
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

Grau en Enginyeria Informàtica (GEI)

Computació

Development of a Tensor algebra DSL
for HPC platforms

Roger Vilaseca Darné
(roger.vilaseca.darne@estudiantat.upc.edu) // (roger.vilaseca@bsc.es)

Director:
Dr. Eduard Ayguadé Parra, Computer Architecture Department

Codirector:
Dr. Vicenç Beltran Querol

Barcelona, 26th October 2020

ii

Abstract

In recent years it has been created a new model to generate domain-specific languages
called Multi-Level IR, this model lets to optimize the different depictions of the code.
To try this new model has been decided to develop a domain-specific language about
the tensor algebra. This project will let the creation of a new DSL that will facilitate
the work of many experts when it is needed to make calculations of this type of data
structure.

iii

iv

Resum

En els darrers anys s’ha creat un nou model per generar llenguatges de domini espećıfic
anomenat Multi-Level IR, aquest model permet optimitzar les diferents representacions
del codi. Per tal de provar aquest nou model, s’ha decidit desenvolupar un llenguatge
de domini espećıfic sobre l’àlgebra de tensors. Aquest projecte permetrà engegar la
creació d’un nou DSL que facilitarà la feina de molts experts a l’hora de realitzar
càlculs amb aquest tipus d’estructures de dades.

v

vi

Resumen

En los últimos años se ha creado un nuevo modelo para generar lenguajes de dominio
especifico llamado Multi-Level IR, este modelo permite optimizar las diferentes repre-
sentaciones del codigo. Por tal de probar este nuevo modelo, se ha decidido desarrolar
un lenguage de dominio especifico sobre la algebra de tensores. Este proyecto permitirá
empezar la creacion de un nuevo DSL que facilitará el trabajo de muchos expertos en
el momento de realizar calculos con este tipo de estructura de datos.

vii

viii

Table of Contents

1 State of the art . 1

1.1 Context . 1

1.2 Problem formulation . 2

1.3 Stakeholders . 2

2 Motivation . 3

3 Project Scope . 4

3.1 Project objectives . 4

3.2 Requirements . 4

3.2.1 Functional requirements . 4

3.2.2 Non-functional requirements . 4

3.3 Potential obstacles and Risks . 5

3.3.1 MLIR in development . 5

3.3.2 Virus / fatal error on laptop . 5

3.3.3 Other kind of virus . 5

4 Methodology . 6

4.1 Working method . 6

4.2 Tracking tools . 6

4.3 Validation method . 7

5 Time planning . 8

5.1 Task description . 8

5.1.1 Project Management . 8

ix

5.1.2 Learning MLIR . 9

5.1.3 Learning Tensor Algebra . 9

5.1.4 TEAL DSL description . 9

5.1.5 Develop of the TEAL Language 9

5.1.6 Lowering to the TEAL Dialect 10

5.1.7 Lowering to MLIR Dialects . 10

5.1.8 Lowering to LLVM . 10

5.1.9 Evaluation . 10

5.1.10 Thesis writing and defence . 10

5.2 Timing . 11

5.3 Task dependencies . 11

5.4 Resources . 11

5.4.1 Hardware . 11

5.4.2 Software . 12

5.4.3 Human Resources . 12

5.4.4 Spaces . 13

5.5 Workarounds and action plan . 13

5.6 Gantt diagram . 13

6 Economic Management . 16

6.1 Budget . 16

6.1.1 Direct costs . 16

6.1.2 Indirect costs . 17

6.2 Risk management . 18

6.3 Final budget . 19

7 Sustainability . 21

7.1 Self-assessment of the current domain of sustainability 21

7.2 Economic dimension . 21

7.3 Environmental dimension . 22

7.4 Social dimension . 22

x

8 Multi-Level IR . 24

8.1 Standard Types . 25

8.1.1 Integer . 25

8.1.2 Floating-Point . 25

8.1.3 MemRef . 25

8.1.4 Index . 25

8.2 Dialects . 25

8.2.1 Affine . 26

8.2.2 STD . 26

8.2.3 SCF . 27

9 Tensor forms . 28

9.1 What’s a Tensor . 28

9.2 2 Dimensional Tensor (Vector) . 29

9.3 4 Dimensional Tensor (Matrix) . 29

9.4 Operations Implemented . 30

9.4.1 Addition and Substraction . 30

9.4.2 Tensor-Vector Multiplication (TVM) 30

10 Implementing TEAL . 32

10.1 TEAL Language . 32

10.2 TEAL Dialect . 32

10.3 Affine/Standard Dialect . 34

10.4 SCF/Standard Dialect . 36

10.5 Scalar (LLVM IR) . 37

10.6 Reproduce the code . 38

11 Execution of the kernel . 39

12 Conclusion . 41

13 Future work . 42

Bibliography . 43

xi

List of Figures

5.1 Gantt diagram of the project 2019. 14

5.2 Gantt diagram of the project 2020. 15

8.1 MLIR phases and optimizations . 24

9.1 Representation of a tensor . 28

9.2 Blocks inside a Vector . 29

9.3 Elements inside a Block . 29

9.4 Vector representation . 29

9.5 Blocks inside a Matrix . 29

9.6 Elements inside a Block . 29

9.7 Matrix representation . 30

9.8 Addition example . 30

9.9 TVM by row example . 31

10.1 Phases of the TEAL Compiler . 32

10.2 Example of an operation in TEAL Language(1) 32

10.3 Parser rules(2) . 33

10.4 Example of an AST from TEAL Language 33

10.5 Example of TEAL Dialect Representation 34

10.6 Example of Affine and Standard Dialect Representation 35

10.7 Example of SCF and Standard Dialect Representation 36

10.8 Short example of LLVM IR Representation(3) 37

11.1 MemRefs Data structure . 39

11.2 Column-major order . 39

xii

List of Tables

5.1 Estimated time in hours for task. 11

5.2 Prerequisites for task. 12

6.1 Cost of human resources. 16

6.2 Cost of software resources. 17

6.3 Cost of hardware resources. 17

6.4 Indirect costs. 17

6.5 Final budget. 20

xiii

1 | State of the art

Domain-Specific Languages (DSLs) [1] are small programming languages designed to
be used in the solution of problems from a specific domain.

Some times these DSLs need different levels of abstraction to optimize the generated
code, here appears the Multi-Level Intermediate Representation (MLIR) [2, 3].

The project will be focused on the creation of a Tensor Algebra DSL using the MLIR
tool, taking advantage of all its potential.

1.1 Context

This project is a Bachelor Thesis from the Bachelor Degree in Informatics Engineering
done by the Facultat d’Informàtica de Barcelona (FIB) being part of the Universi-
tat Politècnica de Catalunya - BarcelonaTech (UPC). This project has been done in
the Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-
CNS) with the purpose to research in the creation of a DSL through MLIR and see
the potential of this IR.

