
1

Real-time Maintenance of Latency-sensitive
5G Services through Network Slicing

Rafael Montero*, Fernando Agraz, Albert Pagès, Salvatore Spadaro

Universitat Politècnica de Catalunya (UPC)
Jordi Girona 1-3, 08034, Barcelona, Spain

*e-mail: rafael.montero@tsc.upc.edu

Abstract—Network Slicing appears as one of the enabling technologies for 5G networks to
accommodate services with different requirements and availability. The present work,
seizes the use of network slicing and focuses on the deployment and maintenance of
services which are sensitive to latency constraints. For this purpose, the design and use of a
VNF Latency-sensor are presented, considering its aggregation to the internal chain of
services and the retrieval of latency data from the sensor. In this way, and by making use of
such data, the expected service performance can be guaranteed. A multi-level orchestration
and control architecture is then introduced to provide all the required functionalities for this
mechanism. In order to assess this method experimentally, an emulated multi-segment
testbed, considering specific 5G network segments (i.e., Access, Metro and Core), is used.
The experimental results demonstrate the correct latency sensing of a particular slice and
the process of service maintenance through the triggering of proper network actuations such
as path reconfiguration or slice reallocation.

Keywords—5G, Network Slicing, Slice Composition, Service Chaining, Latency Sensor,
Optical Networks, Actuations.

I. INTRODUCTION

The current trend towards highly programmable, highly reliable networks for the
upcoming 5G services has brought new challenges to current network scenarios. In this
regard, a set of defined service types for 5G [1], comes along with very demanding
requirements (e.g., high throughput, low latency, etc.), which becomes a crucial matter for
service operators. In turn, operators now need to accommodate current implementations to
handle these new types of service. To this end, they must provide the required resources for
each of them from a commonly shared infrastructure, besides establishing a required level
of isolation among services so their expected performance can be maintained in time.

Network Slicing has been introduced as the enabling technology to leverage legacy

networks towards all these new requirements. The slicing concept entails partitioning (i.e.,
slicing) either physically or virtually network resources so these can be shared among
services with different requirements, without affecting each other. Each slice can allocate
one to many services related to a tenant, so multiple tenants can coexist over the same
infrastructure. To achieve such coordination, a Management and Orchestration (MANO)
entity at a high level of the architecture [2] must be in charge of managing slices, as well as
of coordinating configuration messages towards lower-level management components (e.g.,
controllers, orchestrators) across the network. In this way, the correct provisioning and
maintenance of slices and services can be guaranteed.

2

 Other technologies such as Software Defined Networking (SDN) [3] and Network
Functions Virtualization (NFV) also come into play to facilitate slice configuration and
operation. SDN in turn, enables networks to become fully programmable by separating the
control and data layers, then logically centralizing control tasks to open the path towards
open source network programming. In this way, networks dependence on vendor specific
hardware is avoided. As a result, SDN allows abstracting and exposing underlying network
infrastructure resources towards upper layers in order to optimize their utilization. In the
case of NFV, the use of Virtual Network Functions (VNFs) is introduced, which enables
the virtualization of specific functionalities to bring more flexibility to networking.

VNFs in this regard, could represent functions allocated all over the network

infrastructure across many different segments (e.g., Access, Metro and Core). As a service
could be composed of one to many VNFs, it is required that these are connected in a
specific order. This fits to the concept of Service Chaining, which consists on
interconnecting or chaining a set of functions to enable a particular service operation.
Handling these interconnections besides managing the provisioning and maintenance of
VNFs, services, slices, requires high-layer coordination between different management
components and must be considered in any end-to-end 5G network scenario [4].

A. Related Work

Taking into account the slice lifecycle management and all the types of services
defined for 5G, it is necessary to focus on the different requirements set for the proper
operation of each of them. Among these requirements, latency is considered as one of the
most demanding and crucial, in both deployment and maintenance stages of a slice. In this
regard, at the provisioning stage, there already exist works focused on the use of latency
data to properly handle service deployment [5] [6]. Besides providing an architecture
capable of handling all the required network coordination, there were presented certain
ways to use up-to-date latency data at service provisioning by introducing high-level
service chain computation elements or by proposing the use of orchestration algorithms.

