
The High Perfomance Scheduler Game: A Characterization of
Slurm, Metrics, and the Viability of Cooperation

Wilmer V. Uruchi Ticona

July 2020

Advisor: Maria Jose Serna Iglesias
Computer Science Department

MASTER IN INNOVATION AND RESEARCH IN
INFORMATICS

Advanced Computing

FACULTAT D’INFORMÀTICA DE BARCELONA (FIB)
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) – BarcelonaTech

Abstract

The Slurm Scheduler is a widely used tool for scheduling in High Per-
formance Computing platforms around the world. Several studies have
been conducted to find ways to improve specific performance metrics,
mainly from an algorithmic perspective. Scheduling has also been stud-
ied from the viewpoint of Game Theory, where models that attempt to
capture the main characteristics of the problem are developed and an-
alyzed. In this study, we have used the tools that Algorithmic Game
Theory provides to develop and study a model that captures some of the
main characteristics of the Slurm Scheduler. We developed the necessary
software to test these models. We performed a thorough data analysis pro-
cess to build a reliable data source based on real usage information. Then,
through experimentation, we analyzed how our model and its variants be-
have; furthermore, we compared these results with the results from an
existing Slurm Simulator, developed by Barcelona Supercomputing Cen-
ter members. Using these results, we calculated an approximate value for
the Price of Anarchy, and we discuss the Viability of Cooperation in the
context of the Slurm Scheduler.

1

Contents

1 Introduction 4

2 Slurm Scheduling Overview 7
2.1 Slurm Users . 7

2.1.1 Users Hierarchy . 7
2.1.2 Usage Definitions . 8
2.1.3 Usage Accounting . 9

2.2 Priority Calculation . 9
2.2.1 Age . 10
2.2.2 Size . 11
2.2.3 Fair-share . 11
2.2.4 Quality of Service QoS 13

2.3 Scheduling Overview . 13

3 Scheduling Analysis 15
3.1 Scheduling Context . 15
3.2 Scheduling Mechanism . 16

4 Data 18
4.1 Overview . 18
4.2 Data Retrieval . 18
4.3 Description . 19
4.4 Analysis . 20

4.4.1 Experiment Data Analysis 21
4.4.2 Job Data Analysis . 25

5 Games 31
5.1 Game Theory . 31

5.1.1 Introduction . 31
5.1.2 Simultaneous Move Game 33
5.1.3 Dominant Strategy Solution 34
5.1.4 Vickrey Auction . 34
5.1.5 Pure Strategy Nash Equilibrium 35
5.1.6 Mixed Strategy Nash Equilibria 36
5.1.7 The Price of Anarchy . 36

5.2 Mechanism Design . 36
5.2.1 Introduction . 37
5.2.2 Design Approach . 37
5.2.3 Single-Parameter Environments 38
5.2.4 Allocation and Payment Rules 38
5.2.5 Monotonicity . 38
5.2.6 Myerson’s Lemma . 39
5.2.7 Vickrey-Clark-Groves Auction 40
5.2.8 Knapsack Auction . 40

2

5.2.9 Greedy Knapsack Algorithm 41
5.3 Scheduler Model . 42

5.3.1 Knapsack Auction Model 42
5.4 Knapsack Auction Model + Priority 44

6 Experimentation and Results 45
6.1 Sample Generation . 45
6.2 Experimentation Space . 45
6.3 Results . 47

6.3.1 Main Experimentation . 47
6.3.2 Knapsack Greedy Algorithm Modified 56
6.3.3 Experimentation with Priority 59
6.3.4 Experimentation with Slurm Simulator 62

6.4 Comments on the Price of Anarchy 64
6.5 Comments on the Viability of Cooperation 65

7 Conclusions 67

8 Future Work 69

A Slurm Simulator 71
A.1 Setup Process . 71
A.2 Workload Generation . 72
A.3 Testing Process . 73
A.4 Changing Cluster Configuration 73

B Experimentation Environment 75
B.1 Structure . 75

B.1.1 Job . 75
B.1.2 Platform . 75
B.1.3 Scheduler . 77
B.1.4 SlurmScheduler . 77
B.1.5 Main . 77

B.2 Workflow . 78

C Samples 80

3

1 Introduction

In the context of a High Performance Computing cluster, scheduling is a nec-
essary operation that ensures that there exists an acceptable quality of service
for the variety of users of the limited resources of the cluster. The scheduling
process can vary from a simple First Comes First Served model to a wide vari-
ety of more complex implementations that tend to satisfy specific requirements
from each group of users.

Slurm is an open source, fault-tolerant, and highly scalable cluster manage-
ment system for large and small Linux clusters [12]. It offers a wide array of
plugins and configuration options that are used by the platform administrators
to best distribute the resources at hand. MareNostrum4, a High Performance
Computer located in Barcelona (next to the Campus Nord of the Universitat
Politècnica de Catalunya) and managed by the Barcelona Supercomputing Cen-
ter - Centro Nacional de Supercomputación (BSC-CNS), implements Slurm to
manage the allocation of resources to the jobs send to it by a variety of users
[7]. These users execute different types of computer simulation models or other
computational tasks that usually implement high levels of parallelism.

The main motivation of this study is to get a better understanding of the
Slurm Scheduler mechanism, since it is one of the most widely used management
platform for High Performance Computing clusters around the world. The users
of these clusters are usually involved in complex projects of key importance for
different areas of human development. For example, the Department of Earth
Sciences, among other concerns, is studying the effects of human activity in
climate change around the world, present and future. Then, by studying the
Slurm Scheduler, we hope to indirectly help those groups of scientists that make
use of the HPC platforms managed by this scheduler.

The main objective of this study is to analyze whether Algorithmic Game
Theory and specifically Mechanism Design tools can be used to build a model
that represents some key characteristics of the Slurm Scheduler. We aim at
producing a model that implements some desired guarantees, so we can achieve
optimal results that can be compared with variations of the model and even
with the results of a proper Slurm Simulator [1]. The inclusion of Mechanism
Design is key to this objective because this field gives us the tools to design
an ideal mechanism that can produce an optimal result, and also the tools to
perform a correct analysis of it. Furthermore, the Algorithmic Game Theory
approach gives us an economic perspective that we can use to understand the
effect of user interaction and selfish behavior into a model where users compete
for limited resources.

In order to get a better knowledge of the behavior of the scheduler and the
causes of it, we perform experimentation using implementations of the model
we propose and its variants. We also experiment using the Slurm Simulator
and compare its results with our results using a defined common ground. By
doing this, we also try to get a glimpse at the Price of Anarchy of the Slurm
Scheduler, which is the ratio between the worst possible outcome and the best
possible outcome. We present proper definitions in the corresponding sections.

4

Attempting to get an exact bound on the Price Anarchy for a mechanism as
complex as the Slurm Scheduler would be an almost insurmountable task; how-
ever, we can play with our models to get an idea or at least some intuition of it.
Then, adding upon the objectives previously described, we try to argue about
the Viability of Cooperation.

As a secondary objective, we hope that the results and conclusions pre-
sented in this study can help the Slurm developers to get more ideas into which
way to take the improvement of their platform. Moreover, we also hope that
this study, across its different sections, can help users of the HPC platforms
that implement Slurm to get a better idea of what is happening behind the
scheduling process, so they can, perhaps, implement strategies of their own.

