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Introduction and background 

Travel time is, and will continue being, key information for 
both, traffic management centers and drivers. When received in 
real time, it allows quantifying the level of congestion on a road 
link and represents a valuable input for the activation and 
calibration of dynamic traffic management systems. In turn, 
travel time information allows drivers to adapt departure times 
or to change their routes, if possible. In any case, information of 
expected delays reduces drivers' stress and allows planning later 
activities accordingly (van Hinsbergen et al., 2007; Soriguera, 
2014; Mori et al., 2015; Martínez-Díaz, 2018). In the next future, 
the value of travel time information will even increase with the 
popularization of highly automated vehicles, with more 
technology deployed in the infrastructures, and with new 
transportation schemes, like Mobility as a Service (MaaS), 
requiring better information and a higher degree of coordination 
between transportation modes. 

Today, many freeway travel time information systems rely on 
direct measurements of travel time (e.g. industry solutions such 
as TomTom, HERE, Google, etc.), although the automatized 
direct measurement of travel times at traffic management centers 
is relatively recent. Automatic Vehicle Identification (AVI) or 
tracking technologies are generally used as measurement 
devices. AVI identifies individual vehicles at consecutive 
locations on the freeway and by comparing the timestamps, their 
travel times are obtained (Turner et al, 1998; Buisson, 2006; 
Coifman and Krishnamurthya, 2007; Barceló and Kuwahara, 
2010; Soriguera et al. 2010; Abott-jard et al., 2013; Bhaskar and 
Chung, 2013). AVI technology may rely on license plate 
recognition cameras (LPR), Bluetooth signal detectors or toll tag 
identification systems, among others. Information is obtained at 
the individual vehicle level, which may be useful (e.g. for the 
construction of O/D matrices), although travel time information 
systems rely on the average value computed over a pre-
established time interval, 𝛥𝑇. Travel time information systems 
using AVI devices suffer from two main drawbacks. First, travel 
times are only obtained between control points where AVI 
devices are located, which may be kilometers apart. Second, 
directly measured travel times provide information form the past, 
which may be obsolete when feeding real-time information 
systems. Note that vehicles entering a freeway section want 
information about their expected travel time, while they would 
receive information about the average travel time of the vehicles 
that have exited the section during the last 𝛥𝑇, at best. This is 
why the AVI type of travel time information is named arrival-
based travel times (ATT). These can be significantly different 

than predicted travel times (PTT), especially in changing traffic 
conditions, if distance between AVI devices is large or if ΔT lasts 
long (Soriguera and Robusté, 2011). The alternative for the direct 
measurement of travel times consists in tracking the vehicles by 
using GPS or mobile geolocation (e.g. Bar-Gera, 2007; Herrera 
et al, 2010; Unde and Borkar, 2014), although mobile 
geolocation is more inaccurate, and given the prevalence of GPS 
equipped smartphones, a kind of an old fashion need. In this case, 
travel times are not captive of control points, and can be 
measured between any two locations on the road. In addition, the 
obtained information includes the travel times of vehicles on the 
target section until the present instant, even of those which have 
only covered the section partially. Therefore, these 
measurements, called instantaneous travel times (ITT), represent 
the last information available from vehicles’ trajectories. While, 
form a real-time information perspective, ITT are more desirable 
than ATT, they are still different than PTT. 

Despite the year-to-year increase in the usage of direct travel 
time measurements, most traffic agencies rely on indirect 
estimations of travel time, yet. This is due to the fact that 
inductive-loop detectors are still the most widespread 
surveillance technology in freeways. In such context, travel times 
are indirectly estimated from loop detectors' measurements, 
commonly using the so-called spot-speed methods. These consist 
in extrapolating the average speed measured at the loops over 
extended freeway lengths. Spot-speed methods yield ITT 
estimations, although their accuracy is questionable (Soriguera 
and Robuste, 2011) since spatial speed extrapolations are 
mathematical exercises, without considering traffic dynamics 
and queue evolution. 