MLIR has been designed to let multiple support requirements in a unified infrastruc-
ture. But we will focus on the following:

• Representation of kernels for ML operations in a form suitable for optimization.

• Ability to host high-performance-computing-style loop optimizations across ker-
nels (fusion, loop interchange, tiling, etc) and to transform memory layouts of
data.

• Code generation “lowering” transformations such as DMA insertion, explicit
cache management, memory tiling, and vectorization for 1D and 2D register
architectures.

To do it, we will reproduce a subset of The Tensor Algebra Compiler (TACO), which
is a C++ library created to compute tensor algebra expressions on sparse and dense
tensors [4, 5].

1

1.2 Problem formulation

MLIR has been designed to be a new tool in the creation of DSLs, but being such a
new tool, nobody knows what its maximum potential is. Still, we know that it can be
a great tool to support multiple different requirements.

TACO is an existing library created to compute tensor algebra expressions. This
library has already defined a domain and has an open repository, which will be very
useful in the task of implementing a subset of it using MLIR.

A TACO DSL will be created, which will have the name of TEnsor ALgebra DSL
(TEAL DSL). This DSL will generate kernels that will solve all kind of operations
with even sparse or dense tensors in the future.

Even though in this project will be developed only the dense tensors and the following
operations.

• Addition and subtraction

• Tensor-vector multiplication

When the project starts, our ambition wanted to create the whole DSL during the
planned months. But when we begin to develop it, we realized that this would be
unreachable, and finally decided to reduce it.

1.3 Stakeholders

• Companies - There are lots of companies nowadays that work with large groups
of data, generally represented in sparse form. A DSL that solves problems with
this data efficiently will let the researchers in that company work with them
without knowing how doing the complex computation of them.

• Researcher - The researcher will be the responsibility to achieve the project, that
includes doing the planning, development, implementation and documentation.
Also will have to make conclusions and an auto review about the project.

• Project director - The project director will be the person who guides the re-
searcher to achieve the objective. He will do that doing weekly meetings with
the researcher to see the evolution of the project.

2

2 | Motivation

MLIR is a technology still in development that was presented in February 2019 by the
Tensorflow group on Google, and since the 24th of December 2019, was developed by
them. After that day the project was moved to the LLVM project, who are now the
leading developers of MLIR.

For this reason, there are not many examples done with MLIR yet, but the BSC
committed with this project and want to know how powerful it is.

In that point, we had to find which is the best project to implement with MLIR.
First of all, we thought about Saiph; a DSL developed at BSC for simulating physical
phenomena modelled by Partial Differential Equations systems [6]. The problem with
this DSL is that it is still in development and this makes it difficult for us to create
our version of the DSL with MLIR.

After a few more research we came across with TACO, a C++ library used as a Tensor
Algebra Compiler. We found this library interesting because it was well delimited and
defined, also has his repository on GitHub [5].

Finally comparing both options, we decided in favour of creating a new DSL based
on the TACO library, leading to the final user of the DSL the opportunity to do
tensor algebra operations without the necessity of knowing any previous programming
language.

3

3 | Project Scope

It is impossible to start a project without defining the objectives and how to reach
them. Also, we have to take into account the problems that can appear during the
process of development.

3.1 Project objectives

The main objective of this project is to research with the MLIR tool and to know its
potential. To do this, it will be compared the ease to create a DSL using MLIR with
the use of other similar tools; calculate the execution times of the created DSL, trying
to minimize them as much as possible.

From the last objective, the objective of creating a tensor algebra DSL appears. Based
on this significant objective, we will have to delimit the subset of operations to imple-
ment.

3.2 Requirements

3.2.1 Functional requirements

• The DSL will let the user enter a code based in a combination of operations
based on Tensor Algebra.

• The DSL will return an LLVM code to be executed on the computer.

3.2.2 Non-functional requirements

• The code will be optimized to create a more efficient program.

• The DSL will return errors and warnings explaining to them if the code provided
is not correct.

4

3.3 Potential obstacles and Risks

3.3.1 MLIR in development

In some point of the development of the DSL, we could be reached a point where we
could get stuck without knowing how to continue. This problem comes with a huge
obstacle, the lack of documentation of MLIR because it is a very new tool and there
are some things still in development.

To overcome this obstacle, we will have to use the MLIR Google Group [7]. The use of
this group will be beneficial but sometimes to get a question may pass too much time.

3.3.2 Virus / fatal error on laptop

In any computer environment, can appear different problems like virus, memory cor-
ruption, an unexpected closure etc. This problem may finish with the loose of previous
developing hours or in an extreme case can cause irreparable damage to the laptop.

In order to minimize the problems occasioned by this risk, we have to save in the cloud
our project continuously, avoiding losing as much information as possible. To do it,
we will use GitLab [8] to keep our project in the cloud, even though the problem will
cause a loss of hours to repair the laptop and prepare it for use.

3.3.3 Other kind of virus

It can appear other kinds of virus in our society that creates difficulties to do group
projects.

If this happens, we will adapt to work in a decentralized manner and use the existing
technologies of virtual conferences to work with the group.

5

4 | Methodology

For the project, we will work using an Agile methodology, which lets us have a stable
and feasible development.

4.1 Working method

The project will be done using an iterative method, based on having stable versions of
the project and working with the newest version to create the next one. Each iteration
will be divided into the following parts:

1. Analyze the status of the project

2. Set the improvements to be done in this iteration

3. Develop the improvements

4. Evaluate the result

The iterations will be done until reaching the goal of the project.

We will create some test suites to check the correctness of the completed iteration; it
will show the correctness of all the program.

4.2 Tracking tools

In order to implement this methodology, it will be used GitLab [8], an Open Source
tool used to develop collaborative software and to handle version control.

In this repository, it will be able the stable versions of the project, which the director
and people of the working group have access. There is also a private part where only
I have access where it will be the source code of the iteration that is being created at
that moment.

6

4.3 Validation method

In order to maintain the project correctly focused, the working group will do weekly
meetings. In which it will be evaluated the work done during the previous week and
to discuss, which will be the next iterations to develop.

7

5 | Time planning

This chapter defines the planning of the project. The project is split into different
tasks, which has dependencies between them and needs some resources. This will be
illustrated with a Gantt diagram in section 5.6.

In this part, it will be discussed the setbacks that can appear, how could affect the
plan and the resources, and how it can be fixed.

The time planning has been modified because before the project starts, it seemed to us
that the creation of the first part of the project would be more straight forward. After
the first month of development, we realized that the parallelization and the design
of the sparse tensors would be unreachable. For that reason, we modified the time
planning to accurate the objective.

5.1 Task description

Here it will be explained the different tasks that compromise the project.

5.1.1 Project Management

This tasks regards to the subject Gestió de Projectes (GEP). This task is distributed
in smaller once regarding the different deliverables.

