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High-density surface 
electromyography signals during 
isometric contractions of elbow 
muscles of healthy humans
Mónica Rojas-Martínez  1 ✉, Leidy Yanet Serna  2,3, Mislav Jordanic  2,3, 
Hamid Reza Marateb  4, Roberto Merletti5 & Miguel Ángel Mañanas2,3

this paper presents a dataset of high-density surface EMG signals (HD-sEMG) designed to study 
patterns of sEMG spatial distribution over upper limb muscles during voluntary isometric contractions. 
Twelve healthy subjects performed four different isometric tasks at different effort levels associated 
with movements of the forearm. Three 2-D electrode arrays were used for recording the myoelectric 
activity from five upper limb muscles: biceps brachii, triceps brachii, anconeus, brachioradialis, and 
pronator teres. technical validation comprised a signals quality assessment from outlier detection 
algorithms based on supervised and non-supervised classification methods. About 6% of the total 
number of signals were identified as “bad” channels demonstrating the high quality of the recordings. 
In addition, spatial and intensity features of HD-sEMG maps for identification of effort type and level, 
have been formulated in the framework of this database, demonstrating better performance than the 
traditional time-domain features. the presented database can be used for pattern recognition and 
MUAP identification among other uses.

Background & Summary
High-density surface electromyography (HD-sEMG) is a method for the recording of Motor Unit Action 
Potentials (MUAP) over a muscle, using 2D arrays of closely-spaced electrodes. Unlike traditional surface electro-
myography (sEMG), it accounts for both the spatial and temporal characteristics of the signal allowing a broader 
assessment of muscle electrophysiological activity. The recorded signal has three dimensions: two in the space 
and one in the time. This technique has gained attention during the last years for different applications such as 
signal decomposition (i.e., isolation and classification of individual MUAPs from the sEMG signal)1, the study of 
neuromuscular compartmentalization2, the analysis of changes in the spatial distribution of MUAPs with exercise 
or pain3, and pattern recognition for identification of movement intention4, among others. Despite the growing 
research interests, clinical applications and teaching remain limited.

This paper aims to describe and provide a database of HD-sEMG signals5,6 during voluntary isometric con-
tractions of arm and forearm muscles of 12 healthy subjects. More than 336 signals per subject were acquired. 
This database aims to study patterns of sEMG spatial distribution over upper limb muscles during four tasks 
related to the forearm’s movements: pronation/supination and flexion/extension of the elbow. Tasks were per-
formed at three effort levels (10%, 30%, and 50% of Maximal Voluntary Contraction). The database provides a 
foundation and a reference for, for example, studying patients with neuromuscular disorders or injuries, where 
the spatial intensity patterns can change with disease severity and level of recovery. It can also be used to test and 
validate signal processing or other techniques.
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It represents an advance in state of the art thanks to the quality of the data and to the techniques used to 
verify their reliability. In previous studies, we have demonstrated that this database is useful for recognizing the 
isometric tasks of the upper limb. What is more, by using combinations of features based on spatial distribution 
(that is, in the spatial domain) and intensity of HD-sEMG7,8, it was possible to obtain higher performance in the 
classification than using traditional time-domain (TD) features or frequency-domain (FD) features (examples of 
these last can be found in9).

Additionally, this database has other potential applications. The main ones refer to teaching sEMG to clini-
cal operators; using pattern recognition and machine learning techniques to identify movement intention from 
HD-sEMG, and testing algorithms developed for the decomposition of sEMG signals into the constituent MUAP 
trains to reveal control strategies adopted by the central nervous system. It can also be used to study regional 
inhomogeneities in the activation of motor units and local activation patterns in the upper arm and forearm 
muscles depending on the type of task and the effort level. Finally, other potential applications are the design 
and evaluation of methods for the automatic detection of innervation zones and the exploration of other spatial 
features to improve the identification of movement intention.

