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Abstract 

Fetal magnetic resonance imaging (MRI) is used for monitoring and characterizing fetal brain             

development from the 18th gestational week to term since MRI, with its superior soft tissue contrast                

resolution, provides much richer details compared with US images and any other imaging technique [3]. 

MRI has limitations for fetal brain study due to acquisition time constraints. Because of the relatively low                 

signal strength, fetal brain MRI examination requires relatively long imaging times [3]. However, this              

increases susceptibility to unavoidable fetal movements during data acquisition which makes MRI very             

susceptible to motion. It is necessary to minimize the effects. Because of that, the MRIs are performed                 

with fast imaging methods [6]. Each slice provides a good quality image of a section of the anatomy.                  

However, inter-slice motion artifacts need to be considered. 

Another milestone for the study of fetal brain MRIs is the segmentation of the images. On one hand,                  

localizing the fetal brain and obtaining a segmented mask to exclude the surrounding tissues is crucial to                 

achieve accurate motion correction. On the other hand, segmentation of the fetal brain into different               

tissue classes is the key point of volumetric and morphological analysis in fetal MRI. The need for brain                  

masks has motivated a series of studies into fetal brain extraction into fetal brain MRI. 

Performing a manual segmentation is time consuming and also requires a high level of expertise. Two                

important problems with segmentation of fetal brain MRIs are the low tissue contrast and the dynamic                

development of the fetal brain across the gestational weeks. 

Cortical plate (CP) segmentation on fetal MRI is particularly challenging as the fetal CP is a very thin                  

ribbon with a thickness that is comparable to the best achievable resolution on fetal MRI scans. Another                 

factor that makes automatic segmentation of the fetal CP challenging is the substantial variations in fetal                

brain morphology due to the rapid development of the brain throughout gestation [5].  

Deep learning methods have often outperformed traditional machine learning and model-based           

methods in medical image analysis [8][9]. One of the reasons for their successful implementations is               

their ability to extract the features relevant for the tasks directly from the data. The networks learn                 

themselves to extract and interpret features relevant to the segmentation task. 

The Convolutional Neural Networks (CNN), a class of deep neural networks, is mostly applied to               

analyzing visual imagery since they are space invariant neural networks, which makes them ideal to               

work with images. To work with CNN generates the need of large sets of diverse training data to obtain                   

successful results. In order to enlarge the size of the training set and to ensure variability of the data it is                     

possible to use basic data augmentation techniques, such as random rotation, random translation and              

random noise injection.  
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1. Introduction 

This internship has taken place in the Methods and Computational Anatomy (MeCA) research group at               

the Institut de Neurosciences de la Timone (INT). 

1.1. Institut de Neurosciences de la Timone 

The Institut de Neurosciences de la Timone (INT) is a research entity whose purpose is to develop high                  

level research projects within the field of fundamental neurosciences, from cellular to cognitive, and try               

to erase the gap between both the clinical approaches and the fundamental approaches [1]. 

The different goals of the INT are: 

- To explore, understand and model normal and pathological brain and spinal cord function, with              

an integrated approach from neuron to behaviour through neurophysiology and multi-scale           

imaging. 

- Understand how the dynamic of both big and small neuronal networks explains the emotions,              

perceptions or, for example, controls the different movements of the body. 

- Understand how dysfunction or cell death of neurons or glial cells cause neurological or physical               

problems. 

Generally, the formation for the research is another important priority in the INT. 

In Figure 1, the organization chart of the INT can be observed. The institute is directed by M. Guillaume                   

Masson, who is a researcher in the field of neurosciences as well. It has 10 research groups, within which                   

the MeCa group can be found. This is the group in which the internship has taken place. 
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Figure 1. Organizational chart of the INT [1]. 

1.2. MeCa Team 

The Methods and Computational Anatomy (MeCA) group is an interdisciplinary research team at the              

INT, in Marseille, France. Now it is a full INT team but in May 2014, when it was set up, it was the result                        

of a collaboration between the INT and the Laboratoire des Sciences de l’Information et des Systèmes                

(LSIS). 

The MeCA group is focused on the understanding and modelling of normal and pathological brain, more                

specifically, on the quantification and modelling of the cortical variability and development and their link               

with the white matter connectivity, using MRI on human and non-human primates [2]. Specially, the               

objectives of the MeCa team are: 

- Quantifying and modelling cortical variability and organization. 

- Quantifying and modelling cortical development. 

- Studying the link between anatomy, function, and connectivity 

- Developing cortical and white matter morphometry tools and applying them on large databases. 

The group is organised in a way that prioritizes the communication among all the researchers in the                 

group. The idea is to follow the other’s work and, in order to do that, each week there is a meeting in                      

which a member of the research group presents either their results or some interesting paper published                

in the neurosciences field. 
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Working in the MeCA group showed me how it is to work in a research environment and helped me to                    

understand how research teams organise themselves. The job proposed by my tutor M. Guillaume              

Auzias for the internship showed me how a research project has to be properly handled. It has given me                   

essential transversal competences such as work with other people as well as by myself, to have a critical                  

spirit and to communicate myself to the rest of the group. It also has strengthened the knowledge                 

acquired during my previous courses within the scope of deep learning.  

With the assistance of M.Guillaume Auzias, M. Pierre-Henri Conze and M. François Rousseau, a weekly               

meeting took place in order to have continuous supervision and help during the internship.  

1.3. Context and global aim of the project 

Ultrasound (US) imaging is widely used in clinical practice for visualizing and monitoring fetal              

development. However, US imaging for fetal brain study is still limited by the presence of the skull and                  

its ability to distinguish subtle differences in brain tissues [3]. Fetal magnetic resonance imaging (MRI) is                

used to evaluate the fetus in cases where the prenatal US shows suspicious or detected abnormalities                

that may not be apparent or cannot be accurately characterized. It is also used for monitoring and                 

characterizing fetal brain development since MRI, with its superior soft tissue contrast resolution,             

provides much richer details compared with US images.  

Fetal brain maturation can be studied by MRI from the 18th gestational week to term, and relies                 

primarily on T2-weighted and diffusion weighted (DW) images [4]. It also provides advanced mechanisms              

to image the micro-structure and function of the fetal brain in-utero; thus it provides information that                

cannot be obtained by any other imaging technique [3]. 

MRI has limitations for fetal brain study due to acquisition time constraints. Because of the relatively low                 

signal strength, fetal brain MRI examination requires relatively long imaging times [3]. However, this              

increases susceptibility to unavoidable fetal movements during data acquisition which makes MRI very             

susceptible to motion. It is necessary to minimize the effects.  

Because of that, the MRIs are performed with fast imaging methods [6]; fast 2D slices are acquired one                  

after each other to form a stack of slices. Thanks to the fast imaging methods, the MRI modality was                   

introduced in clinical settings for in vivo fetal analysis as a complement to US [3]. Among the fast                  

imaging methods, Single-Shot Fast Spin Echo (SSFSE) are used to acquire thick, low-resolution stacks of               

2D slices that can largely freeze in plane motion. Other methods used to obtain MRI 2D slices are                  

half-Fourier acquisition turbo spin echo (HASTE) , gradient echo (GRE) and balanced turbo field echo               

(BTFE) [6]. 

Each slice provides a good quality image of a section of the anatomy. However, inter-slice motion                

artifacts need to be considered, since either the fetus or the mother can move in between each slice                  

acquisition [7].  
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In order to assess and quantify fetal brain development and pathology, it is desirable to reconstruct a                 

single isotropic, high-resolution volume of the fetal brain in standard anatomical planes (axial, coronal              

and sagittal) from multiple low-resolution stacks acquired in different views. 

Some reconstruction approaches have been implemented with multi-slice acquisitions in different           

spatial directions (axial, coronal and sagittal). These provide the radiologist a pseudo-3D visualisation of              

the fetal brain [3]. This results in motion-corrupted stacks of slices in multiple orientations, which does                

not allow 3D studies on the fetal brain. Consequently, it is necessary to estimate this inter-slice motion                 

to correct the positioning of each slide, to correctly estimate the 3D image reconstruction of the fetal                 

brain. 

Several reconstruction methods have been proposed to cope with this issue of geometric integrity              

between slices due to the motion of the fetus. As a consequence, super-resolution methods have been                

applied to fetal MRI to improve the quality of the reconstructed images. Such reconstruction methods               

are essential for fetal MRI analysis [4]. 

Previous open-source image processing softwares were not adapted to deal with fetal MRI. There was               

the need of an open-source image processing toolkit primarily dedicated to fetal brain MRI. Baby Brain                

Toolkit (BTK), which relies on common libraries such as ITK, VTK, openMP, includes an image denoising                

algorithm, several image reconstruction methods and a probabilistic tractography technique [4]. 

Another milestone for the study of fetal brain MRIs is the segmentation of the images. On one hand,                  

localizing the fetal brain and obtaining a segmented mask to exclude the surrounding tissues is crucial to                 

achieve accurate motion correction. On the other hand, segmentation of the fetal brain into different               

tissue classes is the key point of volumetric and morphological analysis in fetal MRI. The need for brain                  

masks has motivated a series of studies into fetal brain extraction into fetal brain MRI. 

Performing a manual segmentation is time consuming and also requires a high level of expertise.               

However, fetal MRI is challenging due to the fact that the fetal brain is surrounded by the mother’s                  

organs and anatomy since the receiver coils can only be positioned on the maternal body as well as the                   

motion of the fetus itself, which causes artifacts such as intensity inhomogeneity. Other problems with               

segmentation with fetal brain MRIs are the low tissue contrast and the dynamic development of the                

fetal brain across the gestational weeks. 

As indicated above, the fetal MRIs are obtained by methods such as SSFSE in order to avoid motion                  

artifacts. Because of that, intensity inhomogeneity artifacts may only appear in some of the slices, since                

they are a consequence of the motion, but they do not have to appear in the neighbour MRIs as well. 

Cortical plate (CP) segmentation on fetal MRI is particularly challenging as the fetal CP is a very thin                  

ribbon with a thickness that is comparable to the best achievable resolution on fetal MRI scans. Another                 

factor that makes automatic segmentation of the fetal CP challenging is the substantial variations in fetal                

brain morphology due to the rapid development of the brain throughout gestation [5]. The reasons               

stated above make it difficult to develop effective and robust solutions for automatic CP segmentation               

in fetal MRI. 
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Deep learning methods have often outperformed traditional machine learning and model-based           

methods in medical image analysis [8][9]. One of the reasons for their successful implementations is               

their ability to extract the features relevant for the tasks directly from the data. The networks learn                 

themselves to extract and interpret features relevant to the segmentation task. 

The Convolutional Neural Networks (CNN), a class of deep neural networks, is mostly applied to               

analyzing visual imagery. Their main advantage is that they are space invariant neural networks, which               

makes them ideal to work with images. 

One of the challenges of using CNN is that often they need large sets of diverse training data to obtain                    

successful results. In order to enlarge the size of the training set and to ensure variability of the data it is                     

possible to use basic data augmentation techniques, such as random rotation, random translation and              

random noise injection.  

As indicated above, one of the most typical artifacts that appear in MRIs is intensity inhomogeneity. In                 

order to let CNNs adapt and become invariant to such artifacts, it is possible to use data augmentation                  

to deal with this problem. It is possible to randomly add synthetic intensity inhomogeneity to slices for                 

which a corresponding reference segmentation is available. 

Another challenge, as indicated before, is the fact that parts of the maternal body are also visualized and                  

not only the head of the fetus. This is why, some of the approaches when working with fetal MRIs first                    

automatically segment the intracranial volume (ICV) of the fetus in order to detect the region of interest                 

(ROI). This segmentation is also implemented with CNN. 

The main goal of this internship is to implement and validate a fetal MRI segmentation pipeline.  

1.4. Datasets 

During this project two datasets were used. Since the main goal was to segment the CP of fetal MRI                   

scans, a fetal dataset was used in order to evaluate qualitatively the performances of the networks. For                 

the training of these networks, since no fetal dataset with ground truth was available, a dataset of                 

newborns was used. This dataset was also used for a quantitative evaluation of the performance of the                 

deep neural networks used. 

