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a b s t r a c t

In this paper, we present an effective online planning solution for autonomous vehicles that aims at
improving the computational load while preserving high levels of performance in racing scenarios. The
method follows the structure of the model predictive (MP) optimal strategy where the main objective is
to maximize the velocity while smoothing the dynamic behavior and fulfilling varying constraints. We
focus on reformulating the non-linear original problem into a pseudo-linear problem by convexifying
the objective function and reformulating the non-linear vehicle equations to be expressed in a Linear
Parameter Varying (LPV) form. In addition, the ability of avoiding obstacles is introduced in a simple
way and with reduced computational cost.

We test and compare the performance of the proposed strategy against its non-linear approach
through simulations. We focus on testing the performance of the trajectory planning approach in
a racing scenario. First, the case of free obstacles track and afterwards a scenario including static
obstacles. Simulation results show the effectiveness of the proposed strategy by reducing the algorithm
elapsed time while finding appropriate trajectories under several input/state constraints.

1. Introduction

Autonomous vehicle racing is a variant of the field of au-
tonomous driving that is attracting many researchers in recent
years given the challenge that raises [1,2]. Such a problem in-
volves a complex interaction with the environment due to the
fast vehicle dynamic variation, i.e. high linear and angular accel-
erations, what implies directly a short reaction time in certain
situations. The main brain of an autonomous vehicle has to carry
out several tasks in a short period of time: detection and un-
derstanding of the elements in the current scene, corresponding
treatment of the data of the sensors mounted on the vehicle,
planning of the route depending on the current state and scene
and finally the control performance over the actuation systems of
the vehicle (steering, braking and acceleration systems).

Trajectory planning is a key point for autonomous guidance
through known or unexplored environments. During these last
years an important number of contributions can be found where
a diversity of planning problems for nonholonomic vehicles are
studied and solved due to an increasing interest in autonomous
driving. There exist different classifications depending on the
strategy used for solving the motion planning problem for au-
tonomous road vehicles. The majority of the existing works may
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be broadly classified into four main categories: geometry-based
techniques, polynomial-based methods, sampling-based strate-
gies and optimal-based techniques [3–7]. For an interesting sur-
vey on motion planning, see [8]. However, although all of them
are promising techniques and have recently achieved interest-
ing results in the autonomous driving field, this work focuses
particularly on optimal-based strategies.

A classification within the techniques based on optimization
can be made. This sorting depends mainly on two variables: time-
dependent trajectory and type of vehicle modeling. In this work,
we refer to trajectory planning when there exist a temporary
dependent position evolution, i.e. the planning strategy computes
temporal-based functions (positions and velocities). Otherwise,
we will refer to path planning when the route planned is not
time dependent, i.e. only lateral position and orientation are
considered.

With respect to vehicle modeling, it refers to the wide range
of mathematical or data-based models that can be used based
on their degree of dynamic representation. Enumerating some
of them from lower to greater dynamic complexity description
we have the mass point model, the bicycle kinematic model, the
bicycle dynamic model with simplified or complex tire dynamics,
and the four wheels dynamic model with highly representative
tire dynamics that considers roll, pitch and vertical motions.

In [9], the author perform a comparison between the bicycle
and the four wheels model showing a hardly any difference
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Table 1
Optimal planning works depending on the type of vehicle prediction model and
the scenario. TP and PP refer to trajectory and path planning, respectively.
Scenes\Models L. Kin. NL. Kin

Highways
Highways & obs Plessen et al. [10]TP Liu et al. [11]PP
City & obs Ahmadi Mousavi et al. [12]PP
Racing Alrifaee and Maczijewski [13]TP

Caporale et al. [14]TP Verschueren et al. [15]TP
Racing & obs Plessen et al. [10]TP
Scenes\Models L. Dyn. NL. Dyn.

Highways Hegedus et al. [16]TP
Highways & obs
City & obs
Racing Liniger et al. [17]PP Verschueren et al. [18]TP
Racing & obs Liniger et al. [17]PP

between both and he states that the main difference is the longi-
tudinal load change which may be also negligible due to the low
center of gravity of the vehicle. Furthermore, if the model is going
to be used in an optimization process then, a new classification
criterion appears according to whether the vehicle model is linear
or non-linear.