Methods
participants. Twelve healthy male volunteers participated in the study (age, 28.3 ± 5.5 years; height: 
177.8 ± 6.0 cm; body mass: 75.7 ± 8.7 kg). None had any history or symptoms of neuromuscular disorders, pain, 
or regular training of the upper limb. The information about protocols and possible risks related to the tests were 
given to every subject before signing an informed consent form. The tests were conducted in Italy following the 
Declaration of Helsinki and subsequent amendments concerning research in humans. They were approved by 
the Ethics Committee of UPC-BarcelonaTECH and the local Italian Health Delivery System. They were also sup-
ported and registered by the Spanish Innovation and Science Ministry (TEC2008-02754)

Experimental protocol. The myoelectric activity was simultaneously recorded from five muscles of the 
dominant arm: biceps and triceps brachii, anconeus, brachioradialis, and pronator teres. During the test, sub-
jects performed four different isometric tasks associated with supination/pronation and flexion/extension of the 
elbow. The arm and forearm were locked in a mechanical brace designed to measure isometric torques using two 
torque meters, one on the right and the other one on the left of the elbow joint and whose axes were aligned with 
the elbow rotational axis. Outputs of equal value and sign would indicate flexion or extension, while outputs of 
different signs would indicate supination or pronation (see Fig. 1).

Subjects were seated upright facing the mechanical brace with their back upright. Their dominant arm 
(dominance was indicated by the subject and was right in all cases) was parallel to the sagittal plane with the 
elbow flexed at 45° (γ = 45°), the shoulder abducted at 90°, and the forearm rotated 90°, so the thumb was facing 
upwards (Fig. 1). Each subject was previously trained to avoid activation of other muscular groups unrelated to 
the movements of the forearm. Besides, the wrist was fixed with an adjustable strap and a vice located at the distal 
end of the bars of the mechanical brace to avoid hand gripping.

Maximum Voluntary Contraction (MVC) was measured for approximately 3 s at the beginning of each test 
as the maximum of three consecutive trials for the four types of task, with two-minute rest between trials. Verbal 
encouragement was provided to produce a MVC. Subjects were asked to exert isometric contractions at 10%, 
30% and 50% MVC for each task and the instructor supervised the correct execution of the task at all times. Each 
contraction lasted 10 seconds and was followed by two minutes of rest to avoid the effect of cumulative fatigue. 
The order of the contractions was randomized to prevent biasing effects.

Data acquisition. Three 2-D electrode arrays were used for recording monopolar HD-sEMG signals. The 
electrode arrays were composed of equally spaced contacts separated by 10 mm in the x and y directions and 

Fig. 1 Subject position setup. Left. Position of the upper-limb during the experiment. The joint angles for the 
shoulder and the elbow are shown (reproduced from8 with permission from Elsevier). Right. Location of the 
electrode arrays 1–3 during the experiment (replicated from7).
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made of silver-plated and gel-filled eyelets with 5 mm diameter. They met requirements for spatial sampling and 
for allowing interpolation10,11.

A moderately-elastic fabric was used as a substrate for eyelets. It allowed adapting the arrays to the shape of the 
muscle whereas preserving the inter-electrode distance within 0–10%. The substrate was hydrophobic and breath-
able to avoid possible electrical cross-bridges between channels caused by gel or sweat absorbed by the tissue.

Array 1 (A1 in Fig. 1) was located on the forearm, with the first row 2 cm below the elbow crease, covering the 
muscles anconeus, pronator teres, and brachioradialis with at least four columns of electrodes each. The edges of 
these muscles were previously drawn on the surface of the skin following the guidelines proposed in12. Array 1 
had six rows, and the number of columns read by the acquisition system was commuted between 16 and 19 col-
umns of electrodes, depending on the forearm circumference. Arrays 2 and 3 were located at the distal and prox-
imal regions of the upper arm (see Fig. 1), covering the muscles biceps brachii and the upper part of the triceps 
brachii, respectively. These arrays were placed to cover the sensor location recommended by SENIAM13 (www.
seniam.org) (for details, please refer to the next section). Both arrays (A2 and A3) had eight rows and 15 columns 
of electrodes. The skin was shaved and cleaned with abrasive paste14. Contact was improved by inserting 20 μl of 
conductive gel in each eyelet with a pipette to reduce electrode-skin impedance. Figure 2 displays an example of 
the signals recorded in three columns and six rows of Array 1 (forearm). It is possible to observe the EMG signals 
of the brachioradialis during flexion at 30% MVC over a window of 200 ms.