Another important secondary objective is to present an intuitive expla-
nation of Mechanism Design concepts by testing them in an experimental
setting, where we will be able to show the results predicted by our theoretic
assumptions. We have seen that some of these concepts might be hard to grasp
at the beginning, but are then better understood when presented along case
studies. We organize and present these concepts in an intuitive way. Then, we
present our experimentation as a case study where we showcase these concepts
and analyze their interaction with the results obtained.

We also perform an in-depth analysis of the data generated by Autosubmit
[3], a workflow manager used by the Earth Science Department at BSC-CNS.
The objective of this task is two-fold: First, to get a detailed view of the usage
of the library and its trend; second, to get a proper data source that could be
used for experimentation.

The modeling task does not only include a theoretical formulation of a
model that captures the main characteristics of the scheduler and subsequent
discussion, but also the development of a specific testing platform appropriate
for this model and our assumptions. It is important to clarify that this testing
platform is not a Slurm Simulator, but a platform designed for our own pur-
poses. We also make use of the Slurm Simulator for further experimentation
and comparison.

We start by analyzing Slurm according to the documentation presented in
their web page, the code implementation, and the experience of BSC-CNS users.
We present an overview of the Slurm scheduler in Section 2 where we review
the main components of the scheduling operation. In Section 2.1, we present
a description of the user hierarchy present in the system. In Section 2.2, we
present a description of the main factors involved in the scheduling operation,
and describe some of the main algorithms used for the calculation of these
factors, using examples where we consider further explanation is necessary or
where we seem they were lacking in official documentation. Section 3 presents a
somewhat formal description of the scheduling mechanism used in Slurm in an
attempt to present it as clearly as possible using basic mathematical notation.
Furthermore, we describe some variables that we consider play an important
role in the scheduling mechanism.

In Section 4, we go through the data mining process required to produce
a proper dataset for experimentation. Section 4.1 presents a brief overview of

5

our data source. Section 4.2 describes the main steps taken to generate the
raw dataset. Section 4.4 is the bulk of the data analysis where we start by
looking at the distribution of the experiments sent to the HPC and registered
into the starting raw dataset. Then, we proceed to analyze the experiments
at a job (task) level; furthermore, we describe assumptions and simplifications
considered for the cleaning of the raw dataset in order to generate a proper
dataset.

Section 5 is the main section of the project. In Section 5.1, we review general
concepts of Game Theory and Algorithmic Game Theory, while in Section 5.2,
we get into the theory of Mechanism Design, from which we get the tools for the
formulation of our models. Then, in Section 5.3.1, we present the main model
that attempts to capture some of the most important characteristics of the
scheduling process that rules Slurm, but with the aim of achieving some desired
guarantees. We also study a slight variation that, although might appear not
very significant, results in interesting results. Moreover, we present a variation
of the model in Section 5.4 that attempts to represent the inclusion of a main
characteristic of the Slurm scheduler. These models are formulated using the
previously described theoretical foundations.

In Section 6, we make use of the dataset previously defined and cleaned. We
start by briefly describing the sample generation process, along with the justifi-
cation for the choices we make in this process. Then, in Section 6.2, we describe
the experiments that we are going to perform along with the description of the
results we evaluate. In Section 6.3.1, we present the results of experimenting
with the main model we previously defined, Section 6.3.2 presents the results
of experimentation with a slight variation of this model. Then, Section 6.3.3
presents the results for the variation of the main model that tries to consider an
important characteristic of the Slurm scheduler. These results are accompanied
with relevant discussion. Then, in Section 6.4, we arrive to an approximation
of the Price of Anarchy for the Slurm Scheduler, followed by discussion about
the Viability of Cooperation in Section 6.5.

Appendix C presents plots of relevant distributions of the samples used for
experimentation. Appendix B gives a brief description of the experimentation
platform developed to run the experiments of the model. In Appendix A, we
review the process of setting up the Slurm Simulator [1], a process that is not
fully described in the original source; we hope this detailed description will be
useful for those interested in performing experimentation using this simulator.

Previous work has been done from an algorithmic approach that attempts
to directly reduce queuing times among other costs [2][11]. We consider that
a formal analysis of the Slurm scheduler main mechanics and its variables can
lead into a better understanding of this kind of mechanism. On the context of
Algorithmic Game Theory, there are several studies that deal with scheduling or
general competition for resources by a group of players; however, these studies
tend to focus more on abstract models, rather than departing from existing
mechanisms and their analysis.

As you can infer, this study includes a variety of methods for its development.
We start by performing operating systems analysis, through making use of data

6

analysis tools to construct a proper dataset, then into algorithm and economic
theory, followed by some software development, and more data analysis. We
hope that this work can showcase in some way the knowledge acquired through
the Master in Innovation and Research in Informatics. Nonetheless, these tools
and techniques are not only showcased in this study for the sake of it, but they
have been necessary for the development of this project.

The code developed and used for this project can be found in the repository
https://earth.bsc.es/gitlab/wuruchi/tfm_agt; including documentation,
data sources, samples, analysis tools, and other relevant resources.

2 Slurm Scheduling Overview

The Slurm scheduling mechanism has two main components: Priority and
Scheduler.

Priority: A value calculated based on data from the user, and the jobs that
the user sends to the High Performance Computer (HPC). The calculation tries
to give higher priority to those users that have less usage.

Scheduler: Once the jobs have been received and their Priority calculated,
there are certain rules in Slurm that determine when a job is sent for execution.
As a result, the job with the highest priority is not always executed first, but
the order is altered so the resource usage is optimized.

Before we get into more details about these components, it is necessary
to give a glimpse of the user hierarchy that Slurm manages and uses for its
calculations. Also, we get into how and when Slurm stores and retrieves the
usage information for each user.

2.1 Slurm Users

2.1.1 Users Hierarchy

The users are organized in a hierarchical tree structure, specifically in a Rooted
Plane Tree [5], where on top of it we have a main root account. Then, the
leaves are users and the internal nodes are the accounts to which users are
associated. In the Slurm documentation, we encounter many references to the
term account, we consider it equivalent to the term group.

Let’s describe briefly what we are seeing in Figure 1. The accounts bsc,
prace, and res are under the root account (we are not listing the sub trees
below prace and res. We have bsc es, bsc ls, and bsc cs as accounts under
the account bsc; these accounts represent departments of BSC, but there can be
users associated directly to bsc and to any account at any level. Under bsc es
we find two accounts: bsc30 and bsc32; these accounts represent teams inside
the BSC Earth Science Department (bsc es). These teams have users associated
to the them, so we have under the account bsc30, the users bsc3090 and
bsc3092; and under the account bsc32, the users bsc3285, bsc3288, and
bsc3200. For future reference we will use mainly the sub tree that has as root
the account bsc es.

7

https://earth.bsc.es/gitlab/wuruchi/tfm_agt

Figure 1: User Hierarchy Example

2.1.2 Usage Definitions

Before we get into Usage Accounting, we must describe some relevant defini-
tions.

1. Shares: This is an integer value that symbolizes the portion of the com-
puting resource that has been promised to the account or user, this value
is set by the administrator of Slurm.

2. Usage: This is an integer value that symbolizes how much the account
or user has consumed from the computing resources.

3. Usage Unit: Integer value that is the result of: CPUs ∗ seconds, where
CPUs is the number of CPUs (or cores) that the job requested, and
seconds is the time measured in seconds that the job used from start
to finish, not considering time waiting for execution, we can call it real
usage.

4. Priority: Integer value that ranges from 0 to 4294967295. The larger the
value, the sooner the job will be scheduled for execution.