Regarding the maintenance stage of a slice, the need is set in sensing specific

parameters (e.g., latency) that could provide data about the current state of running
services, and being able to use such data to act over the network. Such actions (i.e.,
actuations), done either preventively or predictively, intend to make the required changes in
a way to keep guaranteed the correct service operation. In this sense, works such as in [7],
present real-time system control of networks, providing as well an architecture and ways to
demonstrate network reconfiguration. However, there is still a need to apply the concepts of
real-time service monitoring and maintenance to the scope of network slicing for 5G.

With our work presented in [8], we covered latency awareness at the provisioning

stage considering the deployment of slices along with the use of an introduced latency
sensor. Moreover, we presented an architecture capable of orchestrating all required actions
and a testbed to experimentally prove the sensor provisioning. This process, entailed the
deployment of the mechanism used to measure the current latency at a 5G service, based on
the comparison of time stamps at analysed packets. To this end, network elements require

3

of an accurate clock synchronization following the use of protocols such as Network Time
Protocol (NTP) or Precision Time Protocol (PTP) [9]. Finally, we introduced the collection
of measured latency data for its processing at higher-level management components.

B. Contributions

In this paper, we follow up the work presented in [8], to put the focus on the real-
time maintenance of slices/services, considering latency constraints. In this sense, we
emphasize on the gathering of latency data from a running service and how this data is used
to validate agreed service policies. We demonstrate this by proving the latency sensing
experimentally. Furthermore, we analyse cases for actuations driven by the violation of
established latency performance levels. In particular, we exemplify cases for path
reconfiguration and slice reallocation [10], providing workflows to describe the interactions
required between management components from highest to lowest level of the architecture.

The work following this introduction is structured as detailed next. Section II

describes the overall maintenance architecture from a sensing and actuation point of views.
Then, Section III characterizes the latency sensing mechanism and its deployment in form
of a VNF sensor. Section IV details the experimental results of this work, considering
latency sensing measurements and use cases for actuation scenarios. Finally, Section V
concludes this work summarizing its achievements.

II. ARCHITECTURE FOR SERVICE MAINTENANCE

 As discussed in the introduction section, managing the maintenance of a Network
Slice (NS) relates to the high-level coordination between a set of management components
in charge of control/orchestration functions. In this sense, an architecture tailored for this
purpose is presented in this section considering software and hardware elements at different
levels. The defined management components in turn, provide the necessary functionalities
to handle the sensing and actuation process required to achieve slice maintenance.

The architecture is shown in Fig. 1, representing network elements and management

components distributed from lowest (bottom) to highest (top) level in a multi-segment 5G
scenario. Starting at the physical layer, segments of the network such as Data Centres (DC),
Metro/access and Core are depicted, where some consider the allocation of both network
and computing/storage resources (e.g., DCs). In this case, SDN controllers provide network
control while network orchestrators running on top, also known as Virtual Infrastructure
Managers (VIMs), manage the whole segment virtualized infrastructure. As for segments
allocating only networking resources (e.g., Metro, Core), these could be driven by one to
many WAN SDN controllers. Controllers and orchestrators in turn, present characteristics
particular to each segment, which relate to the management of specific networking
technologies (e.g., electrical, optical) and types of resources (e.g., physical, virtual).

A SDN controller then, is able to expose towards higher layers, all the information

and capabilities of underlying physical network resources. In addition, it provides the tools
to configure and reconfigure the network, thus allowing it to change according to real-time

4

service needs. The orchestrators in turn, in segments such as DCs, communicate directly
with controllers to provide them of the required network configurations, so these get pushed
to network elements. If there is no orchestrator at the segment, this data could also be
provided by higher-level entities. Besides this, orchestrators are also in charge of managing
the allocation and instantiation of virtual computing resources (e.g., VM, VNF, container).

Fig. 1. Multi-level Multi-segment Slice Maintenance Architecture.

 At a higher level resides the MANO entity, which coordinates the slice deployment
across all registered VIMs. Moreover, it manages the description files (i.e., blueprints) that
provide the data regarding the types of resources/configurations required for VNF and NS
creation, which can also be used to modify the structure of a deployed slice. In turn, these
become crucial when high-level reconfigurations are required (e.g., slice reallocation).