For comparing muscle activation areas among subjects, the lengths and circumferences of the upper forearm 
and arm were measured as follows. The length of the forearm was measured from the medial epicondyle to the 
epiphysis of the radius. The length of the ventral face of the upper-arm was measured from the acromion to the 
fossa cubit. The length of the dorsal face was measured from the posterior crista of the acromion to the olecranon. 
Circumferences of the arm segments were measured while contracting different muscles: the proximal forearm 
circumference was measured 2 cm below the elbow crease, and the distal and proximal upper arm circumferences 
were measured over the muscle belly of biceps and triceps respectively.

Three amplifiers (OT Bioelettronica EMG-USB-128 channels, with a sampling frequency of 2048 Hz, a 3 dB 
bandwidth 10–750 Hz, programmable gains of 100, 200, 500, 1000, 2000, 5000 and 10000, CMRR >90 dB, and 
input impedance >300 MΩ at 50 Hz) were used to simultaneously record monopolar sEMG signals with syn-
chronized sampling provided by an external clock. Common mode interference was reduced by using a “driven 
right leg” (DRL) circuit15 with reference and feedback electrodes placed at the clavicle, wrist, and shoulder of the 
subject’s dominant side. A virtual ground16 was used to enhance the quality of the monopolar signals. Power line 
interference (50 Hz) was strongly limited but not fully cancelled; additional data processing may be necessary to 
reduce it further.

Figure 3 shows the instrumentation setup. The amplifiers 1 and 2 recorded signals from the forearm muscles 
and biceps brachii muscle, respectively. The amplifier 3 recorded signals from the triceps brachii muscle and the 
two torque signals sensed by two torque transducers (OT Bioelettronica, range 150 Nm, supply voltage = ±5 V, 
full range = 25 mV) located at the joints of the mechanical brace and aligned with the elbow rotational axis 
(Fig. 1). The torque signals were amplified, recorded, and displayed in real-time to provide the subject with visual 
feedback of the produced force.

Reference system. A reference coordinate system was defined for each muscle to standardize the recording 
electrodes location among subjects. The abscissa and ordinate axes (x,y) were set parallel to the medial-lateral and 
the proximal-distal directions, respectively, and normalized by the circumference and length of the limb segment 
related to each array as explained in7, see Table 1. The origin of the coordinate axes coincided with the sensor 
location recommended by the SENIAM project and was defined as:

•	 Array 1: a point located at the intersection between the line that connects the origin and insertion of each 
forearm muscle (anconeus, pronator teres and brachioradialis) and the forearm arc located 2 cm below the 
elbow crease.

Fig. 2 EMG monopolar signals of brachioradialis during a contraction at 30% MVC. The signals were recorded 
using Array 1. The figure displays the channels recorded over three columns (C15-C17) and six rows (R1-R6) in 
the original distribution of the array. It is possible to observe the propagation of Motor Unit Action Potentials 
along the muscle fiber direction, under the three columns of electrodes.
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•	 Array 2: a point located at 3/4 the distance from the origin of the biceps brachii to its insertion over the line 
that connects these two points.

•	 Array 3: a point located at 1/2 the distance over the line that connects the origin and insertion of the lateral 
head of the triceps brachii.

Data Records
Data records presented in this section and accompanying detailed description file (README) are available online 
from figshare5,6. The records contain the raw signals without any further processing. Data are stored in individual 
folders for each of the twelve subjects (s1-s12). Every subject’s folder contains four subfolders, one with the torque 
signals and the other three with files of the signals registered by each array: forearm subfolder for the array 1, 
biceps subfolder for the array 2 and triceps subfolder for the array 3. Files, in ascii format, are named according to 
the type of task and effort level.

Additionally, the database includes the following files:
– ReferencePoints.txt: provides information about the final location of each array on the upper arm or 

forearm. The data is presented in table form. Each row corresponds to one subject in the database, and 
each column shows the distance in cm from the reference (origin of the coordinate system of the mus-
cles) to the first electrode locating in the upper-left corner of the array. This information is consigned for 
the x and y axis.

– nchannels.txt: provides the number of channels registered by subject and array.
– forearm.txt: contains the channels (first and last) covering each of the muscles of interest in the forearm 

for every subject.
– SubjectsDescription.txt: gives details of the population’s age, height, weight, and dimensions of the 

limbs. Length and circumference were measured, as depicted in Table 1.

technical Validation
The methods described herein were applied in previous studies to the presented database. However, the reader 
must bear in mind that the shared dataset comprises the original monopolar raw signals so they can be used 
for testing new processing methods. The raw signals were collected with the DRL technique and analog filtered 
between 10–750 Hz. In the subsequent sections, the different signal processing methods used for the detection of 
atypical signals (artefacts), calculation of activity maps, and identification of volitional movement intention, are 
briefly described. As well, the original references where the methods were described in depth are provided4,7,8,17.