Particularly, in this work we will focus on the study of trajec-
tory planning for racing using optimization strategies. The way
of guiding a vehicle as quickly as possible requires a planning al-
gorithm able to get certain road information (e.g. track curvature
in the next meters) from the environment perception layer. The
resultant trajectory must not only remain inside the track limits
but also fulfill the dynamic constraints such as velocity, accelera-
tion and slip angle limits. While respecting these constraints, the
trajectory should also minimize the time to reach the end of the
track as well as the difference between front and rear slip angles
to avoid understeering and oversteering situations. Additionally,
the trajectory should be updated online as the vehicle progresses
along the track with the aim of avoiding unexpected static and/or
dynamic obstacles.

In [11], the authors propose a path planning strategy based on
non-linear Model Predictive Control (MPC) for the case of driving
in highways. A unicycle kinematic model is used for predicting
future vehicle states and the approach ensures safety by being
able to generate free collision trajectories.

In [10], a trajectory planning strategy is presented using lin-
ear programming tools. This approach combines kinematic-based
modeling with obstacle avoidance to provide a solution to high-
way planning problem.

In a similar way, a trajectory planning strategy based on solv-
ing a non-linear optimization is presented In [16], where a lane
change methodology to be employed in highways is proposed.
In the literature, we can also find some recent works where the
problem of planning in cities or places with a complex environ-
ment, i.e. moving obstacles, is solved. This scenario is one of the
most challenging because the ability to deal with a variety of
mobile obstacles is one of the main skills included in the planner.

In [12], a path planning method is introduced which is based
on solving a Linear Time Varying (LTV) MPC using a kinematic
formulation of the vehicle. Besides, this method is able to deal
with multiple obstacles by means of a convex formulation.

But, nevertheless, one of the most ambitious challenges in this
field is on-line racing planning. The resolution of this problem is
not trivial at all and there are few studies under this topic, being
the main motivation for its study. The objective of this type of
planners is to find the optimal trajectory while maximizing the
speed or minimizing the lap time. One of the main conditions
of racing planning is to accurately consider the dynamics of the
vehicle in the algorithm calculations. In this way, one common

strategy is to handle the vehicle acceleration vector as well as the
front and rear wheels slip angles under an optimization problem
to find their optimal values.

In [14], the problem of trajectory planning for a racing applica-
tion is solved by means of a two stage approach. In the first stage,
a convex optimization that consists in minimizing the length and
curvature of the path using a geometric representation is solved.
This optimization results in the optimal trajectory. Then obtaining
the curvature of such an optimal trajectory and using an equation
that relates the curvature, speed and the maximum lateral force
tires can sustain, then the optimum velocity profile is obtained.

In [13], a real-time MPC for racing trajectory planning is pre-
sented. The key point of this planning approach resides in re-
formulating the initial non-convex problem into a linearly con-
strained convex quadratic optimization problem (QP) that can be
solved in real-time. A point mass kinematic model is used for
predicting future states while constraining vehicle accelerations.

In [15], the authors present a racing planning strategy based
on non-linear model predictive control using a kinematic repre-
sentation of the vehicle. Years later, the same authors enhance
this version by introducing a dynamic vehicle model between
other improvements [18].

According to Liniger et al. [17], the authors propose a rac-
ing path planning strategy based on linear MPC strategy. This
optimization procedure uses a linearized dynamic model of the
vehicle which allows the real-time implementation. The paper
presents the results with and without obstacles demonstrating in
both cases a high performance.

The weaknesses that all these works have in common are the
use of models of reduced complexity (kinematic-based models
basically) and/or the use of a path-based planner formulation. In
this work, we address these deficiencies.

In Table 1, a summary of the different approaches is presented.
This table collects all the previously mentioned references and
classify them as a function of the modeling type, the scenario and
the time-dependency (trajectory planning or path planning).

In this paper, we present a novel approach to solve the op-
timal trajectory planning task for autonomous racing vehicles
considering static obstacles throughout the track. In order to
deal with track constraints, we express the road limits as the
maximum values, positive and negative, of the allowed vehicle
lateral error. In addition, such a way of limiting the road allows a
straightforward extension to avoid obstacles. The way we propose
to overcome obstacles is to modify the limit of the track at
each instant of time. In this way, the limit values of the lateral
error interval in the optimal problem vary as a function of the
obstacle and vehicle positions. The key idea of this approach is
to use a Optimal Quadratic Programming algorithm that maxi-
mizes the velocity vector within a certain horizon. This optimal
algorithm uses a Linear Parameter Varying (LPV) vehicle model
for predicting future behavior. The main idea behind the LPV
modeling approach is that the non-linear prediction model can
be expressed as a combination of linear models that depend
on some scheduling variables without using linearization [19].
Such LPV-scheduling variables are obtained by taking the shifted
result of the previous optimal iteration. Then, after discretizing
the model, we solve a QP problem using a numerical solver [20].
The computational time is reduced drastically in comparison with
its non-linear version. Finally, the resulting trajectory is provided
to the controller as the current trajectory to be followed and the
process is repeated at the next sampling time.