In conclusion, most of the travel time estimation methods 
currently used for real-time information either yield ATT or ITT, 
avoiding the complexities and uncertainties of predictions (PTT). 
This does not mean that there are not research works in the 
literature dealing with short-term freeway travel time prediction. 
On the contrary, literature is vast. Conceptually, different types 
of approaches have been proposed, which can be classified in 
three groups (van Lint et al. 2005): i) Model-based approaches, 
where traffic flow models are used to predict traffic evolution, 
and from here, travel-time predictions are derived. Examples can 
be found using DynaMIT (Ben-Akiva et al., 2002), 
DynaSMART (Hu, 2001) or METANET (Smulders et al., 1999). 
ii) "Instantaneous" travel time predictors, which use current and 
past traffic flow variables, such as speeds or flows, to predict 
travel times, assuming that traffic conditions will remain 
stationary for an indefinite time period (see for example (Van 
Lint and Van der Zijpp, 2003)). And iii) data-driven approaches, 
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either using parametric methods (e.g. linear regression (Zhang 
and Rice, 2003; Sun et al., 2003; Laoide-Kemp and O'Mahony, 
2020), time series models (Yang, 2005; Min and Wynter, 2011; 
Ishak and Al-Deek, 2002), Kalman filtering (Okutani and 
Stephanedes, 1984; Chien and Kuchipudi, 2003; Nanthawichit et 
al., 2003; Chu et al., 2005; Van Lint, 2008; Xia et al., 2011)) or 
non-parametric methods (e.g. support vector regression (Lam 
and Toan, 2008) and various neural network models (Park and 
Rilett, 1999; Rilett and Park, 2001; van Lint et al., 2002; van Lint 
et al., 2005; van Lint, 2006; Wei and Lee, 2007; van Hinsbergen 
et al., 2009; Zeng and Zhang, 2013)). 

In spite of this broad amount of works and methods, their 
usage is limited to off-board navigation solutions in many 
different variations, but which, from the traffic agencies point of 
view and as a real-time solution, appear as complex and shady, 
mostly behaving as black boxes. This happens despite many 
recent works relying on artificial intelligence and machine 
learning are relatively easy to implement and provide robust 
results (see (Zhang and Haghani, 2015) as an example). Besides, 
more traditional instantaneous methods, based on the 
measurement of vehicle accumulation (Daganzo, 1983), which 
do have predictive capabilities as they aim to predict the time 
required to serve all vehicles accumulated on a freeway stretch, 
are neither used. This happens despite they could be simply 
applied using loop detector measurements to construct input-
output cumulative count curves. Not being an intuitive method, 
the requirement of vehicle conservation between count 
measurements, and the loop detector count drift, are amongst the 
reasons of their lack of popularity. In fact, detector drift is a 
severe drawback, as vehicle accumulation is obtained from the 
difference of cumulative counts at consecutive detectors (i.e. 
input - output). In this context, even a small systematic error in 
detector counts, when accumulated in time, can make the 
estimation of vehicle accumulation totally unreliable. 

In view of the previous considerations, it would be desirable 
to take advantage of the predictive capabilities of vehicle 
accumulation for travel time prediction by developing a simple 
method for correcting the drift error in input - output cumulative 
curves. In order to be applied in practice, the method should rely 
on data commonly available at traffic management centers. 
Today, data from tracking systems, especially from GPS on-
board equipment (e.g. smartphones, tablets, smart watches, 
cameras, etc. or dedicated GPS trackers) fulfills this criterion. 
Whereas specific GPS trackers are mainly installed in 
commercial fleets and public transport (e.g. buses, taxis, etc.) 
(Leduc, 2008), undedicated GPS signal receptors are 
widespread, especially in the form of smartphones. Any of these 
tracking devices allows obtaining GPS data very frequently (e.g. 
every second) yielding huge databases of raw vehicles' 
trajectories. Complex applications of these data are possible, 
such as trajectory reconstruction (Patire et al. 2015; Knapen et 
al., 2018), estimation of origin-destination (OD) matrices (Ge 
and Fukuda, 2016; Zhu and Ye, 2018), driving behavior analysis 
(Vlahogianni and Barmpounakis, 2017; Chen et al., 2019) or 
travel time estimation (Cedillo-Campos et al, 2019; Krause and 
Zhang, 2019). In addition, the use of tracking data already plays 
an important role in the context of the connected driving 
environment (Ge et. al., 2018; Wang et al., 2020). However, the 
costs linked to communications, data storage and computational 
capabilities, are high. These costs are significantly reduced when 
using low-frequency GPS data (e.g. one sample per minute). In 
this case, the most typical applications are vehicle positioning, 
tracking, and remote management of vehicle fleets (Laha and 
Putatunda, 2018; Kemajou et al., 2019). Recently, neural 
network architectures fed with low-frequency GPS data, have 
also shown their potential to provide efficient vehicle 
classification, considering small-duty, medium-duty and heavy-
duty vehicles (Simoncini et al., 2018). 