HD-sEMG signals quality: outlier detection. In HD-sEMG recording, examining the electrode-skin 
contact quality before signal recording is not always a practical task. Considering that the protocol consisted of 

Fig. 3 The instrumentation set up for the experimental protocol. In the case of elbow flexion-extension, the two 
torque transducers on the two sides of the arm provided equal signals in the case of extension or flexion of the 
elbow. In the case of pronation-supination, they provided opposite signals. This information was used to help 
the subject produce the correct effort. The two force signals were displayed using two bars of LEDs that provided 
visual feedback to the subject.

Array x-coordinates Circumference y-coordinates Distance

1 Proximal forearm Medial Epicondyle - Process of Radius

2 Distal upper-arm Acromion - Fossa Cubiti

3 Proximal upper-arm Acromion - Olecranon

Table 1. Anthropomorphic data measured to standardize the upper-limb size among subjects. For each array, 
circumferences (for the x-coordinates) and longitudinal distances (for the y-coordinates) were measured at 
different upper-limb segments. For arrays 2 and 3, distances were measured considering the reference points 
proposed by the SENIAM project13. See text for the definition of the origins.
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the simultaneous recording of many signals (approximately 340 per subject, task, and effort level), it was expected 
to observe bad quality channels or outliers mainly caused by poor electrode-skin contacts. Besides, some cable 
and skin movement artefacts are usual when recording sEMG signals, even in isometric conditions.

For detecting bad quality signals, two different methods were proposed: the first was supervised and based 
on an expert system as described in7 and the second consisting of a non-supervised method employing local 
distance-based outlier factor17. For the detection of outliers, each channel was characterized by a set of features 
inspired by experts’ criteria to classify “good” and “bad” channels:

 1. The relative power of low-frequency components ( )Pl
t

, from 0 to 12 Hz. This feature is associated with 

movement artefacts that mostly cause large and slow transients in the signals.
 2. The relative residual power of power-line interference ( )Pline

t
, corresponding to 50 Hz and its first four 

harmonics. Power line interference is caused by poor contact between the electrodes and the skin.
 3. The signal power estimated from the root mean square (RMS) of each signal calculated over epochs of 

500 ms. This was done to identify channels with much higher or lower power than that of neighboring 
channels, and finally

 4. The similitude between adjacent (horizontal, vertical and diagonal) channels measured from the average 
cross-correlation coefficient.

Channels with values exceeding a threshold over any of these features were considered outliers.
Given that the arrays may lie over regions with high and low activation simultaneously (for example, if the 

array is covering different muscles), the outlier detection methods refer these features to the neighbor channels 
rather than considering the bulk of data.

Because the first method for detecting outliers was supervised, its performance was better than the second 
one, so its results are described hereon to estimate the quantity of expected low-quality signals in the database. 
The proportion of outliers varied between 0 and 13% for each sample in the training set (one sample correspond-
ing to the signals recorded by one array) according to the opinion of three different experts7. The expert system 
reached a precision of about 95% and a sensitivity of 93%. Overall, approximately 6% of the total number of 
recorded signals (that is, 3045 of 50760 sEMG signals recorded in total for 12 subjects, four tasks, and three con-
traction levels) were identified as outliers (6.3% ± 2.9% per subject). Taking into account that the outlier detection 
algorithm in7 showed an outstanding performance in the validation set, it is possible to say that the quality of the 
signals in the database is excellent. An example of how the bad quality signals can affect the analysis of the spatial 
distribution of the MUAPs is presented in Fig. 4 (left). However, bad quality channels can be corrected by the 
identification of artefacts, Fig. 4 (right).

analysis of the spatial distribution of HD-sEMG intensity. HD-sEMG provides insights into the spa-
tial distribution of myoelectric signal intensity over the muscle. Spatial distribution of muscle activation can 
reflect important information on the properties of the muscle, such as fatigue18,19, exerted force20,21, and joint 
position22.