• ICT tools: 4 hours

• Context and Scope: 24.5 hours

• Time planning: 8.25 hours

• Budget and sustainability: 9.25 hours

• Personal and professional skills for Project and Team Management: 2.25 hours

• Final document: 18.25 hours

During the course of the subject it will be used: LATEX, Visual Studio Code as the
editor, pdflatex as the compiler, Google, Atenea and El Racó.

8

5.1.2 Learning MLIR

As it is explained in this section 3.1 to create the DSL, it will be used MLIR. As MLIR
it is one of the newest created IRs, it will need a certain amount of time to learn how
MLIR works. In this task, it will be needed to analyze the code in order to use each
functionality properly. It will be used the Toy example, created to learn the different
parts that have to be followed to create a DSL. Finally, to practice before starting our
DSL, it will be implemented new functionalities to the Toy example.

The time for this task it will be distributed in the following way:

• What’s MLIR?: 40 hours

• Study the Toy Example: 120 hours (About 20 hours for chapter)

• Implementing new features: 60 hours

It will be used: Git, Gitlab, Github, Visual Studio Code, Vim, GCC and Bash.

5.1.3 Learning Tensor Algebra

Tensor Algebra is an essential part of the project, such it is the theme of the DSL.
This creates a necessity of studying the domain.

For this part, it will be used: Google, Youtube, books, and articles related to this topic.

5.1.4 TEAL DSL description

One of the essential parts of the creation of the DSL is to determine which will be the
syntax of the DSL and which functionalities will have the DSL. If this part is not done
properly, it will cause lots of problems in the process of implementation.

For this part, it will be used any available code editor to define it.

5.1.5 Develop of the TEAL Language

In this part, we will generate the lexer, the parser and the resulting Abstract syntax
tree (AST) of our language. This part is essential to do it properly in the begging
because if there exists an error or an inconsistency in this part, we might drag it to
the next tasks.

C++ will be used as the implementation language, using the GCC (GNU Compiler
Collection) in order to compile it and Visual Studio Code as code editor.

9

5.1.6 Lowering to the TEAL Dialect

After getting the ASTwe will create the TEAL Dialect, which consists of the different
kind of operations that will be able to resolve the TEAL DSL. This task will be done
in parallel with the lowering to the MLIR dialects because each operation will be
developed to the end.

C++ will be used as the implementation language, using the GCC (GNU Compiler
Collection) in order to compile it and Visual Studio Code as code editor.

5.1.7 Lowering to MLIR Dialects

MLIR has a set of dialects already created, that lets the programmers transform their
dialects to these and then make the lowering to LLVM easier. In our project, we will use
the Affine Dialect, the Standard Dialect and the SCF Dialect. These dialects will let
us create the loops, work with the part of the tensor that we need, do basic operations
with the tensors etc. Firstly it will be done a Lowering to Affine and Standard Dialects
and then to SCF and Standard Dialects.

It will be used the same resources than in Section 5.1.6.

5.1.8 Lowering to LLVM

The final implementation will consist of converting the resulting code of the previous
task to a language that any computer could understand, in this case, LLVM.

It will be used the same resources than in Section 5.1.6.

5.1.9 Evaluation

In this part, the DSL will be tested to evaluate the correctness of our DSL, generating
tests and checking if it returns the desired results.

C++ will be used as the implementation language to create the problems, using the
GCC (GNU Compiler Collection) in order to compile it and Visual Studio Code as
code editor.

5.1.10 Thesis writing and defence

All the research done will be concentrated in the thesis document with all the knowl-
edge and results obtained. Afterwards, a slide presentation has to be done to defend
it.

It will be used: LATEX, Visual Studio Code as the editor and pdflatex as the compiler
in order to do the documentation and Microsoft PowerPoint in order to do the slides
for the defense.

10

5.2 Timing

It will be assigned an approximate duration to each task specified in Table 5.1. The
duration are explained in 5.1.

Task Time (h)

Project Management 66.5
Learning MLIR 220
Learning Tensor Algebra 40
TEAL DSL description 40
Develop of the TEAL Language 50
Lowering to the TEAL Dialect 50
Lowering to MLIR Dialects 175
Lowering to LLVM 25
Evaluation 33.5
Thesis writing and defense 60

Total 760

Table 5.1: Estimated time in hours for task.

5.3 Task dependencies

In order to do some of the tasks described in 5.1, other tasks must be completed. The
prerequisites are exaplained here in Table 5.2.

5.4 Resources

To do this project, it will be needed several resources.

5.4.1 Hardware

• Laptop: DELL Latitude 7490

– CPU: Intel® Core™ i7-8650U

– Memory: 16GB

• High Performance Computer: We already don’t have it.

11

Task Prerequisites

Project Management -
Learning MLIR -
Learning Tensor Algebra -
TEAL DSL description Learning MLIR

Learning Tensor Algebra
Develop of the TEAL Language DSL description
Lowering to the TEAL Dialect Develop of the TEAL Language
Lowering to MLIR Dialects Lowering to the TEAL Dialect
Lowering to LLVM Lowering to MLIR Dialects
Evaluation Lowering to LLVM
Thesis writing and defense Evaluation (But some documentation

can start previously)

Table 5.2: Prerequisites for task.

5.4.2 Software

• Ubuntu Linux: GNU/Linux distribution on the laptop.

• Git: Decentralized version control system.

• GitLab: Git repository management server, used by the BSC.

• GitHub: Git repository management server, used by hosting MLIR.

• C++: Main programming languaged used to develop the project.

• GCC: GNU compiler, used to compile the MLIR code.

• GDB: GNU debugger, used to fing bugs in the C++ codes.

• Visual Studio Code: Text editor.

• LATEX: Computer typewriting system.

• Microsoft Office 365: Online office package used to create slides.

• Google Chrome: Web browser.

5.4.3 Human Resources

In this project will participate, two directors, some support staff and the developer,
which is the student.

12

5.4.4 Spaces

The spaces for this project will be in the BSC:

• A desk where the project will be developed.

• A meeting room where will be done the weekly meetings with the project director.

5.5 Workarounds and action plan

It can be found different types of workarounds, that can cause a different type of
deviations of the project plan.

If the workaround found is a small one, like a bug in the development part, as the
methodology used is an Agile one, the sprints that appear weekly may be extended
causing the necessity of doing a little more hours in the problem.

If it is bigger, the workaround can cause an extension at the end of the project. This is
possible given that the project is set to end in August, but it should not be delivered
and defended until October.

5.6 Gantt diagram

The Gantt diagram is divided into two figures, the diagram of the 2019 and the diagram
of 2020. Each Gantt diagram shows in the ”y” axis month and week number. Each
week in the Gantt diagram will represent an amount of work of 20 hours. When there
are tasks overlapping, the 20 hours will be distributed between them.

