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Abstract—The contribution of this work is to propose a method
based on a simple nonlinear observer with an easy-to-compute
observer gain, in order to achieve both state and unknown input
estimation. Since the structure of the original model of the process
does not require any transformation, the nonlinear dynamics are
preserved. This allows an accurate estimation of the states and
the unknown inputs or faults. Two particular cases involving DC
motors are illustrated in simulation and an experiment using a
permanent magnet DC motor is presented.

Index Terms—Nonlinear observer, unknown input, fault, DC
motor.

I. INTRODUCTION

From the point of view of automatic control, many
problems involving DC motors must be solved in the design
stage before prototyping (i.e. modeling [1], control design
[2], state/parameter estimation [3]) or at the operation stage
(i.e. fault diagnosis [4], fault tolerant control [5], prognosis
[6]). When a DC motor operates, it is subject to different
operating conditions (predictable or not) caused by exogenous
variables, disturbances, noise or faults, which can be induced
by many causes such as vibrations, friction, overload, and
voltage variations. Most of these conditions or phenomena
unrelated to the ideal behavior are collectively known as
unknown inputs (UI) [7]–[9].
Typically an unknown input is an unmeasured signal affecting
a dynamical system. Many times, the knowledge of these
signals is crucial to predict, compensate or to monitor the
consequences of them over the system dynamics. Several
authors have shown that the observer-based approaches are
the most successful methods used to estimate unknown
inputs, e.g., [10]–[12]. For instance, the authors in [10] uses
a high-order sliding mode observers for leak estimation in
pipelines where pressure and input-output flow rate measures
are available. The case of UI observers for linear parameter
variant (LPV) systems is recently treated in [11], where
the computation of the observer gains via linear matrix
inequalities (LMI’s) is not a trivial task. The authors in
[12] propose a disturbance observer-based controller for a
direct-drive servo control system. In [5] and [13] UI observers
are proposed for fault and state estimation for Takagi-Sugeno
(T-S) fuzzy systems. In these cases, the observer design
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requires to transform the original nonlinear representation of
the system into a T-S representation.
The contribution of this work is focused on proposing a
method based on a simple nonlinear observer for state
and unknown input estimation in DC motor applications
(Section III). Two particular cases (Section II) for state
and UI estimation involving DC motors are illustrated in
simulation (Section IV). In order to demonstrate the practical
applicability of the proposed approach, an experiment using
a permanent magnet DC motor is presented in Section V.

II. PROBLEM STATEMENT

Two problems associated with unknown input estimation
in DC motors are presented. For this end, two different
mathematical models are selected from literature and used in
this study: (1) a DC motor controlling an inverted pendulum
[13] and (2) a permanent magnet DC motor [14].

1) Case 1. DC motor controlling an inverted pendulum:
Consider the model of a DC motor controlling an inverted
pendulum via gear train [13].
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where x1 = ϕp is the motor shaft position, x2 = wp is the
motor shaft velocity, x3 = Ia is the armature current, u is the
voltage input. Km = 0.1Nm/A is the motor torque constant,
Kb = 0.1V s/rad is the back emf, g = 9.8m/s2 is the gravity,
N = 10 is the gear ratio, l = 1m is the shaft length, m = 1kg
is the mass, Ra = 1Ω is the armature resistance and La =
0.1H is the armature inductance.
Assume that there is an unknown additive fault ∆u in the
input of system (1). In such a case, the input u is replaced by
u+∆u, where ∆u can be an undesired variation of the voltage
input which needs to be estimated in order to compensate
it. Besides, assume that the motor shaft velocity wp and the
armature current Ia are not measured.

Assumption 1. The voltage input variation ∆u is unknown.

Assumption 2. The shaft position x1 = ϕp is measurable.

Assumption 1 implies that although the process input u is
assumed to be known, actuators that provide this signal can be
affected by faults ∆u, i.e. non measurable signals. Assumption



2 implies that x1 is the system output, i.e. y = x1. Then,
system (1) can be represented as:

ẋ = Ax+ g(y, u) + Fθ
y = Cx

(2)

where x = (x1 x2 x3)T = (ϕp wp Ia)T , y = x1 = ϕp,
θ = ∆u and
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The authors in [13] propose a Takagi-Sugeno observer
in order to estimate the states and faults simultaneously.
However, the computation of the gains is not a trivial task.
In the following sections, an alternative method for state and
unknown input estimation is proposed.