In this context, the goal of the present paper is to develop a 
reliable and generally applicable method for the real-time 

prediction of travel times based on vehicle accumulation on a 
freeway section. The main contribution of the paper is the 
development of a data fusion algorithm using GPS data to correct 
the drift in input-output diagrams from loop detectors. 
Specifically, the method consists in estimating ITT from 
cumulative counts at loop detectors. These ITTs, which are 
affected by detector drift, are compared with direct ITT from 
GPS data measurements. By assuming the ITT from GPS 
tracking data as highly accurate, the detector drift is corrected. 
This allows constructing corrected input-output diagrams, which 
are then used to obtain a reliable estimation of vehicle 
accumulation from where to obtain short-term travel time 
predictions (PTT). The goodness of the proposed method is 
proved, even in a simulated hostile context, with severe 
congestion and only a low percentage of tracked vehicles. 
Among other issues, the impact on PTT accuracy of the 
frequency of GPS data collection, as well as the length of the 
time intervals of aggregation are analyzed in the paper. 

The remainder of the paper explains the data fusion 
methodology in detail, and proves its goodness in a simulated 
environment. Next, the obtained results as well as the influence 
of the most important parameters are discussed. The paper ends 
with a summary of conclusions and the proposal of key issues for 
further research. 

Estimating delays from input - output diagrams 

Input - output cumulative vehicle count diagrams are 
constructed by plotting the cumulative vehicle count, 𝑁, versus 
time, 𝑡, for two consecutive loop detectors without in between 
in/out flows. The two detectors define a closed freeway section, 
i, where the cumulative count at the upstream detector constitutes 
the “arrivals curve”, 𝐴&(𝑡), and that of the downstream detector 
the “departures curve”, 𝐷&(𝑡). Provided that conservation holds 
in the section and accepting a first in - first out (FIFO) behavior, 
the horizontal distance between the curves at the height of a 
vehicle 𝑘 represents the travel time of this vehicle in the section, 
whereas the vertical distance between the curves at any time 𝑡 is 
the vehicle accumulation in the section at this instant. If 𝐴&(𝑡) is 
translated forward in time a magnitude equal to the free flow 
travel time in the section, 𝑡+(&), a third curve is obtained, called 
𝑉&(𝑡), the “virtual arrivals curve”. 𝑉&(𝑡) is simply a translation of 
𝐴&(𝑡) in time which allows easily determining delays as the 
horizontal distance between 𝑉&(𝑡) and 𝐷&(𝑡) in the input-output 
diagram. Recall that the delay is defined as the difference 
between the travel time and the free-flow travel time in section 𝑖. 
The vertical distance between 𝑉&(𝑡) and 𝐷&(𝑡) represents the 
excess accumulation in the section at 𝑡, defined as 𝑄&(𝑡). 

However, some passing usually exists, and the FIFO 
assumption does not strictly hold. This means that the individual 
travel times (or delays) obtained with this method would be 
biased in practice. This does not represent a severe limitation as 
we are interested in average delays calculated over pre-
determined time intervals, ∆𝑇. The average ITT delay is 
estimated from the total cumulative delay drivers spend on 
section 𝑖 during the time interval ∆𝑇, which is obtained by 
computing the enclosed area, 𝒮&(𝑡), between 𝑉&(𝑡) and 𝐷&(𝑡) 
during ∆𝑇 (see Fig. 1). Recall that this includes vehicles which 
only have covered section 𝑖 partially, and it is not affected by 
overtakings. So, the average ITT delay per unit distance travelled 
can be obtained by dividing 𝒮&(𝑡) by the total cumulative 
distance vehicles have covered on section 𝑖 during ∆𝑇. This 
cumulative distance can be estimated as the length of section 𝑖, 
defined as ∆𝑥&, times the number of exiting vehicles during ∆𝑇 
(i.e. ∆𝑥& · [𝐷&(𝑡) − 𝐷&(𝑡 − ∆𝑇)]); see (Daganzo, 2007) for a 
more detailed derivation. Finally, 𝑤&(𝑡), representing the 
average ITT delay on section 𝑖 during ∆𝑇, is obtained by 
multiplying the delay per unit distance times ∆𝑥&. ∆𝑥& cancels 
out, yielding the result on Equation 1. 

 



𝑤&(𝑡) =
𝒮8(9)
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Note that this estimation of 𝑤&(𝑡) can be updated every ∆𝑡, 

where ∆𝑡	is the time interval between loop detector 
measurements. This has nothing to do with ∆𝑇, the travel time 
averaging period, although, in practice, the calculations are 
easier if ∆𝑇 is an integer multiple of ∆𝑡 (i.e. like in Fig. 1 where 
∆𝑇 = 2∆𝑡). 