5. Fair-share: Floating point number between 0.0 and 1.0 that reflects the
shares of a computing resource that a user has been allocated and the
amount of computing resources the user’s jobs have consumed. The higher
the value, the higher is the placement in the queue of jobs waiting to
be scheduled. For Fair-share calculation, the terms RawShares and
Shares are equivalent, RawUsage and Usage are also equivalent.

We will refer to the sub tree that has as root bsc es in Figure 1, and give an
example of how these definitions come into play. The same logic can be applied

8

User/Account Shares Usage
bsc30 3

bsc3090 1 500
bsc3092 1 1000
bsc32 5

bsc3285 2 3000
bsc3288 1 3000
bsc3200 1 3000

Table 1: Example of Shares/Usage distribution.

to users and accounts at the bsc es level and upwards. Consider Shares and
Usage values from Table 1.

Account bsc30 has 3 shares assigned, and bsc32 has 5. We normalize these
values to calculate the portion of the computation resource that corresponds to
each account. So, bsc30 has 37.5% and bsc32 has 62.5% of the computation
resource assigned. We can repeat this calculation for the users under bsc30,
where each user will have an equal portion assigned (value 1) of the resources
corresponding to their account bsc30. For the users under bsc32, there is a
slight difference that, after normalization, means that user bsc3285 has been
assigned 50% of the computation resources assigned to its account bsc32, and
the rest is divided equally among the other users.

We can apply a similar logic to the usage calculation, having that bsc3090
has used significantly less resources than bsc3092 and subsequently will have
a higher fair-share factor. At the account level, we have that bsc32 has used
around 86%, which is greater than the shares assigned to this account, as a
result, account bsc30 will have a higher fair-share factor.

2.1.3 Usage Accounting

Slurm stores usage information of currently executing jobs and jobs that have
already finished. The procedure that retrieves and stores this information runs
in intervals. The length of these intervals is set in the Slurm configuration file
by the administrator, it is usually a low value so it is possible to know with high
probability that the usage returned by Slurm reflects the current usage.

Keep in mind that usage is measured in CPUs ·seconds, where CPUs is the
number of cores or CPUs that a job requests for execution. In MareNostrum4,
there are around 3456 nodes, each node has 2 sockets, each socket has 24 cores
or CPUs.

2.2 Priority Calculation

The main factors that play in the calculation of the priority are:

1. Age (age factor)

9

Weight Configured Value
PriorityAgeWeight 105

PrioritySizeWeight 105

PriorityFairshareWeight 104

PriorityQoS 106

Table 2: Example of Weight values configuration.

2. Size (size factor)

3. Fair-share (fairshare factor)

4. Quality of Service, commonly known as QoS (qos factor)

Furthermore, the importance of these factors can be modified by setting
weights. Then, the formula for the calculation of priority is:

Job Priority = (PriorityAgeWeight · age factor)+
(PrioritySizeWeight · size factor)+

(PriorityFairshareWeight · fairshare factor)+
(PriorityQoS · qos factor)

(1)

where PriorityAgeWeight is the weight that modifies the importance of
the age factor in the calculation of Priority. The other weights follow the same
logic.

Given that the factors are values between 0.0 and 1.0, it is necessary that
these factors take a high value. Suppose that one job has a fair-share factor value
of 0.5810 and other has a value of 0.5010, if you pick a PriorityFairshareWeight
of 10, the multiplication will result in a not very significant difference. The cur-
rent configuration of Slurm for Marenostrum4 gives factors the values in Table
2.

The bottom line is that the current Slurm configuration gives more impor-
tance to the selected QoS, then to the Age and Size of the Job equally, and
finally to the Fair-share. These three levels differ by 1 order of magnitude.

2.2.1 Age

The longer a job sits in the queue and is eligible to run, the bigger this value
gets. This value achieves its maximum value when 10 days have passed. We can
say that this value represents how long a job has been waiting for execution. A
value from 0.0 to 1.0.

10

2.2.2 Size

This value is determined by the number of processors (CPUs) a job requests.
The more processors a job requests the bigger this value gets. This value achieves
its maximum value if the job requests all the processors in the HPC. The value
is between 0.0 to 1.0.

2.2.3 Fair-share

The Fair-share values is determined by Algorithm 1. The algorithm takes as
input the number of users, and the representation of the user hierarchy as a
Rooted Plane Tree [5], which is a type of the tree data structure. Algorithm 2
is a fundamental function for the calculation of Fair-share.

Algorithm 1: Calculate Fairshare by Level Fairshare.

Input: A rooted plane tree: tree, that represents the user/account
hierarchy. Number of users: n

Output: Ordered list of users according to their Level FS: list.
root← tree.root;
rank ← n children← root.children;
for child in children do

child.levelFS ← fncLevelFS(child);
end
childrensorted ← sort by LevelFS(children);
for child in childrensorted do

if child == account then
Recurse with child as root

else
child.fairshare← rank/n;
rank −−;
list← list ∪ {child};

end

end

• RawSharesself : Shares assigned to this user or account.

• RawSharesself+siblings: Shares assigned to this user or account and its
siblings (users or accounts with the same parent).

• RawUsageself : Usage of this user or account.

• RawUsageself+siblings: Usage of this user or account and its siblings.

Considering the bsc es sub tree in Figure 1 and Table 1, we calculate Level
FS and Fair-share for each user and account in this example.

11

Algorithm 2: fncLevelFS: Calculate Level FS.

Input: A user or account: entity.
Output: Level FS value LF .
S ← RawSharesself/RawSharesself+siblings;
U ← RawUsageself/RawUsageself+siblings;
if U == 0 then

LF ←∞;
else

LF ← S/U ;
end
return LF ;

fncLevelFS(bsc30) = (3/8)/(1500/10500) = 2.265
fncLevelFS(bsc32) = (5/8)/(9000/10500) = 0.729

Then we proceed to analyze bsc30 children first:

fncLevelFS(bsc3090) = (1/2)/(500/1500) = 1.5
bsc3090fair−share = 5/5 = 1

fncLevelFS(bsc3092) = (1/2)/(1000/1500) = 0.75
bsc3092fair−share = 4/5 = 0.8

Then, for the children of bsc32:

fncLevelFS(bsc3285) = (2/4)/(3000/9000) = 1.5
bsc3285fair−share = 3/5 = 0.6

fncLevelFS(bsc3288) = (1/4)/(3000/9000) = 0.75
bsc3288fair−share = 2/5 = 0.4

fncLevelFS(bsc3200) = (1/4)/(3000/9000) = 0.75
bsc3200fair−share = 1/5 = 0.2

We break ties arbitrarily. Finally, we get the fair-share factor for all the
users. User bsc3090 will have the highest fair-share factor as it is an under
served user.

We can apply this process to the whole account/user tree in Figure 1. In
this way, we get the Fair-share value for each user that will be used in the
calculation of the Priority value; subsequently, for the jobs they are going to
send, and that will be used to decide the scheduling order.

12

Name Priority MaxWall MaxCPU MaxJobs MaxSubmitJobs
bsc es 100 2 days 50 nodes ∞ 366
debug 10000 2 hours 16 nodes 1 366

interactive 100 2 hours 4 cpus 1 366

Table 3: Example of QoS configuration.

Name Normalized Priority
bsc es 0.01
debug 0.98

interactive 0.01

Table 4: Normalized Priority

2.2.4 Quality of Service QoS

A QoS is an entity that represents a set of rules that apply to the jobs sent using
it. These rules impose maximum limits on the number of nodes, processors, or
even memory that the jobs can use.

Every account and subsequently every user under that account is assigned
a list of QoS that she is allowed to use to submit jobs.