The paper is structured as follows: Section 2 presents the
vehicle and the different models for planning. In Section 3, the op-
timal control algorithm formulation is presented as a non-linear
problem. Section 4 addresses the proposed LPV formulation and
the QP optimal problem for trajectory planning. In Section 5, we
present the strategy to deal with obstacles. Simulation results are
depicted and discussed in Section 6. Finally, last section presents
the conclusions of the work.



2. Testing vehicle & modeling

The Driverless UPC Car1 is a development platform for au-
tonomous racing (see Fig. 1). This has been properly modified
to operate autonomously under racing specifications. The vehicle
counts with a complete net of sensors for performing localization
and environment understanding. A fusion of IMU, encoders and
GPS data is made by a Kalman filter in order to estimate a more
precise values of the vehicle states.

2.1. Non-linear vehicle model

When a car is running in a race, it is subject to lateral and
longitudinal acceleration levels much higher than those produced
in normal driving situations. It is expected the vehicle to work
in the dynamic limits following an optimal response in terms of
traceability and therefore in terms of lap time. However, working
at the limits is a hard task if a vehicle model, that faithfully
represents all its dynamics, is not used.

Firstly, this subsection presents the non-linear vehicle dynam-
ics. Such a set of behaviors is represented using the bicycle model
approach where the lateral forces have been modeled using the
simplified Pacejka formula [21]. The model parameters have been
adjusted following an exhaustive identification procedure.

Then, denoting the state and control vectors, respectively, as

x =

⎡⎢⎢⎢⎢⎢⎢⎣

vx
vy
ω

ye
θe
αf
αr

⎤⎥⎥⎥⎥⎥⎥⎦ , u =
[

ar
δ

]
, (1a)

the discrete time non-linear model is presented as

xk+1 = f (xk, uk, κk) , (1b)

where variable κk represents the curvature at time k. The model
(1b) is governed by the following equations

v̇x = ar +
−Fyf sin δ − Fdf

m
+ ωvy

v̇y =
Fyf cos δ + Fyr

m
− ωvx

ω̇ =
Fyf lf cos δ − Fyr lr

I
ẏe = vx sin θe + vy cos θe

θ̇e = ω −
vx cos θe − vy sin θe

1− yeκ
κ

αf = δ − tan−1
(

vy

vx
−

lf ω
vx

)
αr = − tan−1

(
vy

vx
+

lrω
vx

)
,

(1c)

where

Fyf = df sin (cf tan−1(bf αf ))

Fyr = dr sin (cr tan−1(brαr ))

Fdf = µmg +
1
2
ρCdAv

2
x .

(1d)

State variables vx, vy and ω represent the body frame veloci-
ties, i.e. linear in x, linear in y and angular velocities, respectively.
States ye and θe represent the body frame lateral error and the

1 https://driverless.upc.edu/.

Fig. 1. UPC Driverless vehicle.

Table 2
Dynamic model parameters of the Driverless UPC Car.
Parameter Value Parameter Value

lf 0.902 m lr 0.638 m

m 196 kg I 93 kg m2

df 8.255 cf 1.6

bf 6.1 µ 1.4

dr 8.255 cr 1.6

br 6.1 ρ 1.225 kg m3

CdA 1.64 g 9.81 m
s2

d 2.3 m w 1.45 m

orientation error, respectively (see Fig. 2). The control variables
δ and a are the steering angle at the front wheels and the
longitudinal acceleration vector on the rear wheels, respectively.
Fyf and Fyr are the lateral forces produced in front and rear tires,
respectively (see Fig. 3). Front and rear slip angles are represented
as αf and αr , respectively. m and I represent the vehicle mass
and inertia and lf and lr are the distances from the vehicle center
of mass to the front and rear wheel axes, respectively. µ, ρ

and g are the friction coefficient, the air density and the gravity
values, respectively. CdA is the product of drag coefficient and
vehicle cross sectional area. All the dynamic vehicle parameters
are properly defined in Table 2.

3. MPC as a planner

The main objective of the racing planning algorithm is to
maximize the vehicle speed vector and minimize as much as pos-
sible an understeer/oversteer situation. On one hand, the velocity
vector of the vehicle can be computed by

V =
vx cos θe − vy sin θe

1− yeκ
(2)

as a relation between curvature and dynamic and error vehicle
states.

