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Abstract

Many HPC applications suffer from a bottleneck in the shared caches, instruction execution units, I/O or memory bandwidth, even
though the remaining resources may be underutilized. It is hard for developers and runtime systems to ensure that all critical
resources are fully exploited by a single application, so an attractive technique for increasing HPC system utilization is to colocate
multiple applications on the same server. When applications share critical resources, however, contention on shared resources may
lead to reduced application performance.

In this paper, we show that server efficiency can be improved by first modeling the expected performance degradation of colocated
applications based on measured hardware performance counters, and then exploiting the model to determine an optimized mix of
colocated applications. This paper presents a new intelligent resource manager and makes the following contributions: (1) a new
machine learning model to predict the performance degradation of colocated applications based on hardware counters and (2)
an intelligent scheduling scheme deployed on an existing resource manager to enable application co-scheduling with minimum
performance degradation. Our results show that our approach achieves performance improvements of 7 % (avg) and 12 % (max)
compared to the standard policy commonly used by existing job managers.
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1. Introduction

Data center providers need to maximize server utilization, in
order to obtain the greatest possible benefit from their large cap-
ital investments [2, 3]. Many HPC applications, however, only
achieve a fraction of the theoretical peak performance, even
when they have been carefully optimized [4]. This can lead
to a substantial waste of resources across the whole data center.

In HPC systems, resource efficiency is an important and
growing concern to achieving exascale computing perfor-
mance. To reach exascale using current technology, would re-
quire an unrealistic amount of energy. Even worse, the elec-
tricity bill to sustain these platforms considering their lifespan
can be roughly equal to their hardware cost [5]. While energy-
proportional designs [6] could be a solution for HPC systems,
this technology is still maturing. Thus, exascale systems are
expected to be resource-constrained in the near future, which
means the amount of provisioned power will severely limit the
scalability to meet new user demands [7, 8].

Under a resource-constrained server environment, minimiz-
ing resource usage while meeting performance requirements
is key to keeping up with increased computational demands.
Techniques like hardware over-provisioning can be applied as a

?This article is an extension of our previous work (Zacarias et al. 2019) [1],
which was presented at the International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD 2019).

solution for systems with strict power bounds. The idea behind
over-provisioning is to use less power per node and thereby al-
lowing more nodes in the system [7]. In real settings, over-
provisioning can be implemented by enforcing socket-level
power limits with Intel’s RAPL technology [9]. RAPL relies on
updating registers to manage power usage of the server compo-
nents (processor, DRAM, GPUs, etc.). It works by monitoring
low-level hardware events to estimate power consumption [10],
and it adapts the processor voltage and frequency to meet the
desired power cap during a specified time interval.

Techniques like DVFS also adapt the processor voltage and
frequency to reduce processor power consumption. Lower fre-
quencies require less power, potentially resulting in energy re-
duction in the system [11]. Although this can improve en-
ergy efficiency, it may negatively impact the processor per-
formance. Either DVFS or RAPL alone is insufficient for
running in an over-provisioned environment, since it only en-
forces power bound for individual components, such as the
CPU. Then, the power bound across all components needs to
be enforced by a global scheduler to avoid violating the sys-
tem bound [12]. A promising way to increase overall system
utilization and efficiency is to run multiple applications concur-
rently on a server node, an approach that is known as workload
colocation [2, 3, 13, 14, 15, 1]. The biggest disadvantage of
workload colocation is the potential degradation in application
performance due to sharing of resources such as caches, mem-
ory controllers, data prefetchers, and I/O devices. Such degra-
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dation is hard to predict in real systems, and it is impractical
to measure the degradation of all pairs of applications ahead of
time.

Due to the uncertain degradation effects, HPC systems usu-
ally do not support the sharing of resources in the same comput-
ing node among applications [16, 2]. Nevertheless, workload
colocation does have a substantial potential to improve system
throughput, especially when the colocated applications are bot-
tlenecked on different resources [4, 1]. Note that this improve-
ment in system utilization is made without any need to modify
the application’s source code.

Machine learning techniques have the potential to find a more
complex relationship among input features (in our case, hard-
ware performance monitoring counters, or PMCs) and the pre-
diction of (in our case) the slowdown experienced by the colo-
cated applications. Given the diverse nature of applications in
HPC systems, machine learning models have the capability to
generalize for new different applications. Although (some) ma-
chine learning approaches are computationally intensive, we
observe, in our experiments, that they can be used with accept-
able execution overhead with some optimizations (e.g., reduc-
ing the number of trees used in a random forest model)

This paper presents an approach that encompasses a machine
learning model and its integration into an intelligent application
scheduler. The goal is to reduce the makespan, which is the time
between the start of the first application and the end of the last
application in a job queue of fixed size. We make the following
contributions:

1. We design and build prediction models to estimate perfor-
mance degradation due to workload colocation. Our best
model (Random Forest) is capable of providing good ac-
curacy (81%) in predicting performance degradation.

2. We present a workload management solution based on ma-
chine learning for scheduling jobs, leveraging a given pre-
dicted degradation between colocated applications in the
HPC system.

3. We evaluate our solution through an actual implementation
deployed on an existing resource manager executing mul-
tithreaded applications from PARSEC, NPB, Splash, and
Rodinia. We show a reduction in makespan (7% on aver-
age and 12% maximum) over the existing resource man-
ager.

The key advantage of our technique is that it does not require
application modifications or annotations; rather it is based on
PMC data for deciding which applications can be run together
with minimum degradation in a particular server.

2. Motivation

We motivate our work by discussing the challenges posed by
resource colocation and how machine learning can be a favor-
able strategy to solve the server efficiency problem. We also
conduct an experiment to show that prior work based on heuris-
tics may fail to solve this problem.
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Figure 1: Normalized makespan for Distributed Intensity [20] (prior work) vs
FIFO sequential (no-sharing) and FIFO shared policies, while executing 20 ran-
domized application queues (see Section 4 for details on experimental setup).

2.1. Resource Colocation
Multi-core processors share both on and off-chip resources,

such as caches, interconnects, and memory controllers [17]. It
is known that applications running on different cores will ex-
perience contention due to these shared resources. Having a
methodology that is capable of predicting how well a system
will run in a particular colocation scenario would be very use-
ful, as without prediction, profiling all possible colocations’
performance beforehand to guide scheduling decisions can be
prohibitively expensive. Using a machine learning system can
be very useful, as we train on a subset of the applications and
have a model that could generalize to the other new application
colocations.