2) Case 2. Permanent magnet DC motor: Consider the
following model of a permanent magnet DC motor [14].
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where ia is the armature current, vm is the rotational speed
(rpm), u is the armature voltage (the input of the system),
T0 and T2 are respectively the no-load and load torque.
Ra = 1Ω is the armature resistance, L = 0.9H is the
inductance, Ke = 13.5 × 10−3V/rpm is the back-emf co-
efficient, KT = 0.1Nm/A is the torque-current coefficient,
J1 = 66.9 × 10−4Nms is the normalized inertial moment,
fr = 1.4× 10−4Nm/rpm is the friction coefficient (lubrica-
tion), fp = 7.5 × 10−8Nm/rpm2 is the friction coefficient
(aerodynamics) and T2 = 22.9× 10−2Nm is the load torque.

Assumption 3. The rotational speed vm and the armature
voltage u are measurable.

Assumption 3 implies that vm and u are two known signals,
i.e. they do not need to be estimated. Besides, vm is the
measured output of the system, i.e. y = vm. It should be
noted that the armature current ia and the no-load torque T0
are unknown and they need to be estimated. Then, system (5)
has the form of system (2), where x = (x1 x2)T = (ia vm)T ,
y = x2 = vm, θ = T0 and
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III. THE PROPOSED OBSERVER

Consider a nonlinear system having the following form:

ẋ = Ax+ g(y, u) + Fθ
y = Cx

(8)

where x ∈ Rn is the state of the system, g(y, u) ∈ Rn is a
vector field depending on the system input u and the output y.
A, F and C are constant matrices of appropriate dimensions
and θ ∈ Rd is an unknown constant or slow-varying input, i.e.
θ̇ ≈ 0.

Assumption 4. The following rank conditions are satisfied
• rank(F ) = d.

• rank(O) = n, where O =


C
CA
. . .
CAn−1


The first rank condition rank(F ) = d in Assumption 4

implies that vector θ ∈ Rd can be estimated. On the other
hand, rank(O) = n, implies that system (8) is observable.

Theorem 1. Assume that Assumption 4 holds. A nonlinear
Luenberger-like observer for state and unknown input estima-
tion for nonlinear systems having the form in Eq. (2) is:

˙̂x = Ax̂+ g(y, u) + F θ̂ +K1(y − ŷ)
˙̂
θ = K2(y − ŷ)
ŷ = Cx̂

(9)

if there exist two matrices K1 and K2 such that As =(
A−K1C F
−K2C 0

)
is a stability matrix.

Proof. Define the estimation errors ex = x−x̂ and eθ = θ−θ̂.
The time derivative of ex and eθ are, respectively:

ėx = ẋ− ˙̂x = (A−K1C)ex + Feθ (10)

ėθ = θ̇ − ˙̂
θ = −K2Cex (11)

Eqs. (10) and (11) can be written in a compact form as

ė = Ase (12)

where:
As =

(
A−K1C F
−K2C 0

)
(13)

and e = (ex eθ). If K1 and K2 are selected in such a way
that As is a stable matrix, then system (12) is stable, i.e. the
observer converges.

Matrix (13) can be rewritten as:

As = (A−KC) (14)

where

A =

(
A F
0 0

)
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K1

K2

)
C =

(
C 0

)
Eq. (14) can easily be solved to compute the observer gain
vector K by any pole placement algorithm. Asymptotic con-
vergence of the observer, i.e. limt→∞ e = 0 is guaranteed if
the eigenvalues of matrix As have positive real part, where e
is the estimation error in Eq. (12).



IV. OBSERVER DESIGN AND SIMULATION RESULTS

In this section, the proposed observer in Section III is used
for state and UI estimation of the processes described in
Section II.

1) Case 1. DC motor controlling an inverted pendulum:
Consider the system given in Eq. (2).

Remark 1. It should be noted that θ ∈ R1 and x ∈ R3, then
d = 1 and n = 3. In consequence Assumption 4 is verified,
i.e. rank(F ) = 1, rank(O) = 3, where

O =
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CA2

 .

Then, an observer having the form (9) is designed to
estimate the unmeasured states and the unknown input ∆u:
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ŷ = Cx̂ = ϕ̂p

(15)
where matrices K1 and K2 are computed by pole placement
of the stability matrix As given in Eq. (13).

