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Abstract

Master in Artificial Intelligence

Quantum Machine Learning with Hybrid Quantum-Classical
Computations

by Albert Cardenete Massip

This thesis explores variational quantum algorithms in order to solve optimization
combinatorial problems using a meta-learning approach. These variational algorithms
are promising due to its capability to be used in the near future in the so-called Noisy
Intermediate-Scale Quantum (NISQ) era, in which algorithms with high tolerance to
noise could perform better than its classical counterparts. In this approach, a Recur-
rent Neural Network (RNN) optimizer tries to obtain the best set of parameters of
a quantum circuit for a given problem using the Qauntum Approximation Optimiza-
tion Algorithm (QAOA), with the minimal amount of queries possible to a quantum
computer. Thanks to the advances of parameter shift methods to compute the gradi-
ents of parametrized quantum circuits, these algorithms could be even trained in real
quantum computers without the need of highly demanding simulations. The results
presented show that this approach is able to generalize to other problem instances
which the model has not seen before during training.
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1 Introduction

In the past few years, there has been a rise of quantum computing popularity now that
we are closer to develop noisy intermediate-scale quantum (NISQ) devices [20]. With
the advent of these devices, a large number of applications have been developed which
could be suitable for such devices. The recent achievement of the quantum supremacy
[2] has marked a milestone in the field, in which finally a quantum computer has been
able to solve a problem that could not be solved using a classical computer.

Quantum computing has shown great potential in many fields, from materials de-
velopment [7] to decryption of current security with Shor’s algorithm [26]. This is
thanks to the quantum speedup that has been found in many algorithms in compari-
son to its classical counterparts.

At the same time, the field of Quantum Machine Learning (QML) has emerged at
the intersection between the machine learning and quantum computer fields. There
have been two main streams of work in this field. On the one hand, we could use
these kinds of algorithms to exploit different tasks for which we only have quantum
data, and as such a purely quantum-based algorithm would be the best option to work
with. On the other hand, we could also work with classical data, but trying to achieve
significant speedups with the use of quantum hardware.

There are several examples of promising quantum machine learning algorithms
[4]. Quantum speedups can be achieved in a wide range of algorithms that are very
popular in the machine learning field, such as principal component analysis (PCA)
[16], support vector machines (SVM) [21], and least squares fitting [31], among others.

A particularly promising category of problems that can be solved using these near-
term devices are the so-called quantum variational algorithms [19], which consists of
the optimization of a parametrized quantum circuit using classical methods. These
algorithms present the advantage that they are robust to noise, and are not very com-
plex in terms of depth of the quantum circuit.

The optimization of the parameters of these algorithms does not differ from the
current methods used in the machine learning field when trying to optimize models
with a large number of parameters, such as deep neural networks.

There are also more challenges for these types of algorithms. On the one hand,
the stochastic nature of quantum computing adds complexity for present classical op-
timizers, as we need many queries to the circuit to get reliable results. This is even
more challenging when the optimization technique used requires the computation of
gradients with respect to its parameters. Recent works have proposed the use of ana-
lytical gradients to tackle this issue [25]. However, this solution is also very expensive
for cases in which we have a large number of parameters, and further advances of
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these techniques are being developed.

On the other hand, these algorithms heavily rely on the initial set of parameters
chosen. Many developments have focused on trying to get good initial values through
the development of clever heuristics. Regarding this problem, different approaches
have been proposed such as the use of Reinforcement learning to automatically set
the parameters [12], or the use of meta-learning techniques with Recurrent Neural
Networks [28].

In this work, we are going to focus on the second problem of parameter initial-
ization through the use of meta-learning techniques, which was proposed for general
black-box computations [1], and has shown great potential across many different ap-
plications.

The structure of the work is divided into two parts. In the first one, we are going
to explore the theory of the variational quantum algorithms, with more emphasis on
the QAOA algorithm. With these algorithms, we will explore the Max-Cut problem
and we will solve it using the current techniques for this problem.

The second part will focus on the meta-learning approach to tackle the parameter
initialization problem. Here the theory of the analytical quantum gradients will be
developed, which also opens the door to more efficient parameter optimization.
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2 Variational Quantum Algorithms

Variational Quantum Algorithms are comprised of an iterative quantum-classical op-
timization loop between a classical processing unit (CPU) and a quantum processing
unit (QPU) that aim to produce approximate solutions to a given problem by making
use of an ansatz. A general schema of these type of algorithms can be seen in the fig-
ure 2.1. These algorithms are based on the implementation of parametrized quantum
circuits, in which some of the gates have parameters that allows us to fine-tune their
effect.

Figure 2.1: Hybrid Quantum-Classical graph representing a general
Variational Quantum Algorithm. At each iteration of the process t,
the CPU returns some candidate parameters θt, which are used by the
QPU as the parameters for the quantum circuit. With these parame-
ters, the quantum circuit is evaluated and outputs the expected value
of a given Hamiltonian H, yt = 〈H〉θ. At the next step, the CPU can
take into consideration the previous proposed states and result of the

QPU, as well as its own internal memory mt.

An iteration begins with the CPU sending the set of candidate parameters θ to
the QPU. The QPU then executes a parametrized circuit Û(θ), which outputs a state:

|ψθ〉 = Û(θ)|ψ0〉. (2.1)

Once we have the prepared state, we are interested of measuring the expected value
of a certain Hamiltonian H:

f(θ) = 〈ψθ|H|ψθ〉, (2.2)

where f(θ) can be seen as a cost function to be optimized. The expected value of
the Hamiltionian has to be estimated by repeating the measurement many times, as
in general the output of the measurement will not always be the same. From an
optimization point of view, we can think on this problem as one in which we have
a black-box function f : Rn → R, in which we try to find the parameters θ∗ which
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minimizes the cost:
θ∗ = arg min

θ∈Rn
f(θ). (2.3)

Finding minimums, or approximate minimums rapidly for these algorithms is quite
challenging, as the cost function is stochastic in general. Also, another challenge is
that even for perfectly designed quantum gates, there is an inherit noise when per-
forming experiments with real quantum hardware [17].

There have been several successful variational quantum algorithms developed dur-
ing the last few years. Some of them are intended to be used to approximately solve
combinatorial optimization problems (QAOA, [10]), or to approximate the lowest en-
ergy level of a givien hamiltonian to solve chemistry problems (VQE, [19]) and even
to solve huge linear systems (VQLS, [6]).

2.1 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) [10] is an algorithm
that produces approximate solutions for combinatorial optimization problems. The
algorithm depends on an integer p ≥ 1 and the quality of the approximation can im-
prove as p is increased. The quantum circuit that implements the algorithm consists
of unitary gates, Û such that Û †Û = Î, whose locality is at most the locality of the
objective function whose optimum is sought. The depth of the circuit grows linearly
with p times the number of constraints.