A large portion of previous research on performance predic-
tion on multi-core is focused on contention for shared last level
caches [18]. Prior work has attempted to estimate the perfor-
mance slowdown of applications due to interference on shared
resources [19]. They focus on developing techniques to predict
the application behavior using indicators of cache usage. This
behavior can either predict the extent to which an application
suffers under colocation or the extent to which it can degrade its
colocated application. These studies resulted in classification
schemes for understanding the performance slowdown faced by
applications [18].

Furthermore, many server applications can achieve only a
fraction of the theoretical peak performance, even when care-
fully optimized to get close to the system’s limit [4]. The sub-
utilization tends to increase cores idle time, thus resulting in an
over-provisioning that negatively impacts the utilization of the
entire system [2].

2.2. Heuristic-based Solutions
Prior research has addressed the workload colocation prob-

lem [20, 21, 22] (see Section 5), which favors co-scheduling
applications with high variance in the shared resource (e.g., the
Last-Level Cache, or LLC). Distributed Intensity (DI) [20] is an
example of such a heuristic, which collects the LLC miss rate
via hardware counters and avoids co-scheduling two applica-
tions with high LLC miss rates in the same memory hierarchy.
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Figure 2: Overview of our approach consisting of two major phases: (a) offline deployment of a machine learning model for performance degradation prediction
due to colocation and (b) online scheduling of the submitted job queue given a machine learning model. At the deployment stage, PMC data is collected, given
to machine learning models for training and validation (with an optional step of feature selection/simplification), and models (M1–M4 in the figure) are evaluated
using offline simulation. The best model (M1 in the figure) is used for scheduling in the real system deployment.

By exploring workload colocation, we can minimize the total
time to execute all applications, i.e. the makespan.

Figure 1 shows the result of an experiment in which DI ac-
tually increases the makespan by 7% compared to the default
FIFO policy in a typical job manager system (see Section 4 for
details), but could improve by 30% over FIFO shared (allow-
ing applications to run on the same node). This behavior is due
to “bad” pairs co-scheduled by DI, which is observed in most
executions. In other words, relying on simple heuristics (for ex-
ample, using cache misses as a sole indicator) was not sufficient
to minimize overall resource contention and improve server ef-
ficiency execution.

In contrast to prior heuristics, the key idea of our approach
is to build a model that abstracts the application, by predicting
its degradation introduced by colocating a pair of applications
through automatic analysis of hardware performance monitor-
ing counters (PMCs). Each PMCs track the occurrence of a
single type of event (single hardware resource) with negligible
overhead, but they do not directly reveal how much degradation
the application will suffer when it is colocated with another ap-
plication. In addition, there are many PMCs that can be used
for monitoring; only a subset of them can be collected at a time,
and only a (a different) subset is necessary and sufficient to re-
veal the degradation due to colocation. It is hard to intuitively
identify the right PMCs and manually build the right model that
maps the PMCs to the predicted degradation. For these reasons,
we build and evaluate machine learning models to help us solve
the problem.

3. Intelligent Workload Management

This section describes our solution based on PMCs to per-
form intelligent colocation of workloads in HPC systems.

3.1. Overview

Figure 2 presents a high-level overview of our solution, or-
ganized in an offline phase (Deployment), and an online phase

(Scheduling). The deployment phase is responsible for train-
ing a machine learning model to estimate performance degra-
dation due to workload colocation. The scheduling phase takes
as input a job queue to execute in the server and decides on
optimized colocations and a new ordering for those jobs.

A typical cluster scheduler in a workload manager uses a
flavor of bin packing algorithm to assign ready jobs to phys-
ical nodes based on user-defined resource demands and con-
straints. In our solution, we keep the same distribution method-
ology performed by an existing workload manager and add to it
non-exclusive access to physical nodes in a degradation-aware
fashion. We design our solution to be readily deployed on an
existing workload manager.

The machine learning model built in the deployment phase
is used to predict the degradation for any pair of applications
submitted to execute in the queue. We focus on finding a good
colocation for pairs of applications as in [2, 3]. We use the max-
imum runtime execution within each pair to characterize degra-
dation. We assume that each application has executed once in
the system and its profile (that is, the PMCs measured for the
application execution alone on the target system) is accessible
to the workload manager.

In the scheduling phase, our technique receives as input both
the list of jobs in the ready queue and the profile data for such
jobs. Next, it uses the trained model to predict the degradation
of two particular jobs if they were to run colocated with each
other. Finally, it generates an optimized schedule queue that
minimizes the overall runtime between the pairs of applications.
Note that a new job queue is not created; the job queue provides
the metadata for the workload manager to execute the pair in the
right order.

To build the solution we follow these steps (as depicted in
Figure 2):

• Step 1: Data collection from PMCs (Section 3.2)

• Step 2: Model training and validation (Section 3.3)

• Step 3: Input feature selection (Section 3.4)

• Step 4: Simulated deployment (Section 3.5.1)
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• Step 5: Real system deployment (Section 3.5.2)

Below we detail each step of our solution:

3.2. PMC Dataset Collection

We collect PMCs and execution time from the applications
to build a training set, which is usual in many data centers [23].
An application profile (input features) consists of its execution
time on the target system and its collected PMCs.

We create the input dataset used for training the models, as
follows. First, we execute each application alone in the system
(without any other user applications). This was necessary to ob-
tain a baseline for the application execution time and hardware
counters considering the ideal condition: the application has all
resources available without competing with other applications.
We allow each application to use all available cores. All appli-
cations were executed multiple times and we collect the mean,
minimum, maximum value, and the standard deviation for all
of the PMCs shown in Table 1.

The baseline execution time is also needed to calculate the
degradation experienced by application i during colocation with
application j (Equation 1), which is calculated as the percent-
age increase in application i’s execution time, where Talonei is
under the ideal conditions and Tcoloci j when applications i and j
execute colocated with each other.

Degi j = 100 × (Tcoloci j − Talonei )/Talonei (1)

After collecting Talonei for all i, we execute every (primary)
application concurrently with another (interfering) application.
We execute all possible pairs of applications used for training
by starting the two applications at the same time. If the inter-
fering application finishes before the primary application, we
restart it to keep the primary application under contention dur-
ing its entire execution.