 

 
Fig. 1. Estimation of cumulative ITT delay, 𝒮&(𝑡), from input-output 
diagrams at section 𝑖	during ∆𝑇. Note: the drift correction procedure 
yielding 𝑉&∗(𝑡) (where the subscript "*" stands for "corrected") is presented 
in next sections. 

Also note that the estimation of ITT delays in Equation 1, 
would yield results equivalent to those obtained by averaging all 
the individual delays obtained by GPS tracking during ∆𝑇. 
(Soriguera and Martínez-Díaz, 2020) provide further details on 
how to obtain travel times from input - output diagrams. 

From input - output diagrams it is also possible to obtain an 
estimation of the short-term predicted delay in section 𝑖 at time 
𝑡, 𝑤&

(@)(𝑡), where the subscript (@) stands for "predicted" for 
all the variables in the paper. 𝑤&

(@)(𝑡) is obtained by dividing the 
excess accumulation in section 𝑖 at time 𝑡, 𝑄&(𝑡), by the predicted 
average outflow from section 𝑖, 𝑞BCD9_&

(@) (𝑡) (see Fig. 2 and Eq. 2). 
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Fig. 2. Estimation of the predicted delay from input-output diagrams. 

 
This estimation of the short-term predicted delay takes 

advantage of the knowledge of current excess accumulation, 
𝑄&(𝑡), in order to predict the time needed to "serve" all vehicles, 
limiting the forecasting uncertainty to setting the predicted 
outflow. To that end, 𝑞BCD9_&

(@) (𝑡) can be set as a moving average of 
the last measured outflows. The duration, 𝜏, of the time window 

considered in this moving average affects the performance of the 
prediction. For example, long averaging periods (i.e. large 𝜏) 
imply a more robust estimation of 𝑞BCD9_&

(@) , because of using a 
larger sample. This will reduce the statistical fluctuations in the 
estimation of 𝑞BCD9_&

(@) , but it will take longer to incorporate sudden 
changes in the outflow into the travel time prediction. Short 
averaging periods (i.e. small 𝜏) result in the opposite behavior, 
favoring immediacy in reporting outflow changes with respect to 
limiting the fluctuations of predicted travel times. Given this 
trade-off, it is necessary to find a balance between both factors 
by calibrating 𝜏 to maximize the accuracy of predictions in any 
specific application of the method. Just as a reference, the best 
results were obtained for 𝜏 = 15 minutes in the application 
presented later in this paper. 

From the expected delay in section 𝑖 and at time 𝑡, 𝑤&
(@)(𝑡), 

the expected travel time, 𝑡𝑡&
(@)(𝑡), is simply obtained by adding 

the free-flow travel time in the section, defined as 𝑡𝑡+_& (see 
Eq.3). 

 

𝑡𝑡&
(@)(𝑡) = 𝑡𝑡+_& + 𝑤&

(@)(𝑡)  (3) 

 
Finally, the addition of predicted travel times for consecutive 

sections allows obtaining corridor travel time predictions.  

Using GPS tracking data to correct count drift in input 
- output diagrams 

The main problem when estimating delays from input - output 
diagrams constructed from loop detectors is that vehicle count 
measurements suffer from drift. This is that loop detectors tend 
to systematically lose a small fraction of passing vehicles. Even 
though long-term drift correction factors are typically applied to 
detector counts (i.e. enforcing that over extended periods of time, 
24h for example, detector counts at consecutive detectors in 
closed sections coincide), this is not enough to ensure reliable 
estimation of vehicle accumulation over shorter periods of time. 
Note that even a small count drift between detectors can turn to 
be dramatic when accumulated in time to construct 𝑉&(𝑡) and 
𝐷&(𝑡), so that the estimations of 𝒮&(𝑡) and 𝑄&(𝑡) can be totally 
biased leading to wrong delay estimations. 

In this context, in order to use input - output diagrams to 
estimate travel times and delays, it is necessary to apply a short-
term drift correction method. The proposed method consists in a 
data fusion algorithm using a moderate amount of direct travel 
time measurements obtained from GPS tracking data to correct 
input - output diagrams. 