In Table 3, we show an example of priority configuration for a list of QoS.
There are 48 cores per node, meaning 48 CPUs per node in a standard node.
The priority is a value between 0.0 and 1.0; however, we see that it has higher
values way beyond the defined boundaries. To achieve a value within the defined
range, we normalize the priority values to the highest value. As a result, we
have the new values in Table 4.

Using information from Table 3 and 4, we proceed to give a description of the
purpose of the QoS defined in the implementation of Slurm for MareNostrum4
with the intend of giving intuition about this factor.

The QoS debug has the highest priority but only 1 job can be running at
the time. The jobs sent using this QoS cannot run for more than 2 hours, once
that limit has been exceeded, the job execution is terminated.

The QoS bsc es is the most powerful. It gives the possibility to run jobs
that take up to 2 days and up to 50 nodes, also it offers the possibility to have
an unlimited number of jobs running at the same time.

The QoS interactive is the most restrictive, it allows jobs that take up to 2
hours and only 4 CPUs; also, only 1 job can be running at the time. The limited
amount of CPUs restrict this QoS to specific jobs, we can see it as another way
of QoS design that does not need a high priority because it is going to be used
only for specific jobs.

2.3 Scheduling Overview

In Section 2.2, we went through the main variables that play in the calculation
of the Priority of a job. This is an important value that determines for the

13

most part the order in which jobs are started. This value effectively produces
an execution sequence; however, this ordering can result in sub optimal resource
allocation. For example:

Consider a large (in the size of nodes required) job with high priority that is
waiting to be scheduled, this job will take 25% of the nodes in the HPC and it
has an expected running time of 10 hours; furthermore, it is in the front of the
queue. Next to this job, we have a number of smaller jobs requiring a number of
nodes from 1% to 2% of the total nodes in the HPC, and expected times lower
than 1 hour.

Working under this standard configuration, the scheduler is going to wait for
enough resources to be available and then schedule the large job for execution,
and this is not optimal because resources will be idle. To avoid this scenario
(to some extent), there exists the backfill mode. In this mode, the scheduler
will start lower priority jobs if that does not delay the start of higher priority
jobs. However, this scheduling mode can be a time and computation consuming
operation.

For backfill mode to work, users should specify a planned running time
and number of nodes or CPUs for each job they submit. Although they will
be charged usage based on the real running time, this expected completion
time is used for scheduling purposes, as described before. In addition, users
are charged based on the number of nodes or CPUs they requested. Since the
expected start time of pending jobs depends upon the planned completion time
of running jobs, it is important that the planned completion time is set with
accurate values when submitting a job.

The scheduler offers the possibility to impose resource limits on users, but
this is already done through the assigned QoS for accounts and users.

In summary, the scheduler considers the order imposed by the Priority value
of each job, but ultimately favors resource and time optimization to decide which
job is executed next.

These are some relevant configuration variables for the Scheduler mechanism:

• sched interval: Specifies how frequently, in seconds, the main scheduling
loop will execute and test all pending jobs.

• default queue depth: Specifies the number of jobs to consider for schedul-
ing on each event that may result in a job being scheduled. Since the
scheduling loop probably repeats often, it is advisable to set a low value
for this variable.

These are some relevant configuration variables specific for the backfill
mode:

• bf interval: Interval between backfill scheduling attempts.

• bf max job test: Maximum number of jobs consider for backfill schedul-
ing in each backfill cycle (interval).

14

• bf max job user: Maximum number of jobs to initiate per user in each
backfill cycle.

• bf window: How long, in minutes, into the future to look when deter-
mining when and where jobs can start.

In Table 5, we have an example of configuration for these variables.

Name Value Description
sched interval - Replaced by bf interval.

default queue depth 10000 Considering up to 10000 jobs in queue.
bf interval 60 Executing backfill scheduling every 60 sec-

onds.
bf max job user 800 Considering only up to 800 jobs per user.

bf window 10080 Look up to 10080 minutes into the future to
detect available resources

Table 5: Example of scheduler configuration settings

3 Scheduling Analysis

In this section, we use the components of the scheduling system previously
defined and unify them in a big picture presentation using basic mathematical
notation in an attempt to make a concise and clear description.

We start by giving a description of the context and main variables involved in
the scheduling process in Section 3.1. Section 3.2 presents a somewhat formal
description of the scheduling mechanism considering definitions presented in
Section 2.

3.1 Scheduling Context

There are M nodes, each of them has a number of CPUm depending on the type
of node, also, the memory can vary too, some nodes have more memory, those
are called fat nodes and are usually reserved for specific jobs that require that
high amount of memory. Furthermore, as an administrative choice, a job i can
request k cores (CPUs) where k < Corem and Corem is the number of cores of
node m, and Corem−k cores will be available for other jobs. If k = Corem, the
whole node is selected. However, if k > Corem then resources will be assigned
for this not on a core basis but in a node basis. For example, if k = Corem + 1
then 2 nodes in their entirety will be assigned for that job. We assume that all
nodes M have the same number of Corem, and the same amount of memory,
although memory will not be considered. All these M nodes belong to the same
HPC, i.e. the High Performance Computer. Moreover, as a simplification
choice we assume that all nodes have the same capacity Corei = Corej ∀i 6= j,
along as the same memory, and core speed.

15

Jobs can request a specific number of cores (processors), according to that
number they will be assigned a number of nodes as described in the previous
paragraph. More importantly, jobs need to establish a mandatory planned run-
ning time. Then, we have that a job i has two types of cost wi as its weight or
size, and ti as the planned time in minutes. Also, we have that jobs that have
been submitted have an age factor ai according to how long they have been
waiting for scheduling since they have been submitted.

We also consider the collection of QoS that define specific limits for jobs. A
user should always select one and only one QoS to sent a job. Each q ∈ QoS
has two types of limits: resource limit (it can be number of cores or number
of nodes) rlq, and time limit tlq; they also have a priority value pqosq that can
understood as the prize the user gets for using that QoS, given that some of
them offer only very limited resources but with a high priority. It is important
to distinguish this local priority that only applies to and among QoS from the
Priority that the scheduler uses.

User u ∈ U has a share of resources RawSharesu, and as resources are
consumed, usage is accumulated as RawUsageu. These values will be used in
the calculation of the main priority list of the HPC Pk : N −→ {1, ..., n}.

So far we have accounted for all the factors involved in the Priority calcu-
lation as represented by Pi, i.e. the Priority of job i. Next, we proceed to look
into the scheduling mechanism.

3.2 Scheduling Mechanism

There are M nodes in the HPC, there are U users that handle experiments.
Experiments are represented as Directed Acyclic Graphs DAGs Gu = (Vu, Eu).
For each experiment Gu ∈ G where G is the set of all experiments from users
U , we get a topological order of jobs V ‘

u = {1, 2, ..., n}. Users will send job
vi ∈ V ‘

u when αi = {vj |(vj , vi) ∈ Eu ∧ status(vj) 6= 5} = ∅, where status() is
a function that returns 5 if the input job v has status COMPLETED, meaning
that all preceding jobs of vi must have been completed successfully. Then, we
define the set of jobs send to the scheduler by user u at a given iteration as
νu = {vi|vi ∈ V ‘

u ∧ αi = ∅}.

N =
⋃
u∈U

νu

Think of the scheduler as an agent Λ that receives N jobs, each job i ∈ N
has attributes wi for its weight or size, ti as the planned running time (supplied
by the user) in minutes that the job will take to complete, ai for the time it
has been waiting for execution, and pi for its Priority calculated using the
previously mentioned attributes. Agent Λ uses the Priority pi as the main
ordering principle to define a list P : N −→ {1, ..., n} of execution order.