Although the O(n2) complexity (for n applications) for data
collecting from job colocation can be high if n is large, in the
long term, this cost can be reduced by executing a subset of the
pairs of common applications, and estimating the rest (e.g., via
matrix factorization), or by using fast O(n) microbenchmarking
as in Bubble-Up [2]. Note that the O(n2) complexity is depen-
dent on the number of applications used for training, and not
the total number of applications deployed on the system.

The resulting training dataset contains three parts: (a) the
PMC data for the primary application when running alone on
the system; (b) the PMC data for the interfering application run-
ning alone on the system and (c) the performance degradation
suffered by the primary application for this pair. Prior to the
training of our models we identify applications that are not af-
fected at all by running in shared mode and consequently might
introduce small negative degradation values as noises to the in-
put file. We then alter to 0 the negative values that appear to
represent no apparent degradation in the colocated application.

3.3. Model Training and Validation

Our methodology aims to estimate the degradation of two ap-
plications running concurrently on the same machine based on

Table 1: Hardware counters and derived metrics.

Events Counters/PMCs

Hardware cycles, instructions, resource stalls.any,
branch instructions, stalled cycles frontend,
stalled cycles backend,branch misses

Software page faults, context switches, cpu migrations
Cache cache references, cache misses,

LLC prefetches, LLC prefetch misses,
l2 rqsts.demand data rd hit
l2 rqsts.pf hit, l2 l1d wb rqsts.miss
l2 lines out.pf clean, l2 lines out.pf dirty
l2 rqsts.all pf, l1d.allocated in m
l2 lines out.demand clean, l1d.eviction
l2 rqsts.all demand data rd, l2 lines in.all,
L1 dcache store misses,
L1 dcache load misses, L1 dcache loads
L1 dcache prefetch misses, l1d.replacement

Memory mem uops retired.all stores
mem uops retired.all loads
mem load uops retired.llc miss
mem load uops retired.llc hit

Calculated IPC, cache ref per instructions, CPU usage
cache misses per instructions, miss ratio

the PMC data from these applications. As illustrated in Fig-
ure 3, given the PMC input data for an application X (the pri-
mary one) and application Y (the interfering one), the trained
model will output the expected degradation suffered by the pri-
mary application X when colocated with application Y .

HW counters of 
app Y (interfering)

Machine
Learning
Model

Performance 
degradation of app X 

HW counters of 
app X (primary)

Figure 3: Overview of how the prediction model works for estimating the degra-
dation of a pair of applications.

We explore and evaluate the following well-known machine
learning models in our work. Elastic Net [24], a regularization
method that does variable selection and shrinkage of regres-
sion coefficients applying penalty, and it groups strongly corre-
lated variables; Support Vector Machine (SVM) Regressor [25],
a generalization of SVM to solve regression problems; Random
Forest Regressor [26], a supervised learning algorithm that as-
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sembles multiple decision trees to predict a decision for a given
mapping function; and Multilayer Perceptron (MLP) Regres-
sor [27] that learns a non-linear function allowing one or more
hidden layers between the input and output layers. These layers
work by specifying a set of “neurons” that can propagate the
inputs through a network using a series of functions located at
each node.

3.3.1. Training Phase

From the complete dataset, we hold 30% of the data (ran-
domly chosen) to validate and test the final model. For the
training and validation of the described models, we iterated over
them applying 5-fold cross-validation to achieve higher scores
during the training phase. The method splits the other 70% of
the input data into k number of subsets (in our case k = 5), then
performs the training on k-1 subsets, leaving one subset for the
evaluation of the trained model and iterating k times with a dif-
ferent subset for testing each time. The same process is repeated
k times and in each iteration, a different group is picked to be
used as a validation set.

During the training phase, we experimented with different
parameters in the models in order to achieve the highest scores.
These parameters are called “hyper-parameters” in machine
learning and are not directly learned within the training. For
instance, the parameters alpha, gamma and kernels are passed
as arguments to the desired model to be trained.

Common techniques such as GridSearch or RandomSearch
check the full space of available values for the hyper-
parameters, which can be time and computationally demanding.
In order to more quickly explore the search space and find the
most suitable combination of those parameters for each model,
we applied a sequential model-based optimization [28]. The
method applies a Bayesian optimization technique that takes
into account the information of previous trials to chose the next
set of values. The parameters we iterated over for each model
are listed in Table 2.

Table 2: Tuned hyper-parameters for each model.

Models Parameters

Elastic Net alpha, l1 ratio, tol, max iter
Random Forest max features, min samples split,

bootstrap, n estimators
SVM kernel, C, tol, coef0, degree, gamma,

epsilon
MLP hidden layer sizes, alpha activation,

learning rate, learning rate init, tol

We show the accuracy by using the coefficient of determina-
tion, R-squared (R2). For a given prediction function y = f (x),
R2 determines how much the total variation of Y (dependent
variable) is due to X (independent variable). In other words, it
is 1 − Z, where Z is the ratio of the residual sum of squares to

Table 3: Selected hardware counters and derived metrics for feature selection
step.

Events Counters

Hardware cycles, instructions, branch instructions
branch misses

Software page faults, context switches, cpu migrations
Cache cache references, cache misses
Calculated CPU usage

the total sum of squares, as in Equation (2):

R2 = 1 −
∑

(Yactual − Ypredicted)2∑
(Yactual − Ymean)2 (2)

We applied R2 as measure of validity because it is widely
used indicator in machine learning and statistical analysis.

3.4. Input Feature Selection

In this step, we want to simplify our methodology by iden-
tifying the input features that will most affect the prediction,
while reducing the time required to collect the PMC profiles
from the applications when building new training sets. To have
a common ground across multiple architectures, we select a
generic PMC subset (found in all modern architectures) when
building our prediction models. By using only generic features,
we will build a simple and a more portable methodology to be
applied on several architectures without depending on specific
PMC hardware support.

Our feature selection process is quite simple. First, we
looked at the list of generic counters provided by the standard
profiling tool on Linux (the perf tool). We selected a subset
of those counters that allowed us to collect all of them without
requiring (1) to perform PMC multiplexing on the limited phys-
ical PMC registers and (2) to run the applications several times
with different PMCs due to conflicts in simultaneously collect-
ing PMCs. From the perf tool list, we selected the counters
presented in Table 3.