 On top of the whole architecture, we introduce the NFV Coordinator (NFV-C)
module, to act as the middle point between the network and external clients, such as
Operation Support Systems (OSS) / Business Support Systems (BSS) or 5G Verticals. In
this way, the NFV-C provides not only the required messaging between all set of network
segments for slice deployment, but also the monitoring of real-time parameters to become
aware of each slice current performance levels. Next subsections, characterize the internal
modules of the NFV-C used to gather all this data, besides describing how it is used to
detect degradations in the service quality standards (i.e., considering client-agreed service
performance levels), and how preventive actions are executed over the network in response.

A. Monitoring

At the NFV-C and during the provisioning stage, the Slice Manager (SM) module,
which in turn is the one coordinating overall slice deployment steps, instructs the
Monitoring Manager (MM) module with the specific parameters to gather at each particular
slice. More specifically, the parameters associated to the Key Performance Indicators (KPI)

5

and the expected Quality of Service (QoS) levels agreed with the service client. Once the
slice is provisioned and the service is running, the MM starts gathering these parameters
from network elements and management components at different levels of the architecture.
The collected data is then stored at the MM database, classifying it per-monitored datapath,
which entails the end-to-end connectivity route between two VNFs at the slice level. In this
way, awareness on the current state of running services and configured datapaths is kept.

In case of latency monitoring, which is the focus of this work, the data is gathered

directly from a VNF latency sensor via an external management network. An in-depth look
on how latency is retrieved from running services is given in Section III. In respect of other
types of parameters (e.g., BER, throughput, VM CPU/RAM consumption), the MM could
contact other sources such as SDN controllers, WAN controllers, Orchestrators, etc.

After data reaches the MM level, the specific parameter information is sent to the

Policy Manager (PM) module. The PM also receives at the provisioning stage from the SM,
the established thresholds for each parameter that is being monitored. In this way, the PM is
able to check if the data retrieved from the running service fits the expected performance
levels. If defined thresholds are not satisfied, then the actuation functions are triggered.

B. Actuation

Performing actuations over the network means triggering reconfigurations to adapt
the slice to the current state of the network with the purpose of maintaining a desired level
of service performance. In this regard, the PM is the module that takes such decisions upon
violations of established policies. In terms of guaranteeing latency, two particular cases are
analysed in this work, where each requires different actions to take place as explained next:

 Path Reconfiguration: If either a network congestion or failure worsens the latency
performance of an existing service, the PM uses the data stored at the MM database
to compute a candidate path, to continue ensuring the required service levels. Once
the new path is selected, the PM triggers the path reconfiguration process via the
Tunnel Manager (TM) module at the NFV-C. The TM at this point, contacts segment
SDN/WAN controller(s) to send reconfiguration instructions. Once these are pushed
to the corresponding network elements, the new datapath becomes operative and the
monitoring process start again to check if latency has gone back to safe levels.

 Slice Reallocation: In case a network congestion due to the high amount of traffic
flowing to multiple VNFs allocated at specific section is identified, the PM checks
via the SM if there are available locations to perform a VNF migration, in a way to
lower the current traffic bottleneck. Upon an affirmative answer from the SM, the PM
consults the MM database, and calculates the best available path to reach the new
VNF destination considering the current state of configured datapaths. Once the PM
has all the requisites, it triggers the slice reallocation process by sending requests to
the SM, TM and Interface Manager (IM) modules, asking for VNF migration, path
reconfiguration and routing reconfigurations respectively. The SM then sends slice
modification instructions to the MANO entity, which in turn pushes these via the

6

correspondent VIM orchestrator. The TM in turn, instructs the WAN controller(s) to
configure the selected datapath. Finally, the IM pushes new routing configurations to
the VIM related SDN controllers to complete the migration. At this point, the slice is
reallocated and traffic congestion is expected to decrease. To check this, the MM
starts collecting again latency data to validate policy compliance at the PM.

III. LATENCY SENSING

After analysing how the MM and PM use the latency data to guarantee service
performance by considering policies and actuations, it is necessary to describe the way this
information is retrieved from the data layer. In this section, we present the sensing
mechanism used to measure latency from a service currently deployed and running, besides
introducing the VNF-based latency sensor and its role at the maintenance stage.