This database was used to evaluate patterns in spatial distribution during upper limb tasks. It was observed 
that specific spatial patterns are typical for all subjects and each level of effort. That is, there are unique and 
repeatable activation patterns that are specific for each task and each effort level, and these activation patterns 
are common for all subjects. These studies and conclusions were published in7,8 and were the basis of a follow-up 
study where the repeatability of the spatial and intensity patterns was evaluated in patients with incomplete spinal 
cord injury23,24.

Spatial patterns were characterized using activation maps (AM). A representation of the HD-sEMG monop-
olar signals recorded in two dimensions as images, where pixel locations correspond to positions of electrodes in 
the array, and pixel intensities correspond to intensities (RMS estimated over non-overlapping epochs of 500 ms) 
of monopolar signals in corresponding channels. They provide a global view of muscle activity in a broad region 
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Fig. 4 Substitution of “bad channels”. Figure reproduced, with permission, from5. The outlier channels were 
replaced with channels obtained by the interpolation of the neighbors.
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by quantifying the intensity of the sEMG signals and its spatial distribution over the muscle. Each AM is calcu-
lated as:

∑=
=

AM
N

sEMG n1 ( )
(1)

i j
n

N

i j,
1

,
2

where N corresponds to the number of samples in each epoch (1024 samples) and sEMGi,j denotes the sEMG 
signal recorded by the electrode located at row i and column j in the recording array. For the calculation of the 
activation maps the sEMG signals were previously band-pass filtered between 12 and 350 Hz with a 4th order 
digital Butterworth filter in forward and backward direction according to SENIAM recommendations for the 
processing of surface EMG signals13.

Figure 5 shows an example of a forearm and biceps AM for one of the subjects in the database. In this case, the 
maps correspond to isometric supination efforts of the forearm at 10%, 30% and 50% MVC. It is possible to see 
the variation of the intensity and distribution under the electrode grid as a function of the effort level. Every AM 
was obtained by averaging six consecutive maps from six non-overlapping time segments of 500 ms (N = 1024 
samples)7,8. The 3 s interval was selected as the period of the greatest force stability in the 10 s recording.

To define the regions of activity associated with each muscle, segmented AM were calculated for all cases. 
Segmentation of the active areas (i.e., areas with the highest intensity) was performed over each AM by applying 
an h-dome transformation25. This transformation is especially important for the array A1 were signals from three 
different muscles were simultaneously recorded.

Segmentation discards the map areas of low intensity (low RMS) and divides the forearm map into three 
different regions, each of them corresponding to one forearm muscle. Segmentation allows the analysis of the 
areas associated with each muscle (triceps brachii, biceps brachii, brachioradialis, anconeus, and pronator teres).

Figure 6. shows an example of monopolar segmented AM obtained from one of the subjects for the five mus-
cles and the four motor tasks at two different effort levels. It can be seen that the shape of the segmented area 
depends on the intensity of the peaks. The segmentation facilitates the identification of areas associated with the 
contraction of each muscle by selecting the regions of higher energy. This procedure diminishes confounding 
factors resulting from the synergistic contraction of adjacent muscles.

Identification of task and effort level using HD-sEMG signals. This section presents an example of 
the application of the stored signals.

One of the most critical applications of the sEMG recording is the control of prosthetic, assistive, or external 
devices. Following previous findings on changes in the spatial distribution of HD-sEMG associated with tasks and 
effort levels, a method for automatic identification of movement intention was developed and tested.

Fig. 5 Monopolar activation maps for subject 8 in the database during supination isometric efforts. The maps 
were averaged for segments of 3 s using six epochs of 500 ms. The anatomical references, that is, the origin of the 
reference system (0, 0) for each map as described in the “Reference System” section is displayed with a cross (×) 
(a) Forearm. In the case of the forearm, the reference for the anconeus is shown. The brachioradialis is located at 
the left of the reference, and the Pronator Teres is located at the right. (b) Biceps Brachii. It is possible to observe 
that the intensity increases with the effort level (warmer colors represent higher intensity) and that the spatial 
distribution also changes (see contour lines).
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To prove that the data allow the recognition of forearm efforts in isometric conditions, several features pro-
posed by the authors have been evaluated in the a) identification of tasks and b) identification of tasks and effort 
levels.
a) Identification of the tasks corresponds to the identification of movements at the elbow joint (flexion/exten-
sion and supination/pronation). Corresponding identification classes are flexion, extension, supination, and pro-
nation. All recordings were used in the task identification, regardless of the effort level at which every recording 
was performed.