On the other hand, the understeer and oversteer behaviors
depend on the front and rear wheels slip angles and are given
as

• The understeer situation is given when the front wheels slip
angle is greater than the rear wheels slip angle : αf ≥ αr .
• The oversteer situation is given when the rear wheels slip

angle is greater than the front wheels slip angle : αr ≥ αf .

These two situations should be avoided for a smooth per-
formance of the vehicle. However, in racing environments it is
allowed to have particular levels of understeer and oversteer.

Both objectives can properly be formulated as a weighted
non-linear cost function where it is pretended

https://driverless.upc.edu/


Fig. 2. Variables representation. Left: error variables representation. Right: dynamic model variables.

• to maximize the linear velocity vector which implies to
minimize the travel time

maximize : JV (xk+i, κk+i) =
N∑
i=0

∥Vk+i∥
2
Q (3)

• to minimize the difference between the front and rear slip
angles with the aim of avoiding high levels of understeer or
oversteer behaviors

minimize : Jα(xk+i) =
N∑
i=0

αfk+i − αrk+i

2
R (4)

where Q ∈ R1x1
≥ 0, R ∈ R1x1

≥ 0 are the proper weighting
scalars and N ≥ 0 is the prediction horizon.

Finally, the constrained non-linear optimal control (CNLOC)
problem in (5) is solved at each discrete time step k to compute an
optimal control input sequence. The first control input in such a
sequence is applied to the vehicle and the predicted state vector
xk is used as the starting point for the next optimization prob-
lem. Combining previous objectives, the following multi-objective
optimization can be formulated

min
∆Uk,Xk

(
−JV (xk+i, κk+i)+ Jα(xk+i)

)
s.t.

xk+i+1 = f (xk+i, uk+i, κk+i) , ∀i = 0, . . . ,N
uk+i = uk+i−1 +∆uk+i

uk+i ∈ [u, u]
yek+i ∈ [ye − σk+i, ye + σk+i]

αf
rk+i ∈ [α

f
r , α

f
r ]

(5)

where ∆uk+i, also known as slew rate, represents the time vari-
ation of uk+i and is used to add an integral action to the system.
∆Uk and Xk represent the optimal control input sequence and
state variables sequence, respectively. However, note that, al-
though this CNLOC problem is able to provide a solution to the

Fig. 3. Tires lateral force as function of the slip angle (from equations in (1d))
with the left y axis. Tire stiffness coefficient profiles in dashed lines with the
right y axis (computed with (8)).

planning problem there exists a high computational load when
solving it and, hence, becoming a not implementable solution for
online planning problem in real embedded systems.

4. LPV-MPP formulation

In this section, we present a novel formulation for the opti-
mization problem (5) using the LPV representation of the non-
linear vehicle model. The key idea of this approach relies on
the use of an LPV-based modeling which provides the ability to
simulate the vehicle dynamics with a low computational cost.
This imply that, at every discrete time k, an instantiation of
the non-linear vehicle model (1) is required to obtain the LPV
representation.

In addition, in order to formulate the optimization problem
in the same form as (5), the non-linear cost function (3) has to



Table 3
Polynomial parameters of (8) for the front and rear tires (upper
indexes f and r).
Parameter Value Parameter Value

n 4 ϵ 10−4

pf1 −2.167 ×106 pf2 1.284 ×106

pf3 −0.288 ×106 pf4 0.029 ×106

pf5 15.038

pr1 −2.130 ×106 pr2 1.198 ×106

pr3 −0.252 ×106 pr4 0.024 ×106

pr5 14.551

be represented in a quadratic form to handle the problem as a
constrained linear quadratic optimal control (CLQOC) problem.

Following subsections address both problems.

4.1. Formulation of the LPV representation

A LPV system is a combination of linear models that depend
on some scheduling variables [19].

Obtaining the LPV formulation of a non-linear system may
be sometimes a tedious and not trivial task. In this particular
case, trying to obtain an LPV representation of (1) may result on
many different options and not all of them with the same quality
representation.

Then, the transformation of the non-linear model into a LPV
one passes through applying two necessary reformulations.

First, the arctangent function in the slip angles equation is
neglected to simplify the formulation. Note that this assumption
is coherent since the slip angle value remains under 0.1745 rad
where tan−1(α) ≈ α.

Second, the Pacejka tire equations for front and rear wheels in
(1d) are reformulated in a LPV representation for a proper intro-
duction in the final LPV vehicle model. In this work, a LPV formu-
lation is introduced to improve linearization-based approaches.
Hence, a least-squares algorithm is used to find two polynomials
as

Fy(α) = p1αn
+ p2αn−1

+ · · · + pnα + pn+1 , (6)

where p constants are the estimated coefficients that define the
particular model structure and n represents the order of the
corresponding polynomial.