A. Sensing Mechanism

With the goal of measuring latency, a sensor is placed in the form of a new VNF
instance in between two VNFs associated to a particular service (i.e., at the service chain).
The sensor contains the mechanism used to measure latency and a local database to store
this data. More specifically, the sensor can be configured to analyse any type of TCP data
traffic flowing through, by setting the port associated to the data flows whose latency has to
be monitored. The idea resides on the sensors capability to use packets time delay, given by
the difference in the time stamp for each packet and its corresponding ACK, to calculate the
round-trip time (RTT) between VNFs and thus the latency. Detailed steps are given next:

 Step 1: The sensor uses the time stamp of the first packet coming from VNF1 to get

the Packet-LEFT arrival time (TPL).
 Step 2: When the ACK of this packet is received by the sensor from VNF2 it uses as

well its time stamp to get the Packet-LEFT-ACK arrival time (TPLA).
 Step 3: On the other side the same process begins, with the first packet coming from

VNF2 the sensor gets the Packet-RIGHT arrival time (TPR).
 Step 4: An ACK from VNF1 is also received in response to this packet, then getting

the Packet-LEFT-RIGHT arrival time (TPRA).
 Step 5: The sensor uses TPL and TPLA to get the round-trip time between the sensor

and VNF2 (RTT-R), it also calculates RTT-L on the other side by using TPR and TPRA.
 Step 6: Having calculated all this side to side RTT information between VNF1 and

VNF2, it is possible for the sensor to finally get the latency between them.

Fig. 2. Latency Sensing Mechanism.

7

In this way, by periodically taking samples of the inter-VNF data traffic and then
analysing TCP packets, the sensor is able to calculate latency between VNFs at a specific
service and to provide of this real-time latency information to upper layer elements (e.g.,
controllers, orchestrators, MANO, NFV-C). With this purpose, and during the whole
lifecycle of the slice, it will continuously dump this data to a local repository so it becomes
available to consumers via an external management network.

B. Sensor Allocation

As introduced in the previous subsection, the sensor is strategically placed between

VNFs of a particular service. Then, it is important to mention first, that all the required
code and configurations from the latency sensing mechanism are implemented in a VNF, so
they can be deployed in this form at the corresponding Network Slice Instance (NSI).

In a multi-segment scenario, a NSI can be partitioned into a set of Network Slice

Sub-Network Instances (NSSI) [11] following the slice composition concept given by the
5G-PPP in [4]. This concept, in particular, entails building a slice out of individual slices,
then representing the allocation of smaller slices per network segment and the
interconnection between them in a way to build a complete end-to-end slice.

The latency sensor in turn, should be allocated at a specific NSSI so it can fit in the

VNF service chain. This allocation is normally performed at the slice provisioning stage so
the sensor is deployed and interconnected along other service related VNFs. However, it
could also be considered the addition of the sensor during the slice maintenance stage. In
this case, one of the NSSIs corresponding to the service must be modified at runtime. The
details on how the NFV-C modules help in coordinating the latency sensor provisioning are
furtherly given in our previous work in [8].

Fig. 3. Latency Sensor Allocation.

An example of latency sensor allocation is given in Fig. 3. In this case, the NSI

corresponding to a service is composed by two VNFs and is partitioned into two smaller
slices, NSSI-1 and NSSI-2. As depicted in the figure, the sensor is added to NSSI-1 so it
can fit in between VNF1 and VNF2. It is important to consider that these VNFs are
provisioned in different network segments, due to resource availability or to location
constrain related to a particular service functionality. The sensor in turn, connects to VNF1
via an internal network and to VNF2 via the data network, so it can analyse data traffic
flowing through. Moreover, both VNFs and sensor are also connected to the management
network for external access, and in case of the sensor, to enable exposing latency data
towards management components at upper layers.

8

IV. SENSING MECHANISM VALIDATION & ACTUATION CASES

To validate the latency sensing mechanism experimentally, we have set up a testbed
following the principles introduced in the multi-segment architecture. In this way, the
emulated scenario would allow deploying service slices along with the latency sensor to
start gathering such data. Moreover, it would also enable testing preventive actuations in
case service performance is not compliant with the subscribed Service Level Agreement
(SLA). Fig. 4 depicts the set of management components and emulated network elements
conforming the testbed, which in turn are distributed across five physical servers.