The data fusion algorithm is simple. Every ∆𝑇 (which is 
generally longer than the loop detector measurement interval, 
∆𝑡), a directly measured ITT, 𝑡𝑡P&(𝑡), is obtained from GPS 
tracking data. Note that the "hat" Q  stands for directly measured 
variables from GPS data. In order to compute 𝑡𝑡P&(𝑡), consider 
that each GPS measurement provides, at least, the vehicles' 
position and timestamp. Then, GPS measurements are filtered to 
only consider vehicles with two or more data points on section 𝑖 
and time interval (𝑡 − ∆𝑇, 𝑡). Using vehicles' position and 
timestamp this filtering is straightforward. Next, the travel time 
of vehicle 𝑗 on the section 𝑖, 𝑡𝑡P&T(𝑡), is obtained as the difference 
in timestamps between the last and first GPS measurements in 
the filtered database. The distance covered, 𝑑V&T(𝑡), is obtained 
analogously from the difference in positions. From these 
measurements, 𝑡𝑡P&(𝑡), is obtained as: 

 

𝑡𝑡P&(𝑡) = ∆𝑥&
∑ 99Q 8X(9)∀X

∑ Z[8X(9)∀X
   (4) 

 
Note that the quotient in Equation 4 is the inverse of the 

average generalized speed (i.e. the average generalized pace) on 
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section 𝑖 and time interval (𝑡 − ∆𝑇, 𝑡), as defined by (Edie, 
1965). Also note that ∆𝑇 contributes to a more robust estimation 
of 𝑡𝑡P&(𝑡), due to a larger sample size, at the price of a less 
frequent update of the drift correction. 

From 𝑡𝑡P&(𝑡), the directly measured delay, 𝑤P&(𝑡), is obtained 
by subtracting the free-flow travel in the section, 𝑡𝑡+_&, as 
described in Eq. 5. 

 

𝑤P&(𝑡) = 𝑡𝑡P&(𝑡) − 𝑡𝑡+_&   (5) 

 
Being a direct measurement, 𝑤P&(𝑡) is assumed as an accurate 

estimation of the current delay. This is compared to 𝑤&(𝑡), 
obtained from the input - output diagram for the same period 
∆𝑇, as described in the previous section, and which is flawed 
due to the detectors' count drift. The fusion algorithm consists 
in applying a correction factor,	𝛼&(𝑡), to the count at the 
upstream detector, 𝑛D_&(𝑡), in order to obtain a corrected virtual 
arrivals curve, 𝑉&∗(𝑡), so that 𝑤P&(𝑡) ≈ 𝑤&(𝑡). Considering 𝑡_ as 
the current time instant where the travel time prediction is to be 
obtained, the data fusion correction algorithm is formulated in 
Eqs. 6 and 7, which can be solved using any numerical solver. 

 

𝑉&∗(𝑡) = 𝑉&∗(𝑡 − ∆𝑡) + 𝛼&(𝑡)𝑛D&(𝑡)				∀𝑡 ∈ (𝑡_ − ∆𝑇, 𝑡_)				(6) 

𝐹𝑖𝑛𝑑	𝛼&(𝑡)	𝑠𝑜	𝑡ℎ𝑎𝑡	𝑤P𝑖(𝑡) ≈ 𝑤𝑖(𝑡)																						(7) 

 
Note that the correction is applied only to the upstream 

detector, without affecting the estimation of the outflow, 𝑞BCD9_&
(@) , 

which would affect the prediction. Also consider that it is 
advisable a frequent reset of the method, to prevent large drift 
errors leading to equally large correction factors. To that end, it 
is advisable to turn-off the algorithm when free-flowing traffic 
prevails. This is not restrictive in any sense, as in free-flow traffic 
any travel time estimation suffices (e.g. direct measurements or 
spot-speed methods from loop detectors; see (Soriguera and 
Robusté, 2011) for a detailed justification). Then, the data fusion 
algorithm and delay estimation from input-output diagrams 
should turn-on when some congestion is detected at current time 
𝑡_, and assuming free-flow at 𝑡_ − ∆𝑇 with null excess 
accumulation (i.e. 𝑉&(𝑡) = 𝐷&(𝑡) in free-flowing at 𝑡_ − ∆𝑇). 
Congestion can be detected at 𝑡_ by comparing the measured 
average speed (either at the upstream detector, downstream 
detector, or from GPS measurements if available) to a speed 
threshold, 𝑣gh+_&, which should be calibrated for any specific 
application (e.g. usually a low percentile of the distribution of 
measured speeds during free-flowing periods; 𝑣gh+_& ≈ 80 km/h 
can be generally accepted in multilane freeways). 

For further reference about the fusion method, a similar 
procedure is proposed in (Soriguera and Martinez-Díaz, 2020) 
using ATT from AVI data instead of ITT. In this work, Bluetooth 
detectors were used as AVI devices. 

Case study and obtained results 

The proposed methodology has been tested with data 
obtained from simulation. 46 Km of the 3-lane AP-7 freeway, 
near Barcelona (Spain) were simulated in the PTV-Vissim traffic 
microsimulator. Data for 3h of heavy traffic with congestion 
were generated. From this simulation, a 12.8 Km stretch of the 
freeway is chosen for the analysis. This is the same stretch used 
previously in (Soriguera and Martinez-Díaz, 2020). Two sections 
between loop detectors can be defined on the selected freeway 
stretch, one of them containing a junction (see Fig. 3). 