Once the polynomial is adjusted, the embedding approach of
the non-linearities inside a varying parameter has to be used
in order to obtain its LPV representation. Then, the following
formulation is proposed

Fy = C(α) α , (7)

where

C(α) = p1αn−1
+ p2αn−2

+ · · · + pn + pn+1/(α + ϵ) (8)

is known as the tire stiffness coefficient and ϵ is a very small con-
stant. In Fig. 3, both, front and rear tire stiffness coefficient curves
are presented in dashed lines. Note that, as α becomes close to
zero in (8), C(α) grows exponentially. To avoid this behavior, a
saturation is added in the small interval α ∈ [0, 0.0075] such that
C(α) value stay at 4 × 104. Table 3 in the results section shows
the coefficients used in (8).

Therefore, the non-linear equations presented in (1c) can be
expressed as

v̇x = ar +
−Fyf sin δ − Fdf

m
+ ωvy

v̇y =
Fyf cos δ + Fyr

m
− ωvx

ω̇ =
Fyf lf cos δ − Fyr lr

I
ẏe = vx sin θe + vy cos θe

θ̇e = ω −
vx cos θe − vy sin θe

1− yeκ
κ

αf = δ −
vy

vx
+

lf ω
vx

αr = −
vy

vx
−

lrω
vx

Fyf = Cf (αf )αf

Fyr = Cr (αr )αr

Fdf = µmg +
1
2
ρCdAv

2
x .

(9)

Then, denoting the state and control vectors as in (1a), the
non-linear model (9) is transformed into the discrete LPV repre-
sentation

xk+1 = A(ζk)xk + B(ζk)uk , (10a)

by embedding the non-linearities within varying linear param-
eters. Note that sub-index k represents the discrete time. Each
one of these parameters is function of the vector of scheduling
variables defined as

ζk :=
[
vx, vy, θe, κ, ye, δ

]
k . (10b)

The scheduling variables are system states, inputs and even ex-
ogenous references as the case of κ .

Then, the LPV matrices, i.e. A(ζk) and B(ζk), are obtained using
the non-linear embedding approach [22] as

A(ζk) =

⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0 0
0 A22 A23 0 0 0 0
0 A32 A33 0 0 0 0
0 A42 0 1 A45 0 0
−A51 A52 A53 0 1 0 0
0 A62 A63 0 0 0 0
0 A72 A73 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (10c)

and

B(ζk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1
m sin δCf 1

1
m cos δCf 0
1
I cos δCf lf 0

0 0
0 0
1
Ts

0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10d)



being

A11 = 1+
(
−µg
vx
−

ρCdAvx
2m

)
Ts

A12 =
Cf sin δ

mvx
Ts

A13 =

(
Cf lf sin δ

mvx
+ vy

)
Ts

A22 = 1+
(
−

Cr+Cf cos δ

mvx

)
Ts

A23 =

(
−

Cf lf cos δ−Cr lr
mvx

− vx

)
Ts

A32 = −
Cf lf cos δ−lrCr

Ivx
Ts

A33 = 1+
(
−

Cf l2f cos δ+l2r Cr
Ivx

)
Ts

A51 =
κ

(1−yeκ)
Ts

A52 =
κ

(1−yeκ)
sin θeTs

A53 = Ts , A42 = cos θeTs

A45 = vxTs , A62 =
−1
vxTs

, A63 =
−lf
vxTs

A72 =
−1
vxTs

, A73 =
lr

vxTs

(10e)

where Ts represents the discretization sampling time. For a easier
comprehension Ci(αi) is denoted by Ci being i = f , r .

4.2. Convexifying the objective function

At this point, the cost function of the CNLOC problem (5)
consists on a quadratic term (Jα) and a non-linear part (JV ). In this
section, the methodology for convexifying the non-linear term
JV is addressed. The objective is to find out a linear-quadratic
formulation that approximates the non-linear equation of the
vehicle velocity

V =
vx cos θe − vy sin θe

1− yeκ
, (11)

such as

V ≈ VQP
= sTQs+ qT s . (12)

Since the original objective function in the optimization prob-
lem is to maximize (11), then we look for a concave formulation
such that it can be introduced in the CLQOC problem as the
minimization of its convex version. Studying the problem, we
find that approximating the original function is a difficult task
and only making some assumptions we can find a suitable result.
In particular, on one hand, we observe that there is not a strong
relationship with variable κ , such that s :=

[
vx vy θe ye

]T .
On the other hand, we consider the use of a diagonal Q matrix
which simplifies the approximation of (11) using (12).