As shown, the testbed comprises a set of servers with the required software modules

for slice maintenance. Particularly, the scenario represents two DC segments interconnected

Fig. 4. Multi-segment experimental testbed for 5G service maintenance.

9

through the emulated WAN network, which in turn are controlled by high-level
management entities such as VIM controllers, VIM orchestrators, the MANO component
and finally the NFV-Coordinator. Server 1 allocates an instance of Open Source MANO
(OSM) [12] and a pair of Opendaylight SDN controllers [13] for each of the emulated
segments. Server 2 and 4 in turn, contain three components each, an instance of OpenStack
orchestrator [14], a router-node VM for enabling external access to VNFs and a Mininet
[15] instance to emulate local data centre network. The WAN then is emulated with
Mininet at Server 3, and serves as the middle point connection between Servers 2 and 4.
Finally Server 5 contains the NFV-Coordinator modules in the form of Docker containers.
All servers are also connected via a Management network for inter-module messaging.

The next subsections detail the steps that were taken to validate the correct

operation of the sensor and the gathering of latency data from running services, besides
considering ways to guarantee their expected latency levels. At first, the sensor addition to
the VNF service chain is analysed in order to validate its correct placement at the slice level
and to test the calculation of real-time latency between VNFs. Then, the focus is set on
describing how latency data is collected and stored at the NFV-C, and how it is used to
provide awareness on the current state of configured datapaths. Finally, two actuation cases
are examined to exemplify how the architecture is able to react by triggering policies, in
case of latency thresholds violations.

A. Latency Sensor Validation

Considering the experimental scenario, the latency sensor is added to the end-to-end
slice either at provisioning (i.e., by slice-composition) or during the maintenance stage (i.e.,
by slice-modification). As depicted in Fig. 5, the sensor now stands in a middle point
between VNF1 and VNF2 and starts using the sensing mechanism to analyse the data
traffic between them and then calculate the real-time latency. As the figure shows, VNF1 is
connected to the LS via an internal Virtual Box network, while connection to VNF2 is
achieved through the Mininet-based data network. Regarding inter-VNF data traffic, it is
emulated using the iPerf network tool [16], setting a constant TCP data stream at 10 Mb/s.

Fig. 5. End-to-end latency sensing in multi-segment allocated NS.

NSD
VNF1

VM2VM1

VERTICAL NS

VNF2

Overlay Tunnel

NSS 1

VNF 1

VM
VNF1 Internal

NSS 2

VNF 2

VM
VNF2Data Net

LS

Data
Net

Internal

0,5 ~ 0,8 ms 2 ~ 3 ms

RTT-L RTT-R

VNF1 LS VNF2

END-TO-END LATENCY

1,4 ~ 2 ms

VM
Latency
Sensor

10

Once the sensor starts getting the time stamps data from the analysed messages, it
calculates the RTT on each side. From the measures got at the experimental testbed, the
RRT-L between VNF1 and LS shows times of around 0,5 to 0,8 ms considering that both
VMs are deployed at the same OpenStack instance. On the other side, the connection
between LS and VNF2 shows higher times considering a RTT-R between 2 to 3 ms, which
are related to a higher delay in packet transmission at the overlay tunnel connection
(through the data network) between the different OpenStack instances. With these numbers,
the LS reaches overall results for end-to-end latency between VNF1 and VNF2 of around
1,4 to 2 ms. If these results are then compared to the time given by a direct ping latency test
between VNFs without the presence of the sensor, it can be estimated that the time delay
introduced by the sensor is about 0,2 to 0,4 ms, mainly due to the packet processing and
redirection tasks. It is crucial to say that such values would vary when considering between
testing over an emulated testbed and analysing latency in a real-case scenario, however and
for the scope of this work, they serve to validate the correct latency sensor functionality.

