives and the results obtained are satisfactory.

6.2. Future improvements

This thesis is focused on designing the neuron patch, a small part of the neuron array.
However, the main challenge for future work is to design the neuron filter. This project has
demonstrated the correct performance of the neuron patch after making the layout.
However, it would be convenient to verify that the design works as expected when
completing the entire neuron filter. Furthermore, it would also be convenient to perform a
linearity analysis once the neuron filter design is completed. Finally, once this design is
finished, it would be good to complete the CNN accelerator design with the output circuit
designed in [52].

One of the most important improvements is related to throughput. In this design, despite
reducing the size of the technology, it has been decided to maintain the MAC operation
time, and therefore, the throughput. However, as seen in the simulations, this time could
be reduced. Table 15 shows the suggested changes for a future design.

 85

 Reset Phase (ns) Binary-Multiply Phase (ns) Accumulate Phase (ns)

This thesis 100 100 50

Future
design

100 50 50

Table 15 Suggested future improvement to increase throughput

As it can be seen in the table, it is suggested to reduce the total time by 50 ns, which would

increase throughput by 25%.

Another future work could be to design the M-BC using three metal layers instead of two.
The clearest advantage that would be obtained with this modification is obvious; it would
considerably reduce the area of the M-BC and the neuron array. However, it would also
have clear negative consequences. As explained in section 5.1, in this design, five metallic
layers have been used. So, by increasing the number of metallic layers used for routing,
the number of metallic layers used to design the MOM capacitor gets reduced. By reducing
the number of layers for the MOM capacitor design, the value of the MOM would decrease,
and therefore, the voltage range of the PA. It would be interesting to make a comparison
between these two designs to see if it would compensate the reduction in area with the
reduction in the PA voltage range.

The final improvement is related with the MOM capacitor. As it has been mentioned during
the thesis, the layout of the MOM capacitor used in the design is given by the technology,
which is the biggest component inside the M-BC. That is why it would be interesting to
design a MOM capacitor instead of using the one offered by the technology. The main
advantage of this improvement is that the MOM capacitor would not impose any size
restriction, because it could be designed with the desired dimensions. So, this would
decrease the area of the M-BC. However, the biggest disadvantage of designing the MOM
is that it would not be as accurately characterized as that offered by the technology.

 86

Bibliography

[1] Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2018). A guide to convolutional neural

networks for computer vision. Synthesis Lectures on Computer Vision, 8(1), 1-207.

[2] Aghdam, H. H., & Heravi, E. J. (2017). Guide to convolutional neural networks. New York, NY:

Springer, 10, 978-973.

[3] Namatēvs, I. (2017). Deep convolutional neural networks: Structure, feature extraction and

training. Information Technology and Management Science, 20(1), 40-47.

[4] Saha, S. (2018). A comprehensive guide to convolutional neural networks—the ELI5

way. Towards Data Science, 15.

[5] Namatēvs, I. (2017). Deep convolutional neural networks: Structure, feature extraction and

training. Information Technology and Management Science, 20(1), 40-47.

[6] Dertat, A. (2017). Applied deep learning-part 4: Convolutional neural networks. Towards Data

Science. November, 8, 2017.

[7] Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural

networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329.

[8] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[9] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition (pp. 248-255). Ieee.

[10] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems (pp. 1097-

1105).

[11] Tsang, S. (2018). Review: AlexNet, CaffeNet–Winner of ILSVRC 2012 (Image Classification). A

Medium Corporation, 9.

[12] Elhassouny, A., & Smarandache, F. (2019, July). Trends in deep convolutional neural Networks

architectures: a review. In 2019 International Conference of Computer Science and Renewable

Energies (ICCSRE) (pp. 1-8). IEEE.

[13] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

[14] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015).

Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 1-9).

[15] Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures

of deep convolutional neural networks. Artificial Intelligence Review, 1-62.

[16] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[17] Deng, L., Chu, H. H., Shi, P., Wang, W., & Kong, X. (2020). Region-Based CNN Method with

Deformable Modules for Visually Classifying Concrete Cracks. Applied Sciences, 10(7), 2528.

[18] Simons, T., & Lee, D. J. (2019). A review of binarized neural networks. Electronics, 8(6), 661.

 87

[19] Ghasemzadeh, M., Samragh, M., & Koushanfar, F. (2018, April). ReBNet: Residual binarized

neural network. In 2018 IEEE 26th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM) (pp. 57-64). IEEE.

[20] Xiang, X., Qian, Y., & Yu, K. (2017, August). Binary Deep Neural Networks for Speech

Recognition. In INTERSPEECH (pp. 533-537).

[21] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural

networks. In Advances in neural information processing systems (pp. 4107-4115).

[22] Lin, X., Zhao, C., & Pan, W. (2017). Towards accurate binary convolutional neural network.

In Advances in Neural Information Processing Systems (pp. 345-353).

[23] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quantized neural

networks: Training neural networks with low precision weights and activations. The Journal of

Machine Learning Research, 18(1), 6869-6898.

[24] Yan, B., Li, B., Qiao, X., Xue, C. X., Chang, M. F., Chen, Y., & Li, H. (2019). Resistive Memory‐

Based In‐Memory Computing: From Device and Large‐Scale Integration System

Perspectives. Advanced Intelligent Systems, 1(7), 1900068.

[25] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

[26] Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.

[27] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., & Eleftheriou, E. (2020). Memory devices

and applications for in-memory computing. Nature Nanotechnology, 1-16.

[28] Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., ... & Boonstra, A. J. (2019).

Near-memory computing: Past, present, and future. Microprocessors and Microsystems, 71,

102868.

[29] Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C., ... & Killeen, B.