In Section 4.3, we evaluate the quality of the schedule via
simulation using generic PMCs compared to using all counters
originally used in the model training (given in Table 1).

3.5. Model Deployment

After training and validating the models, we generate and
schedule randomized queues of applications with the goal of
minimizing the overall execution time. Given a set of n in-
dependent applications A1, A2, ..., An, the goal is find a sched-
ule that colocates a pair of applications (i and j) onto a server
node with minimum execution time, expressed by the term
max(RunTimei ∗ Degi, j,RunTime j ∗ Deg j,i). The total cost of
the schedule to be minimized is the sum of all these terms for
the chosen pairs.

For two applications sharing the same node, given the de-
graded execution time as an input, the optimal co-scheduling
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Figure 4: Overview of the scheduling phase using a degradation graph built using predictions from the selected machine learning model.

can be found in polynomial time [29]. This problem can be
modeled as a fully connected graph, the degradation graph. As
shown in Figure 4, each vertex of the degradation graph is an
application (from the job queue) and each edge is the highest
degraded runtime, calculated using the predicted degradation
of the pair when they run on the same node.

The optimal colocation problem for two applications can be
viewed as a minimum-weight perfect matching problem given
the degradation graph [29]. Finding the solution for this match-
ing problem is equivalent to finding an optimal colocation
scheduling for pairs of applications because a valid scheduling
means all selected pairs should cover all vertices without shar-
ing the same vertex, which is a condition for a perfect match-
ing. The minimum-weight ensures the objective function of the
colocation problem is satisfied, which stands for minimizing the
sum of the execution times, taking into account the degradation
between colocated applications.

We use the blossom algorithm [30] to optimally solve the
matching problem for application pairs in polynomial-time:
O(n2m), where n and m are the number of nodes and edges in
the degradation graph, respectively. We show in Section 4.4.3
an analysis on the computational time required to solve this
matching problem and produce a scheduling solution, based on
the degradation graph and approximately using a greedy heuris-
tic, which simply selects the pairs with the lowest runtime to
execute once the pairs are ready to be scheduled.

While the output given by the solution of the minimum-
weight perfect matching results in a set with minimum over-
all execution time for the entire set of pairs, the solution may
produce pairs with very high execution time due to degradation
when compared to its solo/serial execution. Thus, we decide to
schedule those pairs with excessive degraded runtime in a serial
fashion (using exclusive resources). This is because excessive
degradation will increase the makespan when executing those
pair of applications together in the system.

3.5.1. Simulated Scenario
Before deploying the models on the real system, we perform

an offline deployment on which we project the performance
of the models while generating scheduling for different queues
without executing them in the real server. The simulation gives
us a good approximation of the real execution as we compute
the performance of the schedule using the real measures previ-
ously collected for a given set of applications. Thus, we can use
the real degradation and runtime of the applications to compute
the projected makespan of each model solution. This allows
us to perform a more accurate comparison across the models
beyond the trained model indicator (R2 score). After perform-
ing the simulations, we select the model that most minimized
the makespan to be deployed and validated upon execution on a
real system scenario. In Section 4.4, we show the numbers for
the model results.

3.5.2. Real System
For the final deployment on the real system, we incorporate

the trained and simulated model into an existing batch schedul-
ing system. We implemented and deployed the chosen models
in the Slurm workload manager. We have adopted Slurm [31]
because it is a popular, scalable, widely deployed, open-source,
fault-tolerant job scheduling system for Linux clusters. Our so-
lution is implemented as a scheduling plugin that provides the
necessary structure to colocate the jobs. The plugin is executed
periodically to (1) check the queue of submitted jobs and (2)
compute the pair of jobs that are allowed to run together. After
computing the schedule, the plugin attempts to find colocation
opportunities for the pending jobs on the server machines that
are already running other jobs.

4. Experimental Evaluation

We evaluate our approach in a cluster of multi-core servers
running several HPC applications. We perform several exper-
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Table 4: Applications used in our experiments.

Benchmark Applications
Suite

Parsec blackscholes, fluidanimate, swaptions,
vips, streamcluster

Rodinia lavaMD, lud, cfd, particlefilter
MineBench hop, SVM-RFE, kmeans
NPB bt, ft, lu, sp, ua, ep, cg
Splash barnes, fmm, ocean, waternsquared

waterspatial
Miscellaneous stream, lulesh, SSCA, fft, mandelbrot, qsort,

miniFE, HPCCG

iments with varying job queues to compare our approach with
two existing default policies in Slurm’s workload manager: (a)
the first executes the applications sequentially on a server, and
(b) the second allows for server sharing, but without any degra-
dation knowledge. We also compare (c) a greedy solution vs
blossom (perfect matching) solution given the knowledge of the
degraded runtime execution graph. The goal is to contrast the
quality of output (metric of interest is makespan) and time re-
quired to produce a scheduling solution.

4.1. Experimental Setup

We carried out the experiments on a cluster set up with
servers equipped with two Intel Xeon SandyBridge-EP E5-
2670 that together comprise 16 cores operating at 2.6 GHz.
Each socket has 20MB L3 cache(LLC) shared among all cores.
Each server has 64 GB of DDR3-1600 DIMMs main memory.

To minimize Linux interference on the makespan, the CPU
intel pstate governor was set to “performance” mode with the
clock speed fixed at the highest frequency. The operational sys-
tem was SUSE Linux Enterprise Server 11 SP3 with kernel ver-
sion 3.0.101-0.47.90-default x86 64. For our experiments, we
considered a set up of a head node that executes the Slurm con-
troller daemon and the compute nodes up to 5 servers. Hyper-
threading was disabled as in most data center systems.

We used a total of 32 applications from different benchmarks
to perform our experiments, including 27 applications from
Parsec [32], Rodinia [33], NPB [34] and 5 applications from
Splash [35]. The applications on Table 4 were selected to cover
a variety of computational patterns found in multithreaded and
high-performance codes. All applications were compiled using
GNU/Linux GCC 6.2.0 with O3 optimization flag and multi-
threading enabled, so each application could use the number of
threads equals the number of cores on the server node. We pro-
filed the application using the Linux tool Perf at a per-thread
level and the working set for the applications was tuned to ex-
ceed the size of private caches, as it is common for native input
size on real machines.