Identification of motor tasks was performed using the linear discriminant classifier (LDC)4 and several types 
of intensity and spatial features (defined in the following paragraph). The classification procedure was evaluated 
using the repeated holdout method (N=20)26, where observations were randomly assigned to either the training 
set or the test set (70% and 30% respectively). Approximately, an equal proportion of samples of each class (flex-
ion, extension, supination, pronation) was assigned to the training set and the test set; thus, yielding balanced 
training and test sets27. Results were reported in terms of the area under the receiver operating characteristic 
(ROC) curve (AUC), the Accuracy (ACC) and the F1 score (F1), defined for each class as:

=
+

+ + +
ACC TP TN

TP TN FP FN (2)

=
∗

∗ + +
F TP

TP FP FN
1 2

2 (3)

where TP represents the number of true positives (samples correctly classified to a specific class), TN the number 
of true negatives (samples correctly classified as negatives to a specific class), FN the number of false negatives 
(samples belonging to the observed class, but erroneously associated to another), and FP the number of false 
positives (samples belonging to another class but incorrectly associated to the observed class)28.

Results of task identification were compared using four feature sets extracted from epochs of 150 ms. Features 
were calculated for each muscle separately and then concatenated to form a feature set. The length of the epoch 
(150 ms) was selected as the shortest time segment before a decrease of the identification rate. The feature sets are 
described in the following paragraphs.

 (1) Intensity features (I)

Fig. 6 Segmented maps obtained from one of the subjects for the five muscles under study: triceps brachii, 
biceps brachii, brachioradialis, anconeus, and pronator teres. The maps were averaged for segments of 3 s using 
six epochs of 500 ms. The four tasks carried out during the test are shown: flexion at 30% MVC (top-left), 
extension at 10% MVC (top-right), supination at 30% MVC (bottom-left) and pronation at 10% MVC (bottom-
right). Distances are presented as fractions of the arm circumference (x-axis) or segment length (y-axis). 
Differences in the average intensity as well as in the spatial distribution can be observed in all maps. The maps 
are represented in the reference system defined for each muscle (see text) RMS values are calculated over a 
500 ms epoch and interpolated by a factor of 100. Reproduced from8 with permission from Elsevier.
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This feature set was composed of the intensity (I) of a segmented region of the activation map AM for each 
muscle containing M pixels (for details on how the segmentation was performed, please refer to8 calculated 
as:

∑=










I
M

AMlog 1
(4)m

m10

This equation resulted in a single value calculated from a single activation map. The feature set formed an 
array of five intensities corresponding to the five muscles obtained by concatenation of intensities calculat-
ed from AM of individual muscles.

 (2) Combination of intensity and mean shift features (IMS)
This feature set is a combination of the intensity feature (I) and spatial information extracted from AM 
using the mean shift algorithm29. This algorithm is a non-parametric approach to identify local maxima 
of the probability density function (pdf) of the amplitude of the pixels. After random initialization in the 
feature space, the algorithm iteratively searches for the peaks in the density function by taking steps in the 
direction of local gradient of the density function. This gradient is estimated by taking into account the 
samples located within the prespecified bandwidth of the current location. A detailed description of the 
algorithm to calculate this spatial feature can be found in4.
To obtain the combination of features, the five intensities, relative to the five muscles and calculated as de-
scribed in the previous paragraph, were concatenated with the mean shift features. The mean shift features 
of each array were also concatenated, and the dimensionality of this combination was then reduced using 
principal component analysis (PCA). Only the transformed components describing more than 90% of 
the cumulative variance were kept.

 (3) Combination of intensity and center of gravity (ICG)
This feature set is a combination of intensity feature (I) and centers of gravity of AM, which provide an 
indication of the location of the region of activity (initially proposed in8).

 (4) Classical time-domain feature set (TD)
This feature set is a combination of the time-domain features that are most often used in the literature30. 
This combination consists of RMS value, mean absolute value, number of zero crossings, waveform length, 
and number of slope sign changes calculated for all channels and all muscles in the 150 ms epoch. The 
dimensionality of the obtained feature vector was reduced using PCA transform. Only the components 
explaining at least 90% of the variance were kept.