(2018). Equivalent-accuracy accelerated neural-network training using analogue

memory. Nature, 558(7708), 60-67.

[30] Valavi, H., Ramadge, P. J., Nestler, E., & Verma, N. (2019). A 64-tile 2.4-Mb in-memory-

computing CNN accelerator employing charge-domain compute. IEEE Journal of Solid-State

Circuits, 54(6), 1789-1799.

[31] Zhang, J., Wang, Z., & Verma, N. (2017). In-memory computation of a machine-learning

classifier in a standard 6T SRAM array. IEEE Journal of Solid-State Circuits, 52(4), 915-924.

[32] Yin, S., Jiang, Z., Seo, J. S., & Seok, M. (2020). XNOR-SRAM: In-memory computing SRAM

macro for binary/ternary deep neural networks. IEEE Journal of Solid-State Circuits, 55(6), 1733-

1743.

[33] Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M., & Burr, G. W. (2018). Recent progress

in analog memory-based accelerators for deep learning. Journal of Physics D: Applied

Physics, 51(28), 283001.

[34] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M., ... &

Srikumar, V. (2016). ISAAC: A convolutional neural network accelerator with in-situ analog

arithmetic in crossbars. ACM SIGARCH Computer Architecture News, 44(3), 14-26.

[35] Weste, N. H., & Harris, D. (2015). CMOS VLSI design: a circuits and systems perspective.

Pearson Education India.

 88

[36] Pavlov, A., & Sachdev, M. (2008). CMOS SRAM circuit design and parametric test in nano-

scaled technologies: process-aware SRAM design and test (Vol. 40). Springer Science & Business

Media.

[37] Therman, C. Computation Structures: The Memory Hierarchy. [Online] Available:

https://computationstructures.org/lectures/caches/caches.html#1

[38] Saun, S., & Kumar, H. (2019, October). Design and performance analysis of 6T SRAM cell on

different CMOS technologies with stability characterization. In IOP Conference Series: Materials

Science and Engineering (Vol. 561, No. 1, p. 012093). IOP Publishing.

[39] Vassighi, A. (2004). Heat and Power Management for High Performance Integrated Circuits.

University of Waterloo.

[40] Singh, A., & Singh, S. (2016). Evolution of CMOS Technology-Past Present and

Future. International Journal of Engineering Research & Technology (IJERT), 5(02).

[41] Global Foundries. [Online] Available: https://www.globalfoundries.com/technology-

solutions/cmos/fdx/22fdx

[42] Gwennap, L. (2016). FD-SOI offers alternative to FINFET. Posted at https://www.

globalfoundries. com/sites/default/files/fd-soi-offers-alternative-tofinfet. pdf.

[43] Body - Bias Scaling for GLOBALFOUNDRIES 22FDx Technology New Dimension to Explore

the Design. [Online] Available: https://docplayer.net/54679367-Body-bias-scaling-for-

globalfoundries-22fdx-technology-new-dimension-to-explore-the-design.html

[44] Purdy, M., & Daugherty, P. (2017). How AI boosts industry profits and innovation. Accenture

Ltd, Dublin, Ireland ISBN12560543.

[45] Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. Penguin UK.

[46] Baruah, L. (2017). Performance Comparison of Binarized Neural Network with Convolutional

Neural Network.

[47] Ahmet, C. (2018). Artificial Intelligence: How Advance Machine Learning Will Shape The Future

Of Our World. Shockwave Publishing via PublishDrive.

[48] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V.

K. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292.

[49] Bergel, A. (2020). Agile Artificial Intelligence in Pharo.

[50] Tchircoff, A. (2017). The mostly complete chart of Neural Networks, explained. Towards Data

Science, 1-29.

[51] VOVES, J. (2009). Nanoelectronics and nanolithography.

[52] Martinez P. (2020). Design of an output interface for an in-memory-computing CNN accelerator

[53] Ward-Foxton S. (2020) Processor-in-memory chip speeds AI computations. [Online] Availabe:
https://www.embedded.com/processor-in-memory-chip-speeds-ai-computations/

[54] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

https://www.embedded.com/processor-in-memory-chip-speeds-ai-computations/

 89

Glossary

ADC Analog to Digital Converter

AI Artificial Intelligence

BN Batch Normalization

BNN Binary Neural Network

BOX Buried Oxide

CNN Convolutional Neural Network

CPU Central Processor Unit

DL Deep Learning

DNN Deep Neural Network

DRAM Dynamic Random-Access Memory

EACB Error-Adaptive Classifier Boosting

FDSOI Fully Depleted Silicon-On Insulator

GOPS Giga operations per second

GPU Graphics Processing Unit

HSNM Hold Static Noise Margin

IA Input-Activation

ILSVRC ImageNet Large Scale Recognition Challenge

IoT Internet of Things

LVS Layout-Versus-Schematic

MAC Multiply-and-Accumulate

M-BC Multiplying Bit Cell

MIM Metal-Insulator-Metal

ML Machine Learning

MOM Metal-Oxide-Metal

 90

MVM Matrix-Vector Multiplication

NN Neural Network

PA Pre-Activation

PCM Phase change memory

ReLU Rectified Linear Unit

RRAM Resistive Random-Access Memory

RSNM Read Static Noise Margin

RVT Regular Threshold Voltage

SNM Static Noise Margin

SNR Signal-to-Noise-Ratio

SOI Silicon-On Insulator

SRAM Static Random-Access Memory

STT-MRAM Spin Transfer Torque Magnetoresistive Random Access Memory

TOPS Tera operations per second

UHVT Ultra-Low Leakage High Threshold Voltage

ULL Ultra-Low Leakage

VTC Voltage Transfer Characteristic

Vth Threshold Voltage

WSNM Write Static Noise Margin