Formulation

consider a combinatorial problem specified by n bits and m clauses. Each clause is a
constraint on a subset of the bits which is satisfied for certain assignments of those
bits and unsatisfied for the other assignments. The objective function, defined on n
bit strings, is the number of satisfied clauses,

C(z) =
m∑
α=1

Cα(z) (2.4)

where,

Cα(z) =

{
1 if z satisfies a clause,
0 otherwise.

And z = z1 . . . zn is the bit string.

These type of problems can be tackled in different ways. Satisfability asks if there
is a string that satisfies every clause. MaxSat asks for a string that maximizes the
objective function. In the case of QAOA, an approximate optimization asks for a
string z for which C(z) is close to the maximum of C. In other words, it tries to find
the best possible answer for the combinatorial optimization problem.

We noe define a unitary operator U(C, γ) which depends on an angle γ:

U(C, γ) = e−iγC , (2.5)
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where in the case in which C is diagonal in the computational basis, we can transform
it into:

U(C, γ) = e−iγ
∑m
α=1 Cα =

m∏
α=1

e−iγCα , (2.6)

where in the last equality we have used the Baker–Campbell–Hausdorff formula [22]
and the fact that every element in {Cα}α commutes with the rest.

Now we define another operator B which is the sum of all single bit σx operators:

B =

n∑
j=1

σxj . (2.7)

Again, we can define a new unitary operator by taking the exponential of this operator
and considering a parameter β:

U(B, β) = e−iβB. (2.8)

Using again the Baker–Campbell–Hausdorff formula and the commutation rule of the
Pauli matrices in SU(2):

[σi, σj ] = 2iεijkσk, (2.9)

we can transform the operator into:

U(B, β) = e−iβB =
n∏
j=1

e−iβσ
x
j . (2.10)

Now we consider an initial state |s〉, which will be a uniform superposition over
the computational basis state:

|s〉 =
1√
2n

z∑
|z〉. (2.11)

For any integer p and 2p parameters γ1 . . . γp ≡ γ and β1 . . . βp ≡ β we define the
following angle dependent quantum state:

|γ,β〉 = U(B, βp)U(C, γp) . . . U(B, β1)U(C, γ1)|s〉. (2.12)

This state can be produced by a quantum circuit of depth at most mp + p. Let
Fp be the expectation of C in this state:

Fp(γ,β) = 〈γ,β|C|γ,β〉, (2.13)

and let Mp be the maximum of Fp over the possible parameters:

Mp = max
γ,β

Fp(γ,β). (2.14)

From here we can notice that the maximization at p − 1 can be viewed as a
constrained maximization at p, for instance by taking the parameters βp = γp = 0,
so:

Mp ≥Mp−1. (2.15)

These results suggest the QAOA algorithm. Pick up a p and start with a set of
angles (γ,β) and somehow make Fp as large as possible. Use the quantum computer
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to get the state |γ,β〉. Then measure in the computational basis to get a string z
and evaluate C(z). Enough repetitions of this procedure will give a string z with
C(z) very near or greater than Fp(γ,β). The problem here is that it is no obvious in
advance how to pick good parameters.

Now that we have the general formulation of the algorithm, we will use it to explore
different problems

Max-Cut problem

We will start by exploring a classical combinatorial optimization problem that tires
to find the maximum cut for a given graph. Given a graph G = (V, E) with a set
of vertices V , and edges E, a cut is a partition of the set V into two disjoint sets
V = S ∪ T . The size of the cut is the number of edges such that one of its vertices
is in the set S, while the other is in the set T . The maximum cut then the one with
maximal size.

Figure 2.2: Representation of the max-cut problem. For a given
graph, we want to fins the two disjoint sets (here represented as the
black and white sets) of nodes which generates the maximum possible

cut.

This is an example of an NP-hard problem, and thus there is no classical algo-
rithm that is able to solve this general problem efficiently. For small instances of the
problem, solutions can be found by brute force. However, for larger problems we have
to make use of heuristics and give approximate results.

Now we are going to formulate this problem in terms of the QAOA formulation.
To translate this problem into a quantum algorithm, we can assign each vertex i ∈ V
to a qubit in the circuit. Then, we can represent the state of each qubit |a〉i, a ∈ {0, 1}
as being in S or T depending on its value. This representation defines the partition
we are looking for.

Once we have a given state, we can write the cost function for the max-cut problem
as:

C =
1

2

∑
〈j,k〉

(1− σzjσzk), (2.16)

where we are summing across all the edges 〈j, k〉 ∈ E, and σzj represents the one qubit
Pauli-Z quantum gate applied on the j-th qubit. with this representation, each term
of the sum will be 2 if and only if the qubit j belongs to one partition and the qubit
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k belongs to the other one, otherwise the term is going to be zero.

Using the equation (2.6), we will have to implement the following unitary transor-
mation for the QAOA algorithm:

U(C, γ) =
∏
〈j,k〉

e−iγ
1−σzj σ

z
k

2 . (2.17)

The question now is how we can implement this equation into a quantum circuit.
Considering the computational basis {|00〉, |01〉, |10〉, |11〉}, the factor for a given edge
〈j, k〉 is:

e−i
1−σzj σ

z
k

2 = exp

[
−iγ

2

(
1 0
0 1

)
⊗
(

1 0
0 1

)
+
iγ

2

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)]

= exp

−iγ2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+
iγ

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




= exp




0 0 0 0
0 −iγ 0 0
0 0 −iγ 0
0 0 0 0




=


1 0 0 0
0 e−iγ 0 0
0 0 e−iγ 0
0 0 0 1

 (2.18)

Now we would like to get the same result using elementary quantum gates. Con-
sidering the same computational basis, the CNOT gate is the one that flips the second
qubit if and only if the first qubit is 1. Its matrix representation is the following:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.19)

in additon, we can consider the single qubit gate Rz(α), which rotates the state along
the z axis. In the computational basis {|0〉, |1〉}, this gate has the following matrix
form:

Rz(α) =

(
e

−iα
2 0

0 e
iα
2

)
. (2.20)
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With this two quantum gates, we are able to implement the previous exponential
function in the following way:

CNOT ◦ Î ⊗Rz(γ) ◦ CNOT = CNOT

(
1 0
0 1

)
⊗

(
e

−iγ
2 0

0 e
iγ
2

)
CNOT

= CNOT


e

−iγ
2 0 0 0

0 e
iγ
2 0 0

0 0 e
−iγ
2 0

0 0 0 e
iγ
2

CNOT

= CNOT


e

−iγ
2 0 0 0

0 e
iγ
2 0 0

0 0 0 e
−iγ
2

0 0 e
iγ
2 0



=


e

−iγ
2 0 0 0

0 e
iγ
2 0 0

0 0 e
iγ
2 0

0 0 0 e
−iγ
2



= e
−iγ
2


1 0 0 0
0 eiγ 0 0
0 0 eiγ 0
0 0 0 1

 . (2.21)

This concatenation of gates generates the same operator, with the addition of a global
phase that will not affect the final measurement. By sequentially adding these gates
for each pair of connected nodes in the graph, we can finally implement the operator
in (2.17) using elementary quantum gates. A diagram of the implementation for a
given factor can be seen in the figure 2.3.