Agent Λ needs to allocate resources from M to execute N based mainly on
P . Usually there will not be enough resources to allocate all i ∈ N , some of
these i will have to wait until enough resources are freed for their execution
to start, while they wait their attribute ai increases until a defined max value.

16

A change in ai alters pi; also, execution of i ∈ νu increases RawUsageu and
subsequently alters pi. Then, the order in list P will be altered as iterations in
the scheduler take place.

Agent Λ not only considers list P to decide which jobs will be allocated
resources for execution and in what order, but also considers wi and ti to opti-
mize resource usage. For this reason it is important that the user u that sends
i specifies accurate values for wi and ti.

Regarding wi, the specified value directly affects pi through an increase
in RawUsageu directly proportional to wi. Most i ∈ N are jobs with high
parallelism, which is in itself and advantage given the fact that a factor in
the calculation of pi favors jobs that require more nodes. High parallelism is
rewarded, but if u requests more wi than job i really needs then it should be
punished in some way; so far, that way seems to be the increase in RawUsageu
previously mentioned.

Regarding ti, this value does not affect RawUsageu because the running
time is only measured while n is being executed (RUNNING) and when it has
finished execution. It is necessary to reward users that specify values ti that
are closer from above to the measured real execution time because that directly
helps the work of agent Λ.

The backfill scheduling mechanism subject of study can work as a BF MOD
scheduler as defined in [2]. Under this mode, resources are reserved when a job
reaches the top of the queue and is about to be scheduled and the next jobs
in the queue can be used for backfilling, but if in the next scheduling event a
job with higher priority takes position at the top of the queue, the previous
reservation is discarded and a new reservation is executed for the newly arrived
top priority job. On the other hand, we have BF UNMOD, where the top
job does not change even if a higher priority job arrives, this is also defined in
[2]. We assume our scheduler working under BF UNMOD configuration for
further discussion.

Remember that we have M machines or nodes of equal capacity, and N
jobs sent by U users. For each i ∈ N we have size wi, expected execution
time ti, and priority pi as the main attributes for each job. From now on we
make the assumption that wi is always measured in nodes 1 ≤ wi ≤ |M | for
wi ∈ Z+, ti in 1 ≤ tn ≤ 2880 (2 days) for ti ∈ Z+, and pi (as defined in 2.1.2) in
0 ≤ pi ≤ 4294967295 for pi ∈ Z+. Also, the backfill scheduling attempts happen
every 1 minute. The system implies a sequence of attempts and job arrivals;
however, we will focus on analyzing the system for a single scheduling attempt.

As mentioned before, the backfill scheduling mechanism has been widely
studied as an optimization algorithm. It will be considered in the subsequent
analysis as a neutral mechanism in the definitions of games studied.

17

4 Data

4.1 Overview

Slurm receives jobs, these jobs come from experiments on which the users are
working on. A typical experiment can be modeled as a directed acyclic graph
(DAG), it starts with jobs that retrieve or send information, or they might
compile software that will be used in the later stages of the experiment. After
these initial jobs, there are usually some heavy computation tasks that consist on
simulations that implement parallel processes and, subsequently, require many
nodes and long running time.

As we mentioned, these experiments can be modeled as a DAG G = (V,E)
where we have V = {1, ..., n} tasks and V ‘ as the list of tasks sorted in topo-
logical order with sizes w1, w2, ..., wn measured in the number of HPC nodes
they require, and t1, t2, ..., tn as the planned time in minutes they will need to
complete. Typically, a number of vertex at the beginning and end of V ‘ will
require less computation resources than the rest in average. We will avoid using
the word ”node” to name the vertex in a graph to avoid confusion with HPC
nodes.

Our main source of data is Autosubmit [3]. This is a workflow manager for
experiments that require the execution of jobs with dependencies between them
as previously described. It is implemented as a python library that the handles
authentication, job submit, retrieval of job results, among other functions; but
more importantly for our current purposes: It stores the the time a job was
submitted, started, and finished in a timestamp format. Then, by applying a
subtraction, we can get the real execution time of the job. Autosubmit allows
the user to set the number of processors that the jobs in her experiment will
require as an integer value, also, the time the jobs will require for execution in
HH:mm format, among other variables.

4.2 Data Retrieval

Although Autosubmit stores detailed information about the experiments run-
ning under it, this information is distributed among different files in a centralized
file system. It would have been ideal to have this information in a centralized
database to query it easily; as it is not the case we have to develop a script that
reduces the complexity of accessing this information and maps it into at most
two files:

1. Experiment File: Contains experiment related information.

2. Job File: Contains information specific to the job, retrieving this informa-
tion is more complex because job specific information is stored in log text
files.

Accessing files, reading them, and extracting information is certainly a com-
putation and time consuming operation. To avoid having to wait several hours

18

every time we need updated information, a pre-processing worker has been
implemented. This worker acts as a Map Reduce agent that crawls through
the file system where Autosubmit stores the experiments’ information, retrieves
important information, and updates a centralized database system that stores
experiment and job information. Due to time complexity constraints (the worker
runs every 5 minutes), not all details about an experiment can be stored, only
the most relevant attributes per experiment and job are stored.

Then, our information retrieval script will follow these steps:

1. Receive as input the paths to the Experiment File and Job File.

2. Identify the path to the sources of information: files, folders, database.

3. Verify the existence of these sources of information.

4. Query database for experiment information.

5. Loop through the experiments. In each step, add the experiment infor-
mation to the Experiment File. During this step, it might be necessary
to query specific information about the experiment, we use already imple-
mented Autosubmit functions to quickly access this data.

6. As a result of the previous step, we identify which experiments are valid,
meaning those that can provide the information we need. Some experi-
ments could have been altered by users or lack an important file for some
reason.

7. Query database for job information.

8. Loop through the jobs that belong to valid experiments, in each step add
the job information to the Job File. It could be necessary to access job
specific information in this step, we use Autosubmit functions to quickly
get this information.

9. Close all connections. End script.

4.3 Description

In Section 4.2, we described the process through which we get the necessary
information to start our analysis. In this section, we describe the information
we get as a result.

In Table 6, we list the fields of the Experiment File where we have high-
lighted the most important of these. For example, total gives us an idea of the
complexity of the experiment by the number of jobs that are part of it, this
value can range 1 to 50931, which is the experiment with the highest amount
of jobs ever registered in Autosubmit. However, not every job in an experiment
is executed, perhaps the experiment was started and then abandoned at some
point, or it just did not start; and that is why we also consider completed that
gives us the number of jobs that were successfully completed in the experiment.

19

Field Type Description
id int Unique internal identifier.
name string Unique public identifier.
completed int Number of completed jobs.
total int Total number of jobs.
user string The user owner of the experiment.
as version string Autosubmit version.
created datetime Date and time when the experiment was created.
model string Name of the scientific model used.
hpc string Name of the HPC where the experiment runs.
wrapper string Type of wrapper (internal Autosubmit method).
maxwrapper int Number of jobs that can be wrapped.

Table 6: Experiment File

Field Type Description
exp id int Unique internal identifier of the experiment.
exp name string Unique public identifier of the experiment.
job name string Unique public identifier of the job.
type string Type of the job.
submit int Timestamp of the datetime the job was submitted.
start int Timestamp of the datetime the job started execution.
finish int Timestamp of the datetime the job finished execution.
status string Current status of the job.
wallclock string Execution time requested in format HH:mm.
procs int Number of processors requested.
threads int Number of threads.
tasks int Number of tasks.
queue string Name of the queue (QoS) targeted.