A numerical simulation is carried out in MATLAB c© to
show the performance of the observer. If the eigenvalues of
matrix As are located at λ1 = 2.2, λ2 = 2.8, λ3 = 2.9
and λ4 = 4, then K1 = (1.90 23.26 − 151.09),
K2 = 7.14. The initial conditions of the model and the
observer are: x0 = (ϕ0

p w0
p I0a)T = (0.01 0 0)T ,

x̂0 = (ϕ̂0
p ŵ0

p Î0a)T = (0.065 0.215 0.12)T and θ̂0 = 0. The
input voltage u = 1.5 V . Eqs. (5) and (16) are integrated using
a Runge-Kutta first order method (Euler) with an integration
step Ts = 0.05 s. ∆u is simulated as follows:

θ = ∆u =

 0 V, 0 s ≤ t < 35 s
0.5 V, 35 s ≤ t < 75 s
0.8 V, 75 s ≤ t

As displayed in Fig. 1 the estimated states x̂2 = ŵp
and x̂3 = Îa (dotted lines) asymptotically converge to the
corresponding simulated values x2 = wp and x3 = Ia (solid
lines), despite the increments in the input ∆u (see Fig. 2) at
t = 35s and t = 75s. The motor shaft position x1 = ϕp is
not displayed because it is the measured variable and it does
not need to be estimated. Fast convergence for state x2 can
be appreciated, whereas a convergence time of about 5s is
required to estimate state x3 after each voltage increment in
∆u. Convergence time can be modified/improved by selecting
different stable eigenvalues of matrix As. On the other hand,
the estimation of ∆û is depicted in Fig. 2 (dotted line).
As expected, the observer asymptotically converges to the
simulated unknown input ∆u (solid line).
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Fig. 1. Estimation of the states ϕp, wp and Ia in Case 1.
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Fig. 2. Estimation of the UI θ = ∆u in Case 1.

2) Case 2. Permanent magnet DC motor: Consider the
system given in Eq. (2) and described by matrices given in
(6)-(7).

Remark 2. It should be noted that θ ∈ R1 and x ∈ R2, then
d = 1 and n = 2. In consequence Assumption 4 is verified,

i.e. rank(F ) = 1, rank(O) = 2, where O =

(
C
CA

)
.

By considering Remark 2, an observer having the form of
system (9) can be designed to estimate the unmeasured state
ia and the unknown input T0 as follows:
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˙̂
θ = K2(y − ŷ)
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(16)
where the observer gains K1 and K2 are constant matrices of



appropriate dimensions. These matrices are easily computed
by pole placement of the stability matrix As given in Eq. (13).

A numerical simulation is carried out in MATLAB c© in
order to show the observer performance for state and unknown
input estimation, i.e. the armature current ia and the no-load
torque T0. The process model (5) and the observer (16) are
simulated using the parameter values given in section II. If
the eigenvalues of matrix As in Eq. (13) are required to be
located at λ1 = 0.41, λ2 = 0.42 and λ3 = 0.40, then the
observer gains are: K1 = (0.027 0.030), K2 = −3.84×10−4.
The initial conditions are x0 = (i0a v0m)T = (4 0.02)T ,
x̂0 = (̂i0a v̂0m)T = (2 0.10)T and θ̂0 = 0.04. The input
voltage u = 10 V . Integration of Eqs. (5) and (16) are
performed using a Runge-Kutta first order method (Euler) with
an integration step of 0.01 s. Two step changes of the no-load
torque T0 are considered as follows:

T0 =

 0.023 Nm, 0 s ≤ t < 50 s
0.040 Nm, 50 s ≤ t < 100 s
0.050 Nm, 100 s ≤ t

Simulation results are depicted in Figs. 3-4. In Fig. 3, it can
be appreciated that the estimated current îa (dotted lines)
asymptotically converges to the simulated process variable ia
(solid line). The rotational speed x2 = vm is not displayed
because it is the measured variable and it does not need to
be estimated. Besides, the estimated no-load torque θ̂ = T̂0,
(dotted line in Fig. 4) converges even if the simulated value
θ = T0 (solid line in Fig. 4) undergoes significant step
changes.
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Fig. 3. Estimation of x1 = ia in Case 2.
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Fig. 4. Estimation of the unknown input θ = T0 in Case 2.

V. EXPERIMENTAL RESULTS

Several experiments were carried out in a laboratory proto-
type for estimation of the armature current ia and the no-load
torque T0. A typical operation is presented in this section.

Fig. 5. Laboratory prototype. DC motor connected to a bearing train.

The prototype consists of a DC motor (labeled as 1 in Fig.
5) coupled to a bearing train (labeled as 2 in Fig. 5). The
physical parameters according to the employed DC motor are
given in Section II, Case 2. These parameters were obtained
by direct physical measurements, or they were approximately
deduced and verified through laboratory experiments.