13

2019

09 10 11 12

38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253

Learning MLIR

First steps

Learn Ch1

Learn Ch2

Learn Ch3

Learn Ch4

Learn Ch5

Learn Ch6

Learn Ch7

Increase Example

Learn Lineal Algebra

Fig. 5.1: Gantt diagram of the project 2019

14

2020

01 02 03 04 05 06 07 08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3334

Project management

Context and Scope

Project plan

Economical plan

Final document

TEAL DSL description

TEAL Language

Low. TEAL Dialect

Low. MLIR Dialects

Low. LLVM

Evaluation

Thesis writing and defense

Fig. 5.2: Gantt diagram of the project 2020

15

6 | Economic Management

This chapter shows the planned budget for the project. There is also the possible
deviations in the budget.

6.1 Budget

6.1.1 Direct costs

The direct costs for the project are those that are derived directly from the project.

Human resources

In the project, there are different types of people working on it. First of all, we take
into account the Informatic Engineering student who is developing the software, paid
by the student cooperation contract for the UPC. There will also be other BSC Staff
like the director who spends one hour per week in the project tracking and some
workmates that give some help in problems that they are experts.

Resource Price (€/h) Amount (h) Total (€)
Informatic Engineering Student 9 760 6840
Project Director 20 43 860
Experts 20 60 1200
Total 8900

Table 6.1: Cost of human resources.

All the costs calculated above are gross salary, this means that the national insurance
and IRPF are included.

Software resources

The price of the software will be calculated based on the cost of each product, how
many time can be used and, the amortization of it.

16

Resource Price (€) Life (months) Amortization (€/h)
Ubuntu Linux 0 - 0
Git, GitLab, Github 0 - 0
GDB, GCC, C++ 0 - 0
Vim, VSCode 0 - 0
LATEX 0 - 0
Microsoft Office 365 7 /month 2 0.7
Google Chrome 0 - 0
Total 0.7

Table 6.2: Cost of software resources.

As shown in Table 6.2, most of the software is free or Open Source, which means that
it has no cost. In the final budget will only appear the ones that have to be paid.

Hardware resources

The costs regarded to the Hardware are explained in Table 6.3. The amortization will
be calculated, taking into account that the machines will be used after the project.

Resource Price (€) Life (years) Use (hours/day) Amortization (€/h)
BSC Laptop 2000 4 4 0.46
Total 0.46

Table 6.3: Cost of hardware resources.

6.1.2 Indirect costs

Indirect costs are those caused by the project but not directly.

It is taken into account the power of the laptop and the high-performance computer,
a flat internet rate and the costs of an office in Barcelona.

Resource Price Amount Total (€)
BSC Laptop Power 0.1349 €/KWh 65 W * 760 h 6.67
Internet 40 €/month 12 months 480
Office 260 €/month 12 months 3120
Furniture - - 1500
Office services 125 €/month 12 months 1500
Total 6606.67

Table 6.4: Indirect costs.

17

6.2 Risk management

There is one primary risk contingency in our project; thus the number of hours have
been calculated counting the hours that the developer might spend fixing bugs, this
contingency will be global and based on a 10%. This quantity will be enough to replace
any material would need to be bought in any setback scenario, and the time related
to its installation.

18

6.3 Final budget

Taking into account all the costs described in Tables 6.1, 6.2, 6.3 and 6.4, the Table
6.5 sum ups the budget of the project.

Resource Units Price (€/unit) Total (€)

Project management

BSC Laptop 66.5h 0.46 30.59

Student 66.5h 9 598.5

Learning MLIR

BSC Laptop 220h 0.46 101.2

Student 220h 9 1980

Project Director 13h 20 260

Expert 20h 20 400

Learning Tensor Algebra

BSC Laptop 40h 0.46 1.84

Student 40h 9 360

Project Director 2h 20 40

Expert 2h 20 40

TEAL DSL description

BSC Laptop 40h 0.46 1.84

Student 40h 9 360

Project Director 3h 20 60

Expert 2h 20 40

Develop of the TEAL Language

BSC Laptop 50h 0.46 23

Student 50h 9 450

Project Director 3h 20 60

Expert 5h 20 100

Lowering to the TEAL Dialect

BSC Laptop 50h 0.46 23

Student 50h 9 450

Project Director 3h 20 60

Expert 6h 20 120

Lowering to MLIR Dialects

BSC Laptop 175h 0.46 80.5

Student 175h 9 1575

Project Director 11h 20 220

19

Expert 20h 20 400

Lowering to LLVM

BSC Laptop 25h 0.46 11.5

Student 25h 9 225

Project Director 2h 20 40

Expert 3h 20 60

Evaluation

BSC Laptop 33.5h 0.46 15.41

Student 33.5h 9 301.5

Project Director 3h 20 60

Expert 2h 20 40

Thesis writing and defense

BSC Laptop 60h 0.46 27.6

Microsoft Office 365 20h 0.7 14

Student 60h 9 540

Project Director 4h 20 80

Indirect costs

BSC Laptop Power 760h 0.0087 6.67

Internet 12 months 40 480

Office 12 months 260 3120

Furniture - - 1500

Office services 12 months 125 1500

Subtotal 15837.15

Contingency 10% 1583.72

Total without VAT 17420.87

VAT 21% 3658.38

Total 21079.26

Table 6.5: Final budget.

20

7 | Sustainability

7.1 Self-assessment of the current domain of sustain-
ability

By completing the questionnaire, I have realised my degree of knowledge regarding
the sustainability of the projects associated with ICT. At first, I realised that the vast
majority of aspects to be valued had a specific experience, but not the result of which
I have learned to the subjects of the career, but in courses that I have done outside
the field of ICT, but that knowledge can be brought to them.

In the economic aspect, I have realised that there are many aspects to take into account
when carrying out an ICT project, but many hits, at first sight, are not taken into
account. This can end up causing a lack of fluid when carrying them out. Even so, I
believe that having met them during the creation process, all possible variables have
been included.

In the social aspect, I have always believed that when a project has to be developed,
there must be moral grounds, it might not have groups of society that feel harmed by
the created project. Even so, I think that you can always learn more about this topic
and therefore be able to deepen and take it into account in future projects.

Finally, in the environmental aspect, I believe that our western society currently knows,
but does not take into account, the significant problems that ICTs cause in the world
at the time of developing new projects. That is why I believe that a worldwide effort is
needed, including myself, in minimising the environmental impact of the technologies
that are generated.

7.2 Economic dimension

Reflection on the cost you have estimated for the completion of the project

First of all, when the cost has finished, it seemed to me that the price was too high.
After reviewing the calculus, I realised that the cost was all correct. After thinking
about it, I realised that the vast amount of budget was related to the indirect costs

21

associated with the project, because the second significant amount was the destinated
hours, but them where necessary. The cost of renting an office in Barcelona is very
elevated even for the places destined in the creation of new projects.

How are currently solved economic issues related to the problem that you want to
address? How will your solution improve economic problems concerning other
existing solutions?

Nowadays, there is no solution for the Tensor Algebra that generates a program directly
from an expression. This means that companies that have to work with this kind of
problems will arrive at a solution faster than before answers.