1.4.1 dHCP dataset 

The main goal is to segment the CP of fetal brains. The dataset used for training was obtained from the                    

Developing Human Connectome Project (dHCP) [10] as described hereafter. 

The dHCP dataset consisted of 505 subjects, which each of them had at least one data acquisition                 

session. In each session, four types of images were found:  

- sub-*_ses-*_desc-drawem87_space-T2w_dseg.nii.gz (1) 
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- sub-*_ses-*_desc-drawem9_space-T2w_dseg.nii.gz (2) 

- sub-*_ses-*_desc-ribbon_space-T2w_dseg.nii.gz (3) 

- sub-*_ses-*_desc-restore_T2w.nii.gz (4) 

The image (1) contains segmentations of the brain with 50 labels. The image (2) contains the                

segmentations of 9 different parts of the brain with the following labels: cerebrospinal fluid, cortical               

grey matter, white matter, background, ventricle, cerebellum, deep grey matter, brainstem and            

hippocampus. The image (3) contains four labels, one for the right hemisphere CP, another for the left                 

hemisphere CP and the other two for the rest of the brain, one per each hemisphere. The image (4)                   

contains the MRI scan in 3D. 

The image (1) is not used throughout the whole study. The image (2) is used to obtain a total mask of                     

the brain in order to separate it from the background and apply the normalisation. Further in the study,                  

it is also used for obtaining more masks combining the different labels of the brain and work with                  

multiple class segmentation. However, the first mask of the CP is obtained from the image (3), from the                  

two labels of the CP of each hemisphere. Finally, the images for prediction are obtained from image (4). 

In Figure 2, the first images used for the study of the performance of the Pytorch UNet. On the image of                     

the left, the MRI image is shown. The second image shows the whole mask used for normalisation of the                   

MRI image in order to discard the background; it is obtained, as indicated before, with all the labels of                   

the image (2). The third image shows the first CP mask used for training, obtained from the image (3).  

 

Figure 2 - Ground truths for the single label study. 

In Figure 3, in the left image the MRI scan is shown as well. The three remaining figures are obtained                    

from the image (4) using the different labels. These are used for testing the neural network for multiple                  

classes. The second image, drawem9 Mask (1+5), corresponds to the mask that combines the label 1                

(cerebrospinal fluid) with label 5 (ventricle). The third image, drawem9 Mask (2), corresponds to the               

mask obtained from the label 2 (cortical plate). The fourth image, drawem9 Mask (3), corresponds to                

the mask obtained from the label 3 (white matter). These three labels are merged in the same image,                  

creating a multilabel ground truth used for three different segmentations. 
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Figure 3. Ground truths for the multilabel study. 

It is important to say that the CP mask used for single label classification is obtained from the image (3),                    

which is different from the ground truth of the CP used for the multi label classification, obtained from                  

the image (4). This is done because the mask from the image (3) is more anatomically correct than the                   

one obtained from the image (4). However, for the multilabel classification the masks need to be                

coherent with each other and, this is why, all the masks used for this task are extracted from the same                    

image (4).  

Each image (4) was a 3D stack obtained from an MRI session. In order to be able to use the dataset for                      

the learning, it was necessary to create 2D images for both the image and the respective mask. To do                   

that, the slices in which the CP mask was not null, were saved as 2D images, both the MRI scan and the                      

ground truth for the CP. The slices were obtained by cutting the 3D volume following the axial plane.                  

This procedure of generating 2D slices from the 3D images was applied for all images and masks for the                   

dHCP data, and for the images for the fetal data. 

Importantly, the training dataset dHCP was obtained from newborns MRIs, which are older than the               

fetuses from the data acquired in Marseille. Anatomical differences due to different levels of brain               

maturation are expected between the two datasets. As a consequence, we restricted the selection of               

the images used for training to the 40 youngest subjects of the dHCP dataset, corresponding to 29 to 36                   

weeks of gestational age at MRI acquisition date. Selecting the youngest targets, helps to obtain more                

accurate results rather than selecting them randomly or selecting the oldest ones, since, as indicated               

before, the brain evolves rapidly during the gestation weeks and even after the birth. The youngest the                 

newborn, the more similar anatomically speaking to the fetuses brains. 

Another important aspect to take into consideration is to check that both datasets are compatible. This                

means that the distribution of the pixels of each 3D image is similar. In order to do that, a normalisation                    

in 3D was performed. This is explained in section 2.4. 

1.4.2 Fetal dataset 

The data obtained from Aix-Marseille University consisted of 27 fetal brain MRI scans, with MRI scans                

within 27 weeks and 36 weeks, for which no ground truth segmentation (in particular for CP) was                 

available.  
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The anatomical image was accompanied with a total mask covering the entire fetal brain which served in                 

order to separate it from the background. This allowed us to normalise the images efficiently as detailed                 

in section 2.4.2. The images were 3D stacks of slices; the generation of 2D slices was needed in order to                    

obtain the predictions. 

1.5. Objectives of the internship 

The organization of this project is divided in four objectives as follows:  

The first objective consists of searching in the literature for potential effective solutions that would fill                

our needs. More specifically, CNN have demonstrated their effectiveness in the segmentation of medical              

images. We will review the recent papers in this research field for potential application of CNN                

technique to tissue segmentation in early development MRI. 

The second objective consists in testing two neural networks (Pytorch UNet [11] and FetalCPSeg [5]) for                

the CP segmentation with newborns MRI images. Indeed, the data used for the neural network learning                

on newborn data are obtained from the dHCP [10] database. In this database, ground truth               

segmentation masks are provided which allows for proper quantitative evaluation of the learning             

procedure by the two techniques. For the FetalCPSeg the study of the attentive module and the deep                 

supervision modules had an important role as well as plugging the Pytorch UNet within the code.  

Once evaluated on newborns MRI images, the third objective consists in using these neural networks for                

segmenting the CP in fetal images. The application in fetal MRI remains challenging due to the wide                 

variation in the quality of the images to be processed. 

Since the application was successful for the CP tissue, we pursued the project with the fourth objective                 

was to investigate the ability of the Pytorch UNet to achieve multilabel segmentation (several tissues).               

The masks used for multilabel segmentation have been explained previously, in section 1.4.1. 
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2. Review of the literature and experimental setup 

2.1 State of the Art 

Several studies have been conducted in this field.  

In the work of [7], two segmentation approaches were implemented and tested. First, a deep fully                

convolutional neural network based on the U-Net [11] was developed to segment brain sections              

independently on original 2D fetal MRI slices. It improves segmentation accuracy, since multi-scale             

information is used. Second, a voxelwise approach was developed. The architecture consists of three              

fully convolutional paths. Each contains four convolutional layers followed by a rectified linear unit              

(ReLU) nonlinear function and a batch normalization (BN). In this method, no preprocessing method was               

used. 

In the study of Ebner, M. et al. [6], a fully automatic framework for fetal brain MRI reconstruction to                   

obtain high-resolution (HR) visualizations in standard anatomical planes from multiple low-resolution           

(LR) input stacks is proposed. There are  automatic localization, segmentation and reconstruction parts. 

For automatically localizing the fetal brain region in each input LR stack and obtaining a 3D bounding box                  

of the fetal brain a CNN is used. Within the bounding box, another CNN is used to automatically                  

generate a fine segmentation of the fetal brain. For the automatic high-resolution volume             

reconstruction part different stages are included: first, the two-step iterative Slice-to-Volume           

Registration (SVR); second, an outlier-robust Super-Resolution Reconstruction (SRR) step followed by a            

fast and robust standard anatomical template space alignment step. 

In the article of N. Khalili, et al. [8], the proposed approach is applied to 2D slices of images                   

reconstructed in a standard way, i.e. without reconstruction to HR volumes. The method proposed has               

two parts. First, the ICV from the fetal MRI slices is identified using a CNN. Then, the identified region is                    

segmented by another 2D CNN. 

In this method, also a data augmentation technique that synthesizes intensity inhomogeneity artifacts is              

proposed in order to improve robustness against these artifacts. Also, the fetal brain segmentation is               

performed into seven classes (cerebellum (CB), basal ganglia and thalami (BGT), ventricular            

cerebrospinal fluid (vCSF), white matter (WM), brain stem (BS), cortical gray matter (cGM) and              

extracerebral cerebrospinal fluid (eCSF)), instead on focusing only on WM, cGM and vCSF. 

In the article of J. Li, Y. Luo and L. Shi et al. [9], a two-step framework using the deep learning method is                       

proposed. It consists of two fully convolutional networks (FCN). The first shallow FCN locates the fetal                

brain and extracts the ROI containing the brain. Afterwards, within the ROI extracted, an extra deep                

multi-scale FCN (M-FCN) refines the segmentation and produces the final brain mask by leveraging the               

multi-scale information and residual learning blocks. Dilated convolutional layers were employed in both             

FCNs to control the size of feature maps and increase the field of view. 
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Finally, the two networks that are going to be studied are a neural network that has a basic UNet                   

architecture, which consists of a contracting path and a symmetric expanding path [11] and a neural                

network which has a backbone fully convolutional encoder-decoder network with stagewise forward            

skip connections and a stagewise attention refinement module [5]. These two networks were chosen              

since, firstly, the basic UNet is one of the more classical architectures in neural networks and, secondly,                 

the second architecture was specifically designed for dealing with our problem. These two networks are               

explained in more depth in the following section 2.2. 

2.2 Convolutional Neural Networks 

As stated in the section 1.3. the Convolutional Neural Networks (CNN) are a class of deep neural                 

networks that is mostly applied to analyzing visual imagery since they are space invariant. Before talking                

about CNNs it is important to talk about the concept of deep learning (DL). 

DL is a subset of machine learning (ML) in artificial intelligence (AI). AI refers to the simulation of human                   

intelligence in machines that are programmed to think like humans and mimic their actions as well as                 

exhibit traits associated with a human mind, such as learning and problem-solving [12]. ML, a field of AI,                  

is the concept that a computer program can learn and adapt to new data without human intervention                 

[13]. DL imitates the workings of the human brain in processing data and creating patterns to use in                  

decision making. It has networks capable of learning unsupervised from data that is unstructured or               

unlabeled [14].  

Images are considered a type of unstructured data. Unstructured data is information that is not               

organized in a pre-defined manner. Since we are working with images DL architectures are suitable for                

our study. Furthermore, both networks that will be studied are CNNs, which makes it even better for                 

analyzing images due to their space invariance.  

CNNs are a class of DL generally used for visual imagery. CNNs were inspired by biological processes in                  

that the connectivity pattern between neurons resembles the organization of the animal visual cortex              

[15]. 

CNNs are a specialized kind of neural network for processing data that has a known, grid-like topology.                 

Image data can be considered as a grid of pixels, 2D or 3D. The CNNs employ the operation of                   

convolution, which is a kind of linear operation, instead of general matrix multiplication. The              

mathematical expression of the convolution is denoted as: 

(t) (a)w(t )da x )(t)s = ∫
 

 
x − a = ( * w  

In the DL terminology, the first argument is referred as the input and the second argument is       x           w   

referred to as the kernel. The output would be the feature map. Since we are working with images, the                   

operation of convolution should be discretized and, moreover, since the images are 2D arrays we will be                 

using a 2D kernel. 
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(t) x )(t) (a)w(t )s = ( * w = ∑
∞

a=−∞
x − a → (i, ) I )(i, ) (m, )K(i , )S j = ( * K j = ∑

 

m
∑
 

n
I n − m j − n  

The advantages brought by the convolution operation are three-fold: 

- Sparse interactions. 

When using matrix multiplication by a matrix of parameters with a separate parameter describing the               

interaction between each input unit and each output unit, every output unit interacts with every input                

unit. When using convolution instead of matrix multiplications, the kernel is smaller than the input,               

which results in sparse interactions. Thanks to that, the parameters needed to be stored are fewer,                

which results in both less memory requirements of the model and improves its statistical efficiency.               