The rotational speed of the shaft vm was measured by
coupling a 1000 pulses per revolution incremental encoder
(Koyo TRD-S1000-VD, labeled as 3 in Fig. 5). The frequency
signal provided by this encoder was acquired and treated by
a NI myRIO-1900 card with a sampling time Ts = 1 µs to
deliver a proportional signal to the speed of the motor in r.p.m.
The voltage input, provided by a Magna-Power programmable
DC power supply was constant at u = 15 V .
Assume (as in the previous simulation) that the armature
current ia is not measured and the no-load torque θ = T0
is unknown. Then, the implemented observer has the form of
system (16). The observer gains K1 and K2 are

K1 =

[
0.02747

0.33446× 10−4

]
K2 = −3.83967× 10−4

By using these gains, the observer stability matrix As,
defined in Eq. (13), has suitable eigenvalues λ1 = −0.63
and λ2,3 = −0.28 ± 0.17i, ensuring an adequate observer
convergence. The initial conditions of the observer are
x̂0 = [1.4 700]T , θ0 = T̂ 0

0 = 0.23.
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Fig. 6. Measurement and estimation of the rotational speed.
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Fig. 7. Estimation of armature current.

The experiment was performed as follows. Once the motor
speed reaches the steady-state value (around 800 r.p.m. as
illustrated in Fig. 6), a mechanically-induced friction force
is generated from around t = 390s to t = 600s. This action
emulates a faulty scenario, probably due to unhealthy bearings.
In this way, a variation on the value of T0 is expected.
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Fig. 8. Estimation of T0.

Experimental results are depicted in Figs. 6-8. In Fig.
6, it can be appreciated that the estimated rotational speed
x̂2 = v̂m (blue line) asymptotically converges to the measured
value (red line) despite the fault occurrence and measurement
noise. As expected, the armature current ia increases when
the friction force is induced. The corresponding estimated
armature current x̂1 = îa is depicted in Fig. 7. Finally,
the unknown input occurrence is reflected as an increasing
variation in T0, whose estimated value of T̂0 is depicted in
Fig. 8.

VI. CONCLUSION

A simple nonlinear observer for state and UI estimation
is presented in this paper. Two cases are presented in order
to illustrate its applicability to DC motors. Preliminary re-
sults in simulation demonstrate asymptotic convergence of the
observer. Besides, a laboratory experiment is performed with
a laboratory prototype, consisting in a DC motor coupled to
a bearing supported shaft, where faults (like these appearing
when bearings become faulty) are induced, to test the fault
detection and estimation capabilities of the proposed observer.
The two main advantages of the proposed observer, compared
with [13], and similar works dealing with Takagi-Sugeno sys-
tems are: (i) the easiness to compute the observer gain, because

a simple pole placement procedure is required to calculate the
observer gain and (ii) the mathematical model of the processes
does not require any transformation, preserving the original
nonlinear dynamics of the model. Thus, an accurate estimation
of the non-measurable states and the unknown inputs and faults
can be guaranteed. On the other hand, the main limitation
of this observer is that it can only be applied for nonlinear
systems having the form of system (8) where all variables in
the nonlinear vector g(y, u) must be measurable. Fortunately,
in practice, many systems can be modeled in this form.
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model predictive control of wind turbines using fatigue prognosis”, Int. J.
of Adaptive Control and Signal Proc., vol. 32, no. 4, pp. 614–627, 2018.

[7] N. Gao, M. Darouach, H. Voos, and M. Alma, “New unified H∞ dynamic
observer design for linear systems with unknown inputs”, Automatica, vol.
65, pp. 43-52, 2016.

[8] A.-F. Taha, J. Qi, J. Wang, and J.-H. Panchal, “Risk mitigation for
dynamic state estimation against cyber attacks and unknown inputs”,
IEEE Trans. on Smart Grid, vol. 9, no. 2, pp. 886–899, 2018.

[9] S.-K. Pandey, S.-L. Patil, U.-M. Chaskar, and S.-B. Phadke,
”State and disturbance observer based integral sliding mode con-
trolled boost DC-DC converters”, IEEE Trans. on Circuits Syst. II,
DOI:10.1109/TCSII.2018.2888570, 2018.

[10] H.-A. Fernández, C. Verde, and J. Moreno, “High-order sliding mode
observer for outflow reconstruction in a branched pipeline”, 2018 IEEE
Conf. on Control Tech. and Applications (CCTA), pp. 595–600, 2018.

[11] B. Marx, D. Ichalal, J. Ragot, D. Maquin, and S. Mammar, “Unknown
input observer for LPV systems”, Automatica, vol. 100, pp. 67–74, 2019.

[12] L. Yu, J. Huang, and S. Fei, ”Robust switching control of the
direct-drive servo control systems based on disturbance observer
for switching gain reduction”, IEEE Trans. on Circuits Syst. II,
DOI:10.1109/TCSII.2018.2881244, 2018.

[13] V.-P. Vu, and T.-D. Do, “Fault/state estimation observer synthesis for
uncertain T-S fuzzy systems”, IEEE Access, vol. 7, pp. 358–369, 2019.

[14] L. Menini, C. Possieri, A. Tornambè, “Application of algebraic geometry
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