Figure 2.3: Implementation of a quantum circuit of the cost operator
(2.6) factor between the nodes j and k.

The implementation of the operator (2.10) is easier, as the exponential of the
Pauli matrix is a rotation in the same axis. Also, in order to generate the initial
state (2.11) we have to apply Hadamard gates to all the qubits from an initial state
⊗n|0〉. These are the matrix representation of both one-qubit gates considering the
same computational basis as before:

Rx(θ) =

(
cos( θ2) −i sin( θ2)

−i sin( θ2) cos( θ2)

)
, H =

1√
2

(
1 1
1 −1

)
. (2.22)

With all these gates, we are able to build the final circuit for a given graph. In
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the figure 2.4 we can see an example of a graph and its corresponding QAOA circuit
with P = 1.

(a)

(b)

Figure 2.4: Representation of a graph (a) and the QAOA circuit for
the corresponding graph with P = 1 (b). The way in which the oper-
ator U(C, γ) is applied is irrelevant for the circuit, we can interchange
the operators in a pair of adjacent nodes and we will still get the same

quantum state.

2.1.1 State-of-the-art

In order to solve these type of problems, authors have developed different hand-crafted
algorithms. Focusing on the max-cut problem, we find many developments in the lit-
erature [10, 5, 32, 9, 13].

After the QAOA algorithm was proposed, the authors proposed a simple strategy
to find the optimal parameters [10]. Given that the expected value of the cost function
(2.13) can be seen as a sum of a cost function (2.16) for each edge in the graph:

Fp(γ,β) =
∑
〈j,k〉

〈γ,β|C〈j,k〉|γ,β〉, (2.23)

where
C =

∑
〈j,k〉

C〈j,k〉, C〈j,k〉 =
1

2
(1− σzjσzk) (2.24)

we can consider the operator associated with an edge 〈j, k〉:

U †(C, γ1) . . . U †(B, βp)C〈j,k〉U(B, βp) . . . U(C, γ1). (2.25)

As we can see, this operator only involves the qubits j and k, and the qubits that are
at most at p distance from these two qubits, due to the operator C. In particular, for
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the case p = 1, we can simplify this expression as:

〈C〈j,k〉〉 = U †(C, γ1)U †(B, β1)C〈j,k〉U(B, β1)U(C, γ1)

= U †(C, γ1)
n∏
l=1

[
eiβ1σ

x
l

]
C〈j,k〉

n∏
m=1

[
e−iβ1σ

x
m

]
U(C, γ1)

= U †(C, γ1)eiβ1(σxj +σxk )C〈j,k〉e
−iβ(σxj +σxk )

n∏
m6=j,k

[
eiβ1(σxm−σxm)

]
U(C, γ1)

= U †(C, γ1)eiβ1(σxj +σxk )C〈j,k〉e
−iβ(σxj +σxk )U(C, γ1), (2.26)

where in the third line we have used the fact that the σx commutes with σz if both
operators do not apply to the same qubits. Now the operator (2.26) only involves the
edge 〈j, k〉 and the qubits adjacent to these edges. In a similar way, when considering
circuits with a larger p, we can see that this operator only involves the subset of qubits
that are at most p distance from the edge considered.

With this consideration, we can then evaluate Fp in each of these subgraphs that
contain a number of qubits that is independent of the number of edges n, and thus
simplifies the search of the optimal parameters for a fixed p.

Numerical results on classical hardware shows that in the case of two-regular
graphs, the quantum algorithm is able to produce an approximation ratio that can
be arbitrarily close to 1 by making p large enough, independent of n. In the case
of three-regular graphs, it can be seen that for p = 1, the worst case approximation
of the ratio between the output of the algorithm and the maximum of C is 0.6924 [10].

Following with circuits with a low-level p, the authors in [29] studied analytically
and numerically the case for which p = 1. For this case they derived an analytical
expression for a general graph, in which for each edge 〈j, k〉, the cost is the following:

〈C〈j,k〉〉 =
1

2
+

1

4
(sin (4β1) sin (γ1))(cosdj (γ) + cosdk (γ))

−1

4
(sin2 (β1) cosdj+dk−2λjk (γ1))(1− cosλjk (2γ1)), (2.27)

where dj + 1 and dk + 1 are the degrees of the vertices j and k respectively, and λjk
is the number of triangles in the graph containing the edge 〈j, k〉. Using this result,
we can optimize the cost function in a fully classical manner. In addition, this result
can be further simplified in the case in which we have a triangle-free n-regular graph:

F1(γ1, β1) =
|E|
2

(1 + sin (4β1) sin (γ1) cosn−1 (γ1)). (2.28)

For this particular type of graphs, the optimal pair of angles is:

γ∗1 = arctan

(
1√
n− 1

)
, β∗1 =

π

8
, (2.29)

which leads to the maximum expectation value of:

F ∗1 =
|E|
2

(
1 +

1√
n

(
n− 1

n

)n−1
2

)
. (2.30)
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In [32], the authors explore QAOA’s performance beyond its lowest depth variant,
and proposed heuristic strategies to find quasi-optimal parameters for a depth p al-
gorithm in polynomial time with respect to p. In comparison, the strategy in which
the circuit starts using random parameters requires 2(p) optimization runs to achieve
a similar performance.

In this work, the authors observed that the optimal parameters obtained by brute
force indicate that in general, there is a slowly varying continuous curve that underlies
the parameters γ∗i and β∗. This observations conduced the authors to propose that
the parameters on the level p + 1 can be based on optimized parameters from the
previous levels.

A first heuristic strategy called INTERP, uses linear interpolation to chose the
initial parameters. The parameters for p = 1 are optimised as a first step, and then
the subsequent parameters p+ 1 are guessed from the interpolation from the previous
ones. The circuit is then optimised from these parameters and we can keep iteratively
applying the strategy to get deeper circuits.

The second heuristic strategy proposed, called FOURIER, uses a different parametriza-
tion in which we change from 2p parameters to 2q parameters in the following way:

γi =

q∑
k=1

uk sin

[(
k − 1

2

)(
i− 1

2

)
π

p

]
, (2.31)

βi =

q∑
k=1

vk cos

[(
k − 1

2

)(
i− 1

2

)
π

p

]
. (2.32)

These transformations are known as the Discrete Sine and Cosine Transformations
respectively. In this strategy, a similar procedure to the previous one is performed,
where instead of optimizing γi and βi, we optimize uk and vk.