Least-squares techniques for fitting polynomials are limited
for this purpose to provide a quadratic model, with constant and
quadratic terms but avoiding the linear term which may not fit
the objective.

To solve this problem, we propose the following constrained
linear quadratic optimal problem

min
Q ,q

N∑
i=0

Vi − VQP
i

2

s.t.

VQP
i = sTi Qsi + qT si

diag(Q ) < 0

(13)

where Q ∈ R4x4
= Q T < 0 and q ∈ R4x1 are the optimization

variables and N denotes the length of the optimization problem.

Fig. 4. The above figure depicts how the perception layer detects the vehicle
using stereo-based cameras. Below, the planning layer computes the lateral error
area based on the obstacle set (red box). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Note that due to the last constraint in (13), the resulting VQP is
defined as a strictly concave function.

Finally, after formulating the LPV model and the convex ob-
jective function, we present the following constrained linear-
quadratic optimization control (CLQOC) problem that is solved at
each time k to determine the next sequence of states considering
that the values of xk and uk−1 are known

min
∆Uk,Xk

(
−

N∑
i=0

VQP (xk+i)+
N∑
i=0

αfk+i − αrk+i

2
R

+

N∑
i=0

∥σk+i∥
2
P

)
s.t.

xk+i+1 = A(ζk+i)xk+i + B(ζk+i)uk+i , ∀i = 0, . . . ,N
uk+i = uk+i−1 +∆uk+i

uk+i ∈ [u, u]
yek+i ∈ [yek + σk+i, yek − σk+i]

αf
rk+i ∈ [α

f
r , α

f
r ]

(14)

where R ∈ R1x1
≥ 0 and P ∈ R1x1

≥ 0 are weighting scalars and
N ≥ 0 is the prediction horizon. Note that, the third component
in the objective function aims to minimize the slack variable σ

introduced over the lateral error state. This choice is made to
provide the optimal problem some flexibility.

5. Introducing static obstacles

This section addresses the static obstacle avoidance problem
during the planning task. The procedure is mainly based on two
steps. First, the computation of a safety polytope that contains
the obstacle is done based on the information provided by the
perception layer (not presented in this paper). This polytope is
chosen to be a rectangle in this work. Second, the computation
of the new lateral bounds of the road taking into account the
obstacle polytope is addressed.

The proper detection and position computation of the par-
ticular obstacle are simulated as if they were done by a higher



Fig. 5. Simplified view of the planning strategy. The left part represents the set of inputs, i.e. vehicle position, road limits and track curvature. The right side shows
the planned trajectory for a particular discrete time k.

Fig. 6. Resulting two laps trajectories for the proposed LPV approach and the NL approach on the free obstacle scenario.

perception layer using stereo-based cameras. This hardware pro-
vide a cloud of points on the obstacle’s edge with their respective
RGB data and distance to the camera. Then, projecting these cloud
points to the hyperplane hp, we are able to compute the frontal
face of the polytope containing the obstacle (see Fig. 4). Note that,
such a hyperplane is always orthogonal to the road orientation.

At this point, the planning stage computes the polytope that
contains the obstacle. First, the hyperplane hp is extended using
a safety distance ys. Then, the rectangle is closed by using the
vehicle diagonal length, denoted by d. Note that, the obstacle is
assumed to have the same width and diagonal length than the
UPC Driverless vehicle (see Table 2). In addition, the election of ys
is made taking into account the half width of the vehicle plus an
extra distance for safety reasons. Once the polytope is obtained,
the new lateral bounds can be computed. To do so, an incremental
variation of the limit of the lateral error (yek) is determined using
Algorithm 1 computing then the lateral error vector as

Ye = [ye0, . . . , yeN ] . (15)

This vector is computed at every discrete time k and introduced
as an input to the CLQOC problem. Note that this approach may
be conservative but very efficient computationally.

6. Results

In this section, the performance of the proposed racing LPV
MPP approach (14) is evaluated. To do so, a comparison against its
non-linear version (5) is presented as well as the performance in
different scenarios. However, before entering into the details, it is
important to emphasize that in racing scenarios it is necessary to

Algorithm 1: Road limits algorithm (see Fig. 4)
Input : sobs, hp, last predicted vehicle states (1a)
Output: Free road limits (Ye)

1 integrate (11) to obtain ŝ using the last predicted states and
the reference κ

2 given the predicted vector ŝ, obtain the vector index (iobs) at
which ŝ ≈ sobs

3 compute ∆ye = hp+ys
N , where N is the prediction horizon

4 for i = 1; i < N + 1; i = i+ 1 do
5

∑
Ey += ∆ye;

6 if ŝ(iobs − i) > 0 then
7 Ye(i) =

∑
Ey

8 end
9 end

have a minimum of knowledge about the evolution of the track.
Thus, in this work, we consider the curvature of the track as a
known variable to perform the racing trajectory planning.