Table 7: Job File

Using these fields we get an idea of the development of an experiment. More
information in Section 4.4.

In Table 7, we describe the fields of the Job File where we highlight those
fields that we consider specially relevant for this study. A field that deserves
immediate mention is type, this type is defined when the user configures her
experiment in Autosubmit, it is to this type that the number of processors and
planned time requested is associated.

4.4 Analysis

We take a look at the information we have gathered using previously described
tools, for this purpose we use R under RStudio, to easily manipulate the data.

It is important to mention that we are only considering data collected until
“30-04-2020”, i.e. April 30th 2020.

20

Figure 2: Experiment Data Summary

4.4.1 Experiment Data Analysis

We start by taking a look at the experiments that are usually run in the HPC
through Autosubmit, so we can get a better understanding of the flow of infor-
mation in the system that we are analyzing.

Our raw experiment dataset contains much information that is not quite
relevant for our study. We proceed to filter some of this information. We are
starting with 2734 experiments.

We filter the dataset by the field hpc including only those experiments
targeting “marenostrum3” or “marenostrum4” because these are the HPC that
use Slurm. We include only those experiments that have completed at least
10% of their jobs. We should include only experiments that belong to a real
experiment, the best way to identify them is by taking the first two characters in
the name field and if these characters are “t0” then that experiment is a test and
should not be considered. Another filter to identify valid experiments is by only
considering those where the model field is not empty, because valid experiments
must have a model defined. Finally, we exclude experiments where the wrapper
field has any of the values “vertical”, “horizontal-vertical”, “hybrid”, “vertical-
mixed”, since these wrappers might cause that some jobs have exaggerated
queuing times. After we have applied these filters, we have 1265 experiments.

In Figure 2, we take a quick glance at some metrics of our data to get a
general idea. We see that we have effectively filtered by the hpc field, and we
can identify which models are common. Then, by looking at the total summary,
we can identify that half of our experiments have less than 85 jobs, and the other
half has more than 85 up to a maximum of 50931 jobs; also, the completed
field tells us that most experiments do not complete all their jobs.

We proceed to group the experiments by year and month based on the
created field. In R this can be done by adding a new field where all rows
where the datetime field belongs to certain year y and month m are set the
datetime value y−m− 01 meaning that they are set as if they had the original
value set to the first of the month m and year y, for example: “2019-05-01”.
This is an easy way to group by a datetime field.

In Figure 3, we have accumulated the field total by year and month and
plotted it in a way that the evolution of the accumulated value across time can
be easily appreciated. Notice that the fact that if an experiment is created in a
certain month, it does not mean that all its jobs are completed in that month.

21

Figure 3: Number of total jobs in experiment by year month

Figure 4: Number of experiments by year month

22

model n exps
1 auto-ecearth3 850
2 auto-monarch 219
3 auto-nemo 91
4 auto-caliope 86
5 ifs initial conditions 6
6 auto-nmmb 5
7 auto-ecearth2 4
8 autosubmit basic runtime 2

Table 8: Number of experiments per Model

Figure 5: Number of experiments using auto-ecearth3

This is a process that can span several months. Anyway, we are including this
plot as a sort of representation of the workload received every month.

In Figure 4, we have accumulated the number of experiments (number of
rows) by year and month and plotted it to show the evolution of the accumulated
value across time. This plot has the same objective of showing the workload
received every month but it can be compared to Figure 3 and we can see that
the number of received experiments follows a more regular pattern. There is
not much variation for this quantity in the last year.

We have previously mentioned that model is an important field that tells us
about the validity of an experiment. In Table 8, we count number of experiments
per model. This tells us about which models need to be targeted for later
experimentation. We start by analyzing the first 4 most used models.

The data for model auto-ecearth3 plotted in Figure 5 shows a distribution
similar to that of Figure 4, which is expected since this is the most used model.

23

Figure 6: Number of experiments using auto-monarch

Figure 7: Number of experiments using auto-nemo

24

Figure 8: Number of experiments using auto-caliope

QoS Wallclock (HH:mm)
prace 72:00

class a 72:00
bsc es 48:00
xlarge 72:00
debug 02:00

interactive 02:00

Table 9: Default Wallclock per QoS

Then, in Figure 6 and Figure 8, we see different distributions, but they seem
to have been more or less constant for the last two years. In the case of Figure
7, it shows data for the auto-nemo model where we see an increase in usage;
however, that plot also shows that this model was only used in 2018.

We proceed to filter our dataset to only include experiments belonging to
the models auto-ecearth3, auto-monarch, and auto-caliope. This is the subset of
1157 experiments whose jobs will be used in the following analysis.

4.4.2 Job Data Analysis

Before we start analyzing job data, we have to apply some fixes. Some jobs do
not have a value for the field queue defined, those are assigned to the default
QoS of the group from which this information is taken from, which corresponds
to “bsc es”. Also, the important field wallclock can be empty for some jobs,
in these cases this fields assumes the maximum wallclock value of the QoS, see
Table 9 for reference.

25

Our original dataset has 1639409 jobs. First, we filter those jobs that
belong to the valid experiment dataset previously defined in Section 4.4.1,
this leaves us with 794028 jobs. Then we see that some jobs target specific
platforms, this is due to an Autosubmit design decision that gives the user
the option to define specific platforms for certain jobs while leaving as de-
fault the main platform defined for the experiment. We proceed to include
only jobs belonging to platforms we know are related with our target HPC,
these are: marenostrum3, marenostrum4, marenostrum3-exclusive, MareNos-
trum3, marenostrum3 archive, marenosturm3, marenostrum archive, marenos-
trum, marenostrum4-dt. After applying this filter, we have 722187 jobs.

Then, we include only those jobs where the field submit is greater than 0,
meaning a valid timestamp. We only consider jobs with status COMPLETED
since those are the jobs that will provide enough information for experimenta-
tion. Next, we exclude jobs that have the field queue with values “interactive”,
“debug”, “DEBUG”, “bsc debug”; these cases represent very restricted QoS
configurations (see Section 2.2.4) that are not useful for our purposes. In this
context, a job (meaning the user) must specify a requested number of proces-
sors, if not, we consider it as not valid; so we exclude those jobs that do not
specify number of processors in the field procs. We know that jobs that request
less that 48 processors do not reserve the whole node to which these processors
belong, so we decide to exclude jobs requesting less than 48 processors. After
these filters have been applied, we end with 102868 jobs that we consider
valid jobs.

We add the fields minutes as the value wallclock converted to minutes,
nprocs as the integer representation of procs, nnodes as nprocs divided
by 48 (number of processors per node in Marenostrum4) rounding up so we
get the number of nodes requested. For our purposes, nnodes is the number
considered along with minutes for resource allocation. We also calculate and
add the fields qtime = (start− submit)/60 and rtime = (finish− start)/60,
which represent the time the job spent in the queue and the time spent running
(in minutes) respectively.

At this point we have only jobs that target a QoS that allow a wide range
of resource allocation, so we can assume that these jobs present an adequate
distribution for experimentation. Now we take a look at the distribution of
relevant dimensions of this dataset.