The collected data from the simulation consisted in the 
vehicle counts, 𝑛, and time-mean speeds, 𝑣̅, at all detector 
locations, as well as vehicle counts at the junction, all of them 
every	𝛥𝑡. For the construction of input - output diagrams, the net 

vehicle count at the junction is added to the closer detector (in 
this case the one at K.P. 113.9). This is necessary in order to keep 
the conservation of vehicles in the section and avoid the 
overcomplication of the construction of input - output diagrams. 
(Soriguera and Martinez-Díaz, 2020) justifies that the bias 
incurred by this procedure is small. 

 

 
Fig. 3. Case study layout. 

 
Additionally, the position, timestamp, and speed of a sample 

of 15% of the vehicles were registered with a frequency ζ. These 
data are equivalent to that obtained either from GPS or mobile 
phone tracking. With these input data the method is of general 
application (i.e. it could be applied immediately without large 
investments), as loop detectors are still the most widespread 
source of traffic data, and 15% of tracked vehicles represents a 
low percentage which can be achieved with relative ease. 
Regarding ζ, GPS chipsets allow up to 10 Hz signal updates, 
being 1 Hz the standard (i.e. 1 measurement per second; 
Martínez-Díaz, 2018). However, working with these high 
updating frequencies would involve huge storage and computing 
requirements at traffic management centers. Less demanding 
GPS signal frequencies are considered in the present case study. 
In addition, different values for 𝛥𝑡 and 𝛥𝑇, selected amongst 
those which are commonly used in practice, are considered in 
order to determine their influence on the final results. Table 1 
shows the different combinations analyzed for ζ, 𝛥𝑡 and 𝛥𝑇. 
Note that smaller frequencies for the GPS data measurements, ζ, 
prevent using short ITT averaging periods, 𝛥𝑇, as the sample of 
GPS measurements would not be enough to compute a reliable 
ITT average. 

Next, Table 2 presents the calibrated values for the other 
relevant variables of the method. 
 

Table 1. Analyzed combinations of GPS data collection frequency and 
aggregation time intervals. 

GPS frequency ζ (Hz) 𝛥𝑡 (min) 𝛥𝑇 (min) 
   

1/12 
1 1 
1 3 
3 3 

   

1/36 1 3 
3 3 

   

1/60 1 3 
3 3 

 

Table 2. Important parameters calibrated for the case study. 

Variable Units Value 
Fraction of tracked vehicles [%] 15 

Free-flow speed, 𝑣+ [Km/h] 110 

Free-flow travel times, 𝑡𝑡+_& [min] 
𝑖 = 1 → 2.89 

𝑖 = 2 → 4.09 

Turn-on speed threshold, 𝑣gh+ [Km/h] 80 

Duration of the moving average time 
window to compute 𝑞BCD9

(@) , 𝜏 [min] 15 

K.P. 106.4 K.P. 113.9 

𝑖 = 2 

P.K.111.6 
(Sant Celoni) 

 

𝑖 = 1 

K.P. 119.2 
5.3 Km 2.3 Km 5.2 Km 

Loop 
detector 

Loop 
detector Loop 

detector 



Table 3 and Figures 4 and 5 present the results obtained for 
the different scenarios analyzed. These figures show the travel 
times that would be disseminated by a real-time information 
system in the analyzed freeway stretch. The short-term predicted 
travel times from the proposed fusion algorithm (i.e. using input-
output diagrams corrected with GPS data) are shown, together 
with the results of simply disseminating the ITT direct 
measurements from the GPS sampling, the common approach 
used in information systems based on directly measured travel 
times. Note that ITT measurements are updated every ∆𝑇, while 
new PTT estimations from input-output diagrams are reported 
every ∆𝑡 (despite drift correction factors, which depend on ITT 

measurements, are only updated every ∆𝑇). Table 3 shows the 
average absolute errors and the maximum errors for each 
scenario, with respect to the actually experienced travel times 
(i.e. defined as the "ground truth"). This ground truth travel time 
is computed, at the current time 𝑡_, as the average travel time 
experienced by all vehicles entering the target section during the 
period (𝑡_, 𝑡_ + ∆𝑡). Note that being future information, the real 
experienced travel times could not be known in real-time. 
However, in the present back-office analysis, "future" 
information is available for the whole period of analysis. 