Having inputs and outputs, the matrix multiplication will have parameters and have m    n        m × n    

runtime. If the connections each output may have are reduced to , then the convolution(m )O × n             k     

requires  parameters and  runtime.k × n (k )O × n  

- Parameter sharing. 

With a traditional neural network, each element of the weight matrix is used once when computing the                 

output of a layer. In a CNN, each element of the kernel is generally used at every position of the input,                     

meaning that instead of learning a separate set of parameters for every location, only one set is learnt.                  

This reduces the storage requirements of the model to , which is several orders smaller than .k m   

- Equivalent representations. 

In the case of convolution, the particular form of parameter sharing causes the layer to have a property                  

called equivariance to translation. To say a function is equivariant means that if the input changes, the                 

output changes in the same way [16]. This can be represented mathematically as: . One             (g(x)) (f (x))f = g   

of the transformations that convolution is invariant is translation. This is really important to explain why                

CNN are translation invariant. 

Finally, one last advantage of the convolution is that it lets you work with data of variable size. 

Another important thing to consider about CNNs is the pooling layer. This layer uses a pooling function                 

which replaces the output of the network at a certain location with a summary statistic of the nearby                  

outputs [16]. Its function is to progressively reduce the spatial size of the representation to reduce the                 

amount of parameters and computation in the network. The pooling helps to make the representation               

become invariant to small translations of the input. The typical operation is the max pooling, which can                 

be observed in Figure 4. 
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Figure 4 - Example of max pooling [17]. 

The Rectified Linear Unit (ReLU) is a function used as an activation function. The activation function is                 

responsible for transforming the summed weighted input from the node into the activation of the node                

or output for that input [18]. The ReLU is a linear function that will output the input directly if it’s                    

positive or zero if not. It is the most widely used activation function for several types of neural networks                   

because it makes the model easier to train and generally achieves better performance than with other                

activation functions. In Figure 5, the ReLU activation function is plotted. 

 

Figure 5 - Rectified Linear Unit (ReLU). 

After clarifying some basic concepts of the CNNs, the two networks that will be studied are explained in 

more depth in the following subsections. 

2.2.1 U-Net: Convolutional Networks for Biomedical Image Segmentation 

This neural network consists of a basic UNet architecture [11], which is shown in Figure 6. The                 

architecture consists of a contracting path to capture context and a symmetric expanding path that               

enables precise localization.  

The contracting path consists of the repeated application of two 3x3 convolutions (unpadded             

convolutions), each followed by a ReLU and a 2x2 max pooling operation with stride 2 for                

downsampling. At each downsampling step, the number of feature channels is doubled. 
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The expansive path consists of an upsampling of the feature map followed by a 2x2 convolution that                 

halves the number of feature channels, a concatenation with the correspondingly cropped feature map              

from the contracting path, and two 3x3 convolutions, each followed by a ReLU.  

The cropping is necessary due to the loss of border pixels in every convolution. At the final layer a 1x1                    

convolution is used to map each 64-component feature vector to the desired number of classes. In total                 

the network has 23 convolutional layers. 

 

Figure 6 - U-net architecture.  

Each blue box corresponds to a multi-channel feature map. White boxes represent copied feature maps. 

The arrows denote the different operations. [11] 

This network is based on the architecture of a fully convolutional network (FCN) [19]. The main idea is to                   

supplement a usual contracting network by successive layers, but instead of pooling operators,             

upsampling operators are used. Consequently, these layers increase the resolution of the output. High              

resolution features from the contracting path are combined with the upsampled output in order to be                

able to localize. Afterwards, a successive convolutional layer can learn to assemble more precise output. 

Based on this FCN architecture, in the paper some modifications were done. One important modification               

is that in the upsampling part there also is a large number of feature channels, which allow the network                   

to propagate context information to higher resolution layers [11]. Consequently, the expansive path is              

similar to the contracting path and yields to a u-shaped architecture. The network does not have any                 

fully connected layers and the segmentation map only contains the pixels for which the full context is                 

available in the input image. To predict the border pixels, the missing context is extrapolated by                

mirroring the input image. This strategy allows the segmentation of arbitrarily large images due to an                
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overlap-tile strategy, which means that the segmentation is done part by part for the whole image when                 

the image is too large. 

The code used and modified for this study can be found in the github [20]. In this pytorch code, the                    

weight loss is the cross entropy function. This network is adapted to make multilabel prediction;               

however, it is not prepared to deal with imbalanced data. Because of that, few changes were made in                  

order to use a weighted cross entropy loss function. 

2.2.2 Fetal CPSeg: A Deep Attentive Convolutional Neural Network for Automatic 

Cortical Plate Segmentation in Fetal MRI 

First of all, it is important to remark that this network was designed to work with 3D images. However,                   

for this study, it has been adapted in order to work with 2D images. 

To deal with the substantial variability in the size, shape, and complexity of the thin fetal brain CP, a new                    

network architecture with novel attention modules using mixed kernel convolutions was developed. 

The architecture of the proposed deep attentive fully CNN for CP segmentation in fetal MRI is shown in                  

Figure 7. It consists of a backbone network with an encoder-decoder architecture with forward skip               

connections from the encoder stages to the corresponding decoder stages. Then, it is followed by a                

stage-wise attention refinement module that leverages mixed kernel convolutions to capture multi-scale            

contextual information.  

 

Figure 7 - Schematic illustration of our proposed CNN architecture. 

Consists of a backbone fully convolutional encoder-decoder network with stagewise forward skip 

connections, and a stagewise attention refinement module. The network takes sliding, overlapping 2D 

patches of size 64x64 from the input image, and using training data, learns to generate a 2D 

segmentation of the input image. [5] 
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Figure 7 is obtained from the corresponding paper [5], this is why the patch taken is a 3D image.                   

However, as already indicated, this network has been adapted to work with 2D patches. Any other 3D                 

references in this section obtained from the paper have been changed to 2D in the code. 

The backbone network (BBN) extracts a series of feature maps with different resolutions. The shallower               

feature maps contain HR details used to get an accurate delineation of the CP boundary and the deeper                  

feature maps contain coarser information used to predict the overall outline of the CP. It has a basic                  

UNet architecture with forward skip connections and convolutions with shortcuts or residual            

connections, hence, it results in a residual UNet architecture. The residual connections is a connection               

that bypasses one or more layers in the network. In Figure 8 an example of a residual block can be                    

observed. 

 

Figure 8 - Example of a single residual block. [21] 

Generally, it is known that when working with neural networks the accuracy increases with the number                

of layers. However, there is a limit of the number of layers that can help the increase of the accuracy. If                     

the number of layers is too big, it can even turn out to be a saturation of the accuracy that at some point                       

will eventually degrade. This is known as the degradation problem. In this case, we know that the                 

shallower networks work better than their deeper counterparts, which is counter-intuitive. One solution             

to that, would be to skip some of these extra layers. Because of that, some skip-connections are added                  

or also known as residual connections, since the layers in a residual network are trying to learn the                  

residual ( ), whereas the layers in a traditional network are learning the true output ( ) [21].(x)R (x)F  

(x) utput nput (x)R = O − I = F − x → (x) (x)H = F + x  

In this architecture, the shortcuts or residual connections are added in the input of each decoder stage                 

of the backbone network, between the output of the previous decoder stage and the output of the                 

corresponding encoder stage. The input of each stage is processed by two 3x3 convolutional layers               

followed by a BN [22] and a parametric PReLU [23] is used for activation.  

The sizes of feature maps in the encoder part are 16, 32, 64, 128 and 128; the number of features                    

increases as their size shrinks. 

Every feature map computed by the backbone network is then upsampled using bilinear interpolation to               

the size of the input patch. After that, a convolution with a kernel of 1x1 is applied to every feature map                     
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to create 16 features in each of the feature maps. Then, these feature maps go through deep supervision                  

modules (DSM) [24]. These modules improve the gradient flow and encourage learning more useful              

representations. 

Similar DSM are also used on the outputs of the attention modules (AM) and merge the resulting feature                  

maps via concatenation. These feature maps go through two convolutional layers followed by BN and               

PReLU to produce the CP probability map. 

 

Figure 9 - Attention module architecture. [5] 

The AMs are the most special part of this network. In Figure 9 their architecture can be observed. Their                   

goal is to increase the network’s ability to capture multi-scale details of the brain CP, by increasing the                  

richness of the information of the multi-scale feature maps learned by the backbone network. 

The AM takes the feature maps from each stage of the BBN and outputs a refined attentive feature map                   

of the same size. The operation that takes place in the AM is: 

f ( F  ;  )  F ′
i =  i i θ ⊗ F i + F i  

represents the parameters of the module, for example the weights of the convolutional layers. isθ               F i   

the input of the AM, i. e. the features maps obtained from the stage of the BBN. is the output of             i th      F ′
i     

the AM at the  stage. Finally, denotes the element-wise multiplication.i th ⊗  

The AM processes the input feature map with a group of convolution blocks. Their sizes go from 3x3       F i             

to 9x9. Each convolutional operation is followed by BN and PReLU. The generated feature maps are                

concatenated and passed through an exact same block and, afterwards, a convolutional layer with a               

kernel size of 1x1 is used to merge these multi-scale feature maps into a single feature map. As last                   

steps, a sigmoid activation function is applied to obtain the attentive map and it is multiplied             Ai     

element-wise with the input feature map. This is done to encourage attention on the relevant locations                

in the feature map. Finally, the refined attentive feature map is added to the input feature map in                 F i   
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order to reduce the difficulty of learning the attentive map. Also, BN is used on the two branches before                   

adding both feature maps together to ensure that the values of the two feature maps are not differently                  

distributed. 

The loss function used for the training is a weighted binary cross entropy. 

[α g  log p 1 ) log(1 )]Lwbce = 1
N ∑

N

i=1
i i + ( − gi − pi  

N is the number of pixels in the patch; is the binary grountruth CP probability map at pixel ; is the         gi          i  pi   

predicted CP probability map at pixel ; is the weight hyperparameter which is set independently in      i  α          

every training mini-batch. 

The overall loss is the weighted sum of the weighted losses at different points in the network.  

L L LLtotal = ∑
n

i=1
wi i

signal + ∑
n

j=1
wj j

signal + wp p
signal  

The first term is the weight and the loss of the points of supervision at stage of the backbone network;                i      

the second term is the weight and the loss of the points of supervision at stage of the attentive                j     

refinement network; finally, the third term is the weight and loss computed at the final network output.                 

 is the number of stages for both first and second term.n  

The code used and modified for this study can be found in the github [25]. As already indicated, every                   

3D step in the code has been changed to work with 2D patches.  

2.3 Hyperparameters in Neural Networks 

Hyperparameters, in NN, are the variables which determine the network structure and the variables              

which determine how the network is trained [26]. The hyperparameters are set before training. The               

focus will be set to the hyperparameters related to the training algorithm since the network structure is                 

already fixed, for both the Pytorch-UNet [20] and the FetalCPSeg [25]. 

Firstly, it is important to point out the typical hyperparameters related to the training algorithm. The                

learning rate, which defines how quickly the network updates its parameters; if it is small it slows down                  

the convergence of the algorithm and makes it converge smoothly and, if it is big it speeds up the                   

learning process but it may cause a non-convergence in the algorithm [26]. The other two most used                 

hyperparameters are the number of epochs and the size of the batch, which are explained later. 

The first hyperparameter to remark is the number of epochs. Passing the entire dataset through a neural                 

network is not enough; the dataset must be passed multiple times to the same neural network to                 

update the weights multiple times, not just once. The number of epochs is a hyperparameter that                

defines the number of times that the learning algorithm will work throughout the entire training dataset                

[27]. The number of epochs is traditionally large allowing the learning algorithm to run until the error                 

from the model has been sufficiently minimized [27]. 
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Figure 10 - Graphical examples of the different resulting cases when training a neural network [28]. 