7.3 Environmental dimension

Have you estimated the environmental impact of the project?

The software will be implemented in a machine specialised in the operations that will
generate the DSL. This will cause a decline in consumption in comparison to the use
of other devices.

Did you plan to minimise its impact, for example, by reusing resources?

Some of the resources of the project are reused; for example, the laptop used to work,
have been used for previous researchers in the company. Also, the HPC machine will
be used after the project is finished.

How is currently solved the problem that you want to address? How will your
solution improve the environment concerning other existing solutions?

As it is explained previously, the project tries to parallelise the solution, generating an
improvement in the speed during the execution.

7.4 Social dimension

What do you think you will achieve -in terms of personal growth- from doing
this project?

The project is related to the topics I found most interesting during the degree. This
means that improving with these topics will cause a better preparation for the jobs I
would be able to do after finishing the degree.

22

How is currently solved the problem that you want to address? How will your
solution improve the quality of life for other existing solutions?

Taking into account that there is not a real solution for this problem that generates
an immediate answer, this project will let to the users to minimise the hours that they
spend on resolving this type of problems.

Is there a real need for the project?

Nowadays, there is not an IT direct solution to the problem.

23

8 | Multi-Level IR

The Tensor Flow group in Google developed the Multi-Level IR (MLIR) [2] in 2019
and aimed to reduce the cost of building domain-specific compilers, connect existing
compilers etc.

In early 2020 MLIR was integrated inside the LLVM project, making easier the tasks
of improving the language and a better discussion place to extend it.

MLIR has been choosen to develop this project as it allows to perform optimizations
at different levels of representation.

Fig. 8.1: MLIR phases and optimizations

24

In this part of the project, it will be explained which resources of the MLIR will be
used to generate our DSL.

8.1 Standard Types

The Standard Types ara the data structures used to represent a different kind of
information that is needed to implement the DSL.

8.1.1 Integer

The Integer Type is a standard type used to represent integer numbers. There are
different kind of sizes for Integer type going from one to thirty-two bits. It exists the
possibility to use it only for natural numbers.

8.1.2 Floating-Point

The Floating Point Type is a type used to represent the real numbers. There are
different kind of sizes for Floating-Point type going from sixteen to sixty-four bits.

8.1.3 MemRef

The MemRef Type is used to represent a reference to a region of memory. The MemRef
allow the programmers to alloc memory and read and write data from the memory
space.

MemRefs are descrived using dimensions, having each different dimension sizes, and
having the possibility of having unknown sizes or an unknown number of dimensions.
This makes it easier to interpret our tensors as MemRefs when are entered in functions
when it isn’t known the sizes of the dimensions.

8.1.4 Index

The Index Type is used to represent natural numbers in order to use it to refer to the
elements of the MemRef.

8.2 Dialects

Dialects are sets of defined operations, uses to separate different hardware and software
targets.

25

MLIR contains eighteen Dialects, and the users use them to transform the languages
that they create to equivalent languages formed by the operations that include. Also,
MLIR has methods to convert the operations of one Dialect to another; in our project,
this will be used to transform it until LLVM IR.

The following Dialects will be te used for the project:

8.2.1 Affine

The Affine Dialect contains operations used to creating loops and accessing the Mem-
Refs Types. It is also specialized for Polyhedral Representations and Optimizations.
The operations used are the following:

• affine.for %i = %min to %max step %s : Used to create loops. %i is an index
that represents the induction variable, %min is the lower-bound value, %max is
the upper-bound value and %s is the steps between each iteration.

• %res = affine.load %A[%i] : It is used to obtain a value stored in MemRef co-
ordinates. %A is the MemRef from where we want to pick up the data, %i is a
coordinate that we want to access (there can be more coordinates separated by
commas if the MemRef has multiple dimensions) and %res is the value that has
been loaded.

• affine.store %val, %A[%i] : It is used to save a value in MemRef coordinates.
%val is the value that it is wanted to store, %A is the MemRef from where we
want to pick up the data and %i is a coordinate that we want to access (there can
be more indexes separated by commas if the MemRef has multiple dimensions).

8.2.2 STD

The Standard (STD) Dialect is used to create basic operations like additon or multi-
plication. The STD operations used in our program will be the following:

• %a = std.addi %b, %c: It is used to do an integer addition. %a is the result and
%b and %c are the operands.

• %a = std.addf %b, %c: Similar to std.addi but with floats.

• %a = std.muli %b, %c: It is used to do an integer multiplication. %a is the
result and %b and %c are the operands.

• %a = std.mulf %b, %c: Similar to std.muli but with floats.

• %a = std.subi %b, %c: It is used to do an integer substraction. %a is the result
and %b and %c are the operands.

26

• %a = std.subf %b, %c: Similar to std.subf but with floats.

• %a = std.diviu %b, %c: It is used to get the quotient from an integer division.
%a is the result and %b and %c are the operands.

• %a = std.remiu %b, %c: Similar to std.diviu but obtains the remainder.

There are other operations used from STD like std.load, but these aren’t used directly
by the programmer, these operations are obtained when doing a transformation from
the Affine Dialect.

8.2.3 SCF

The final Dialect used in this project is the SCF Dialect, for generating loops or
conditions. This Dialect isn’t used directly by the programmer; the operations used
are obtained in a transformation from the Affine Dialect.

27

9 | Tensor forms

In this part of the thesis, it will be explained how the Tensors will be considered for
this project.

9.1 What’s a Tensor

A Tensor is a data structure conformed by multiple elements; in this case, it will be
formed only by doubles (8-byte floating-point number).

Tensors can have multiple dimensions having similarities with n-dimensional matrices.

Fig. 9.1: Representation of a tensor

Each tensor will be formed by blocks and elements, making that for each dimension
that we want for elements, it will be an extra one to create the blocks. For this project,
we will only use four-dimensional tensors as matrices and two-dimensional tensors as
vectors to delimit the scope of the project.

28

9.2 2 Dimensional Tensor (Vector)

Each tensor of this kind is represented using a MemRef of two dimensions, the first
one with the number of blocks and the second one with the number of elements.

b0
b1
..

bn

Fig. 9.2: Blocks inside a Vector

e0
e1
..

en

Fig. 9.3: Elements inside a Block

b0/e0
b0/e1
....

b0/en
b1/e0
b1/e1
....

bn/en

Fig. 9.4: Vector representation

9.3 4 Dimensional Tensor (Matrix)

The tensor that represents a Matrix follows a similar composition as in the vector, but
this time with two dimensions for the elements and two for the blocks, as can be seen
in the following figures.

b0,0 b0,1 ... b0,n
b1,0 b1,1 ... b1,n
...

bn,0 bn,1 ... bn,n

Fig. 9.5: Blocks inside a Matrix

e0,0 e0,1 ... e0,n
e1,0 e1,1 ... e1,n
...