Fig. 6 shows the scenario from a high-level point of view, more particularly, from

the OSM (a) and OpenStack (b, c) dashboards view. In OSM the overall NS is depicted in
the form of NSSI-1 and NSSI-2 instances, which correspond to the deployment of VNF1-
LS and VNF2 respectively. Below it is also possible to see how openstack-left and
openstack-right VIMs are registered so they become available for NS provisioning. In case
of OpenStack, (b) shows the correct instantiation of the VMs comprising VNF1 and LS at
the openstack-left VIM, while (c) shows the VM of VNF2 at the openstack-right VIM.

B. Link Latency Awareness

Having validated the correct operation of the sensor in the previous subsection, the
focus is then on how to retrieve and use latency information. In this regard, the MM module
at the NFV-C is the one in charge of gathering such data from the sensors database via the
management network, considering one deployed sensor per pair of VNFs whose inter-
connectivity (i.e., datapath) is being monitored. Once this information reaches the MM
level, it is sent towards the PM to check for policy compliance. Then, it is used to calculate
the average latency for each particular datapath where a sensor exists, to be stored in a local
database at the MM. The goal is to maintain an awareness of the current state of configured

Fig. 6. Open Source MANO (a) and OpenStack (b, c) dashboards with deployed NSI.

11

datapaths in terms of latency, so this information can be used in case any type of actuation
is required to overcome detected degradations in the service performance levels.

Fig. 7 provides an example of the information stored at the MM database, where the

values represent the average latency of monitored datapaths calculated using data retrieved
from sensors, considering a set of datapaths with a different number of traversed network
elements for each VNF inter-connection. In this way, if the PM determines that an actuation
is required to guarantee compliant latency levels at a particular slice/service, it will consult
this data to become aware of the state of configured datapaths and thus the current network
state. As depicted in the figure, the configured datapaths average latency can be consulted
by the PM, so it can furtherly consider this data to make a decision. The result could derive
in actuation cases as the ones presented in next subsections, such as path reconfiguration
and slice reallocation. These in turn, entail using monitored data to select the best way to
guarantee service latency performance, considering required configurations to be triggered.

It is important to consider that this information should be continuously updated by

the MM in order to maintain real-time information of the current state of the network. For
this, a set of latency sensors should be deployed along all running services/slices either at
provisioning time or during the maintenance stage.

C. Actuation Case - Path Reconfiguration

Given the awareness of real-time latency at running services provided by sensors, it
is possible to use this data to identify if a particular link/segment is being affected due to
possible network congestion or failure, after detecting a rise on the monitored datapath(s)
latency levels. To this end, data regarding other monitored parameters (e.g., Bit Error Rate,
Throughput, VNF CPU/RAM consumption) would also be used [17]. As introduced in
previous sections, the architecture managing the scenario would act upon these types of
events and trigger reconfigurations (i.e., actuations) over network elements to guarantee
expected service functionality. In this case, Fig. 8 illustrates a conceptual scenario where
service performance levels are maintained through path reconfiguration, upon the event of a
recognized high latency on its currently configured datapath. The analysed actuation entails
switching to an alternative datapath by reconfiguring network elements at the data layer.

Fig. 7. Datapath Average Latency vs Number of Network Elements in Datapath.

0,95

1,17
1,22

1,25 1,27
1,32

1,44

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

2 10 20 30 40 50 100

Da
ta

pa
th

 A
vg

. L
at

en
cy

 (m
s)

Network Elements in Datapath

12

Fulfilling this actuation requires a set of given interactions and messaging between

management components at different levels. To clarify this process, the actuation workflow
for this specific case, depicted in Fig. 9, is described from a conceptual point of view:

 Step 1 - (PM <-> MM): During the continuous gathering of latency data, the PM is
able to check whether these levels satisfy the ones defined at the service policies. In
case thresholds defined are violated in a given datapath and a problem is identified at
an affected link/segment of the network, PM sends a request to the MM to check the
state of configured datapaths considering their average latency, and uses this data to
compute an alternative path for this specific end-to-end connection.

 Step 2 - (PM -> TM): If an new path is selected as a possible solution for the event,
PM triggers path reconfiguration by requesting the TM to configure the new datapath.

 Step 3 - (TM -> WAN-Controller): The TM is then the one in charge of contacting the
WAN-Controller of the network segment in turn to give these instructions.