Figure 7 shows the ROC curves for the task identification using these four feature sets as obtained during the 
validation with the repeated hold-out method4. The area under the curve (AUC) for each set was as following: 
AUCIMS = 99.8 ± 0.3%, AUCICG = 99.7 ± 0.49%, AUCI = 99 ± 1% and AUCTD = 99.6 ± 0.7%. The best classifica-
tion was achieved for the features IMS with an ACCIMS = 99.9 ± 0.14% and F1IMS = 99.8 ± 0.3%.

b) Identification of tasks and effort levels corresponds to the simultaneous identification of task (i.e., flexion, 
extension, supination, or pronation) and level of effort (i.e., 10% MVC, 30% MVC, or 50% MVC). Consequently, 
12 different classes (four per task by three per effort level) were considered (Table 2 lists all classes).

The simultaneous identification of task and effort level was carried out by using a 2-step process based on 
the LDC. In the first step, only the task was identified regardless of the effort level, as described in the previous 
section. In this case, recordings of different effort levels were pooled in a single class (i.e., flexion, extension, supi-
nation, and pronation). In the second step, the effort level was classified. There were four different classifiers in the 

Fig. 7 ROC curves for the identification of task (flexion, extension, pronation or supination) using intensity and 
mean shift (IMS), intensity and center of gravity (ICG), the intensity only (I), and time-domain (TD) features. 
The identification was evaluated using the repeated holdout method (N = 20) for each of the 10 subjects, and so, 
the plots represent 200 executions in total. Note the limited range of both x and y axes.
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second step, each classifying effort level (10% MVC, 30% MVC, or 50% MVC) for a specific task. The identifica-
tion of a sample in the first step (identification of task) determines the selection of a classifier for the second step 
(identification of effort level). The classification scheme is displayed in Fig. 8.

In the second step, only the features associated with agonist-antagonist muscle pairs involved in the task 
identified in the first step were used to classify the effort level (i.e., 10% MVC, 30% MVC and 50% MVC). That is, 
biceps brachii and triceps brachii for both flexion and extension; biceps brachii, brachioradialis and anconeus for 
supination; and pronator teres and anconeus for pronation. These muscles were selected following the procedure 
described in8 and7 on the same database.

The ROC curves for the identification of tasks and effort levels are shown in Fig. 9. Results show that the 
features based on spatial information (IMS and ICG) outperform the other feature sets. In this case, the AUC 
for each feature set are as following: AUCIMS = 97,5 ± 4%, AUCICG = 98,2 ± 3.6%, AUCI = 96,4 ± 6,8% and 
AUCTD = 94,6 ± 4.8%. In the case of the features based on spatial information, the Accuracy and the F1- score 
were as following: ACCIMS = 99.6 ± 0.4%, ACCICG = 99.7 ± 0.3% and F1IMS = 97.3 ± 2.4%, F1ICG = 98.1 ± 2.1%.

The presented results, previously reported in4, demonstrate that the data can be used for the identification 
of isometric tasks associated with upper-limb and the levels of effort, even at very low contraction such as 10% 
MVC. In particular, combinations of features based on spatial distribution and intensity of HD-sEMG (IMS and 
ICG) have shown to yield a significantly higher identification rate (p < 0.05; Wilcoxon signed-rank test) than the 
traditional ones (i.e., I and TD) in all comparisons presented.

Limitations
We are aware that isometric contractions are not representative of muscle activation for some practical applica-
tions. However, isometric conditions like the ones assessed with the presented database, are particularly suitable 
to test signal processing algorithms or to define new feature sets because possible sources of errors such as the rel-
ative movement between the muscle and the recording electrodes are small. New features in the spatial domain4,8 
were presented and validated with this database and were successfully applied in a more practical application with 
dynamic tasks31. Moreover, maximal voluntary contraction was recorded as a reference for further processing 
and comparison of data between different recordings and/or between subjects. Although this is a recommended 
method in the population of healthy volunteers, it may not be suitable for subjects with an injury recovery process 
since they may not be able to exhibit a maximal contraction32. Furthermore, although there is evidence that the 
method used to measure maximum voluntary contraction is valid (i.e. with the arm fixed on a table), activation 
of the trunk or shoulder muscles may affect the sEMG signal of the arm muscles33. The signals were recorded in 