The details of the experimental set up and simulated scenarios
are presented in the following.

6.1. Simulation/experimental set up

For evaluating the proposed architecture, we perform simula-
tions using the UPC Driverless vehicle model which is described
by the equations in (1c)–(1d) with parameters defined in Table 2.

Note that, at the first CLQOC iteration the time evolution
of the scheduling vector is not known. At this point, we solve



Algorithm 2: LPV-MP Planning algorithm (see Fig. 5)

Input : Current vehicle states (xk), past control input (uk−1), Free road limits (Ye), Track curvature (κ)
Output: Vehicle states defining the predicted trajectory (xk+i) , i := 1, ...,N

1 if k = 1 then
2 initialize the evolution of scheduling vector ζ (10b)
3 else
4 instantiate the scheduling vector ζ (10b) using previous predicted data
5 end
6 compute the set of N LPV models (10), i.e. Ak+i and Bk+i , i := 0, ...,N
7 xk+i ← CLQOC(A(ζ ), B(ζ ), xk, uk−1, Ye, κ) , i := 1, ...,N
8 go to step 1
9

10 Function CLQOC(A(ζ ), B(ζ ), xk, uk−1, Ye, κ):
11 solve QP (14) using GUROBI, xk+i = CLQOC( A(ζ ), B(ζ ), xk, uk−1, Ye, κ )
12 interpolate the solution at the control sampling time
13 return

this problem by generating such evolution based on previous
knowledge on how the states of the system evolve. Once this
initialization is done, the predictions are used to instantiate the
set of next N models of the LPV model. The sampling time used
is Ts = 300 ms and such a prediction horizon N is set to 15 steps,
this implies 4.5 s of future behavior prediction.

Matrices A(ζ ) and B(ζ ) in (14) are instantiated online before
the optimization starts which implies a set of N LPV models
entering the optimal problem. Note that, tire stiffness coefficients
in (10e), i.e. Cf and Cr , are also properly instantiated online using
(8) and Table 3 as a function of αf and αr .

In addition, since the model is curvature dependent, we need
to know the nominal curvature of the track as well as the limits
of the road. These limits will vary depending on possible static
obstacles throughout the track.

The solutions of problem (13) are obtained considering

Q = diag
[
−1.2× 10−4 −9.704 3.5× 10−5 −0.154

]
q =

[
1.007 0.187 6.1× 10−7 −0.032

]
.

(16)

Note that, since the vector state in (14) is the one defined in (1a)
the obtained matrices Q and q are restructured properly to be

Q = diag[
−1.2× 10−4 −9.704 0 3.5× 10−5 −0.154 0 0

]
q =

[
1.007 0.187 0 6.1× 10−7 −0.032 0 0

]
.

(17)

The control inputs bounds are set to δ = −δ = 0.3 rad and
ar = −ar = 12 m

s2
. Front and rear wheels slip angles are limited to

α
f
r = −α

f
r = 0.16 rad. Lateral error limits are set in next sections

since they will vary with the obstacles.
Both the LPV-MPP and NL algorithms are implemented in

Matlab R2017a on a Dell Inspiron 15 5000 Series using a Intel
core i7-8550U CPU @ 1.80 GHzx8. For solving the non-linear opti-
mization problem (5) used as baseline solution, IPOPT [23] solver
is used while solving the QP problems the proposed approach
GUROBI [20] is used, both through YALMIP [24] framework.

The pseudo-code for the implementation of LPV-MP Planning
is shown in Algorithm 2.

Fig. 7. Velocities, slip angles and lateral error throughout the simulation: dotted
lines represent the state limits considered in the optimal problem.

6.2. Free track racing planning

In this experiment, we compare the LPV-MPP strategy against
its non-linear version (NL-MPP) in a free obstacles track. Al-
gorithm 2 is used to obtain the LPV-MPP results. To solve the
non-linear version for comparison, we solve problem (5).

The simulated trajectories are depicted in Fig. 6 for one lap. It
can be seen how the non-linear version performs a bit smoother
than the proposed LPV approach, even though at a higher com-
putational cost, around 50 times slower (see Fig. 8).

The simulated track has a width of 4 m, hence, the lateral
error bounds in (5) and (14) are set to be symmetric such that
ye = −ye = 2 m.