en,0 en,1 ... en,n

Fig. 9.6: Elements inside a Block

29

b0,0/e0,0 b0,0/e0,1 ... b0,0/e0,n b0,1/e0,0 b0,1/e0,1 ... b0,n/e0,n
b0,0/e1,0 b0,0/e1,1 ... b0,0/e1,n b0,1/e1,0 b0,1/e1,1 ... b0,n/e1,n

......

b0,0/en,0 b0,0/en,1 ... b0,0/en,n b0,1/en,0 b0,1/en,1 ... b0,n/en,n
b1,0/e0,0 b1,0/e0,1 ... b1,0/e0,n b1,1/e0,0 b1,1/e0,1 ... b1,n/e0,n
b1,0/e1,0 b1,0/e1,1 ... b1,0/e1,n b1,1/e1,0 b1,1/e1,1 ... b1,n/e1,n

......

bn,0/en,0 bn,0/en,1 ... bn,0/en,n bn,1/en,0 bn,1/en,1 ... bn,n/en,n

Fig. 9.7: Matrix representation

9.4 Operations Implemented

9.4.1 Addition and Substraction

This kind of operations are used when we have two tensors with the same number of
dimensions, and the dimensions of each tensor also have the same size.

The operation consists in: for each element in each block it will be applied the addition
(or subtraction) to the element in the same position in the other tensor, and then stored
in the same place of a third tensor.

0 1 | 2 3
4 5 | 6 7
−− −− −|− −− −−
8 9 | 10 11
12 13 | 14 15

+

0 1 | 2 3
4 5 | 6 7
−− −− −|− −− −−
8 9 | 10 11
12 13 | 14 15

=

0 2 | 4 6
8 10 | 12 14
−− −− −|− −− −−
16 18 | 20 22
24 26 | 28 30

Fig. 9.8: Addition example

9.4.2 Tensor-Vector Multiplication (TVM)

This problem has made it easier only to perform the matrix-vector multiplication.

This operation consists in multiply each element of the first row (or column) for each
element of the vector, add all the result and store it in the first position on the resulting
vector, and repeat the process with the remaining rows.

30

0 1 | 2 3
4 5 | 6 7
−− −− −|− −− −−
8 9 | 10 11
12 13 | 14 15

+

0
1
−−
2
3

=

14
38
−−
62
86

Fig. 9.9: TVM by row example

31

10 | Implementing TEAL

In this part, it will be explained how each part of the TEAL DSL has been developed,
the problems that have been appeared and how have been resolved.

As it can be seen in the following image, the process from lowering from the TEAL
language to the LLVM IR consists in four transformations, one for each arrow, and
five different representations, one for each square.

Fig. 10.1: Phases of the TEAL Compiler

10.1 TEAL Language

The first representation of TEAL DSL consists of the TEAL Language. The TEAL
Language is the language that we have created to represent the operations that we
want to use in this DSL. And the user will be in charge to know the language and
provide it to the computer in a ”.teal” file.

1 y(i) = A(i,j) * x(j)

Fig. 10.2: Example of an operation in TEAL Language(1)

10.2 TEAL Dialect

In this part, we will convert the TEAL Language received in a set of operations that
are known by the DSL.

(1)This example will be used in the different representations along with the explanation of each
phase.

32

First of all we need to understand what has been given to us, creating a Lexer and
a Parser that will generate an Abstract Syntax Tree (AST). The rules in order to
understand the language are the following:

1 assign::= access ’=’ expr

2 expr::= term {(’+’ | ’-’) term}

3 term::= factor {(’*’ | ’/’) factor}

4 factor::= final | ’(’ expr ’)’ | ’-’ factor

5 final::= access | scalar

6 access::= identifier ’(’ varlist ’)’

7 varlist::= var {’,’ var}

8 var::= identifier

Fig. 10.3: Parser rules(2)

A resulting AST will have this form:

1 Module:

2 Assignment:

3 Call ’y’ (

4 var: i

5)

6 BinOp: *

7 Call ’A’ (

8 var: i

9 var: j

10)

11 Call ’x’ (

12 var: j

13)

Fig. 10.4: Example of an AST from TEAL Language

After having the AST generated by the Parser, a checker analyze it, to see if the indexes
provided are coherent (all the terms of addition has the same number of indexes etc.).

Finally, we go through the AST, converting each element in the desired part of the
function. In our DSL each tensor will be interpreted as a MemRef Type 8.1.3.

(2)Some of the operations that Parser understands have not been developed, for example doing
multiple operations, the minus or the division, but has been included for future work.

33

1 module {

2 func @my_func(%arg0: memref<?x?xf64>, %arg1: memref<?x?x?x?xf64>, %arg2:

memref<?x?xf64>) {

3 "teal.tvm"(%arg0, %arg1, %arg2) : (memref<?x?xf64>, memref<?x?x?x?

xf64>, memref<?x?xf64>) -> ()

4 teal.return

5 }

6 }

Fig. 10.5: Example of TEAL Dialect Representation

10.3 Affine/Standard Dialect

Once we have each operation described in TEAL Dialect, we proceed to do a lowering
towards the Affine and Standard Dialects 8.2. The pass to this Dialects makes more
comfortable the programmer work to arrive at the LLVM IR because Dialects are more
Higher Level and the lowering to LLVM IR is straight forward.

For each operation that we obtained from the TEAL Dialect, we execute different
functions that convert them to Affine and Standard Operations. In this part, we have
to access the MemRefs taking into account the blocks and the elements.

After doing this lowering, we obtain an interpretation like Figure 10.6.

34

1 #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>

2 #map1 = affine_map<(d0, d1) -> (d0, d1)>

3 #map2 = affine_map<() -> (0)>

4 #map3 = affine_map<(d0) -> (d0)>

5

6

7 module {

8 func @my_func(%arg0: memref<?x?xf64>, %arg1: memref<?x?x?x?xf64>, %arg2:

memref<?x?xf64>) {

9 %c0 = constant 0 : index

10 %0 = dim %arg1, %c0 : memref<?x?x?x?xf64>

11 affine.for %arg3 = 0 to #map3(%0) {

12 %c1 = constant 1 : index

13 %1 = dim %arg1, %c1 : memref<?x?x?x?xf64>

14 affine.for %arg4 = 0 to #map3(%1) {

15 %c0_0 = constant 0 : index

16 %c2 = constant 2 : index

17 %2 = dim %arg1, %c2 : memref<?x?x?x?xf64>

18 affine.for %arg5 = 0 to #map3(%2) {

19 %c3 = constant 3 : index

20 %3 = dim %arg1, %c3 : memref<?x?x?x?xf64>

21 affine.for %arg6 = 0 to #map3(%3) {

22 %4 = affine.load %arg1[%arg3, %arg4, %arg5, %arg6] : memref<?x?x?

x?xf64>

23 %5 = affine.load %arg2[%arg3, %arg5] : memref<?x?xf64>

24 %6 = mulf %4, %5 : f64

25 %7 = affine.load %arg0[%arg4, %arg6] : memref<?x?xf64>

26 %8 = addf %6, %7 : f64

27 affine.store %8, %arg0[%arg4, %arg6] : memref<?x?xf64>

28 }

29 }

30 }

31 }

32 return

33 }

34 }

Fig. 10.6: Example of Affine and Standard Dialect Representation

35

10.4 SCF/Standard Dialect

After getting the representation using the Affine and Standard Dialects, we will do
a Lowering to SCF and Standard Dialects, due to the lack of a direct lowering from
Affine to LLVM IR. An example of this transformation can be found in Figure 10.7.