In Figure 9, we see information about the most relevant dimensions of our
dataset. We have that the type SIM is the most common, followed by POST
and CLEAN ; SIM pertains to those jobs that perform the computation of an
atmospheric simulation or other type of simulation that usually requires a high
amount of computational resources, while the other two types correspond to
data handling jobs. We have that the maximum amount of nodes requested by
a job is 102 and the minimum is 1, where half our jobs request 16 nodes or less.
From minutes we see that half of our jobs request 40 minutes of computation
time or less. We see that qtime presents negative values, and the maximum
value is too high to be realistic, this indicates that we need to trim some outliers
from this dataset. The field rtime seems to be more realistic with a maximum

26

Figure 9: Job data summary

value of 4154 that stays in the range of allowed running times.
Concerning qtime, we start by identifying those rows that contain negative

values, 5 jobs. We will not bother trying to find the causes of this misinforma-
tion. Since there are only 5 of these cases, we proceed to exclude them. Then,
we take a look at Figure 10 where we clearly see extreme outliers. From our
knowledge of the HPC and to allow for proper experimentation, we take the
decision to include only jobs that queued for at most 12 hours, or 720 minutes.
This last filter excludes 2411 jobs.

Regarding rtime, we identify 12405 jobs with zero or negative running time.
These jobs are not useful for experimentation, so we exclude them. Moreover,
jobs where the rtime is greater than minutes should not be considered, as they
break a rule of the HPC and are most likely the result of misinformation. We
identify 294 jobs that present this characteristic.

After we apply the filters previously mentioned, we end with 88047 jobs
that we consider valid. This information represents around 5.3% of our
original dataset. In Figure 11, we see the summary of the most relevant fields
of our valid dataset.

The dataset resulting from the filtering process and described in Figures 12
13 14 15 constitutes the distribution from which we are going to pick samples
for experimentation.

27

Figure 10: Queuing time per job

Figure 11: Summary of final job dataset

28

Figure 12: Number of jobs per nodes requested. The bin width has been set to
5 nodes to see more clearly the distribution of the jobs.

Figure 13: Number of jobs per minutes requested. The bin width has been set
to 60 minutes.

29

Figure 14: Number of jobs per queuing time recorded. The bin width has been
set to 60 minutes.

Figure 15: Number of jobs per running time recorded. The bin width has been
set to 60 minutes.

30

5 Games

In previous sections, we have defined the variables involved in the scheduling
process along with a description of the main ideas behind the backfill scheduling
mechanism. We also reviewed the data that serves as an input to the system,
aiming to extract an understanding of the nature of this data. All that informa-
tion was formalized to get a better grasp of the pieces involved in the functioning
of the Slurm Scheduler mechanism.

In this section, we start by reviewing the theory that we are going to use to
analyze the Slurm scheduling mechanism. Then, we propose a model that cap-
tures some of the main characteristics of the scheduler into a Game where the
inherent complexity of the Slurm Scheduler is reduced considering assumptions
and simplifications.

5.1 Game Theory

5.1.1 Introduction

In the era of the internet, we see that more and more systems involve the
participation of many users whose actions influence other users. For example,
when users request resources from a single server, by their own actions they
increase the load of the server, thus harming any of the other users of the server.
In the context of a High Performance Computer that we have described in
previous sections, we have that users send their jobs for resource allocation
and subsequent execution, and by doing this they might influence the resource
allocation and execution of the jobs of other users. Game Theory aims to
model situations in which users/players interact with or influence the outcome
of other users/players. The sources of this theory section are mainly the book
Algorithmic Game Theory [9] and the book by Tim Roughgarden [10].

Most books start their definition of Games with the classic example of The
Prisoner’s Dilemma, but we consider that a more relevant or familiar example
for our context is the ISP Routing Game, which is another way to express
the ideas in the former game.

In Figure 16 [9], we have two Internet Service Providers (ISP) 1 and 2,
that need to send traffic from s1 to t1 and s2 to t2 respectively. The networks
corresponding to ISP 1 and 2 exchange traffic via points C and S, which are
called peering points. Sending traffic through an edge has a cost of 1 for the ISP
whose network owns the edge. In this game ISP 1 (player 1) has two strategies:
(1) it can send traffic from s1 to point C incurring a cost of 1 and letting ISP 2
(player 2) handle the cost 4 of sending the traffic to the destination point t1, (2)
or it can send traffic to point S incurring a cost of 2 and letting ISP 2 handle
the cost 1 of sending traffic to the destination point. By symmetry, the same
applies from ISP 2 perspective. From these two strategies, one is selfish (1), and
the other is more considerate towards society.

This is a good moment to look more into selfish behavior. We assume that
every player tries to get the best result for her, i.e. player is selfish. However,

31

Figure 16: The ISP routing problem.

Figure 17: Braess’s paradox.

this behavior might result in a worse result than what the player would have
got if she did not put her own interests in the first place. An example of the
consequences of this behavior is the Braess’s Paradox [4] that we describe
through Figure 17 where c(x) = x means that the delay of going through that
route is equal to the fraction of traffic using that route, and c(x) = 1 means
that the delay of that route is equal to 1. There is a network (a) where there
are two routes from s to t, one that goes through v and the other that goes
through w. Since both routes are identical, traffic should split evenly between
them, achieving a delay of 1.5 for any of the routes. Then, on network (b) a
teleportation mechanism is added that takes traffic from v to w without delay.
In this new setting, the route s −→ v −→ w −→ t is not worse than the
two original routes, but better when some traffic fails to use this route. As a
consequence, every driver will selfishly use it and the delay for all drivers will
be 2. This delay can be improved to the original value of (a) if some entity
distributed traffic evenly between the two original routes. In this example we
see that selfish behavior has an undesired consequence from a social standpoint.

32

We assume that all players act selfishly, and from this “selfish” point of view
we see that there is only one optimal strategy for our players, and that is to act
selfishly and minimize their costs. In other models of games, selfish behavior
could mean that players want to maximize their profit or utility. Imagine that
sending traffic from s1 to t1 awards some x amount of money to ISP 1, and that
sending traffic through an edge has a cost y. Then, the utility of ISP 1 would be
x−m∗y where m is the number of edges. Since x and y are constants, the only
way for ISP 1 to selfishly maximize its utility is to decrease m. Of course, there
are other models of games where the players’ selfish optimal strategies depend
on the strategies of other players. One example of this is the classic Tragedy
of the commons where the main idea is that some benefit is achieved only if
players carefully choose their selfish strategies in order to reach some objective;
otherwise, nobody gets any benefit.

In The ISP routing game, it can be argued that a player may get a
better benefit by being altruistic and routing traffic through the longer route
and expecting the other player to do the same, thus both benefit by cooperation.
However, we assume that no player knows what the other is going to do, and
must assume that everybody acts selfishly and no collaboration is guaranteed.

In games such as The ISP routing game we have stable outcomes where
each player has selfishly picked an strategy from which she does not want to
deviate because it does not give any extra benefit. There are other games where
there are no stable outcomes, a classic example is Matching pennies. In this
game we have two players, each one has a penny and each of them must select
a strategy: heads or tails. Player 1 wins if the two pennies match, both heads
or both tails, and Player 2 wins if they are different. Player 2 always wants to
disrupt Player 1, and Player 1 wants to avoid that disruption. In this example
it is best for both Players to randomize their choice of strategy in order to get
the maximum expected utility.

5.1.2 Simultaneous Move Game

We will mostly deal with one-shot simultaneous move games where all players
simultaneously pick their action from their set of the possible strategies. We
define an action as the execution of the strategy chosen.