In Figure 10 the process of updating the weights several times is shown. As the number of epochs                  

increases, the times the weights are updated as well. When the number of epochs is not enough, the                  

network finds itself in underfitting, since the weights are not modified enough; when the number of                

epochs increases it can reach the optimal or if it is more than necessary the network is overfitted, which                   

means that it only works well for a specific group of images, the training set. 

In DL, usually the data is too big to be passed to the network all at once. To overcome this problem, the                      

data is split into smaller sizes and passed to the NN [28]. These data splits are called batches, and their                    

size, which is fixed, is the batch size. 

The batch size is a hyperparameter that defines the number of samples to work through before updating                 

the internal model parameters [27]. A training dataset can be divided into one or more batches. 

The value of the batch size usually goes from 32 to 512 [29]. It has been observed that when using a                     

larger batch size there is a significant degradation in the quality of the model [29]. However, for                 

technical restrictions during the internship, the first studies were restricted to a batch size of 13. As soon                  

as it became possible, a few studies with respect to the optimal batch size were done which can be                   

found in section 3.1.1.1, and all the results were updated with the new optimal batch size. 

For the Pytorch-UNet there are other hyperparameters that can be modified, such as the downscaling               

factor of the images and the percentage of data that is used for validation as well as the three already                    

mentioned (learning rate, number of epochs and batch size). The downscaling factor has been set to 1 in                  

all the tests, even though the default value is 0.5, because it is indicated that for obtaining better results,                   

even though more memory is used, it must be set to 1. The percentage of the data used for validation to                     

10%. The learning rate has also been fixed to 0.1 for all learning processes. 

For the FetalCPSeg, the hyperparameters that can be modified are the learning rate, the number of                

iterations (which is the same as the number of epochs) and the batch size as in the Pytorch-UNet. Since                   

the network is optimized with the Adam optimizer [30] another hyperparameter needed is the weight               

decay. In addition, since the images are split into patches the patch size is another hyperparameter that                 

can be tuned, which by default was set to 64. Finally, there are two more hyperparameters who indicate                  

whenever it is necessary to save the new model or reset the loss during the iterations. 
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2.4. Normalization of datasets 

In this section, the normalization of both datasets is explained. This normalization is necessary in order                

to make sure that the different pixel distributions of the 3D MRI images are close and similar. It is                   

needed in the dHCP dataset in order to make the training efficient, as well as ensuring that the                  

prediction of the images from this dataset is compatible with the training previously done. It is needed                 

in the fetal dataset as well for the same reason; the compatibility of the pixel distributions of the images                   

in both training and testing datasets is necessary in order to have efficient predictions. 

2.4.1. Normalization of the dHCP dataset 

For normalizing the dHCP dataset, centering in the mean and dividing for the standard deviation was                

applied. This normalisation was done in the 3D images for both datasets. For an efficient normalisation,                

it is important to separate the brain from the background and then, apply normalisation just in the pixel                  

values of the brain. For that, a total mask of the brain is necessary. This can be seen in Figure 11. 

 

Figure 11 - Normalisation of the MRI images of the dHCP dataset with the total mask. 

The image in the left shows an axial cut of the whole 3D MRI scan. Then, in the second image, the total                      

mask of the brain can be observed. Finally, the last image shows an axial cut of the 3D MRI scan but                     

separating the brain from the background and normalising it. 

In Figure 12, the histograms of the pixel value distribution of the images can be observed. The left                  

histogram shows the distribution of the images without normalization and the right histogram shows              

the distribution of the images with normalisation. As expected, the images normalised are closer and               

have more similar distributions. 
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Figure 12 - Histograms of the distributions of the 3D MRI images of the dHCP dataset without 

normalisation (left image) and with normalisation (right image). 

In Figure 13, the histograms plotted are used to check that the data augmentation (rotation and                

translation) do not change the image distribution. This histogram is obtained after generating 2D              

images, and applying the data augmentation to these images. In order to check the results, 40 random                 

images were chosen among 5337 2D images generated from the 40 youngest subjects of the dHCP                

dataset. As it can be observed, the distribution of the images do not change after applying data                 

augmentation. 

 

Figure 13 - Histograms of 40 2D slices randomly selected without data augmentations (left image) and 

with data augmentation (right image). 

2.4.2. Normalization of the fetus dataset 

As done for the dHCP dataset, the normalisation consisted on centering in the mean and dividing for the                  

standard deviation. This normalisation was done in the 3D images as well. As it was done for the dHCP                   

dataset, it was important to separate the brain from the background and then, apply normalisation just                

in the pixel values of the brain. For that, a 3D total mask of the fetus brain is necessary. This can be seen                       

in Figure 14. 
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Figure 14 - Normalisation of the MRI images of the fetus dataset with the total mask. 

The image in the left shows an axial cut of the whole 3D MRI scan. Then, in the second image the total                      

mask of the fetal MRI scan is seen. Finally, the third image shows an axial cut of the 3D MRI scan                     

separating the brain from the background and normalising it. 

In Figure 15, the histograms of the different 27 fetus 3D images can be observed. On the left histogram,                   

the distributions of the images without normalisation can be observed, and in the right histogram, the                

distributions of the images after normalization can be observed. As expected, the histograms after              

normalization are closer and have more similar distributions. 

 

Figure 15 - Histograms of the distributions of the 3D MRI images of the fetus dataset without 

normalisation (left image) and with normalisation (right image). 

Finally, the last step to check if both datasets have similar distributions and, hence, are compatible to be                  

used in the same convolutional network, all histograms of the 3D distributions of normalised images               

histograms from both datasets are plotted together in Figure 16.  

 

Figure 16 - Histogram of the distributions of the 3D normalised images of both datasets (dHCP and 

fetus).  
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After the normalisation, it can be observed that all 3D MRI scans from both datasets have a similar 

distribution and, hence, can be used in the same neural network. 

2.5 Data augmentation 

As indicated before, one way to improve the performance of a CNN is using more data for training.                  

However, the amount of images is limited and if this amount is not big enough it can contribute to                   

overfitting. Because of this, one of the most efficient ways to generate more data is with data                 

augmentation. The main idea is to generate fake images through the original dataset, by modifying               

them, for example, rotating the images.  

Even if the amount of images of the training dataset is big, they might not be well distributed.                  

Consequently, another reason to use data augmentation would be to cover all the normal characteristics               

that are expected to be found. The performance and robustness of a trained model is directly linked to                  

the amount of training data as well as the different qualities of the image and the characteristics they                  

cover. Using mathematical models that describe natural variations, such as rotation or translation as              

well as any noise appearance in the images, it is possible to expand the training data and enrich it with                    

artificial variations. Doing that, it is expected to increase the performance and robustness of the neural                

network with respect to the natural variations added in the training dataset [31].  

The main task facing a classifier is to be invariant to a wide variety of transformations. Operations like                  

translating, rotating and scaling the training images can often greatly improve generalization, even if the               

model has already been designed to be partially invariant [16]. 

2.5.1 Affine Transformations 

The most common and immediate transformations for a training dataset are the affine transformations.              

An affine transformations is a geometric transformation that preserves lines and parallelisms but not              

necessarily distances and angles [32]. The two affine transformations chosen for the training dataset are               

rotation and translation. The other affine transformations would not do anything to improve the              

performance of the neural network but even they might confuse it. However, rotation and translation               

cover the motion errors that can be encountered in the MRI scans, due to the mother or the child. If a                     

random rotation of a few degrees is applied as well as a random translation of small values, this motion                   

in between the MRI 2D slices could be covered.  

This allows the network to learn invariance to such transformations. This is particularly important in               

biomedical segmentation, since both translation and rotation are the most common variations in MRI              

scans and can be simulated efficiently.  

There are two things that are important to be mentioned. Firstly, it is important to not apply any                  

transformations that would affect the correct performance of the CNN, such as vertical or horizontal               

flips, as indicated above. The brains are not symmetric and applying flips would only confuse the                
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classification. Secondly, even if some transformations seem to be really helpful it is important to               

consider the difficulty of implementing such transformations. 

2.5.2 Noise injection 

Neural networks prove not to be very robust to noise. One way to improve the robustness of neural                  

networks is simply to train them with random noise applied to their inputs. Because of this reason,                 

different types of noise were injected to the training images. 

Image noise is random variations that are introduced in the images which produces undesirable effects,               

such as artifacts, unrealistic edges and blurred objects, among others. The three more common types of                

noise that affect images are Gaussian noise, Salt and Pepper noise and Speckle noise.  

Generally MRI images contain a significant amount of noise caused by operator performance,             

equipment and the environment, which leads to serious inaccuracies [33]. 

Gaussian noise, or normal noise, is caused by natural sources such as thermal vibration of atoms and                 

discrete nature of radiation of warm objects. It generally disturbs the gray values in digital images.                

Because of that, the Gaussian noise model normalizes the histogram with respect to gray value [31].  

Salt and Pepper noise is a combination of two impulse noises: salt noise (random bright pixels) and                 

pepper noise (random dark pixels). Consequently, Salt and Pepper noise is an impulse noise resulting               

from a combination of random bright and dark pixels. It refers to a wide variety of processes that result                   

in the same basic image degradation: only a few pixels are noisy, but they are very noisy. The effect is                    

similar to sprinkling white and black dots -salt and pepper- on the image [34]. MRI images are corrupted                  

by Salt and Pepper noise because of the sensor faults of image acquisition devices, which causes the                 

sharp and sudden disturbances in the image signal which in turn degrades the image quality [35]. 

Speckle noise, or texture in medical imaging, is a granular noise that appears when a sound wave pulse                  

arbitrarily interferes with small particles or objects on a scale comparable to the wavelength. It is the                 

result of the destructive and constructive coherent summation of echoes [36]. This noise is mostly               

encountered in Synthetic Aperture Radar (SAR) images or Ultrasound (US) images [37], in which affects               

edges and fine details which limit the contrast resolution and make diagnostic more difficult, rather than                

in MRI images. However, since sometimes it is encountered in MRI images, it was decided to inject it in                   

order to augment data. 

2.6. Post processing 

2.6.1 Threshold selection 

In the field of digital image processing, thresholding is the method of segmenting images. When having a                 

grayscale image and the thresholding is applied, a binary image is obtained. 
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The simplest thresholding methods replace each pixel in an image with a black pixel if the image                 

intensity is less than some fixed constant ( ) or a white pixel if the image intensity is I i,j        T I i,j < T           

greater than that constant [38]. 

There are different types of methods in order to binarize an image. These methods compute               

automatically the value of the threshold, instead of fixing it from the beginning. The idea of computing                 

the threshold remains on improving the performance per each image specifically. These methods can be               

classified depending on which parts of the images are analyzed: histogram shape-based methods,             

clustering-based methods, entropy-based methods, object attribute-based methods, spatial methods         

and local methods. 

Another way to classify the different types of thresholding methods is if they perform a global                

binarization (Fixed thresholding method, Otsu method and Kittler method among others) or if they              

perform a local binarization (Niblack method, Adaptive method, Sauvola method and Bernsen method             

among others) [39]. 

One of the most classical approaches for selecting the threshold is the Otsu method, which performs a                 

global binarization of the image. This method is based on the shape of the histogram [40]. It consists of                   

iterating through all the possible threshold values and calculating a measure of spread for the pixel                

levels each side of the threshold, i.e. the pixels that either fall in foreground or background. The main                  

idea is to find the threshold for which the sum of foreground and background spreads is at its minimum. 

However, after studying a little bit this field of research, it was concluded that the method that was                  

going to be used for the different experiments is the Fixed Thresholding Method, which consists of                

assigning 1’s or 0’s for all pixels in the image for a fixed threshold value.  

This thresholding method will be applied to the prediction masks obtained by the two neural networks.                

The decided value is 0.5 for both of them for two reasons: for several images it was observed to be the                     

optimal one, the one that gave a higher dice coefficient; it was the default value used for both networks. 