In all these cases explored, one has to classically optimize each graph for p > 1,
which requires an ah-hoc solution for each possible instance of the problem. In a re-
cent work, reinforcement learning has been applied to figure out the set of parameters
at the level p+ 1 from the previously obtained parameters p and measurements of the
qubits at the different levels [12].

This work is based on a classical agent which is able to propose new parameters
and is trained to maximize the final outcome. This results in an algorithm which is
able to be trained with circuits with low p, while then achieving for test instances
optimal results in cases for which p = 21.

2.2 Experiments and Results

Now that we have seen the strategies to find the different parameters, let’s focus on
the optimization of such circuits, which is the main procedure in most of the strategies
we have explored. To do so, we will explore the optimization procedure for 3-regular
graphs and random connected graphs.

Fore the first type of graphs, we have seen that the QAOA circuit in the case of
p = 1 should theoretically yield results over 0.6924 for the approximation ratio with
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Figure 2.5: Performance of the Nelder-Mead optimizer in different
problems and QAOA parametrizations.

the optimal parameters, thus this being a simple case.

On the other hand, we are also going to explore the case in which we have a random
connected graph, a much more challenging case that will resemble a more realistic case.

For each experiment, we are going to simulate the result with 500 randomized
graphs that fulfill the requirements. Then, using a Nelder-Mead optimizer [15] that
queries the quantum circuit 1000 times for each measure we are going to optimize the
parameters for up to 150 optimization steps.

3-Regular Graphs

In this first set of experiments, we are going to focus on the optimization procedure
for the Max-Cut problem in 3-Regular graphs. These type of graphs are the ones in
which all the nodes have exactly 3 neighbours.
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Approximation Ratio of 3-Regular Graphs
n p 5 Steps 10 Steps 20 Steps 100 Steps

6 1 0.72± 0.10 0.74± 0.11 0.75± 0.11 0.75± 0.11
2 0.71± 0.11 0.75± 0.11 0.79± 0.11 0.80± 0.11

8 1 0.703± 0.083 0.730± 0.087 0.740± 0.089 0.740± 0.090
2 0.679± 0.096 0.716± 0.095 0.754± 0.097 0.77± 0.10

10 1 0.687± 0.091 0.715± 0.093 0.725± 0.095 0.725± 0.096
2 0.673± 0.091 0.714± 0.091 0.754± 0.090 0.772± 0.091

Table 2.1: Approximation ratio for different 3-Regular Graphs for
n = 6, 8, 10 and p = 1, 2 at different optimization steps using the

Nelder-Mead optimizer.

(a) (b)

Figure 2.6: 3-Regular graph (a) with its corresponding expected cost
value of the QAOA circuit with p = 1 as a function of β1 and γ1.

On the figure 2.5 we can see the result of the optimization procedure for different
values of p = 1, 2 and n = 6, 8, 10. This graph shows us some interesting facts about
this algorithm. First of all, we see how the optimization stabilizes after 40 steps in
the observed cases, and from that point the variance across different graphs is stable.

Another thing to notice is how the performance of the QAOA circuit under the
optimal parameters is better on average with larger p, and that this average tends to
decay with larger graphs. A more detailed view of the results can be seen on the table
2.1. An example of the lattice of F1 for a 3-Regular graph can be seen in the figure 2.6.

A final thing to notice is that the expected approximation ratio shown here is
obtained by repeatedly querying the quantum circuit and computing the Max-Cut
of those solutions, which can give different results in different measures. This means
that some measures of this circuit could yield in better solutions to the problem.

Finding the optimal parameters is quite challenging, as it needs several thousands
of queries to the quantum circuit. When considering larger values of p, it is even more
difficult to reach good parameters, and we encounter the so-called barren plateau
problem.
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Irregular Graphs

In the second set of experiments, we want to observe the optimization performance of
irregular graphs in the same way we have done in the previous case. Even though we
want to have graphs without any particular shape, we will constrain the set of graphs
generated to connected graphs. The reason for this is that if we have an unconnected
graph, the optimal result for the Max-Cut problem is the union of the optimal results
for the different connected subgraphs.

In order to build the different graphs for these experiments, we are going to use
the Watts-Strogatz small-world graph method to generate a random connected graph
[30]. The way this algorithm works is by creating a first ring graph over n nodes.
Then, each node in the ring is joined to its k nearest neighbours and finally edges are
replaced by other edges to other nodes with probability p. For these experiments, we
have used the values k = 3 and p = 0.4.

The results of the optimization procedure can be seen in the figure 2.5. In compar-
ison to the 3-Regular graphs, we see that the average approximation ratio of Irregular
graphs is lower than the one with 3-Regular graphs across all the experiments. How-
ever, we see that these types of graphs also exhibit a similar behaviour, in terms of
the response of the p and n parameters. Also, we can see how the standard deviation
is comparable to the previous case.

A more detailed view of the results of the optimization procedure can be seen in
the table 2.2. There we can see how in the first 20 optimization steps we manage to
get to similar results than the ones after 100 steps.

Approximation Ratio of Irregular Graphs
n p 5 Steps 10 Steps 20 Steps 100 Steps

6 1 0.66± 0.10 0.68± 0.11 0.69± 0.11 0.69± 0.11
2 0.66± 0.10 0.69± 0.10 0.73± 0.10 0.74± 0.11

8 1 0.637± 0.099 0.66± 0.10 0.67± 0.11 0.67± 0.11
2 0.635± 0.097 0.671± 0.098 0.71± 0.10 0.72± 0.11

10 1 0.632± 0.095 0.66± 0.10 0.67± 0.11 0.67± 0.11
2 0.622± 0.094 0.657± 0.091 0.695± 0.097 0.71± 0.10

Table 2.2: Approximation ratio for different Irregular Graphs for
n = 6, 8, 10 and p = 1, 2 at different optimization steps using the

Nelder-Mead optimizer.

All these initial steps to get us closer to good parameters are very expensive for a
quantum computer, and in order to achieve feasible results with near-term quantum
devices we would need to reduce the number of queries to get a good set of initial
parameters. In the next section we are going to explore exactly this, how we can reduce
the initial exploration stage to get closer to the optimal parameters with a much less
demanding number of queries to the quantum device with the use of meta-learning
techniques.
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3 Quantum Recurrent Neural
Networks

In the proposed quantum problems, one can think of them as an optimization problem,
in which we want to find the optimal parameters θ ∈ Θ for a given objective function,
f(θ). The goal is to find the parameters that minimize this function:

θ∗ = arg min
θ∈Θ
{f(θ)}. (3.1)

In machine learning, a standard way of solving this problem is to apply gradient
descent, in case that f is a continuous function, that can be differentiated. With this
approach, one would have to keep updating the parameters according to the following
formula until convergence:

θt+1 = θt − λt∇f(θt), (3.2)

where λt is a scalar that receives the name of learning rate.