 Step 4 - (WAN-Controller -> Network Elements): The new route gets pushed to the
network elements via southbound protocols, configuring the alternative datapath and
deleting original configurations afterwards, in a way to avoid service disruption. Once
all is set, the new path becomes operative and latency levels are expected to stabilize.

 Step 5 - (MM -> PM): In order to test the correct application of the actuation and as a
step to reload again the sensing-actuation cycle, the MM restarts the continuous
gathering of latency data from the sensor, besides the checking of its compliance with
the set policies via the PM. In case any new value surpasses the permitted levels, the
process starts over from Step 1.

Fig. 8. Service Maintenance through Path Reconfiguration.

Fig. 9. Inter-module messaging workflow for path-reconfiguration actuation process.

Request Avg. Path Latency

PM MM

Response w/Data

TM

Request Path Reconfig

Segment
WAN-Controller

Network
Elements

Send Reconfig Instructions

Push New Configurations

Gather New Latency Data

Re-check Policies

Event

NFV-Coordinator

13

D. Actuation Case - Slice Reallocation

A different case of actuation considers the reallocation of a particular slice/service

to accommodate the network for better performance in terms of latency. Fig. 10 depicts a
scenario that serves to exemplify this case from a conceptual point of view, focusing on the
behaviour analysis of high-level management components. In turn, it shows two configured
services with two VNFs each connected from Multi-access Edge Computing (MEC) DC to
Core DC2 segment. The ones at the latter segment share the same physical location which
in turn could potentiate the possibility of congestions when there is a large amount of traffic
flowing to this area of the network. Once this event is recognized, an evaluation of other
locations to check for available resources for VNF migration is conducted. As shown in the
figure, the actuation entails migrating VNF2 of service 2 to Core DC1 segment in a way to
distribute the traffic flow and guarantee expected latency level for both running services. It
is important to consider here that performing a VNF live migration could introduce certain
service downtime depending on how the process is executed. In this regard, the presented
work focuses mainly on covering the triggering part of the process, are there already exist
different analysis and mechanisms in the literature proposed to mitigate this effect [18-19].

This process requires more high-level operational steps at management components

than the previous case. Fig. 11 helps to depict them, while a detailed description follows:
 Step 1 - (PM <-> SM): In case latency levels at a given datapath reach a state not

compliant with the defined policies, PM would consider slice configuration and state
of other monitored datapaths to analyse if the traffic flowing to VNFs is representing
an overutilization of certain network sections (i.e., network congestion). Then, it will
send a request to the SM to check the possibility of reallocating the affected slice
(i.e., by VNF migration). A response would provide an option for a possible location
(if it exists) to migrate VNF(s), considering computational resources availability.

 Step 2 - (PM <-> MM): The PM would then request the MM for the data regarding
the current state of configured datapaths, in terms of average latency, so it can use it
to compute the best candidate path towards the new considered location.

Fig. 10. Service Maintenance through Slice Reallocation.

14

 Step 3 - (PM -> SM): In case an option is found for slice reallocation, PM sends a
request to the SM to trigger the actuation.

 Step 4 - (PM -> TM): In parallel, PM requests the TM to configure the new datapath
towards the new location, while considering as well deleting the previous one.

 Step 5 - (PM -> IM): IM should also be aware of the changes in order to set up
routing configurations to and from newly placed VNFs at corresponding VIMs.

 Step 6 - (SM -> OSM): Once SM knows about the changes in the slices configuration,
it sends specific instructions to OSM to fulfil them.

 Step 7 - (OSM -> VIM-Orchestrators): OSM then pushes these configurations to the
involved VIM orchestrators, so these can proceed with the VNF migration.

 Step 8 - (TM -> WAN-Controllers): The TM contacts the WAN controllers of the
correspondent network segments to give them the new configuration instructions.

 Step 9 - (WAN-Controllers -> Network Elements): Route(s) towards the new
location(s) of migrated VNFs get pushed to the network elements via southbound
protocols, configuring datapaths and deleting original configurations afterwards.

 Step 10 - (IM -> VIM-Controllers): The IM in turn, contacts the controllers of the
correspondent VIMs to give them new instructions for inter-VNF routing. Once
everything is set datapaths become operative and the latency levels are expected to
stabilize across the involved segments.