When working with multiple classes, the problem of thresholding can be addressed in a simple way. For                 

the multilabel classification for the Pytorch UNet, the prediction is given in the following way: the output                 

image has as many channels as labels need to predict plus one for the background. Therefore, if we                  

want to predict labels, the output will have channels. In order to generate the final image with   k       k + 1           

multilabel prediction, the idea is to generate a new image in which each pixel will be assigned the label                   

that had the biggest probability for that pixel. This way, just one 2D image with one channel will be                   

obtained and per each pixel there will be just one label assigned.  

As it can be observed in the procedure explained above, in the case of multilabel classification there is                  

no need for any thresholding method. 
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2.6.2. Mathematical Morphology 

Another way to improve the results obtained is using post processing techniques, which are methods               

who try to increase the quality of the predicted masks by applying different techniques.  

Mathematical morphology (MM) is a theory and technique for the analysis and processing of              

geometrical structures and it is mostly applied to digital images, even though it can be applied to many                  

other spatial structures. MM is the foundation of morphological image processing; it consists of a set of                 

operators that transform the images according to concepts such as size, shape, convexity, connectivity              

and geodesic distance. The basic morphological operators are erosion and dilation. Also, two other basic               

morphological operators widely used are closing and opening, which are a combination of the erosion               

and dilation. MM was originally developed for binary images, and was later extended to grayscale               

functions and images. [41] 

The different post processing methods were applied in 3D to compensate for the fact that the MRI scans                  

were studied in 2D and, hence, regularize the mask in 3D. 

2.6.2.1. Binary morphological operators 

Binary images may contain numerous imperfections such as noises and textures can be distorted when               

the binary regions are produced by a simple thresholding method, such as the one it was decided to use                   

during this project (fixed thresholding method). Binary morphological operations try to remove these             

imperfections by accounting for the form and structure of the image [42]. 

These binary morphological operations consist of a collection of non-linear operations related to the              

shape of the features in an image. They rely on the relative ordering of pixel values not on their                   

numerical values and, consequently, they are especially useful for working with binary images [42]. 

When applying morphological operations in an image there are two main structures who take part in                

these operations: first, the binary image that is being processed; second, the structuring element. The               

structuring element is a matrix that identifies the pixel in the image who is being processed and defines                  

the neighborhood used in the processing of each pixel. It is positioned in all the pixels in the image and                    

in each pixel studies the corresponding neighbourhood pixels in order to modify or not the value of the                  

corresponding pixel. 

The basic concepts to define the morphological operators are dilation and erosion. 

- Dilation adds pixels to the boundaries of the objects in the image [43]. The idea is that for each                   

pixel of , center the transposed structuring element . If the dark squares are considered  A       Bx
T        

1’s and the white squares are considered 0’s, set the current pixel to 1 if at least one 1 pixel of                     

is contained in , if not set it to 0.Bx
T A  

The mathematical expression of dilation: x | B  = 0}A ⊕ B = { x
T ⋂ A /   

30 



Segmentation of fetal cerebral MRI using deep neural networks Meritxell Riera i Marín 

 

Figure 18 - Example of dilation [46]. 

- Erosion removes pixels to the boundaries of the objects in the image [43]. If the dark squares                 

are considered 1’s and the white squares are considered 0’s, set the current pixel to 1 if all 1                   

pixel of are contained in , if not set it to 0.B 
x A  

The mathematical expression of erosion: x | B }A ⊖ B = { x ⊆ A  

 

Figure 19 - Example of erosion [46]. 

Both erosion and dilation are invariant regarding translation, and they are not inverse to each other but                 

dual. 

ot A  ot (A )n ⊖ B = n ⊕ BT  

ot A  ot (A )n ⊕ B = n ⊖ BT  

Where is the transposing of the structuring element symmetrical with respect to the origin.BT   
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Thanks to these two basic concepts of mathematical morphology, there are different operations that              

can be achieved combining both of them such as region filling or contour detection. 

The opening operation corresponds to the succession of erosion and dilation; it removes the small               

objects from the foreground and places them in the background and detaches the weakly joined objects.  

The mathematical expression of opening:  (A )A ° B =  ⊖ B ⊕ B  

The closing operation corresponds to the succession of dilation and erosion; it unifies the close objects                

removing the holes of the foreground and unifying them to the foreground and strengthens the weakly                

joined objects. 

The mathematical expression of closing:   (A )A • B =  ⊕ B ⊖ B  

 

Figure 17 - Example of erosion and dilation (first row) and closing and opening (second row) [44]. 

In Figure 17 the four morphological concepts remarked in this section can be observed. As indicated in the                  

beginning of this section erosion removes pixels from the boundaries of the objects; it can be observed that                  

the holes in the foreground get bigger and the small objects in the background disappear. On the other hand,                   

dilation adds pixels from the boundaries of the objects making the foreground holes smaller. 

In Figure 17 both closing and opening can be observed as well. As indicated before, the closing operation                  

unifies small objects removing holes in the foreground and the opening removes small objects from the                

foreground merging them into the background. 

It is important to remark that all these operations depend on the shape of the structuring element who acts                   

as a kernel. 
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2.6.2.2. Connected Component 

Connected-component labeling (CCL) is an algorithmic application of graph theory, where subsets of             

connected components are uniquely labeled based on a given heuristic. CCL is not to be confused with                 

segmentation. 

CCL is used in computer vision to detect connected regions in binary digital images, although color                

images and data with higher dimensionality can also be processed. Blob extraction is generally              

performed on the resulting binary image from a thresholding step, but it can be applicable to gray-scale                 

and color images as well. Blobs may be counted, filtered, and tracked. [45] 

X )       for k 1, , , ..Xk = ( k−1 ⊕ B ⋂ A =  2 3 .  

This algorithm is used to understand if the object points are connected to each other. is the          A       B   

structuring element for this mathematical morphology operation. The algorithm stops at step if            k  

, showing the different not connected components in the object . In Figure 18, both theXk = Xk−1           A       

image previously applying CCL and afterwards applying CCL can be seen. Each color on the right image                 

represents a different label. 

 

Figure 18 - Example of connected component labeling. Original image (left) and image after CCL (right). 

As a post-processing in the resulting 3D stacks of images, the Largest Connected Region (LCR) was used.                 

After computing the CCL, it consists of just preserving the biggest region in the 3D images and, hence,                  

eliminating the small isolated segmentations. The code was obtained from M. Pierre-Henri Conze. 

2.7 Evaluation metrics 

For the evaluation of the results the dice coefficient is computed. The dice coefficient is really often used                  

to evaluate quantitatively the performance of image segmentation methods. The dice score is a measure               

of how similar objects are; it is the size of the overlap of the two segmentations divided by the total size                     

of the two objects. 
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In order to have a thorough evaluation, the dice in 3D is desired among the dice in 2D, since the final                     

goal is to have a 3D segmentation of the CP and it is desired to study it this way. 

Both networks are trained with 2D newborn MRI images and they predict 2D newborn MRI images as                 

well. Even if the images used are 2D, this does not cause a problem since these images are obtained                   

from 3D stacks.  

In order to reconstruct the 2D predicted images to 3D predicted stacks it is necessary to apply some post                   

processing methods. Firstly, it is necessary to select as a testset 30 different random subjects from the                 

dHCP dataset and, afterwards, take all the slices belonging to these subjects. Secondly, indicate in each                

2D image which subject and slice the image is. Finally, after the prediction of all these images, generate                  

a 3D matrix of the same size as the original 3D stacks and attach each 2D predicted slice to its                    

corresponding place. 
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3. Results  

3.1 Segmentation of the CP (monolabel) 

The main goal of the project, as indicated in Section 1.5, is to segment the cortical plate. In order to do                     

that, two different architectures were tested: Pytorch UNet [11] and FetalCPSeg [5]. This section is               

subdivided in four main parts: the study of both networks separately, the evaluation of the fetus results                 

and finally a conclusion of these different results.  

3.1.1 Pytorch UNet  - dHCP 

3.1.1.1 Batch size study 

In this section, the idea is to first study how the UNet performs with different batch sizes and conclude                   

on which is the best. At the beginning of this project, due to software restrictions the batch size used                   

was 13, but as soon as it became possible the study of the batch size was performed in order to improve                     

the first results. In Figure 19, the different training performances can be observed. 

Figure 19 - Dice coefficient (left) and loss (right) for Pytorch UNet during the training. 

For the dice coefficient values, it can be observed that the best performance is obtained with the batch                  

size of 16 just using the affine transformations described in subsection 2.6.1. However, if the loss is                 

observed, the batch size of 16 is the one that performs the worst. Finding this equilibrium between loss                  

and dice coefficient the best performance is obtained when using batch size of 32 and using all data                  

augmentation: the affine transformations (translation and rotation), and injection noise (gaussian, salt            

and pepper and speckle noise). Apart from considering the values of these two metrics, it is really                 

important to consider an invariance of the network with respect to these different deformations. This               

makes the network robust to both translation and rotation as well as the three nose injections, which                 

are the most common noises encountered in the MRI 3D stacks. 
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3.1.1.2 Dice coefficient evaluation 

After studying the performance of the network during the training it is important to do a quantitative                 

study of the predictions. In order to do that, three different studies take place. Firstly, the study of the                   

dice coefficient per each slice of the 3D stack is performed for 30 3D random dHCP subjects. Afterwards,                  

the 3D dice coefficient is computed for all these 30 3D dHCP subjects. Finally, the study of the different                   

morphomath post processing techniques takes place. 

In Figure 20, the dice coefficient per slice for the 30 dHCP subjects can be observed. In the edges of the                     

images there are two important things to remark. On one hand, it can be observed that some of the                   

edges obtain a dice coefficient of 1. This happens due to the fact that the ground truth of the CP in the                      

extreme slices is null and, hence, the prediction is null as well, which causes the dice coefficient to be 1.                    

On the other hand, if we do not take into consideration these values of the dice coefficient, in general,                   

the value of the dice score is reduced in the edges. The fact that the prediction is less accurate in the                     

extremes is a really frequent fact when predicting MRIs.  

 

Figure 20 - Dice coefficient per slice of 3D test dHCP images for Pytorch UNet.  

Afterwards, as indicated previously, the computation of the 3D dice coefficient takes place. In Figure 21                

this can be observed. Furthermore, in the image, some 3D binary morphological postprocessing is              

considered as well. For binary morphological postprocessing the basic operations have been considered,             

as explained in section 2.6.2.1: dilation, erosion, opening and closing. Additionally, the Largest             

Connected Region (LCR) explained in section 2.6.2.2 has been considered as well. 
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In Figure 21, as indicated above, the 3D dice coefficient for the 30 dHCP subjects can be observed. After                   

applying the mathematical morphology the 3D dice coefficient was calculated. As can be seen in Figure                

21, the erosion really degradates the 3D prediction, as well as the opening. With respect to the dilation                  

it sometimes improves the prediction but it also degradates it a lot in other cases. Finally, both closing                  

and LCR always improves the 3D mask prediction.  

 

Figure 21 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

Pytorch UNet. 

Since closing and LCR are the two post processing operations that improve better the results, it was                 

considered to combine them in order to obtain even a better improvement. However, it was observed                

that there is no significant improvement when combining. 

3.1.2 FetalCPSeg  - dHCP 

For the study of the performance of the FetalCPSeg architecture different modifications were             

considered. Firstly, it is important to remark that in this network three important components take               

place. On one hand, there is the backbone network (BBN), which has a residual UNet architecture. On                 

the other hand, in the second part of the architecture, we find the deep supervision modules (DSM) [24]                  

and the attentive modules (AM). 

The two most important studies are based on the DSM as well as on the AM. The goal of the DSM is to                       

use multi-scale feature learning inspired by deeply supervised networks [46]. The goal of the AM is to                 

increase the richness of the multi-scale maps learned by the backbone network.  
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In order to perform these studies, this part has been splitted in several parts. The first part is focused on                    

studying the performance with just the backbone network. The following part is focused on studying               

how the network works without the AM, meaning that the focus of the study is set on the DSM. The                    

next part consists of studying how the network performs with the AM. Finally, the last part consists of                  

plugging inside the code the Pytorch UNet used for the first part of this project.  