In a recent work in mate-learning [1], a different strategy was proposed to replace
hand-designed update rules with a learned update rule, which we can set as a function
g, with his own set of parameters φ. This results in updates of the objective function
f to optimize of the form

θt+1 = θt + gt(∇f(θt), φt). (3.3)

The goal of meta-learning is to develop a learning algorithm which performs well
on a particular subset of optimization problems. In our case, we would like to have
an algorithm that is able to achieve a good performance in different instances of a
quantum problem expressed in the form of a graph.

This approach is different from the previous hand-designed algorithms for varia-
tional quantum algorithms, in the sense that we have to query the quantum computer
and then the learned algorithm gives the next guesses for the parameters. On the
other hand, classic algorithms would treat every problem independent from the rest,
and we won’t be exploiting possible patterns learned in some instances.

In the different meta-learning studies, a RNN has been used as the optimizer func-
tion [8, 1, 11, 18, 24, 28]. An schema of this architecture can be found on the figure 3.1.

In this architecture, the RNN gives a proposal set of parameters θt at each timestep
t. Then, the proposed parameters, together with the result of the objective function
are aggregated as the inputs of the following step in the RNN. In addition, the results
of the objective function are finally aggregated to compute the loss function.

With this loss function, we can train the architecture in order to learn the correct
parameters φ of the RNN. The problem then becomes which loss function to use.
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Figure 3.1: Basic architecture of the meta-learning proposal. The
grey region represents the function f to be optimized, while the green
region is the optimizee g that is used to update the parameters θ. The
results of the function f are finally aggregated into a loss function L.

3.1 Loss functions

Given an optimizee like the one previously described, we must choose an adequate
loss function L(φ) with respect to the parameters of the RNN φ. For a given quantum
circuit in which the cost function is the expected value of the Hamiltonian:

f(θ) = 〈Ĥ〉θ, (3.4)

the loss function of the RNN can depend in general on all the intermediate times
{Ef,y[f(θt)]}Tt=1 of the network. We would like to have a loss function that is general
and can be applied to a variety of problems, as well as a function that can learn to
rapidly find optimum parameters and is constantly driven to find higher quality pa-
rameters.

One of the most simple loss functions we could use is the loss at the final iteration
T of the RNN:

Lfinal(φ) = Ef,yT [f(θT )], (3.5)

which would be averaged over all the different samples. This loss was considered by
[1] when learning first-order optimizers, but ultimately found that a better alternative
was the sum of the losses at different times:

Lsum(φ) =
T∑
t=1

Ef,yt [f(θt)]. (3.6)

The main advantage of the latter approach is that Lfinal carries a temporally sparse
signal, while Lsum is able to provide information form every step of the optimizer
while training. This strategy would be equivalent to find the strategy which mini-
mizes the expected cumulative regret. In general, we would be interested in the best
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possible outcome at any given time of the optimizer, mint f(θt). However, taking the
last observation of the cumulative regret can be seen as a good proxy for this.

The previous loss function is limited to exploration though. This function may
prioritize rapidly finding an approximate optimum and staying there, instead of trying
to explore and encouraging the optimizer to explore better minima.

We can enforce exploration of the optimizer parameter space by encoding an ex-
ploratory force into the meta-learning loss. One example of these exploration strategies
is to use the observed improvement:

Lsum(φ) = Ef,y1:T−1

[
T∑
t=1

min

(
f(θt)−min

i<t
(f(θi)) , 0

)]
. (3.7)

The observed improvement (OP) at the step t, is given by the difference between the
value at the current time f(θt), and the best obtained value from the past of the opti-
mizer until that point mini<t (f(θi)). In case there is no improvement with respect to
the past values, the loss for this step is zero. This is a loss function that could explore
better parameters than the previous one, as it can give intermediate steps with worse
performance if at a later stage it gives a better minima, in contrast to the other losses.

Once we have a loss function, we have an objective function that can be used to
assess whether or not the parameters of a given architecture are good. In order to train
the architecture, and thus obtain a good set of parameters for the RNN, we would need
the gradient of the architecture with respect to all its parameters. Training of this
networks are topically done through back-propagation algorithms, and these are only
defined for classical computers, not quantum ones. In this next section we are going
to discuss how back-propagation can be implemented in a hybrid quantum-classical
computation.

3.2 Quantum Gradients

After establishing the convention for a Quantum Neural Networks in the first section,
we can discuss how to obtain gradients of the cost function with respect to the pa-
rameters when we have quantum computations. Here we will not consider the case
of hybrid quantum-classical computations, as we can think this case as simply con-
sidering the classical and quantum back-propagation’s depending on the computation
block we are dealing with at the moment.

Being able to rapidly compute differentiate error functionals has been one of the
main keys of the success of modern deep learning, thanks to the back-propagation
algorithm [23], a special case of an Auto-differnetiation algorithm (AutoDiff) [3]. In
order to extend these algorithms to accept quantum computations, there are two
options which we could follow: finite difference or parameter shift methods.

Finite difference methods

A trivial way in which we could obtain the derivative of a function f : Rn → Rm with
respect to a parameter k ∈ R would be to use a finite difference method.
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An example of a finite difference method is the central difference:

∂kf(θ) =
f(θ + hIΓ30059)− f(θ − hIΓ30059)

2h
+O(h2), (3.8)

where (IΓ30059)i = δki is a vector which is zero everywhere except on the position of
the k-th parameter, which is 1.

With this approach, for this parameter we would have to evaluate the function
f twice, every time varying the parameter by a small h value. Also the precision of
this method in particular would be O(h2), and in case we would like to have more
precision, we would need to query the function more times.

However, this is not the only problem of this approach. As the function f in this
case is a quantum measurement as in the equation 3.4, we would have to perform
multiple measures for each parameter, as we are interested in the expected value of
that function, not a single query which would not be representative of the quantity
we are looking for.

Parameter shift methods

More recently, a proposal for a novel way to compute the exact gradient of a quan-
tum computation with respect to its parameters known as parameter shift has been
developed [25]. In this section we are going to explain this method.

First of all, we have to rewrite the way we think a quantum neural network. An
schematic view of the decomposition can be seen in the figure 3.2.

The Quantum Neural Network Û(θ) can be generally written as a product of L
layers of unitary operators:

Û(θ) =

L∏
l=1

V̂ lÛ l(θl), (3.9)

where the l-th layer of the QNN consists of the product of a constant unitary V̂ l, and
a parametrized unitary operator Û l(θl). The latter operator can itself be comprised
in general of multiple unitaries applied in parallel:

Û l(θl) =

Ml⊗
j=1

Û lj(θ
l
j), (3.10)
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Figure 3.2: Decomposition of a Quantum Neural Network.

in which each unitary Û lj(θ
l
j) only has one parameter.