 
 
GPS 

frequency  
ζ (s) 

𝛥𝑡 
(min) 

𝛥𝑇 
(min) 

Method Mean absolute 
error 
[min] 

Mean absolute 
percentage 
error [%] 

Maximum 
error 
[min] 

Maximum 
percentage error 

[%] 
        

12 1 1 Directly disseminated ITT 22.34 29.53 -40.37 -48.89 

Predicted travel times (data fusion algorithm) 7.48 13.36 -21.86 -27.26 
       

1 3 Directly disseminated ITT 21.69 28.60 -40.14 -48.62 

Predicted travel times (data fusion algorithm) 12.24 18.56 -28.24 -35.21 
       

3 3 Directly disseminated ITT 21.66 28.66 -38.50 -46.44 

Predicted travel times (data fusion algorithm) 12.27 19.61 -32.44 -37.76 
        

36        

1 3 Directly disseminated ITT 18.12 31.05 48.46 91.83 

Predicted travel times (data fusion algorithm) 12.23 18.50 -28.14 -35.09 
       

3 3 Directly disseminated ITT 22.19 29.21 -38.35 -46.61 

Predicted travel times (data fusion algorithm) 12.49 18.73 -30.35 -35.32 
        

60        

1 3 Directly disseminated ITT 19.06 29.59 48.32 91.57 

Predicted travel times (data fusion algorithm) 8.77 15.05 -21.88 -28.57 
       

3 3 Directly disseminated ITT 23.21 30.48 -38.80 -46.79 

Predicted travel times (data fusion algorithm) 12.79 19.08 -29.16 -33.94 
        

Table 3. Comparison of travel time errors for different methods when disseminated in real-time. 

 

 
Fig. 4. Comparison of the suitability as real-time information of predicted travel times vs direct ITT measurements, with ζ = 1/12 Hz, 𝛥𝑡= 1 min and 𝛥𝑇= 1 min. 

 

0

20

40

60

80

100

120

140

18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15 21:30

Tr
av

el
 ti

m
e 

[m
i]

Time of the day

Ground truth Predicted travel times (GPS 1/12Hz) ITT measurements (GPS 1/12Hz)



 
Fig. 5. Predicted travel times for GPS frequencies of ζ = 1/12 Hz, ζ = 1/36 Hz and ζ = 1/60 Hz vs ground truth travel times, with 𝛥𝑡= 1 min and 𝛥𝑇=3 min. 
 
 

Discussion 

In view of the results presented in Table 3 and Figure 4, it can 
be clearly seen that the application of the data fusion method is 
highly advantageous with respect to current practice of simply 
disseminating ITT measurements, in all the analyzed scenarios. 
For the best calibration of the method, the mean absolute 
percentage error is around 13%, implying a significant 
performance improvement of the travel time information system. 
Maximum errors are also reduced reaching values around 30% 
with respect to the ground truth, for the best calibration scenarios. 
Therefore, results show that the proposed methodology is very 
promising, as it improves the accuracy of predicted travel times 
while it could be applied immediately in most freeway contexts. 

Further analysis of the obtained results allows analyzing the 
effects of the different parameters of the model. For instance, the 
frequency of GPS sampling ζ, the fixed 15% tracked vehicles and 
the duration of the aggregation interval ∆𝑇, determine the 
number of GPS measurements used to compute the ITT. In 
addition, ∆𝑇 also affects the updating frequency of the drift 
correction. It can be seen in Table 3 that results are better for 
shorter 𝛥𝑇 (i.e. 𝛥𝑇 = 1 min with respect to 𝛥𝑇 = 3 min). This 
means that a frequent update of the drift correction is preferable. 
However, this short 𝛥𝑇 requires higher frequency of the GPS 
measurements in order to obtain a large enough sample to 
compute a reliable ITT. Note that for 𝛥𝑇 = 1 min a minimum 
of 𝜉 = 1/12 Hz is required. 

In contrast, if a larger 𝛥𝑇 is considered, the frequency of GPS 
sampling, ζ, and the loop detector aggregation interval 𝛥𝑡 do not 
have a significant effect in the goodness of the results (see Table 
3 and Fig. 5). This means that, if 𝛥𝑇 is large (e.g. ≥ 3	min), low 
frequency GPS sampling provides enough measurements in 
order to estimate a reliable ITT capable of correcting the loop 
detectors drift. This could change in case there were much less 
vehicles in the target freeway stretch, but in this situation, free-
flowing would prevail and the proposed method would not be 
necessary to obtain reliable travel time information. In turn, the 
accuracy of the input-output cumulative count method does not 
depend on 𝛥𝑡, although shorter 𝛥𝑡's allow a more frequent update 
of the travel time information. 