The following experiments have been trained on the 40th youngest subjects of the dHCP dataset as                

done in section 3.1.1. 

3.1.2.1 Backbone Network 

The backbone network (BBN) consists of a residual UNet structure as explained in section 2.2.2. In                

Figure 22 the performance of the network during the training can be observed. It can be said that both                   

the dice coefficient and the loss converge at really good values, the dice score is around 0.85 and the                   

loss is really close to 0. 

 

 

Figure 22 - Dice coefficient (left) and loss (right) during the training for the BBN study of the FetalCPSeg 

architecture. 

For the study of the performance of this residual UNet, the dice coefficient of 30 dHCP subjects has been                   

computed. The dice coefficient per slice for the 30 subjects can be observed in Figure 23. It can be                   

observed that generally the dice coefficient in the whole images is really good but, furthermore, the                

extreme slices are overall good predicted as well.  
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Figure 23 - Dice coefficient per slice of 3D test dHCP images for BBN of FetalCPSeg.  

In Figure 24, the value of the dice coefficient for each 30 subjects can be observed for both before and                    

after post processing mathematical morphology. As expected, the same as in the results of Pytorch UNet                

happened. The best results are achieved with the method of LCR. Moreover, the other mathematical               

post processings operations perform really similar to Figure 21 for the Pytorch UNet results, meaning               

that, for example, erosion is the one who degrades the most results.  

 

Figure 24 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

BBN of FetalCPSeg. 
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3.1.2.2 Deep Supervision Modules 

In Figure 25 the dice coefficient and the loss per epochs during the training of the network can be                   

observed. It can be seen that it converges after around iterations to a dice coefficient of 0.8.          .54 × 106        

Afterwards the model starts to degrade.  

 

Figure 25 - Dice coefficient (left) and loss (right) during the training for the DSM study of the FetalCPSeg 

architecture. 
 

As done previously, the dice coefficient per slice for the 30 subjects can be observed in Figure 26. It can                    

be observed that generally the dice coefficient for all the slices is really good but some of the extreme                   

slices are badly predicted since there appear more 0 values than for the BBN, which indicates that even                  

though there is no CP to be predicted something is being considered as CP and some pixels are being                   

mislabeled as CP. 

 

Figure 26 - Dice coefficient per slice of 3D test dHCP images for DSM study of the FetalCPSeg 

architecture. 
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In Figure 27, the value of the dice coefficient for each 30 subjects can be observed for both before and                    

after post processing mathematical morphology. As expected, the best results are achieved with the              

method of LCR, as well as the worst performances are obtained with erosion and dilation.  

 

Figure 27 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

DSM of FetalCPSeg. 

3.1.2.3 Attentive Modules 

In Figure 28, the dice coefficient and the loss per epochs during the training of the network can be                   

observed. It can be seen that it converges after around iterations to a dice coefficient of 0.8.          .54 × 106        

Afterwards the model starts to degrade.  

 

Figure 28 - Dice coefficient (left) and loss (right) during the training for the AM study of the FetalCPSeg 

architecture. 
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The results of this section will be seen and studied in the following subsection 3.1.2.3.1 Study of                 

Attentive Modules. 

3.1.2.3.1 Study of Attentive Modules 

In this subsection, it is aimed to compare the same network architecture with and without attentive                

modules. In order to do that, the results of the network with and without attentive modules are put                  

together and compared in order to study the two performances. 

Firstly, it is important to refresh what are the attentive modules and what is their goal. As indicated in                   

section 2.2.2., the idea of the attentive modules is to increase the richness of the information of the                  

multi-scale feature maps already learned from the network. It takes the feature maps generated from               

each stage of the backbone network and output a refined attentive feature map of the same size. 

 

Figure 29 - Feature maps before (first row) and after (third row) the attention modules with the 

respective attentive maps (second row) per each stage. 

In Figure 29, it can be observed the influence of the feature maps. The first row (down_outX) shows the                   

feature maps in each four stages before entering in the attention module. The second row (att_outX)                

shows the attentive maps obtained for each stage inside the attention module. The third row (mix_outX)                

shows the feature maps obtained outside the attention modules. Finally, the image in the right shows                

the output of the whole network. 

As it can be observed in the image, the differences between the feature maps before and after the                  

attention modules do not have significant differences and the refinement is not that clear. Because of                

that, it could be said that the addition of attention modules is not that relevant. However, it is important                   

to make empirical tests to support or not this hypothesis. The more relevant way to study the                 

performance is to study a 3D dice coefficient.  
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First of all, an important study is to check the dice per each slice since it is important to check if the dice                       

coefficient really depends on the location of the slice. The comparison between the dice scores per slice                 

for the 30 dHCP subjects of the two architectures with and without attentive modules can be observed                 

in Figure 30. 

 

Figure 30 - Dice coefficient per slice of 3D test dHCP images for the AM study of FetalCPSeg architecture 

with AM (blue) versus without AM (red). 

In Figure 30 it can be observed that generally the attentive module does not improve the predictions.                 

However, in the first slices, which correspond to the lowest part of the brain, the performance improves                 

a lot. In these slices appear things like the cerebellum or the brainstem and they generate more                 

difficulties to predict the CP correctly. In these slices, it can be observed that the attentive module really                  

helps to improve the predictions and, hence, it may improve the dice coefficient in 3D. However, if we                  

observe all the slices besides from the edge ones, the best dice coefficient generally is achieved by the                  

architecture without AM. 

It is important to remark that in Figure 30 it is proved that the performance of the network does not                    

depend at all on the date of the MRI acquisition but just on the slice or on the quality of the image. 

In Figure 31 the dice coefficient in 3D of the previous studied subjects is plotted. It can be observed that                    

both with and without the attentive module have similar performances. In some cases, the attentive               

module improves the dice in 3D as a consequence of the better performance in the lower parts of the                   

brain. In other cases, it degreadates the result in the center slices in a way that the performance without                   

an attentive module is better. In addition to that, morphological mathematical post processing is applied               

to the 3D images. The computation of the LCR shows an improvement in both cases, with and without                  

attentive module. 
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Figure 31 - 3D dice coefficient for 30 dHCP subjects with LCR post processing for the AM study of 

FetalCPSeg architecture. 

It can be observed in the figure that the better performance is found in the 15th subject and the worse                    

performance is found in the 18th subject. In order to find the reason why this happens, both images are                   

plotted in the next figures (32 and 33). The prediction is plotted in blue and the ground truth is plotted                    

in red. Consequently, when both prediction and ground truth are superposed the color obtained is               

purple, which indicates the places in which the prediction corresponds to the ground truth. 

 

Figure 32 - Worst case. MRI date acquisition: 42 weeks.  

Dice coefficient 3D (without attentive module) = 0.477  

Dice coefficient 3D (with attentive module) = 0.483 
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Figure 33 - Best case. MRI date acquisition: 44 weeks.  

Dice coefficient 3D (without attentive module) = 0.841  

Dice coefficient 3D (with attentive module) = 0.844 

In these two figures above, the worst case and best case found in Figure 31 can be observed. For the                    

worst case with and without attentive module the dice is around 0.5 and for the best case for both with                    

and without attentive module the dice is around 0.85. As already explained, the prediction is plotted in                 

blue and the ground truth is plotted in red. If both prediction and ground truth correspond to each other                   

the mask plotted should be purple. For the worst case, the mask plotted is mostly blue, which tells us                   

that the prediction does not correspond with the ground truth and the MRI image is over segmented,                 

meaning that the prediction is much bigger than the ground truth. For the best case, the mask plotted is                   

overall purple, which indicates that both prediction (blue) and ground truth (red) are superposed and               

correspond to each other. Consequently, it can be concluded that the predictions do not depend on the                 

MRI date acquisition since for the worst case it is 42 weeks and for the best case is 44 weeks. This is                      

coherent with the conclusion obtained in Figure 30 as it was observed as well that it did not depend on                    

the age but on the slice or quality of the image as well.  

3.1.2.4 Pytorch UNet plugged into the code 

In this section the idea is to study the performance of the architecture when plugging the Pytorch UNet                  

inside the FetalCPSeg. In Figure 34 the performance of this architecture can be observed. The dice                

coefficient converges to 0.8, which is pretty good; however, the loss converges to ~4 which is not good. 
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Figure 34 - Dice coefficient (left) and loss (right) during the training of Pytorch UNet plugged into 

FetalCPSeg. 

In Figure 35, the dice coefficient per slice of the 30 dHCP subjects can be observed. Generally, the                  

performance for all the subjects is not bad. In the edge slices it can be seen that, mostly in the lowest                     

part of the brain, the performance is worse. However, it can be also found some values of dice                  

coefficient equal to 1, which means that in the slices that were not any CP pixels, the prediction is null                    

hence, the dice score is 1. 

 

Figure 35 - Dice coefficient per slice of 3D test dHCP images for the Basic UNet plugged into the 

FetalCPSeg architecture. 
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In Figure 35, the value of the dice coefficient for each 30 subjects can be observed for both before and                    

after post processing mathematical morphology. As expected, the best results are achieved with the              

method of LCR, as well as the worst performances are obtained with erosion and dilation.  

 

Figure 36 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

the Basic UNet plugged into the FetalCPSeg architecture. 

Now, the important study left is to compare all of the performances depending on which elements of 

the FetalCPSeg architecture are used. 

3.1.2.5 Study of the relevance of the FetalCPSeg architecture parts 

In this subsection the main idea is to compare the different performances depending on which part of                 

the architecture of the FetalCPSeg network is being used.  

For performing this study, firstly, the dice coefficient per slice is plotted in Figure 37. It can be easily                   

observed that the better performance is obtained when just the backbone network is obtained, for all                

the subjects and independently of the location of the slices. However, it is important to remark that for                  

all four implementations, generally, the edge slices do have a good performance, which is something               

that usually degrades the dice coefficient in 3D for the bad results. 
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Figure 37 - Dice coefficient per slice of 3D test dHCP images for the different studies performed with the 

FetalCPSeg architecture. Backbone network (green) vs without attentive module (red) vs with attentive 

module (blue) vs basic UNet plugged into FetalCPSeg architecture (orange). 

To continue with the study of the different architectures, the dice coefficient in 3D is plotted in Figure                  

38, without any post processing applied since the idea is to compare the performance of each                

architecture transparently. It can be observed, as expected since the commentary of the Figure 37, that                

the better performance is obtained just when using the backbone network (blue). When the deep               

supervision modules are used (orange) the performance of the network degrades a little bit, and, when                

the attentive modules are added (green) it degrades even more. However, something interesting to              

point out is that, when using all the modules within the FetalCPSeg architecture, the performance is                

better when working with the basic UNet instead of the backbone network which turns out to be a                  

residual UNet. 
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Figure 38 - 3D dice coefficient for 30 dHCP subjects for the different studies performed with the 

FetalCPSeg architecture. 

3.1.3 Conclusion for the CP monolabel segmentation 

After studying the architecture and the performance with and without the different parts of the               

FetalCPSeg network, it was concluded that the best performance was obtained with just using the               

backbone network which, as explained before, is a residual UNet. After concluding that, it is important                

to compare this network with the Pytorch UNet studied in the section 3.1.1. This network is based on a                   

basic UNet architecture without any residual links. 

The first step to study these two UNets is to check the dice coefficient per slice for the 30 3D dHCP                     

subjects used as a training set. The plot of these dice values can be observed in Figure 39. It can be fastly                      

observed that the results obtained with the residual UNet are better overall. In addition, if the edges of                  

the images are observed closely there is a significant improvement from the basic UNet to the residual                 

UNet. The 2D slices from 20 to 50 and from 240 to 260 the dice scores are much better with the residual                      

UNet and, it can be already said that the 3D dice coefficient would improve significantly from the basic                  

UNet to the residual UNet. 
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Figure 39 - Dice coefficient per slice of 3D test dHCP images of the Pytorch UNet (blue) versus the 

FetalCPSeg UNet (red). 