Finally, each one of these unitaries Û lj can be expressed as the exponential of some
generator ĝlj , which at the same time can be described by a Hermitian operator on n
qubits:

Û lj(θ
l
j) = e−iθ

l
j ĝ
l
j , (3.11)

ĝlj =

Kjl∑
k=1

βjlk P̂k. (3.12)

In these equations, P̂k ∈ Pn denotes a Pauli matrix on n qubits. We can express any
Hamiltonian on n qubits as a sum of Paulis, as it is a base of the same space, for a
given set of βjlk ∈ R,∀j, k, l.

In the case in which all of the Pauli terms in a given single parameter unitary Û lj
commute:

[P̂k, P̂m] = 0, ∀m, k,

we can simplify the formula for a product of exponentials:

Û lj(θ
l
j) =

Kjl∏
k=1

e−iθ
l
jβ
jl
k P̂k . (3.13)
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In the cases in which the above does not hold, we still can approximate the expo-
nential of the sum with a product of exponentials using a Trotter-Suzuki decomposi-
tion [27].

Now, in order to decompose the exponential, we have to take a look at the Taylor
expansion of the exponential function:

ex =
∞∑
i=0

xn

n!
. (3.14)

Plugging the exponential from (3.13) into (3.14), we have:

e−iθ
l
jβ
jl
k P̂k =

∞∑
i=0

(
−iθljβ

jl
k P̂k

)n
n!

=
∞∑
n=0

(−i)2n

(2n)!
(θljβ

jl
k )2nP̂ 2n

k +
∞∑
n=0

(−i)2n+1

(2n+ 1)!
(θljβ

jl
k )2n+1P̂ 2n+1

k

=

∞∑
n=0

((−1)2i2)n

(2n)!
(θljβ

jl
k )2nP̂ 2n

k − i
∞∑
n=0

((−1)2i2)n

(2n+ 1)!
(θljβ

jl
k )2n+1P̂ 2n+1

k

=
∞∑
n=0

(−1)n

(2n)!
(θljβ

jl
k )2nP̂ 2n

k − iP̂k
∞∑
n=0

(−1)n

(2n+ 1)!
(θljβ

jl
k )2n+1P̂ 2n

k

Then, by considering the general property that the square of any Pauli matrix is equal
to the identity matrix, P̂ 2

k = Î, we have:

e−iθ
l
jβ
jl
k P̂k = Î

∞∑
n=0

(−1)n

(2n)!
(θljβ

jl
k )2n − iP̂k

∞∑
n=0

(−1)n

(2n+ 1)!
(θljβ

jl
k )2n+1. (3.15)

Considering the Taylor expansion of the sine and cosine functions:

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, (3.16)

we can plug these results into (3.15) to get the final decomposed exponential:

e−iθ
l
jβ
jl
k P̂k = Î cos

(
θljβ

jl
k

)
− iP̂k sin

(
θljβ

jl
k

)
. (3.17)

Finally, we can express the single parameter unitary (3.13) as:

Û lj(θ
l
j) =

Kjl∏
k=1

[
Î cos

(
θljβ

jl
k

)
− iP̂k sin

(
θljβ

jl
k

)]
. (3.18)

Now that we have these expressions for the representation of a quantum circuit,
we can proceed to compute the gradients of the circuit with respect to its parameters.
Once we have this, we will be able to back-propagate the gradients and train the whole
hybrid quantum-classical architecture.
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Lets consider now a parameter of interest θlj , appearing in a parametric unitary
of the form (3.13). Considering the following change of variables:

ηjlk = θljβ
jl
k , ∀k ∈ {1, . . . ,Kjl}, (3.19)

the derivative of a function f with respect to θlj becomes, under the chain rule:

∂f
(
ηjl1 (θlj , β

jl
1 ), . . . , ηjlKjl(θ

l
j , β

jl
Kjl

)
)

∂θlj
=

Kjl∑
k=1

∂ηjlk
∂θlj

∂f

∂ηjlk

=

Kjl∑
k=1

βjlk
∂f

∂ηjlk
. (3.20)

As we are working with this transformation of variables, we can now express the
multi-parameter unitary gate (3.10) as:

Û l(ηl) =

Ml⊗
j=1

Kjl∏
k=1

e−iη
jl
k P̂k

 . (3.21)

In a similar way, we can also express the single parameter unitary gate as a product
of sines and cosines by plugging the equation (3.17) into (3.21). With this change, we
end up with the final representation of the multi-parameter gate:

Û l(ηl) =

Ml⊗
j=1

Kjl∏
k=1

[
Î cos

(
ηjlk

)
− iP̂k sin

(
ηjlk

)] . (3.22)

Now that we have the quantum circuit parametrised as a function of the new pa-
rameter ηjlk , we are ready to ask for the derivative of the expected value of a given
Hamiltonian (3.4) with respect to any of its parameters. Considering that thanks to
the equation (3.20) we only need the derivatives with respect to ηjlk to get the values
of the gradients with respect the parameters of the quantum circuit θlj , we need to
find the following derivatives:
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∂f(η)

∂ηjlk
=

∂〈Ĥ〉
∂ηjlk

=
∂

∂ηjlk
[〈Ψ|H|Ψ〉]

=
∂

∂ηjlk

[
〈Ψ0|Û †(η)HÛ(η)|Ψ0〉

]
= 〈Ψ0|Û †H

∂Û(η)

∂ηjlk
|Ψ0〉+ 〈Ψ0|

∂Û †(η)

∂ηjlk
HÛ(η)|Ψ0〉

=
1

2

〈Ψ0|

(
Û † +

∂Û †(η)

∂ηjlk

)
︸ ︷︷ ︸

(I)

H

(
Û(η) +

∂Û(η)

∂ηjlk

)
︸ ︷︷ ︸

(II)

|Ψ0〉

−〈Ψ0|

(
Û † − ∂Û †(η)

∂ηjlk

)
︸ ︷︷ ︸

(III)

H

(
Û(η)− ∂Û(η)

∂ηjlk

)
︸ ︷︷ ︸

(IV )

|Ψ0〉


(3.23)

The last equality can be easily seen by expanding all the terms in parenthesis.
We will start by finding the first term of (3.23). Although the unitary operator of a
quantum circuit seems complex, the derivatives with respect to one of its parameters
can be simplified thanks to the fact that each parameter only appears once in a given
layer. Considering the factorization of the circuit as a product of layers (3.9), we have:

∂Û(η)

∂ηjlk
= V̂ 1Û1(η1) . . . V̂ l−1Û l−1(ηl−1)V̂ l ∂Û

l(ηl)

∂ηjlk
V̂ l+1Û l+1(ηl+1) . . . V̂ LÛL(ηL).