1 module {

2 func @my_func(%arg0: memref<?x?xf64>, %arg1: memref<?x?x?x?xf64>, %arg2:

memref<?x?xf64>) {

3 %c0 = constant 0 : index

4 %0 = dim %arg1, %c0 : memref<?x?x?x?xf64>

5 %c0_0 = constant 0 : index

6 %c1 = constant 1 : index

7 scf.for %arg3 = %c0_0 to %0 step %c1 {

8 %c1_1 = constant 1 : index

9 %1 = dim %arg1, %c1_1 : memref<?x?x?x?xf64>

10 %c0_2 = constant 0 : index

11 %c1_3 = constant 1 : index

12 scf.for %arg4 = %c0_2 to %1 step %c1_3 {

13 %c0_4 = constant 0 : index

14 %c2 = constant 2 : index

15 %2 = dim %arg1, %c2 : memref<?x?x?x?xf64>

16 %c0_5 = constant 0 : index

17 %c1_6 = constant 1 : index

18 scf.for %arg5 = %c0_5 to %2 step %c1_6 {

19 %c3 = constant 3 : index

20 %3 = dim %arg1, %c3 : memref<?x?x?x?xf64>

21 %c0_7 = constant 0 : index

22 %c1_8 = constant 1 : index

23 scf.for %arg6 = %c0_7 to %3 step %c1_8 {

24 %4 = load %arg1[%arg3, %arg4, %arg5, %arg6] : memref<?x?x?x?

xf64>

25 %5 = load %arg2[%arg3, %arg5] : memref<?x?xf64>

26 %6 = mulf %4, %5 : f64

27 %7 = load %arg0[%arg4, %arg6] : memref<?x?xf64>

28 %8 = addf %6, %7 : f64

29 store %8, %arg0[%arg4, %arg6] : memref<?x?xf64>

30 }

31 }

32 }

33 }

34 return

35 }

36 }

Fig. 10.7: Example of SCF and Standard Dialect Representation

36

10.5 Scalar (LLVM IR)

Finally, MLIR lets the programmer to do a direct lowering to the LLVM IR and
creating an object file from the output. In Figure 10.8 can be found an example of the
code.

1 70: ; preds = %67

2 %71 = extractvalue { double*, double*, i64, [4 x i64], [4 x i64] } %43,

1, !dbg !9

3 %72 = extractvalue { double*, double*, i64, [4 x i64], [4 x i64] } %43,

4, 0, !dbg !9

4 %73 = mul i64 %53, %72, !dbg !9

5 %74 = add i64 0, %73, !dbg !9

6 %75 = extractvalue { double*, double*, i64, [4 x i64], [4 x i64] } %43,

4, 1, !dbg !9

7 %76 = mul i64 %58, %75, !dbg !9

8 %77 = add i64 %74, %76, !dbg !9

9 %78 = extractvalue { double*, double*, i64, [4 x i64], [4 x i64] } %43,

4, 2, !dbg !9

10 %79 = mul i64 %63, %78, !dbg !9

11 %80 = add i64 %77, %79, !dbg !9

12 %81 = mul i64 %68, 1, !dbg !9

13 %82 = add i64 %80, %81, !dbg !9

14 %83 = getelementptr double, double* %71, i64 %82, !dbg !9

15 %84 = load double, double* %83, align 8, !dbg !9

16 %85 = extractvalue { double*, double*, i64, [2 x i64], [2 x i64] } %50,

1, !dbg !9

17 %86 = extractvalue { double*, double*, i64, [2 x i64], [2 x i64] } %50,

4, 0, !dbg !9

18 %87 = mul i64 %53, %86, !dbg !9

19 %88 = add i64 0, %87, !dbg !9

20 %89 = mul i64 %63, 1, !dbg !9

21 %90 = add i64 %88, %89, !dbg !9

22 %91 = getelementptr double, double* %85, i64 %90, !dbg !9

23 %92 = load double, double* %91, align 8, !dbg !9

24 %93 = fmul double %84, %92, !dbg !9

25 %94 = extractvalue { double*, double*, i64, [2 x i64], [2 x i64] } %32,

1, !dbg !9

26 %95 = extractvalue { double*, double*, i64, [2 x i64], [2 x i64] } %32,

4, 0, !dbg !9

Fig. 10.8: Short example of LLVM IR Representation(3)

(3)The LLVM IR code generated has more lines that the showed example, to simplify the example
only shows the first part of what is inside the innermost loop.

37

10.6 Reproduce the code

To reproduce the code, first of all, is needed to download an LLVM version from its
GitHub project [9] (the appropriate commit is the cited here [10]).

Afterwards copy the files inside the source code folder, from the delivered files in the
additional material, into the mlir/examples folder from the downloaded LLVM folder.

Subsequently, copy what is inside the Examples folder into the mlir/test/Examples
folder.

Finally, create a build folder in the source folder, enter, and execute it the following
code (Using an Ubuntu OS):

1 cmake -G Ninja ../llvm \

2 -DLLVM_ENABLE_PROJECTS=mlir \

3 -DLLVM_BUILD_EXAMPLES=ON \

4 -DLLVM_TARGETS_TO_BUILD="X86;NVPTX;AMDGPU" \

5 -DCMAKE_BUILD_TYPE=Release \

6 -DLLVM_ENABLE_ASSERTIONS=ON

7

8 cmake --build . --target check-mlir

9

10 ninja tealc-v1

Once the code is compiled can be excuted with the following command:

1 ./bin/tealc-v1 -emit=var ~/Documents/teal/mlir/test/Examples/Teal/Teal1/

test1.teal

Where var can be:

• ast

• mlir

• mlir-affine

• mlir-scf

• llvm

• object

38

11 | Execution of the kernel

In this part of the thesis, it will be explained how to use the object file generated
by the TEAL DSL to check the results. This will be done creating a C++ file that
produces the Tensors (as MemRefs) and calls the function.

The object files contains a function with many MemRefs, which follows the following
structure:

1 template<typename T, size_t N>

2 struct MemRefDescriptor {

3 T *allocated; //Pointer to the data

4 T *aligned; //Pointer to the data if the element has a different

aligment

5 intptr_t offset; //Offset of the first element

6 intptr_t sizes[N]; //The size of each dimension

7 intptr_t strides[N]; //The number of elements to jump to the next index

of each dimension

8 };

Fig. 11.1: MemRefs Data structure

Knowing how a MemRef it is formed, we can create arrays of doubles filled with the
desired numbers.