Identification of 
tasks

Simultaneous identification of tasks and effort 
levels

10% MVC 30% MVC 50% MVC

Flexion Flexion 10% 
MVC

Flexion 30% 
MVC

Flexion 50% 
MVC

Extension Extension 10% 
MVC

Extension 30% 
MVC

Extension 50% 
MVC

Supination Supination 
10% MVC

Supination 
30% MVC

Supination 
50% MVC

Pronation Pronation 10% 
MVC

Pronation 30% 
MVC

Pronation 50% 
MVC

Table 2. List of the classes. In the identification of tasks, there are four classes, whereas in the identification of 
tasks and effort levels there are twelve different classes.

Fig. 8 Scheme of the 2-step process for the identification of task and effort level. In the first step, the task was 
identified, and in the second step, the effort level was identified using one of four classifiers. The selection of a 
classifier in the second step was based on the result of the classification of the first step. For instance, if the task 
of a sample is identified as flexion in the first step, the effort level is identified using the classifier dedicated to the 
identification of effort levels for flexion task (the bottom left block in the figure), and if the sample is identified 
as pronation, the effort level is identified using the classifier for identification of effort levels for pronation task 
(the bottom right block in the figure).
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monopolar montage considering that in this way it was possible to detect the entire information contained in the 
signal, and so, the signals are expected to be contaminated by crosstalk11. However, since no spatial filters were 
applied during the recording, it is possible to reduce crosstalk offline by applying these kinds of filters in any 
direction. Another limitation of this study is the limited number of subjects. Care must be taken when using the 
database for example for classification.

Usage Notes
The database can be used for different purposes. The main one is the application of pattern recognition and 
machine learning procedures to improve the identification of movement intention from sEMG maps, by mostly 
exploring spatial features either in amplitude or frequency domains. Other applications can be:

•	 To test algorithms intended for the decomposition of sEMG signals into the constituent MUAP trains for 
examining central nervous system strategies. For example, for different contraction levels and tasks. One 
example can be the use of the CKC algorithm intended for HD-sEMG34.

•	 To study regional inhomogeneities in the activation of motor units in the upper arm and forearm muscles and 
to consider how these changes with different levels of effort and myoelectric fatigue21,35.

•	 To study regional activation patterns during selective contractions for biofeedback purposes, especially in the 
case of forearm muscles (see, for example,36,37).

•	 To test and design methods for the automatic detection of innervation zones and the propagation of 
MUAPs38,39.

•	 To test the robustness of classification in case of smaller electrode grids and the sensitivity to electrode shift.
•	 To study myoelectric manifestations of muscle fatigue.
•	 To test outliers’ detection and cleaning methods in EMG40,41

code availability
The custom code used for reading the signals of the database was created in MATLAB R2017b and is freely 
available at figshare42 or at the GitHub repository https://github.com/lyanet-upc/hd-emg-app.git. We provide:

•	 A readme file (readmeapp.txt) with instructions about how to run the code in a 2017b or higher Matlab 
version.

•	 A zip file (hd_emg_app.rar) containing:
– the code main function (app_hd_emg.m). This function deploys an interactive Matlab app from 

which users can load, and friendly visualize data of a specific subject. Here, parameters like the type 
of task, effort level and signal window size can be set easily. Plots of AM and sEMG of all or a specific 
channel are provided and can be modified by selecting different times.

– a function folder with auxiliary functions (read_hd_emg_signals.m, get_color_scale.m, plot_hd_
emg_maps.m) needed to run the main function.

•	 A Matlab script (db_reader.m) with a simple example about how to read and plot data of a specific subject, 
tasks, effort level and muscle using Matlab code.

Received: 11 June 2020; Accepted: 6 October 2020;
Published: xx xx xxxx

Fig. 9 ROC curves for the Identification of short-term identification of task (flexion, extension, supination and 
pronation) and effort level (10%, 30% and 50% MVC) using intensity and mean shift (IMS), intensity and center 
of gravity (ICG), the intensity only (I), and time-domain (TD) features. The identification was evaluated using 
the repeated holdout method (N = 20) for each of the 10 subjects, and so, the plots represent 200 executions in 
total. Note the limited range of both x and y axes.
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