In Figure 40 the 3D dice coefficient for the 30 dHCP subjects is plotted. As expected, the value of the 3D                     

dice scores improves a lot when predicting with the residual UNet with respect to the basic Pytorch                 

UNet. For both cases, when applying the LCR post processing the result tends to improve, although this                 

improvement is not really significant for some of the dHCP subjects. 

 

Figure 40 - 3D dice coefficient for 30 dHCP subjects with LCR post processing for the comparison of the 

basic UNet and the residual UNet (backbone network). 
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3.1.3.1 Fetus results 

In this subsection, a fetal result is going to be compared between both the basic UNet and the residual                   

UNet. This can be observed in Figure 41. Both predictions are good considering that the training has                 

been performed with newborns MRIs and this is a fetal MRI as well as considering that most likely the                   

quality of the image is worse.  

If both results are compared qualitatively, it can be observed that the CP prediction of the residual UNet                  

is more robust than the one obtained with the basic UNet. However, it can be observed that some of the                    

parts predicted for the residual UNet may not belong to the CP. This can not be concluded thoroughly                  

since there is no ground truth to compare both predictions. As the dHCP results were better when the                  

training and prediction was performed with the residual UNet, it could be said that the prediction of the                  

fetuses as well. Nonetheless, this should be reviewed and evaluated by an expert. 

 

Figure 41 - Predictions of 3D fetus images with Pytorch UNet (red)  and for residual UNet from 

FetalCPSeg architecture (blue). Subject marsFet021 (MRI date 32). 

3.2 Multilabel - Pythorch UNet 

The idea of this section is to analyze and study if the multilabel classification in the Pytorch UNet helps                   

improve the results of the CP labelization. In order to test that, it was necessary to use a multilabel                   

mask, which was generated from the different drawem9 labels. Besides the CP drawem9 label, two               

other labels were used for this multilabel classification: the cerebrospinal fluid together with the              

ventricle and the white matter. These other labels were selected both for their relevance within the                

anatomy and for the amount of images they can provide since single label training will be performed as                  

well for these masks; the cerebrospinal fluid together with the ventricle provided 6607 images and the                

white matter 5147. The images for the CP obtained from the drawem9 label were 5378. 

The dice coefficient evaluation of the CP, even if the ground truth used for training is obtained from the                   

drawem9 label, the comparison is done with the CP grountruth obtained from the image (3) since, as                 

indicated in section 1.4.1, the CP obtained from this image is more anatomically accurate than the one                 

obtained from the mask drawem9 from the image (4). 

This section is split into three parts: the first part is focused on studying the performance of these three                   

labels separately; the second part is focused on studying the performance of the multilabel classification               

and finally, the third part is focused on comparing the multilabel results with the single label results. 
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In this section, every training has been made with batch size of 32 but without noise as data                  

augmentation, just affine transformations. The reason for that is that the noise injection, when working               

with segments such as white matter or cerebrospinal fluid, changes significantly the image histogram              

distribution. This causes a bad performance from the network in both multilabel segmentation and in               

monolabel segmentation for the label 1 (cerebrospinal fluid and ventricles) and for the label 3 (white                

matter) since it confuses the classifier breaking the homogeneity of the area. Consequently, it was               

concluded the noise injection had to be removed. However, it was necessary to make a fetus study for                  

each label without noise to test it had a good performance even if the network was no longer invariant                   

to this kind of deformations. 

3.2.1 Labels separately 

The first part of this section, as already indicated, consists of testing each label separately. Each label                 

was trained under the same conditions as the section 3.1.1 but without noise injection. 

In Figure 42 the dice coefficient and the loss are plotted for the three different trainings of the Pytorch                   

UNet. As indicated above, the Label 1-5 corresponds to the cerebrospinal fluid (CSF) and the ventricles                

(V); the Label 2 corresponds to the cortical plate (CP) and the Label 3 corresponds to the white matter                   

(WM). All these masks are obtained from the image drawem9. It can be observed that the three                 

separate training sessions achieve really good dice coefficients and loss values. 

 

Figure 42 - Dice coefficient (left) and loss (right) for Pytorch UNet during the multiple training sessions. 

In Figure 43, the 3D dice coefficient for the 30 dHCP subjects can be observed. It can be observed that all                     

30 dHCP subjects obtain really good values of 3D dice coefficient independently for the three labels.                

Several post processing operations have been applied and it was observed that for each label a different                 

operation gave the best performance.  
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Figure 43 - Comparison of 3D dice coefficient for 30 dHCP subjects for the three different labels. 

For the Label 1-5 (CSF + V) the better performance was reached with the binary post processing closing                  

operation. This makes sense since the LCR would eliminate the ventricles and hence the dice coefficient                

will degrade considerably. For the Label 2 (CP) the best performance was obtained with applying first                

the LCR and afterwards the closing. This makes sense as well since taking the LCR will eliminate random                  

small points that could appear as CP and applying the closing will make the prediction of the CP more                   

wide and robust. Finally, for the WM the better performance was obtained applying just the LCR, which                 

will eliminate sporadic labeled points and increase the dice score. 

3.2.2 Labels together 

In this section the different labels studied in the previous section 3.2.1 are studied together, as a                 

multilabel problem. As a consequence, during the training of this multilabel segmentation problem is              

done without noise injection because some of the labels do not benefit from using synthetic noise but                 

the contrary; even if the label being studied is the CP.  

Finally, the important thing to remark here is the fact that we were working with an imbalanced dataset,                  

meaning that the number of data points available for multiple classes is different. This causes that, for                 

example, the optimization criteria or performance measures may not work effectively.  

There are two typical approaches to deal with an imbalanced dataset: over-sampling and class              

weighting. When using the over-sampling method we are actually working with data augmentation.             

Data augmentation is the process of changing samples and adding them into the set, enriching the                

diversity of these samples. It is related to over-sampling since we can both enrich and increase the size                  

of a class; this increasing aspect is called data over-sampling and produces the same effect as working                 

with a balanced dataset [52]. 
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Since increasing the amount of samples of a class by two and assigning a two weight to the class is                    

equivalent, it can be said that data over-sampling and class weighting are equivalent. However, the               

weighting is better from the storage and computational point of view since it avoids working with a                 

larger data-set. 

The idea of class weighting is generally done by over-penalizing the miss-classification of a class              C   

compared to other classes. In this case, the modification was done in the cross entropy loss function.                 

The main idea is to apply weights on the cross entropy loss function for the different labels. The first                   

mathematical expression is the cross entropy function without weighting and the second mathematical             

expression is the loss function with class weighting. 

(y ) − log(y )Hy ′ = ∑
 

i
∑
K

k=1
yik ′ik  → (y ) − y log(y )Hy ′ = ∑

 

i
∑
K

k=1
wk ik ′ik   

The weights assigned for our training was, as explained, directly related to the amount of samples of                 

each label. The values of the weights can be observed on Table 1. The total number of pixels was                   

684069400.  

Class Number of pixels Relation Weight 

Label 0 Num_0: 609996799 Num_total/Num_0 1.1214311306574578 

Label 15 Num_15: 17672697 Num_total/Num_15 38.707696963287496 

Label 2 Num_2: 21663251 Num_total/Num_2 31.57741190368888 

Label 3 Num_3: 34736653 Num_total/Num_3 19.693014177272634 

Table 1 - Weight values used for weighting the cross entropy loss function. 

Basically, what this does is to tell the model that miss-classifying class one member from class is as                0    

punishable as miss-classifying ~31 members from the class .2  

Firstly, the dice coefficient per slice is plotted for the 30 dHCP subjects in Figure 44. It can be observed                    

that the performance of the CP is generally bad for all the slices, independently if they are on the edge                    

of the image or not, but worse if the slice is in the middle of the image which is something singular. The                      

performance of the cerebrospinal fluid is not good either; however, it performs better if it is in the                  

middle of the image, which is usually what tends to happen in medical images. Regarding the white                 

matter label, the performance is generally good but it performs better in the edge slices as well as the                   

CP, which, as already said, is something peculiar.  
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Figure 44 - Dice coefficient per slice of 3D test dHCP images of the multilabel classification: cerebrospinal 

fluid with ventricles (blue), cortical plate (red) and white matter (green). 

In Figure 45 the 3D dice coefficient for the different labels can be observed. It can be seen that for the                     

white matter label the result is quite good; however, for both the cerebrospinal fluid with ventricles and                 

for the cortical plate the results are bad, even if we apply some morphological post processing. If the                  

postprocessing methods used are observed, it can be seen that they are not the same as used for                  

separate labeling. These methods were chosen after comparing all post processing techniques and they              

were selected as the ones that performed better. A clear example that the multi labeling does not                 

perform good is the fact that, for example, for the cerebrospinal fluid with ventricles label, the post                 

processing method that performs the best is LCR, which means that the ventricles would eliminated if                

the prediction was accurate and, hence, degrade the dice coefficient. The fact that this is the best option                  

for the post processing, makes it clear that the prediction is not accurate. 
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Figure 45 - Comparison of 3D dice coefficient for 30 dHCP subjects for the multilabel classification of the 

three different labels. 

In Figure 46 the confusion matrix of a specific subject is plotted. It is necessary to remark that it has                    

been normalized to the total number of pixels. It can be easily observed that for the Label 0, which                   

corresponds to the background, and for the Label 1, which corresponds to the cerebrospinal fluid               

together with the ventricles, there is no significant confusion. However, for both Label 2, which is the                 

CP, and for Label 3, which is the white matter, the number of misclassified pixels increases. The biggest                  

misclassification appears when it the pixel was supposed to be classified as CP and it ended up classified                  

as white matter.  

 

Figure 46 - Confusion matrix for the subject CC00500XX05_145900. 
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In Figure 47 the sagittal, axial and coronal cuts of the 3D reconstruction of the same subject from the                   

confusion matrix are printed.  

The first row corresponds to the prediction of the cerebrospinal fluid with ventricles (Label 1). It can be                  

easily seen that the prediction of the cerebrospinal fluid is mostly correct except for the line predicted                 

around the brain, which corresponds to the Label 0 or background. This can be observed in the                 

confusion matrix as well, since there appears to be a confusion between the background and the                

cerebrospinal fluid, in which the only background misclassified pixels are labeled as 1.  

The second row corresponds to the prediction of the cortical plate (Label 2) and the third row                 

corresponds to the prediction of the white matter (Label 3). With respect to the CP prediction some                 

pixels that should be labeled as white matter are classified as CP as it can be seen in the confusion                    

matrix. These pixels are mostly located in the center of the brain. It can be easily observed in the three                    

different cuts: in the CP segmentation appear as blue since there is no corresponding ground truth and                 

in the white matter segmentation appear as red since they are misclassified as CP. With respect to the                  

white matter prediction an important amount of pixels are classified as CP instead of white matter. This                 

can be seen in the confusion matrix (True label = 2, Predicted label = 3). It can be easily observed in the                      

segmentation of the CP and of the white matter of Figure 47. In the segmentation of the CP it can be                     

easily seen that a lot of pixels are not classified as CP, since they appear in red. In the segmentation of                     

the white matter, a lot of pixels of the CP are misclassified as white matter hence, they appear in blue.                    

These misclassified pixels are generally the deeper folds of the CP. 
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Figure 47 - Sagittal (left), axial (center) and coronal (right) cuts of the 3D representation for the subject 

CC00500XX05_145900. Cerebrospinal fluid with ventricles (first row), cortical plate (second row), white 

matte (third row).  Predicted mask (blue) and ground truth (red) are plotted. 

3.2.3 Comparison of both performances 

In this section the idea is to compare the 3D dice coefficients for both monolabel and multi label                  

classification. In Figure 48, the dice scores can be observed. It can be clearly concluded that the results                  

obtained with mono label training are much better than the ones obtained for multi label training, as                 

expected. The dice coefficients of the monolabel evaluation are around 0.8-0.9 and, however, the dice               

coefficients of the multi label evaluation are around 0.6-0.7, which is a significant decay. Also, as already                 

said, the fact that the post processings chosen as the best ones for the multilabel classification are LCR                  

for the three labels gives away the fact that the predictions are not accurate, as explained for Figure 45. 