(3.24)
As we can see, we are only interested in the derivative of a single multi-parameter
gate. In the same way, when deriving a multi-parameter gate (3.22), we are only
interested in the derivative of a single term:

∂

∂ηjlk

[
Î cos

(
ηjlk

)
− iP̂k sin

(
ηjlk

)]
= −Î sin

(
ηjlk

)
− iP̂k cos

(
ηjlk

)
(3.25)

Following a similar procedure, we find that in the Hermitian conjugate case we are
interested only in a single parameter as well:

∂

∂ηjlk

[
Î cos

(
ηjlk

)
+ iP̂k sin

(
ηjlk

)]
= −Î sin

(
ηjlk

)
+ iP̂k cos

(
ηjlk

)
(3.26)
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So, when computing (I), we can see that all the terms of Û † and ∂

∂ηjlk
U † are exactly

the same, except the factor containing ηjlk . This factor can be simplified as:

(I)jlk = Î
(

cos
(
ηjlk

)
− sin

(
ηjlk

))
+ iP̂k

(
sin
(
ηjlk

)
+ cos

(
ηjlk

))
=
√

2
[
Î cos

(
ηjlk +

π

4

)
+ iP̂k sin

(
ηjlk +

π

4

)]
, (3.27)

where (I)jlk is the factor that contains ηjlk in (I). We can see that this result has the
same functional form as U †, but shifting by π/4 the parameter of interest and adding
a global scaling factor. Thus we can simplify (I) as:

(I) =
√

2Û †(η + Ijlk
π

4
), (3.28)

where Ijlk is a vector which is zero everywhere except on the position of the ηjlk pa-
rameter, which is 1. Similarly, we can simplify the factor of interest in (II) as:

(II)jlk = Î
(

cos
(
ηjlk

)
− sin

(
ηjlk

))
− iP̂k

(
sin
(
ηjlk

)
+ cos

(
ηjlk

))
=
√

2
[
Î cos

(
ηjlk +

π

4

)
− iP̂k sin

(
ηjlk +

π

4

)]
, (3.29)

In this case we get the same functional form as Û , shifted and scaled by the same
quantity. We can then simplify (II) as:

(II) =
√

2Û(η + Ijlk
π

4
). (3.30)

Once we have computed (I) and (II), we can plug these results into the first term of
the equation (3.23). This results in the following term:

〈Ψ0|(I)H(II)|Ψ0〉 = 2〈Ψ0|Û †(η + Ijlk
π

4
)HÛ(η + Ijlk

π

4
)|Ψ0〉

= 2f
(
η + Ijlk

π

4

)
. (3.31)

Following a similar procedure, we get the following results for the terms (III) and
(IV ) of the equation (3.23):

(III) =
√

2Û †(η − Ijlk
π

4
), (3.32)

(IV ) =
√

2Û(η − Ijlk
π

4
), (3.33)

which in turn gives us the following result for the second term of (3.23):

〈Ψ0|(III)H(IV )|Ψ0〉 = 2〈Ψ0|Û †(η − Ijlk
π

4
)HÛ(η − Ijlk

π

4
)|Ψ0〉

= 2f
(
η − Ijlk

π

4

)
. (3.34)

Finally, plugging (3.31) and (3.34) into (3.23), we get to the derivative from the
expected value of a quantum circuit with respect to its parameters:

∂f(η)

∂ηjlk
= f

(
η + Ijlk

π

4

)
− f

(
η − Ijlk

π

4

)
. (3.35)



24 Chapter 3. Quantum Recurrent Neural Networks

Figure 3.3: Architecture of the RNN used for the meta-learning
model. The L1, . . . , f layers represent fully connected layers of artificial

neural neurons.

With this result, we can see that in order to obtain the derivative of the expected
value of the circuit, we only have to measure two times the result with a shift of the
parameter. This is a much more robust approach than the finite difference method for
two reasons: first of all, here we are computing the exact gradient, not an approach.
Secondly, as the parameter shift is not an infinitesimal one, we require much less runs
to achieve a sufficiently precise estimate of the value of the gradient.

One thing to consider though, is that according to the chain rule from the equation
(3.20), in order to obtain the gradient of the parameter θlj , we need to compute
2Kjl expectation values. These computations can be prohibitive in some cases. To
overcome this issue, a method of stoachastically selecting only some terms according
to a distribution weighted by the coefficients of each term to estimate the gradient of
a given θlj parameter have been proposed [14], showing good results with a reduced
number of computations.

3.3 Experiments and Results

In order to test the QRNNs, we are going to perform different experiments on 3-
Regular Graphs and Irregular graphs as in the previous part to compare the results.
As this approach is independent of the number of n, we will also be able to test the
generalization capabilities when training with instances of different size.

The RNN cell architecture used for the experiments will be based on the meta-
learning approach, in which we will consider the hidden state for the recurrent unit
ht−1 to be the concatenation of the previous proposed parameters θt−1, the expected
value of the quantum circuit with the proposed parameters tt−1 and a hidden layer of
a multi-layer perceptron. An schema of the RNN cell used can be seen in the figure 3.3.

For training, we will use the observed improvement loss (3.7), but using a slight
modification of the Max-Cut loss function (2.16). As when we optimize RNN models
we usually try to minimize a loss function, we will consider the objective function to
minimize the negative expected cost of the Max-Cut operator.
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Figure 3.4: Comparison of the 5 first steps between the Nelder-Mead
and the Meta-Learning optimization processes for n = 10 on 3-Regular

graphs.

3-Regular Graphs

In this first set of experiments we are going to measure the performance of the Meta-
Learning approach for 3-Regular graphs as we did on the previous section to compare
this methodology to an optimization of the objective function directly. To do so, we
will generate the meta-learning model with 5 timesteps and compare to the first steps
of the previous method. Also, we will be focusing on the case n = 10, as is a more
challenging problem.

To train the QRNN, we will use 1000 random instances of 3-Regular graphs, and
use 500 more instances as a validation set. In addition, we will train the model until
we see no further improvements of the validation graphs for 20 epochs. The compar-
ison of the performance on a new generated test set in comparison to the previous
methodology used for the 5 first optimization steps can be seen in the figure 3.4.

Here we can see how the meta-learning approach is able to get much better results
then the classical optimization method in the first 5 steps. The real advantage for real
quantum computers is even bigger, as the optimization method measures more than
once the expected value of the quantum circuit, whereas the meta-learning model only
computes the expectancy value of the model once every step. A more detailed set of
results can be seen in the table 3.1.