Overall, these results prove that working with very high GPS 
frequencies is not necessary, as sometimes is postulated in the 
current era of big data. Traffic management centers do not need 
to worry much about their limited storage, communications 
and/or computing capacity, and most initiatives could be applied 
without huge infrastructure investments. This confirms similar 
findings in other prvious works (e.g. Sanaullah et al., 2016). 

 

Conclusions and further research 

Despite the coming revolution in vehicular traffic, travel time 
information systems will continue playing a key role in feeding 
traffic management strategies and providing valuable 
information to travelers. Efforts to improve these information 
systems by leveraging modern technologies, such as AVI or 
tracking systems, with smart data processing methods are being 
carried out. Although entailing a breakthrough with respect to 
traditional spot-speed methods based on loop detector 
measurements, the applicability of new methods and 
technologies as real-time information systems is limited. On the 
one hand, direct measurements of travel time are increasingly 
accurate but represent past information when used as real-time 
information systems. On the other hand, complex methodologies 
developed to provide travel time predictions generally require 
significant investment in technology and computational capacity, 
which cannot be achieved in a short period of time. 

In this context, the present paper proposes a data fusion 
methodology that uses readily available technologies to provide 
short-term predictions of travel time, in order to feed real time 
information systems on freeways. Travel time predictions are 
obtained from the spatial information provided by input-output 
diagrams constructed from loop detector data. Cumulative count 
curves are used to compute the vehicular accumulation in the 
target freeway stretch from where to predict the time needed to 
serve the vehicles. The typical problem of the loop detector drift 
is corrected by means of a data fusion algorithm that takes 
advantage of the accuracy of a relatively small number of direct 
measurements, obtained from GPS tracking of a sample of 
vehicles. Today, most of the vehicles do travel with on-board 
GPS units, although only a fraction may transmit their 
information. The present application of the method assumes a 
conservative approach of 15% of vehicles tracked, and in a 
complicated scenario with very heavy congestion, the 
performance of the algorithm has proven to be very satisfactory. 
The goodness of the proposed methodology has been tested for 
different combinations of the calibration parameters, like the 
time intervals of data aggregation, the GPS sampling frequency 
or the updating interval for the travel time information. In all the 
scenarios the predictions of the proposed algorithm implied 
unquestionable improvements against the usual practice of 
simply disseminating direct measurements of travel time, 
reducing the MAPE approximately to half (i.e. from 30% to 
15%). Furthermore, the present research work confirms that a 
high frequency of GPS sampling is not necessary to achieve good 
performance, a conclusion already obtained by previous works. 
Time intervals of around 1 minute between GPS measurements 
of the tracked vehicles might suffice, which helps in reducing 

0

20

40

60

80

100

120

18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15 21:30

Tr
av

el
 ti

m
e 

[m
i]

Time of the day

Ground truth Predicted travel times (GPS 1/12Hz)

Predicted travel times (GPS 1/36Hz) Predicted travel times (GPS 1/60Hz)



costs and computational efforts. 
Regarding the direct applicability of the method with the data 

readily available at traffic management centers, probably the 
requirement of GPS tracking data as an input to correct the loop-
detector drift, is the most challenging need. To that end, it should 
be recognized that GPS on board devices travel in almost all 
vehicles (e.g. in form of smartphones), and traffic information 
and routing apps are increasingly popular, meaning more 
vehicles sharing their GPS tracking data. In this context, it is not 
adventurous to consider that tracking data from 15% of vehicles 
are available. It is true, however, that these data are collected by 
ICT companies, and not directly by traffic agencies, as 
traditionally done. This means that cooperation between the 
traffic administration and ICT companies will be needed to 
exploit the benefits of technology. This need, which will go 
beyond the field of traffic information, will be surely fulfilled for 
the sake of the progress. 

Further research should address a deeper sensitivity analysis 
of this type of methodologies, to derive more recommendations 
for its transferability. Factors such as the fraction of tracked 
vehicles, the level of congestion for which these systems pay-off, 
the optimal length of the target sections, or the treatment of on-
/off-ramps and their relative flows, will need to be assessed. In 
addition, the method is sensitive to the failure of loop-detectors, 
and therefore it would be advisable the integration with an 
algorithm to account for possible loop detector data losses. In the 
medium-long term, further integration with artificial 
intelligence in order to deal with the challenges of traffic 
management in the era of autonomous driving is another 
ambitious purpose to pursue. Being simple in the conceptual 
foundations and requiring a small amount of data, will make the 
proposed method an excellent complement and safeguard to 
more sophisticated systems with much more challenging 
applicability requirements. 
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