We used the Scikit-learn library [36] to implement the ma-
chine learning techniques. The accuracy of the models is calcu-
lated using the coefficient of determination, R-squared (R2), as
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Figure 5: Highest accuracy achieved using all collected counters and the subset
of selected counters.

explained in Section 3.3.1. Recall that the performance of the
model is better when the value of the R2 is close to one.

4.2. Accuracy of the different models

To analyze the accuracy of the different models, we first
present the training and validation results following the steps
described in Section 3. During the training phase, we also eval-
uated the impact of using additional information (such as min,
max, and standard deviation) for each collected PMC feature,
as well as decreasing the number of required features for pre-
diction. We then built and trained different models based on
each scenario. Table 5 presents additional information about
the hyper-parameters selected for each model used in this sec-
tion. Figure 5 shows the highest accuracy (r2 score) for the
trained models in our validation step. For brevity and clarity
on the figures we will refer to the models as following: EN for
Elastic Net, SVM for Support Vector Machine, RF for Random
Forest and MLP for Multilayer Perceptron.

The left-hand side of the Figure 5 shows the highest accu-
racy reached by each model when using all collected hardware
counters (Section 3.2). We can observe that all machine learn-
ing techniques achieved an accuracy of about 70%. We also no-
ticed that increasing the feature space with min, max and stan-
dard deviation values does not drastically improve the accuracy
for ElasticNet and SVM models. On the other hand, it had the
opposite effect for MLP and Random Forest accuracy. The ac-
curacy for MLP increased 9%, while the accuracy for Random
Forest dropped the same figure.

Since we decided to simplify the methodology by using a
subset of the collected PMCs as detailed in the Section 3.4, we
trained and evaluated the models taking into account this sub-
set of features, which are generic PMCs. The right-hand side
of Figure 5 shows the accuracy of the models. We notice that
reducing the number of features can decrease the accuracy for
the ElasticNet model, while for SVM it has a slight improve-
ment when compared with using all collected counters (left-
hand side). The MLP model kept a similar performance and had

7



Table 5: Parameters tested during training phase.

Models Hyper-Parameters Counters Best values — mean/min/max/sd Best values — mean

Elastic Net alpha, l1 ratio, tol, max iter All 1, 1.0, 1.0e-05, 10000 0, 1.0, 0.001, 10000
Selected 0, 1.0, 0.001, 10000 0, 0.048, 1.130e-05, 1240

SVM kernel, C, tol, coef0, degree, gamma,
epsilon

All ’linear’, 100.0, 0.001, 1.0, 1, ’scale’, 100.0 ’linear’, 100.0, 1.0e-05, 1.0, 5, ’auto’, 100.0
Selected ’poly’, 52.260, 1.0e-05, 0.966, 3, ’auto’, 100.0 ’poly’, 100.0, 1.0e-05, 1.0, 3, ’auto’, 100.0

Random Forest max features, min samples split,
bootstrap, n estimators

All ’auto’, 7, True, 10 ’auto’, 3, True, 9
Selected ’auto’, 7, True, 15 ’sqrt’, 2, True, 22

MLP Regressor hidden layer sizes, alpha, activation,
learning rate, learning rate init, tol

All (32,32,8), 0.0898, relu, adaptive, 0.0002, 0.003 (256,256), 0.0003, identity, adaptive, 0.0001, 1.0
Selected (128,128), 0.985, logistic, invscaling, 0.532, 0.007 (32,256,256), 0.0270, logistic, invscaling, 1.0, 0.0001
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Figure 6: Performance of the models during simulated deployment. We com-
pare the schedule pairs produced by the models compared to the FIFO ap-
proach. Each model used two different strategies to assemble the final solution:
Blossom and Greedy.

a small improvement when using only mean values to describe
its features. The Random Forest model increases the accuracy
of both models with the subset of counters, reaching 80% of ac-
curacy. This demonstrates that using a subset of counters with
a Random Forest model has the potential to perform well in the
deployment. To assess its performance we carried out offline
simulations in order to evaluate the quality of the schedule pro-
duced by this model.

4.3. Makespan analysis via simulation

The results in Section 4.2 show that different models can
have similar accuracy. To have a better understanding of how
the models would perform in the real deployment, we simulate
an offline deployment to assess the performance of the mod-
els when scheduling 20 randomized queues of submitted jobs.
Rather than executing the applications in the batch scheduling
system, we use the data collected for training (measured run-
time for both solo and colocated settings).

The summarized simulation results for each model are shown
in Figure 6. From the figure, we notice that for the models
built with all counters, their average performance was similar
to FIFO. While ElasticNet, SVM, and MLP had a slight over-
all improvement of less than 2%, the RF model had an im-
provement of about 8%. ElasticNet, SVM, and Random Forest
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Figure 7: Prediction behavior for each model during validation with an unseen
dataset.

showed similar performance when using the simplified/generic
input features. Surprisingly, despite achieving similar high ac-
curacy compared to the other models during the training phase,
the MLP model presented a 50% increase in the makespan
when the model was simulated using the subset of features.

The figure also shows the results for two different strategies
used to create the scheduling. As described in Section 3.5, the
Blossom uses the result of the matching problem over a degra-
dation graph to provide the solution, while the Greedy heuristic
uses an ordered list to provide the solution. From the simula-
tion, we noticed that the simplest strategy had similar perfor-
mance compared to the more elaborate one. Furthermore, they
kept the same trend of performance for every model that does
not execute well in each scenario.

We further investigated why the models had poor results
when they were simulated in the makespan analysis. Figure 7
shows the scatter plot of the prediction for each model when
confronted with the unseen data during validation. Predictions
that deviate from the true value do not contribute to maximizing
server utilization, because the scheduler would make bad colo-
cation decisions based on mispredicted values. We notice that
predicting a degradation below the true value (underestimating
the degradation) can be critical because the scheduler uses this
indicator to colocate applications that should not be colocated
together, thus making the applications experience severe perfor-
mance slowdown. Predicting a degradation above the true value
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is also not desirable (overestimating the degradation), but it is
less critical because the scheduler can assume a conservative
approach and schedule the applications in a sequential (FIFO)
fashion.