 

Figure 48 - Comparison of 3D dice coefficient for 30 dHCP subjects for both monolabel and multilabel 

classification of the three different labels. 

3.2.4 Application to fetuses 

As indicated at the beginning of this section 3.2, both the different labels independently and together                

were trained without noise injection because, since the area of the labels is bigger and more homogen,                 

adding the noise changes too much the histogram pixels distribution. Consequently, it was really              

important to test if the network still was invariant to noise and performed well either way. Because of                  

that, the images of the fetuses are plotted below. 
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In Figure 49, the prediction of the fetuses when the network is trained independently per each label is                  

plotted in red. It can be easily seen that even if there is no noise injection during the training the                    

performance is really good. After studying which morphological post processing per each label obtained              

the better performance in section 3.2.1 it was applied in the fetuses and it can be observed in the blue                    

mask. As it can be observed, the best post processing obtained for these predictions are the same as                  

obtained in section 3.2.1: for cerebrospinal fluid with ventricles the closing; for the CP the combination                

of LCR and closing and, for the white matter the LCR. This shows that these predictions are accurate                  

enough to be coherent with their best post processing as explained previously in  section 3.2.1. 

 

Figure 49 - Predictions of 3D fetus images (red) for each label separately: cerebrospinal fluid with 

ventricles (first row), cortical plate (second row) and white matter (third row). Morphological post 

processing has been applied in each of them (blue): for cerebrospinal fluid with ventricles closing; for 

cortical plate LCR + closing; and, for white matter LCR. Subject marsFet021 (MRI date 32). 

In Figure 50, the predictions per each label can be observed in red and the LCR post processing applied 

in blue. In here for all of them was applied LCR since in the section 3.2.2 it was observed that it achieved 

the better performance for all three labels. 
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Figure 50 - Predictions of 3D fetus images (red) for multilabel: cerebrospinal fluid with ventricles (first 

row), cortical plate (second row) and white matter (third row). Morphological post processing LCR has 

been applied in each of them (blue). Subject marsFet021 (MRI date 32). 

If both predictions, monolabel and multilabel, are compared even if none of them is awfully predicted, it                 

can be easily seen that the better performance is obtained with training the network per each label                 

separately. For example, for the cerebrospinal fluid there are voids in the mask when predicting it with                 

multilabel training but a lot of them disappear when the network is done with just this label. For the CP                    

prediction, when training it with multilabel, lots of other parts of the brain are considered CP as well as                   

the edge of the brain; the prediction is much more accurate when training just with the label of                  

drawem9 CP independently. And, finally, for the white matter label happens something similar, the              

performance with training it independently is better. However, it could be said that is the one that                 

obtains better results when training it with multilabel. 

3.2.5 Conclusions for multilabel segmentation 

For the multilabel segmentation, the overall conclusion is that it does not work properly since it                

degradates the results obtained with monolabel, which should happen contrarily. However, since the             

results are not completely awful, it can be concluded as well that maybe there is an error with the                   

weights values or that some other approach could be considered, for example, in order to deal with                 

imbalanced classes such as data upsampling or using another type of loss who may be performing better                 

for multilabel classification.  
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3.3 Final conclusions 

The final conclusions can be splitted into two main parts: monolabel segmentation and multilabel              

segmentation.  

Firstly, it is important to talk as well about the amount of resources each network consumes for the                  

monolabel segmentation. When working with the basic UNet the number of parameters that need to be                

trained are 74. When working with the residual UNet, the number of parameters that need to be trained                  

are 125. This implies that the training time for the residual UNet (around three weeks) is enormously                 

bigger than the time used for the basic UNet (around 20 hours). When working with NN it is important                   

to consider the computation time and, even more important if the resources are limited. 

Regarding the performances, for the FetalCPSeg architecture it was concluded clearly that the best              

performance was achieved by just using the backbone network. When comparing both UNets, the main               

conclusion is that the better performance is obtained with the residual UNet obtained from the               

FetalCPSeg architecture. With respect to the fetuses, it seems that the CP predicted by the residual UNet                 

is more robust but it should be supervised by an expert to check that no misclassifications of other areas                   

of the brain appear as CP. 

For the multilabel segmentation, the conclusion was clear: the multilabel does not help to improve the                

prediction of the CP, which is already pretty good with mono label classification. However, this part                

should be studied in more depth in the upcoming projects. 

One conclusion that can be generalized for both architectures as well as for multi and mono label                 

segmentation is that the predictions do not seem to depend on the age of the MRI acquisition. This                  

leads to an important question, which is if the training set was well selected. If the prediction                 

performance does not depend on the MRI week, the training set could be enlarged to more subjects or,                  

moreover, could be selected randomly among all the dHCP images without caring about the age of the                 

subject. This would give more richness to the dataset and invariance to the anatomical changes of the                 

CP. 
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4. Future Work 
This project has opened several branches and most of them need a more thorough and deep study. This                  

work can be splitted into two big parts: first, the study of the UNet and, second, the study of the code of                      

the FetalCPSeg. In each of these parts a more profound study could take place. 

Firstly, let’s deepen on the first part, the study of the Pytorch UNet. In this part of the project, most of                     

the different points of study got covered but the part of multilabel segmentation would need more                

testing done. On one hand, a good point of study would be to try other function losses that perform                   

better than the weighted cross entropy, for example, the Focal Loss studied in the work [47] or to play                   

with upsampling in order to balance the different classes and do not work with the imbalanced dataset                 

or find another way to apply the weights [48]. In addition to that, it could be good to study exactly the                     

influence of the different parts of the brain on the prediction of the cortical plate. 

Secondly, for the study of the network FetalCPSeg more studies could be performed. On important               

study, would be, if the amount of 3D stack images obtained for the training make it possible, try to make                    

the training and predictions with 3D images, as it was originally designed. Furthermore, the multilabel               

segmentation should be studied for this architecture as well. 

Thirdly, in my opinion it would be good to spend an important amount of time and resources to study                   

more thoroughly the influence of the training dataset, since it was observed that the performance of the                 

predictions do not depend on the MRI week. For example, if the amount of images used increases the                  

networks improve their performance or try to train it with other than the youngest newborn MRIs and                 

check if it is true that the performance is better when the youngest are used, even if this seems                   

counter-intuitive. It would be really interesting as well to try to train the networks with fetal MRIs and                  

study the impact of this training dataset. 

Finally, in the field of study of the pre and post processing several considerations could be taken. On the                   

pre processing part, a more thorough study of the data augmentation applied could be performed in                

order to see if it could be possible to apply other modifications to enrich the training set. On the post                    

processing part, the most important part to keep on studying is the application of the different                

mathematical morphology operations in order to improve the predictions of the networks. Different             

scopes of study could be, first, the impact of the different kernels when applying the classical operations                 

or, secondly, apply 2D post processing and reconstruct later the images. In addition, other more               

complex morphological operations could be tried out. Another significant study that could be performed              

for the post processing is the study of the thresholding method. It is possible that maybe using another                  

method such as [49] it could improve significantly the results. 

Other post processing techniques could be used. For example, in the work [50] they perform a                

prediction in the sagittal, axial and coronal cuts and then they reconstruct it. This could be a really                  

interesting approach to try out. 
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Figure 12 - Histograms of the distributions of the 3D MRI images of the dHCP dataset without 

normalisation (left image) and with normalisation (right image). 
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with data augmentation (right image). 
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Figure 18 - Example of connected component labeling. 

Figure 19 - Dice coefficient (left) and loss (right) for Pytorch UNet during the training. 

Figure 20 - Dice coefficient per slice of 3D test dHCP images for Pytorch UNet.  
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Figure 21 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

Pytorch UNet. 

Figure 22 - Dice coefficient (left) and loss (right) during the training for the BBN of the FetalCPSeg 

architecture. 

Figure 23 - Dice coefficient per slice of 3D test dHCP images for BBN of FetalCPSeg. 

Figure 24 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

BBN of FetalCPSeg. 

Figure 25 - Dice coefficient (left) and loss (right) during the training for the DSM study of the FetalCPSeg 

architecture. 

Figure 26 - Dice coefficient per slice of 3D test dHCP images for DSM study of the FetalCPSeg 

architecture. 

Figure 27 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

DSM of FetalCPSeg. 

Figure 28 - Dice coefficient (left) and loss (right) during the training for the AM study of the FetalCPSeg 

architecture. 

Figure 29 - Feature maps before (first row) and after (third row) the attention modules with the 

respective attentive maps (second row) per each stage. 

Figure 30 - Dice coefficient per slice of 3D test dHCP images for the AM study of FetalCPSeg architecture 

with AM (blue) versus withoutAM (red). 

Figure 31 - 3D dice coefficient for 30 dHCP subjects with LCR post processing for the AM study of 

FetalCPSeg architecture. 

Figure 32 - Worst case. MRI date acquisition: 42 weeks.  

Figure 33 - Best case. MRI date acquisition: 44 weeks.  

Figure 34 - Dice coefficient (left) and loss (right) during the training of Pytorch UNet plugged into 

FetalCPSeg. 

Figure 35 - Dice coefficient per slice of 3D test dHCP images for the Basic UNet plugged into the 

FetalCPSeg architecture. 

Figure 36 - 3D dice coefficient for 30 dHCP subjects with mathematical morphology post processing for 

the Basic UNet plugged into the FetalCPSeg architecture. 
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Figure 37 - Dice coefficient per slice of 3D test dHCP images for the different studies performed with the 

FetalCPSeg architecture. Backbone network (green) vs without attentive module (red) vs with attentive 

module (blue) vs basic UNet plugged into FetalCPSeg architecture (orange). 

Figure 38 - 3D dice coefficient for 30 dHCP subjects for the different studies performed with the 

FetalCPSeg architecture. 

Figure 39 - Dice coefficient per slice of 3D test dHCP images of the Pytorch UNet (blue) versus the 

FetalCPSeg UNet (red). 

Figure 40 - 3D dice coefficient for 30 dHCP subjects with LCR post processing for the comparison of the 

basic UNet and the residual UNet. 

Figure 41 - Predictions of 3D fetus images with Pytorch UNet (red)  and for residual UNet from 

FetalCPSeg architecture (blue). Subject marsFet021 (MRI date 32). 

Figure 42 - Dice coefficient (left) and loss (right) for Pytorch UNet during the multiple training sessions. 

Figure 43 - Comparison of 3D dice coefficient for 30 dHCP subjects for the three different labels. 

Figure 44 - Dice coefficient per slice of 3D test dHCP images of the multilabel classification: cerebrospinal 

fluid with ventricles (blue), cortical plate (red) and white matter (green). 

Figure 45 - Comparison of 3D dice coefficient for 30 dHCP subjects for the multilabel classification of the 

three different labels. 

Figure 46 - Confusion matrix for the subject CC00500XX05_145900. 

Figure 47 - Sagittal (left), axial (center) and coronal (right) cuts of the 3D representation for the subject 

CC00500XX05_145900. Predicted mask (blue) and ground truth (red) are plotted. 

Figure 48 - Comparison of 3D dice coefficient for 30 dHCP subjects for both monolabel and multilabel 

classification of the three different labels. 

Figure 49 - Predictions of 3D fetus images (red) for each label separately: cerebrospinal fluid with 

ventricles (first row), cortical plate (second row) and white matter (third row). Morphological post 

processing has been applied in each of them (blue): for cerebrospinal fluid with ventricles closing; for 

cortical plate LCR + closing; and, for white matter LCR. Subject marsFet021 (MRI date 32). 

Figure 50 - Predictions of 3D fetus images (red) for multilabel: cerebrospinal fluid with ventricles (first 

row), cortical plate (second row) and white matter (third row). Morphological post processing LCR has 

been applied in each of them (blue). Subject marsFet021 (MRI date 32). 
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