An interesting thing to notice is the behaviour during the first two steps of the
QRNN, where it shows similar results and after the third step the Meta-learning ap-
proach rapidly increases its performance. This could be the result of the implemented
Loss function, which lets the model to explore and then it tries to get the best set of
parameters. Also, the results obtained with this approach are less volatile than the
ones with the other approaches, as it can be seen from the standard deviation of this
method.

Finally, we can also see from these results how the average result for this approach
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Step p = 1 p = 2
QRNN NM QRNN NM

1 0.573± 0.024 0.62± 0.10 0.585± 0.023 0.62± 0.11
2 0.564± 0.023 0.652± 0.096 0.592± 0.023 0.62± 0.10
3 0.717± 0.028 0.665± 0.091 0.609± 0.024 0.65± 0.10
4 0.772± 0.028 0.677± 0.092 0.769± 0.026 0.666± 0.097
5 0.780± 0.026 0.687± 0.091 0.803± 0.023 0.673± 0.091

Table 3.1: Comparison of the approximation ratio of Nelder-Mead
(NM) and Meta-Learning (QRNN) methods for different 3-Regular

Graphs for n = 10 and p = 1, 2 at different optimization steps.

Figure 3.5: Comparison of the 5 first steps between the Nelder-Mead
and the Meta-Learning optimization processes for n = 10 on irregular

graphs.

is higher than the one obtained with the classical optimization method after achieving
a stable regime. This shows that this approach is also able to obtain better minima
for the QAOA circuit.

Irregular Graphs

Following the same methodology than the previous section to generate the irregular
graphs, we are going to perform a similar set of experiments to compare the perfor-
mance of this methodology with a more complex set of Max-Cut problem instances.

The comparison between the two QRNN and the classical optimization method
can be seen in the figure 3.5, which again shows a superior performance than the
classical optimization technique.

The comparison of the results can be seen in the table 3.2. This comparison shows
similar results to what we have seen in the case of the 3-Regular graphs, and the
average improvement of the QRNN approach is even larger after 5 timestemps when
compared with the classical optimization method than in the case of 3-Regular graphs.
This could be because with more complex graph instances, it is easier to get trapped
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Step p = 1 p = 2
QRNN NM QRNN NM

1 0.530± 0.028 0.569± 0.096 0.533± 0.028 0.57± 0.10
2 0.537± 0.028 0.598± 0.096 0.533± 0.028 0.57± 0.10
3 0.678± 0.035 0.612± 0.094 0.540± 0.029 0.591± 0.098
4 0.747± 0.035 0.622± 0.094 0.745± 0.036 0.611± 0.096
5 0.760± 0.036 0.632± 0.095 0.783± 0.035 0.622± 0.094

Table 3.2: Comparison of the approximation ratio of Nelder-Mead
(NM) and Meta-Learning (QRNN) methods for different Irregular

Graphs for n = 10 and p = 1, 2 at different optimization steps.

Figure 3.6: Approximation ratio of the meta-learning approach on
instances bigger than one ones the model has used for training (n = 10)

at different values of p.

in poor local minima with the classical approach.

Generalization to larger n

Finally, we are going to use the meta-learning models trained on a certain type of
graphs to see if they can still perform well with other type of instances. In particular,
we are going to use the models trained with instances in which n = 10 to see the
performance of problems in which n = 12, 14. With these experiments, we hoe to
see the generalization capability of these meta-learning methods applied to quantum
circuits.

One thing to notice though, is that this approach does not let us generalize to
higher values of p, as each internal RNN cell from the QRNN is forced to output
exactly the number of values for which it has been trained. Then, in order to use this
model with other p values, we would have to create them ad-hoc.

We can see the results from the optimization in the figure 3.6. In these plots we
can see how the QRNN trained on instances with n = 10 is able to propose good
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initial parameters for the case n = 12. We can also see for this case that the be-
haviour is similar to the previous one, in which the optimizer uses the first steps to
explore and then it applies the best parameters for the final steps. However, we can
also see that this behaviour will not always happen. When increasing the size of the
problem, we can see how the performance of the model gets diminished. This could
be explained because these larger instances are very different than the cases explored
while training, and thus the patterns discovered for these cases do not hold anymore.

This results shows that we can transfer the learning from this architecture to other
similar problems, and that this meta-learning method is able to detect some general
patterns from these type of problems. An open question is whether or not this learned
knowledge could be transferred to other problems than the Max-Cut using the same
QAOA framework.
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4 Conclusions

In this work we have explored some of the main problems from the variational quantum
algorithms, and in particular the Quantum Approximation Optimization Algorithm
method applied to the Max-Cut problem. When solving these kind of problems, we
mainly need to find the best set of parameters for a parametrized quantum circuit.
There are two main challenges to solve this problem though. On the one hand, most
optimization methods involve the computation of gradients or higher order differentials
of the model with respect to its parameters, something which would require a large
amount of measurements on an actual quantum device. Secondly, these optimization
methods are highly dependent on the initial parameters, and good initialization tech-
niques are required to keep a low amount of calculations in order to be able to use
this methods in near-term quantum devices.

In the first part of this thesis we have seen the theoretical framework of the varia-
tional methods and we have seen how we can implement combinatorial optimization
problems in quantum circuits. In order to highlight the main challenges when opti-
mizing these circuits, we have used a classical optimization method to get the optimal
parameters for different sets of problems. Here we have seen that with these ap-
proaches a high number of measurements are needed in order to obtain good sets of
parameters. Several clever methods to obtain deeper circuits exist in the literature,
which shows to improve the approximation with these algorithms, however, these
methods rely on Greedy optimizations and we can not get rid of this initial overhead
without other heuristics.

In the second part we have explored the meta-learning optimization approach
which has shown great success in different optimization areas. We have seen how the
use of this approach is able to provide good initial parameters for quantum optimiza-
tion problems. In the experiments that we have performed, we have seen how these
approaches are able to explore different parameters, and are able to provide parame-
ters that are more robust to get near poor local minima.

This approach is much more less demanding than the classical optimization meth-
ods, in terms of the number of queries required on an actual quantum device. At the
moment of inference, this method is only required to compute the expectation value
of the circuit a few times, and no gradient computations are needed. This makes the
studied approach a good candidate of a method that could be trained on a near-term
quantum device.

Although for training we would require to compute the gradients to back-propagate
the errors, we have seen how these can be computed efficiently in a quantum device
using the analytical gradients of the circuit. This is a much more robust approach
than finite differences methods, given that the measurement of a quantum circuit has
a stochastic nature. Although we could compute the analytical gradient with the
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parameter shift method, we would still need to compute approximations of these gra-
dients given the large amount of measurements needed in large circuits.

Finally, we have seen how this approach is able to generalize to instances which
the model has not seen before. This shows that QRNNs are able to discover general
patterns in quantum circuits and apply this knowledge to other quantum problems,
even though the nature of the optimizer is classical.
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