Looking at Figure 7, we can observe that ElasticNet, SVM
and MLP models produce more spread out predictions around
the true value (represented in the figure by the straight red line)
in which it is not possible to identify any particular trend. The
Random Forest model, on the other hand, produced the majority
of its prediction concentrated around the straight line. Except
for Random Forest, all the other models predicted negative val-
ues (below zero) when confronted with the validation data, even
though we did not have negative degradation in our dataset.
Thus, we deemed those models (ElasticNet, SVM, and MLP)
not suitable to be used in the resource manager as they could
lead to bad application pairs and an increase in the makespan to
execute the queue of jobs. It was also corroborated by the re-
sults of the makespan analysis through model simulation (Fig-
ure 6).

In conclusion, Random Forest was found to be the model
with the best performance in our offline deployment. In the next
experiments, we will show how the model accuracy influences
the scheduler decisions in a real setting.

4.4. Real system results

Given the promising results from model training/validation
and makespan analysis performed offline, we integrate the Ran-
dom Forest (best performing model) in our scheduling plugin
for Slurm. As a baseline, we disable the shared resource and
let the resource manager apply its FIFO execution, which we
called FIFO. Slurm allows the applications to share the whole
allocated server without restrictions, this approach was called
FIFO Shared. It is agnostic to degradation between applica-
tions and executes the applications in order of arrival.

4.4.1. Predefined Degradation Levels
To investigate the effect of degradation on execution perfor-

mance, we evaluate the potential of sharing resources on a set
of defined groups of applications with distinct degraded runtime
levels then we analyze the behavior of the scheduling strategies.
We randomly separated the arriving applications into 3 different
pattern queues, for each pattern we created 5 different queues
with 50 applications on each. The queues are represented ac-
cording to their degraded runtime amount: Low degradation
queue contained pairs of applications whose max runtime lev-
els were lower than 75% of its FIFO execution; Medium degra-
dation queue, contained pairs of applications whose execution
order would generate runtimes of more than 75% and less than
100% of its FIFO execution; and High degradation queue con-
taining pairs applications whose degraded runtime would be
higher than its FIFO execution. This analysis aims to highlight
the potential worst and best scenarios given the application set
for the scheduling strategies.

Figure 8 presents the makespan, normalized to FIFO (serial
execution). As expected, on High degradation queue, FIFO

shared had the worst performance (2.3x makespan on aver-
age) compared to FIFO. Because FIFO shared is not degra-
dation aware, it has no flexibility to rearrange sequential bad
pairs: it executes them in order of arrival, causing an exces-
sive amount of degradation. Although the queue are made of
applications with high degradation between them, by using the
machine learning models we were able to outperform the FIFO
execution, mainly by its capacity of rearranging the queue to
find which applications can and can not execute together. It
also outperformed FIFO shared as sequential bad pairs will not
share resources.

On Medium degradation queue, FIFO shared outperformed
FIFO with an improvement of about 23% on makespan. Even
better results were obtained on Low degradation queue when
the improvement on makespan reached around 40%. It happens
because the serial execution misses opportunities when the ap-
plications can safely share resources as they do not fully utilize
the resources. In these scenarios, FIFO shared can take advan-
tage of the combination on applications’ dispatch. As long as
the order of arrival is beneficial to colocation, FIFO shared can
improve the makespan over FIFO.

For Medium degradation queue and Low degradation queue,
FIFO shared presented a slight improvement compared to our
approach using the blossom strategy. This happens because
FIFO shared takes a more aggressive approach pairing appli-
cations in order of arrival and using the next application in line
to execute when a paired application finishes earlier. Although
it is an advantage if consecutive applications to a pair can safely
execute together right away, it is very dependent on the arrival
order to provide good results. On the other hand, the blossom
strategy executes conservatively a single pair of applications at
a time and executes serially those whose runtime will exceed
its FIFO execution. It means that the approach will not rely on
the order of arrival and will safely execute the next applications
in line only after both applications in the pair finish. On the
other hand, the greedy strategy has similar performance com-
pared to FIFO shared since it takes advantage of having a list of
applications that can be safely paired.

Figures 9a and 9b show the execution of High degradation
queue (applications in Y-axis, from top to bottom: watern-
squared, swaptions, streamcluster, stream, ssca, qsort, mandel,
lulesh, lu, lavamd, kmeans, hpccg, hop, ft, fluidanimate, fft, ep,
cg, cfd, bt, blackscholes, barnes) and Low degradation queue
(applications: waterspatial, swaptions, stream, qsort, parti-
clefilter, minife, mandel, hpccg, hop, ft, fluidanimate, fft, ep,
barnes) over time. Each horizontal bar represents the length
of the execution time of each application. We can observe that
in FIFO shared, an application can be placed alongside another
application at the same time. To help illustrate the application
execution, red and black dots in the beginning and end of each
bar represent the start and end of the execution.

In the high degradation scenario, it is considerably better to
serialize the execution of the applications (Slurm’s FIFO pol-
icy) rather than to allow server sharing (Slurm’s sharing policy).
On the other hand, in the low degradation scenario, server shar-
ing can enhance performance compared to running the appli-
cations serially because the applications are not contenting for
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Figure 8: Normalized makespan of 5 queues with 50 applications (on a single server) for high, medium, and low degraded runtime arrival pattern. It also shows the
performance of the solution using greedy and blossom strategies.

the same shared resources. Since our approach attained good
makespan reduction compared to FIFO, this result demonstrates
the effectiveness of our predictive approach that could correctly
identify the scenarios where it is worth performing workload
colocation vs non-colocation.

4.4.2. Random job queues
For the evaluation of the model deployed on a real system,

we generated 20 queues each one containing 50 randomly cho-
sen applications. Then we ran those queues on a single server
and the batch scheduler system analyses all jobs submitted to
the queue. Figure 10 presents the average makespan normal-
ized to FIFO for the methodology. We note that FIFO shared
increased the makespan by almost 50%, while our solution im-
proved the makespan on average by about 7%. It is worth men-
tioning that our solution had better performance than FIFO for
every executed queue. When investigating the results of the in-
dividual queues, in comparison to FIFO, our solution had 3%
of makespan improvement in the worst scenario and almost
12% in the best scenario. In addition, our approach also out-
performed the DI heuristic1 presented in Figure 1, which al-
lowed bad pairs to execute together in most executed queues,
thus increasing the makespan by 7%. This result highlights
the importance of considering additional performance counters
when characterizing the degradation instead of relying on cache
misses as a sole indicator.