After working a little bit with the MemRef, we found that the information is read in
column-major order. In the following figure, it can be seen the order that follows in a
Matrix (with blocks), if the original array contains the numbers from 0 to 15 ordered:

0 2 | 8 10
1 3 | 9 11
−− −− −|− −− −−
4 6 | 12 14
5 7 | 13 15

Fig. 11.2: Column-major order

39

After the MemRefs are created the function created by the DSL has to be accessibly
pointing out that comes from an extern file.

Finally, we only need to compile the created C++ file, linking it with the kernel in the
object file and execute it.

In the files delivered in the additional material, there is a folder called kernel executors,
where you can find ”.cpp” files to reproduce it. Each file explains with which kernel
has to be used.

40

12 | Conclusion

This project has been the starting point to create a new DSL for the BSC Company,
creating a product that will make more accessible the tasks of Tensor Algebra compu-
tation.

At this point has been implemented a first version of the DSL, which lets the user do
some basic operations related to the domain.

This project also gives to the student and to the company a brief example of the power
that MLIR has, making much easier the task of programming DSLs.

Relatively with the budget, this hasn’t been modified during the creation of the project.
Many of the subprojects have been restructured, regarding the amount of time, but
the sum of all of them is still the same.

When we started the project and we did not know much about the Tensor Algebra
Domain, and about MLIR we thought that in the expected time it would be possible to
develop more operations or more kind of tensors. Still, the lack of MLIR documentation
and the considerable width of the domain forced us to simplify the objective.

Even though we think that starting this project will be essential for continuing working
in the TEAL DSL and has been profitable for the creation of new ones using the MLIR
tool.

41

13 | Future work

As it is explained in the Conclusion, this project has been only the start of a larger
project.

Firstly, the most logical implementations would be:

• Add more operations to the DSL

• Add optimizations in operations

• Add new ways to read the tensors

• Add the possibility to recieve sparse tensors

Secondly, when the DSL is perfectly formed, it could be added new ways to lower to
make it more efficiently in different machines where can be executed like TensorCore
machines.

Finally, it could be interesting to add some parallelization in the generated kernels to
make faster the execution of them.

42

Bibliography

[1] Markus Voelter and Sebastian Benz. DSL engineering: designing, implementing
and using domain-specific languages. 2013. 1

[2] Multi-Level Intermediate Representation (MLIR), . URL https://mlir.llvm.

org/. Accessed: (2020-10-18). 1, 24

[3] Chris Lattner and Jacques Pienaar. MLIR Primer: A Compiler Infrastructure
for the End of Moore’s Law, 2019. URL https://storage.googleapis.com.
Accessed: (2020-02-19). 1

[4] The Tensor Algebra Compiler (TACO), . URL http://tensor-compiler.org/.
Accessed: (2020-02-19). 1

[5] TACO Github, . URL https://github.com/tensor-compiler/taco/. Ac-
cessed: (2020-02-19). 1, 3

[6] SAIPH DSL. URL https://pm.bsc.es/dsl/saiph/. Accessed: (2020-02-20). 3

[7] MLIR Google Group, . URL https://groups.google.com/a/tensorflow.org/

d/forum/mlir. Accessed: (2020-02-21). 5

[8] Gitlab. URL https://about.gitlab.com/. Accessed: (2020-02-24). 5, 6

[9] LLVM-project Github, . URL https://github.com/llvm/llvm-project. Ac-
cessed: (2020-10-18). 38

[10] LLVM-project Github appropriate commit, . URL https://github.com/llvm/

llvm-project/commit/11d2e63ab0060c656398afd8ea26760031a9fb96. Ac-
cessed: (2020-10-18). 38

43

https://mlir.llvm.org/
https://mlir.llvm.org/
https://storage.googleapis.com
http://tensor-compiler.org/
https://github.com/tensor-compiler/taco/
https://pm.bsc.es/dsl/saiph/
https://groups.google.com/a/tensorflow.org/d/forum/mlir
https://groups.google.com/a/tensorflow.org/d/forum/mlir
https://about.gitlab.com/
https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project/commit/11d2e63ab0060c656398afd8ea26760031a9fb96
https://github.com/llvm/llvm-project/commit/11d2e63ab0060c656398afd8ea26760031a9fb96

	Table of Contents
	List of Figures
	List of Tables
	1 State of the art
	1.1 Context
	1.2 Problem formulation
	1.3 Stakeholders

	2 Motivation
	3 Project Scope
	3.1 Project objectives
	3.2 Requirements
	3.2.1 Functional requirements
	3.2.2 Non-functional requirements

	3.3 Potential obstacles and Risks
	3.3.1 MLIR in development
	3.3.2 Virus / fatal error on laptop
	3.3.3 Other kind of virus

	4 Methodology
	4.1 Working method
	4.2 Tracking tools
	4.3 Validation method

	5 Time planning
	5.1 Task description
	5.1.1 Project Management
	5.1.2 Learning MLIR
	5.1.3 Learning Tensor Algebra
	5.1.4 TEAL DSL description
	5.1.5 Develop of the TEAL Language
	5.1.6 Lowering to the TEAL Dialect
	5.1.7 Lowering to MLIR Dialects
	5.1.8 Lowering to LLVM
	5.1.9 Evaluation
	5.1.10 Thesis writing and defence

	5.2 Timing
	5.3 Task dependencies
	5.4 Resources
	5.4.1 Hardware
	5.4.2 Software
	5.4.3 Human Resources
	5.4.4 Spaces

	5.5 Workarounds and action plan
	5.6 Gantt diagram

	6 Economic Management
	6.1 Budget
	6.1.1 Direct costs
	6.1.2 Indirect costs

	6.2 Risk management
	6.3 Final budget

	7 Sustainability
	7.1 Self-assessment of the current domain of sustainability
	7.2 Economic dimension
	7.3 Environmental dimension
	7.4 Social dimension

	8 Multi-Level IR
	8.1 Standard Types
	8.1.1 Integer
	8.1.2 Floating-Point
	8.1.3 MemRef
	8.1.4 Index

	8.2 Dialects
	8.2.1 Affine
	8.2.2 STD
	8.2.3 SCF

	9 Tensor forms
	9.1 What's a Tensor
	9.2 2 Dimensional Tensor (Vector)
	9.3 4 Dimensional Tensor (Matrix)
	9.4 Operations Implemented
	9.4.1 Addition and Substraction
	9.4.2 Tensor-Vector Multiplication (TVM)

	10 Implementing TEAL
	10.1 TEAL Language
	10.2 TEAL Dialect
	10.3 Affine/Standard Dialect
	10.4 SCF/Standard Dialect
	10.5 Scalar (LLVM IR)
	10.6 Reproduce the code

	11 Execution of the kernel
	12 Conclusion
	13 Future work
	Bibliography