 Step 11 - (MM -> PM): In a way to test the correct application of the actuation and as
a step to reload again the sensing-actuation cycle, the MM restarts the continuous
gathering of latency data from sensors and checking its compliance with set policies
via the PM. In case there is any new value surpassing permitted levels, the process
starts over from Step 1.

Fig. 11. Inter-module messaging workflow for slice-reallocation actuation process.

WAN-
Controller

VIM-
Controllers

Req. Reallocation Data

PM

Response w/Data

Req. Avg. Path Latency

Event

SM MM TM IM
NFV-Coordinator

Response w/Data

Req. Slice Reallocation

Req. Path Config

Req. Routing Config

OSM
VIM-

Orchestrators
Network
Elements

Send Slice Modification Instructions

Push VNF Migration

Send Reconfig Instructions

Push New Config

Push Routing Config

Gather New Latency Data

Re-check Policies

15

V. CONCLUSIONS

Considering the highly demanding requirements brought by 5G services, current
networks need to be enhanced to fully support these stringent demands. With this purpose,
new technologies such as Network Slicing have risen. The presented work bases on the use
of this technology to provide a way to address one of the most relevant service type
requirements, latency. In this sense, a multi-segment architecture is provided along with a
mechanism for latency sensing which is deployed in the service chain in the form of a
VNF. Results provided validate the correct latency data gathering and exemplify actuation
use cases to prove the role of the architecture in guaranteeing latency-sensitive 5G services.

ACKNOWLEDGMENT

This work has been supported by the H2020 5GPPP SLICENET project (H2020-
ICT-2016-2/761913) and the Spanish Government through project ALLIANCE-B
(TEC2017-90034-C2-2-R) with FEDER contribution.

REFERENCES
[1] NGMN Alliance 5G White Paper, Version 1.0, February 2015.
[2] ETSI GS NFV-MAN 001 V1.1.1, December 2014.
[3] ONF TR-526, Applying SDN Architecture to Network Slicing, Issue 1, April 2016.
[4] 5G-PPP 5G Architecture White Paper, Version 2.0, December 2017.
[5] F. J. Moreno-Muro et al., "Latency-Aware Optimization of Service Chain Allocation
with Joint VNF Instantiation and SDN Metro Network Control," 2018 ECOC, Italy, pp.1-3.
[6] S. Fichera et al., "Latency-aware resource orchestration in SDN-based packet over
optical flexi-grid transport networks," IEEE/OSA JOCN, vol. 11, 4, pp. B83-B96, 2019.
[7] M. Szczerban et al., "Real-time Control for Deterministic and Dynamic Networks,"
2019 European Conference on Optical Communication (ECOC), Dublin (Ireland), pp. 1-3.
[8] R. Montero et al., “End-to-end Network Slicing in Support of Latency-sensitive 5G
Services”, 2019 ONDM, Athens (Greece), 13-16 May 2019.
[9] T. Neagoe et al., "NTP versus PTP in Computer Networks Clock Synchronization,"
2006 IEEE International Symposium on Industrial Electronics, Montreal, pp. 317-362.
[10] A. Pagès et al., "Dynamic Service Reallocation in NFV-based Transport WDM Optical
Networks," 2018 Photonics in Switching and Computing (PSC), Limassol, Cyprus, 2018.
[11] 3GPP TR 28.801, Study on management and orchestration of network slicing for next
generation network, Version 15.1.0, January 2018.
[12] Open Source MANO, https://osm.etsi.org.
[13] OpenDaylight, https://www.opendaylight.org.
[14] OpenStack, https://www.openstack.org.
[15] Mininet, https://mininet.org.
[16] iPerf Measurement Tool, https://iperf.fr/.
[17] R. Montero et al., "Actuation Framework for 5G-Enabled Network Slices with
QoE/QoS Guarantees," 2019 ICTON, Angers, France, 2019, pp. 1-4.
[18] N. T. Khải et al., "Optimising Virtual Network Functions Migrations: A Flexible
Multi-Step Approach," 2019 IEEE NetSoft, Paris, France, 2019, pp. 188-192.
[19] K. Sugisono et al., "Migration for VNF Instances Forming Service Chain," 2018 IEEE
7th International Conference on Cloud Networking (CloudNet), Tokyo, 2018, pp. 1-3.