1In our implementation of DI, we took advantage of the execution profile
of the jobs available to the resource manager (in our case, Slurm) and sorted
the jobs in ascending order list based on their LLC miss rates. Then, we build
the scheduling pairs grouping an application with the lowest and another with
the highest cache miss in the list until we considered all jobs. This maximizes
resource usage variance to avoid shared resource contention.

Following the good results achieved after deploying the
model in a real system, we evaluated its scalability increas-
ing the number of servers in the configuration. For each server
added to the evaluation, we also increased linearly the number
of dispatched jobs for each queue. Following the test for one
server, in this test the batch scheduler system analyses all jobs
submitted to the queue. Figure 11 presents the makespan for
each configuration when the number of servers varies. We no-
ticed that for one to three servers the average improvement is
about 5% to 7%, however, we had a slight decrease when the
number of servers was four and five using the blossom strategy.
They had a respective improvement of less than 3% and 1% on
average. Since we take a holistic view of the queue of jobs,
which means that the plugin will take into account all currently
jobs dispatched to the system, consequently we will see an im-
pact in the performance when the number of considered jobs
starts to grow (see more details in Section 4.4.3).

Figure 11 also presents the makespan results normalized to
FIFO, for random forest model using the greedy strategy. Both
strategies, blossom and greedy, were able to outperform the
FIFO execution on average and the greedy strategy achieved
a better performance than that of the blossom strategy. It kept
its performance of 7% on average for four servers with a slight
decrease to 6% for five. This is due to the overhead associated
with the greedy solution which is slightest lower than the blos-
som (see section 4.4.3). It is worth mentioning that the greedy
strategy had better performance than FIFO for all tested queues
across the servers. Furthermore, the advantage of the greedy
strategy over the blossom happens as we apply the threshold
that cuts down pairs that are expected to run slower than the
FIFO scheme. In this case, the greedy goal of picking always
the lower runtime pairs took more advantage than the well-
balanced blossom strategy, since the applications in pairs with
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Figure 9: Timeline showing how the applications are scheduled, highlighting
two scenarios: (a) High degradation vs (b) low degradation. See text for the list
of applications.
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Figure 10: Normalized makespan for greedy and blossom strategies to execute
20 randomly-generated queues on a single server.

predicted excessive runtime will be executed alone when the
threshold is applied. Note that using a simpler strategy already
reduces the makespan significantly (about 7% on average) over
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Figure 11: Normalized makespan for blossom and greedy strategies to execute
20 randomly generated queues in multiple servers.
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Figure 12: Measured time spent to predict the degradation for all pairs of ap-
plications using the Random Forest model

FIFO.

4.4.3. Scalability analysis
We evaluate the time required to compute a scheduling so-

lution when varying the number of applications. The solution
time includes the time to predict the degradation of each pair of
applications and the time to compute the co-scheduling pairs,
solving the graph matching problem for blossom strategy or
search in a list for greedy strategy.

Figure 12 presents the time measured to predict all degrada-
tion pairs for a varied number of jobs. This time is independent
of blossom vs greedy strategies since the same model is used for
both strategies. For this experiment, we found low standard de-
viation of 0.03% to 0.8%. We observe that the Random Forest
model scales almost linearly with the number of jobs. Since the
model uses as input the entire queue of pending jobs, a higher
number of processed jobs can influence the model performance
in the cluster scheduler.

Figure 13 presents the time spent creating the co-scheduling
pairs, once the predicted degradation values for all pairs of jobs
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Figure 13: Measured time spent to produce scheduling decisions using two
strategies: Blossom and Greedy.

are generated by the model. We observe that the greedy strategy
taking from 0.003 ms to 0.23 ms (standard deviation of less
than 0.005 ms) shows much lower processing time than blossom
strategy which took from 0.35 ms to 22 s (standard deviation of
0.06 ms - 7 s). The greedy approach performs a simple sort
on a list rather than executing the elaborated graph (Blossom)
algorithm. The time spent to compute the scheduling for greedy
never exceeded 1 second in our evaluation, while blossom spent
up to 22 s. In real settings, a greedy strategy is recommended
to handle a large number of jobs in the system.

In fact, the overhead associated with the blossom strat-
egy helps explain the performance loss of blossom compared
to greedy when adding more apps and servers in the cluster
(shown in Figure 11). For four servers the total time to create
the scheduling solution was about 80 s, while for five servers it
increased to 124 s. The greedy strategy was less affected with
four and five nodes since only the prediction time dominates its
overhead. On the other hand, the blossom strategy is also penal-
ized by the time taken to create the solution that also increases
with the number of jobs. Therefore, the blossom strategy will
always face the highest performance penalty with a high num-
ber of jobs.

4.4.4. Reducing model inference time
In order to improve the performance of our approach, we an-

alyzed the impact of reducing the overhead necessary to predict
the degradation for all pairs of submitted applications. As Fig-
ure 12 demonstrated that the built random forest model suffers
when the number of applications grows, we looked into its pa-
rameters chosen during the training phase listed in Table 2 for
the random forest model.

Since the random forest model averages the predictions of
several base estimators, we noticed that the number of estima-
tors is an important feature for this model and also contributes
to the cost of predicting a sample. In spite of reducing the vari-
ance and increasing the accuracy of the model, sometimes a
large number of estimators in a forest only increase its cost. We
then decided to decrease the number of estimators evaluated

for the model and training the models to find out the balance
between accuracy and time to predict in order to improve its
scalability.

Figure 14 shows the result for the experiment of reducing
the number of estimators for the random forest model. In this
experiment, we trained the model with the reduced number of
estimators while collected the time necessary to predict all pairs
of applications for a queue of 50 applications. In the figure, we
noticed that while the number of estimators increases the time
taken to predict all pairs, it does not hold the same trend for ac-
curacy. We can notice lower number of estimators with better
accuracy than high number of estimators (e.g 10 and 12 estima-
tors). In spite of using the model with the highest accuracy and
also with a high number of estimators (22) for the previous ex-
periments, we noticed the model using 6 estimators presented
a good balance between accuracy and time to predict with the
lowest time to predict (almost 2 s) for models with accuracy
over 70%.
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Figure 14: Time to predict the degradation for all pairs of applications for a
queue of 50 applications using the random forest. Each point represents a model
with a particular number of estimators. R2 score is used to represent the quality
of the model.