The velocities, slip angles and lateral errors for the whole
simulation are displayed in Fig. 7. It can be seen that LPV-MPP
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Fig. 8. Computational time cost for both compared strategies: NL-MPP mean
elapsed time is 2.961 s and LPV-MPP mean elapsed time is 0.0567 s.

Table 4
Mean values of longitudinal velocity and acceleration, elapsed time
and slip angles difference.

vx ax te αr − αr

NL-MPP 50.1 0.615 2.961 −4.8 10−4

LPV-MPP 50.6 0.616 0.057 −6.5 10−4

delivers a similar solution to the NL-MPP one for the compared
vehicle states. The lateral error with respect to the center line of
the road is the most important state for solving this problem. We
allow the vehicle to have up to 2 m of lateral error in order to
find the best path. By looking into the iterations interval [60–80],
it can be appreciated that the LPV-MPP ye achieves higher values
implying then the vehicle approaches more to the road limits in
comparison to the NL-MPP response. However, this is still a good
solution for the racing trajectory planning that allows the real
time implementation.

In Table 4, a comparison is made in terms of mean values. The
great difference is not in the solution but in the elapsed time at
each iteration what makes the LPV-MPP strategy a much faster
approach and therefore a suitable option to be implemented
on-line in real-time on embedded systems.

6.3. Static obstacles racing planning

In this section, the validation is made considering static obsta-
cles within the track. Three obstacles are introduced in strategic
points of the circuit. The objective of the planner is to maximize
the lap velocity while avoiding the three obstacles introduced
along the circuit.

The obstacle detection is assumed to be done outside this
planning procedure as it was explained in Section 5. Then, as it is
depicted in Fig. 5, the new limits of the road are updated at every
iteration taking into account the obstacle. Therefore, these limits
are introduced as a new bounds for lateral error state (ye, ye) in
the optimal problem (14).

As in Section 6.2, we compare the performance of the NL-MPP
and LPV-MPP planning approaches. The planned trajectories are
shown in Fig. 9. At a first glance, it can be seen that the NL-MPP
approach provides a smoother trajectory.

The velocities, slip angles and lateral errors for the whole
simulation are presented in Fig. 10. In this graphical compari-
son, it is observed a greater difference between their responses.
Both slip angles, which are important states, remain inside the
allowed region. However, the LPV-MPP approach perform sharper
solutions.

Table 5
Mean values of longitudinal velocity and acceleration, elapsed time
and slip angles difference.

vx ax te αr − αr

NL-MPP 49.9 0.613 3.032 −6.4 10−4

LPV-MPP 50.6 0.607 0.062 −8.7 10−4

Table 5 illustrates the resulting comparison in terms of mean
values. It can be observed that the non-linear approach is able
to minimize more the difference between slip angles reducing
then over and understeering behaviors. However, the LPV-MPP
performs an acceptable solution and its computational time is
much lower.

To conclude this section, we measure the elapsed time of
both performances. However, we do not observe large differences
comparing to the case without obstacles so we refer to the same
Fig. 8.

7. Conclusion

In this paper, we propose an effective online planning solu-
tion for autonomous vehicles where we focus on improving the
computational load while preserving high levels of performance
in racing scenarios. While most of the strategies in the literature
overcome the planning problem using linearized models, we aim
to reformulate the non-linear vehicle equations to be expressed in
a Linear Parameter Varying (LPV) form. To formulate the model
predictive planning (MPP) problem, we first convexify the non-
linear objective function in a linear-quadratic form. Then, we
solve it using the LPV vehicle model for predicting the trajectory
in a certain horizon. In addition, the algorithm has the ability
of avoiding obstacles in a very simple way. The limits of the
lateral error vary inside the model predictive problem to take into
account static obstacles.

We test and compare the performance of the proposed strat-
egy against its non-linear approach through simulations. We fo-
cus on the performance of our planning approach in a racing
track. First, in a free track scenario and next in a scenario with
static obstacles allow to show that the proposed method reduces
the planning computation elapsed time while finding a suitable
trajectory under the proposed constraints.

In future steps of this study, we will focus on the experimental
implementation and validation of the proposed planning strategy
in the real test vehicle. We will also investigate the viability of
representing the 4-wheel dynamic model into a LPV formulation
and will test it in the proposed planning environment.
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Fig. 9. Resulting one lap trajectories for the proposed LPV approach and the NL approach on the obstacle scenario.

Fig. 10. Velocities, slip angles and lateral error throughout the simulation:
dotted lines represent the state limits considered in the optimal problem.
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