We compared the random forest with the reduced number of
estimators against the previous model that achieved the highest
accuracy while using a higher number of estimators. Figure 15
shows the measured time to predict all degradation pairs using
the model with the number of estimators reduced. It was mea-
sured multiple times, yielding a standard deviation of 0.01% to
0.28%. We clearly noticed that the reduction of the number of
estimators affects the time to predict all pairs when the num-
ber of jobs increases. The time spent predicting the degradation
decreased nearly 3x compared to the previous model. This de-
crease in the overhead will allow the approach to be used with
a higher number of jobs before affecting the solution.

After reducing the number of estimators for the random for-
est model we deployed it in the real system while varying the
number of servers. Figure 16 shows the normalized makespan
for each scenario. In the figure, we noticed that the reduced
model using the greedy strategy (RFG-R) could be improved
when the number of queued jobs increased. Since the overall
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Figure 15: Measured time spent to predict the degradation for all pairs of appli-
cations using the Random Forest model from training phase with 6 estimators
(Reduced) and 22 estimators (Complete).

time for the greedy strategy is dominated by the prediction time,
it could scale better than the original model with all estimators
(RFG).

On the other hand, the reduced model using the blossom
strategy (RFB-R) also had a significant reduction in its over-
head attaining better performance up to five servers compared
to the original model (RFB). However, the blossom/optimal
strategy could not scale well as the graph algorithm introduced
a higher overhead with an increasing number of applications
and servers in the system.

0.85

0.90

0.95

1.00

1 2 3 4 5

Number of Servers

N
o

rm
a

liz
e

d
 M

a
k
e

s
p

a
n

FIFO RFG RFG−R RFB RFB−R

Figure 16: Normalized makespan for blossom and greedy strategies to execute
20 randomly generated queues in multiple servers. The number of estimators is
reduce to decrease the random forest model’s overhead (RF*-R)

Given the results presented, we can observe that adopting a
greedy strategy could best balance prediction time and effec-
tiveness in reducing the makespan. Moreover, its lower over-
head allows for scaling with a much higher number of jobs.
This is important in real system deployment since our scheme
could be triggered at shorter intervals without negatively im-
pacting the scheduling manager. By tweaking key parameters
in the model, we could also lower the time required to produce

application degradation predictions. This was particularly im-
portant to scale our solution to a higher number of applications
and servers in the system.

5. Related Work

Georgiou et al. [37] implemented in Slurm three powercap
policies for dealing with power limitations in large-scale HPC
clusters. Ellsworth et al. [38] implemented power-aware Slurm
plugins to explore and compare power management strategies
using existing hardware platforms. Rajagopal et al. [39] devel-
oped a power-aware mechanism integrated within the Slurm to
improve the system resource utilization and to reduce job wait-
ing times by redistributing the system power under strict pow-
ercap regime. Sakamoto et al. [40] proposed a power-aware
resource manager based on the Slurm to maintain a system-
wide power limit using a set of interfaces in combination with
portable APIs for power measurement and control. Simakov et
al. [41] experimented on a Slurm simulator to study the bene-
fits of node sharing. Dynamic Voltage and Frequency Scaling
(DVFS) and Intel Running Average Power Limit (Intel RAPL)
techniques have been extensively studied [42, 43, 12, 44] to
improve energy efficiency and system throughput under over-
provisioned scenarios.

To avoid negative interference between workloads Bubble-
Up [2] uses the application’s sensitivity and contentiousness to
predict the degradation due to contention sharing the memory
subsystem. The profiling complexity for all pairwise coloca-
tions with Bubble-Up would beO(N) (N as the number of appli-
cations). Alves et al. [45] provided a model based on multiple
regression analysis and trained using micro-benchmarks to pre-
dict the average slowdown of collocated applications, given the
LLC, memory, and network pressures. The work is extended
in [46] to provide a scheduler that colocates Virtual Machines
(VMs) using an Integer Linear Programming (ILP) formula-
tion to minimize the number of physical machines. Octopus-
Man[47] and Hipster [48] allow for energy-efficient coloca-
tions of cloud workloads by exploring heterogeneous multicore
servers while focusing on a single (leaf) server. In contrast to
these works, our solution is designed to be readily adopted as a
plugin in an open-source cluster resource manager.

Dwyer et al. [15] investigated the effectiveness of machine
learning on predicting performance degradation due to colo-
cation of applications. Their model estimates the degradation
based on per-core and system-wide hardware counter values.
For multithreaded applications, the model could be used to es-
timate the degradation for each thread. Then, the scheduler can
decide whether is necessary to allocate more hardware by aver-
aging the degradation of all threads.

Delimitrou et al. [49] proposed a cluster manager that maxi-
mizes resource utilization while meeting workload performance
requirements. It uses classification to determine the impact of
the amount of resources, type of resources, and the interference
on performance for each workload. The classification approach
eliminates the need for exhaustive online characterization. Reg-
ularization models [22] were previously explored for predict-
ing application interference. These models combined linear
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and non-linear approaches to produce accurate predictions. The
models were trained with low-level hardware features (instruc-
tions retired, cache miss, etc.) acquired from offline measure-
ments.

6. Conclusion

We propose a solution for application colocation that pre-
dicts the degradation of colocated applications and schedules
the combinations with minimum degradation. This improves
the allocation of overall system computing capacity and there-
fore optimizes server efficiency. We experimentally demon-
strate that using hardware counters in machine learning is a
promising alternative to tackle this problem. We implemented
our solution in the open-source cluster resource manager Slurm,
as a plugin in its scheduling decision process. We carried out
several experiments to evaluate the effectiveness of this method
in a practical setting.

Our experimental results showed that machine learning mod-
els, in particular Random Forest, achieve good accuracy (81%)
in the evaluation phase, outperforming other models such as
regression. Our solution achieved performance improvements
of 7% (avg) and 12% (max) compared to the policies used by
the Slurm resource manager. The solution based on the greedy
strategy presented the best-balanced approach considering both
makespan improvement and overhead to compute the schedul-
ing solutions.
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