In this type of game we have a set of n players, {1, 2, ..., n}. Each of these
players has a set of possible strategies Si. To play the game, player i selects
a strategy si ∈ Si. Denote by S = ×iSi the set of all possible ways in which
strategies can be picked. Then, s ∈ S is the vector of strategies picked by
players that determine the outcome of the game for each player. Moreover,
between two outcomes S1 and S2, we can tell if player i prefers one or the other
or regards them as equally good. For example, in the Matching pennies game,
Player 1 regards outcomes where both pennies match as equally good, so we can
state that Player 1 weakly prefers S1 to S2. We can now try to quantify how
much a player prefers one outcome to another, we do this by specifying a utility
(also known as payoff) function ui : S −→ R or in other cases a cost function
ci : S −→ R. Costs and payoffs can be used interchangeably, ui = −ci. Notice

33

that in both cases, ui(s) and ci(s) consider the set of strategies of all players s,
and not just si; meaning that the calculation of the outcome of a player must
involve the strategies of other players.

5.1.3 Dominant Strategy Solution

In The ISP routing game each player has a unique best strategy independent
of the strategies of other players, which is to choose the shortest route in their
network to minimize costs. Players do not have any incentive to pick any other
strategy, as any other option would just mean a higher cost. This best strategy
is called a the dominant strategy. A game has a dominant strategy solution
if all players have a dominant strategy.

A strategy si ∈ Si, where Si is the set of all strategies that player i can play,
is a Dominant Strategy if player i is at least the same or better off if she
adheres to strategy si. We represent the strategies played by the other players
as s−i. From previous definitions we have that ui(s) represents the utility of
player i for the strategy profile s, so we can use u(si, s−i) to symbolize the same
idea. Then, a strategy profile (also called strategy vector) s ∈ S is a dominant
strategy solution if for every player i and any other strategy profile s′ ∈ S we
have:

ui(si, s
′
−i) ≥ ui(s′i, s′−i)

In words, when player i plays si, his utility under this strategy while the
other players play an alternate profile s′−i is at least the same as if she played
an alternate strategy s′i while the other players play an alternate profile s′−i.

A dominant strategy solution for a game does not guarantee optimal utility
for any player in a sense that players are not guaranteed to get the best possible
utility; although, they can get the best result considering limited information
and selfish behavior. For example, as mentioned for the The ISP routing
game, there is a strategy profile that requires collaboration and improves the
utility of both players; however, it is not played by any player because they do
not know if the other player is going to collaborate, or if they are going to get
betrayed and end up worse. Not every game has a dominant strategy solution,
in fact, very few have it. The field of Mechanism Design establishes the
foundations that allow for the design of games with dominant strategy solutions,
and even more, that this solution has a socially desirable outcome, or a desirable
property for the designer.

5.1.4 Vickrey Auction

An auction presents a situation in which we can clearly identify the elements
of a game, the situation is even more clear for a single item auction. In this
auction we have players (bidders) and each player i has a private value vi for
the item, i.e. what this player is willing to spend for the item. The strategy for
each player is her bid, if player i wins the auction she gets utility p−vi, where p
is the price at which the item is finally sold; if player i does not win, her utility

34

is 0. We consider a one-shot simultaneous move game where all players submit
their bids at the same time or if they submit their bids privately to a neutral
agent. At first sight, it does not seem clear which should be the bid of player
i, certainly it should be some number greater than the second highest bid, but
player i does not know the value of the second highest bid.

In the Vickrey’s mechanism, also known as the Second Price Auction, the
item is awarded to the highest bidder, but that bidder pays an amount equal
to the second highest bid. Turns out that this mechanism has the property
that the dominant strategy of each player is simply to bid his true value,
even without knowing what other players bid; or said otherwise, the dominant
strategy is to tell the truth.

This mechanism has three important properties: It is welfare maximizing,
meaning that the item is awarded to the person that values it the most; it is
easy for the players to play, as they only have to play their dominant strategies;
finally, considering the properties previously listed, it is fairly simple to calculate
who gets the item and how much this player must pay, so we can say that this
mechanism is “computationally efficient”,

5.1.5 Pure Strategy Nash Equilibrium

A second price auction is a special case where there exists a dominant strategy
solution, most games do not have this property. So we need a more broadly
applicable solution concept, and that is the Nash Equilibrium. In a Nash
Equilibrium all players act selfishly in order to maximize their utilities, and this
behavior results in a stable solution. A strategy profile s ∈ S is a Pure Strategy
Nash equilibrium if for all players i, and for and any alternate profile s′i ∈ Si,
we have:

ui(si, s−i) ≥ ui(s′i, s−i)

Meaning that under strategy profile s no player i can pick an alternate
strategy s′i ∈ Si while other players continue to adhere to s−i and thus increase
her utility. Notice the difference with the definition of dominant strategy, where
other players do not need to adhere to s−i but pick from any other s′ ∈ S.
Having said that, it is evident that any dominant strategy solution is a Nash
equilibrium, and if switching to this dominant strategy always improves utility,
then it is the unique Nash equilibrium of the game. However, consider that
a game can have multiple equilibria, and that different equilibria can have a
different utility for the players.

Having a game with possible multiple equilibria and selfish independent play-
ers makes it hard to predict what players should do, or what is going to happen
in the outcome of the game. The important characteristic here is that once a
Nash equilibrium is reached, players will not want to individually deviate.

35

5.1.6 Mixed Strategy Nash Equilibria

As mentioned at the end of Section 5.1.1, we have games where there are no
pure strategy Nash equilibria, meaning that there is no stable solution that
involves players deterministically picking a strategy and playing it; instead it
is best for them to randomize between the strategies that aim to maximize the
expected payoff. Adding to the definition in Section 5.1.5, each player now picks
a probability distribution over her possible strategies, we call this distribution
a Mixed Strategy. Then they select an action from this distribution and play it.

Considering mixed strategies, Nash [8] proved that every game with a finite
number of players, and each of them with a finite number of strategies, has a
Nash Equilibrium.

5.1.7 The Price of Anarchy

The Price of Anarchy is the most popular way to measure the inefficiency of
equilibria in games with multiple equilibria. This metric is defined as the ratio
between the worst value of the objective function of an equilibrium and the
optimal value of the same objective function.

Consider a game G = (N,S, u) defined by a set of players N , strategies
Si for each player i, and a utility function ui : S −→ R. We also define a
welfare function Welf : S −→ R calculated by the sum of players utilities
Welf(s) =

∑
i∈N ui(s), where s ∈ Equil is a strategy profile in equilibrium,

and Equil ⊆ S.

PoA =
maxs∈SWelf(s)

mins∈EquilWelf(s)

If instead we chose to minimize a cost function Cost : S −→ R, we define
PoA as:

PoA =
maxs∈EquilCost(s)

mins∈SCost(s)

Notice that this metric is defined based on the choice of objective function.
This is a key idea, since our argument about this metric in Section 6.4 is based
on our particular choice of objective function.

5.2 Mechanism Design

Mechanism Design is the science of rule-making. This sub-field of economic
theory, which has an engineering perspective, is interested in designing economic
mechanisms that achieve a socially desirable outcome, or a desirable property
defined by the designer. We define this social outcome as the aggregation of the
preferences of the participants in the mechanism into a single joint decision, we
call this outcome a social choice. We assume that players in this mechanism act
rationally in an economic sense, which implies selfishness.

36

5.2.1 Introduction

In Section 5.1.4, we saw that the Vickrey Auction enjoys three desirable
properties:

1. Strong incentive guarantees: Truthful bidding is a dominant strat-
egy and never leads to a negative utility. We refer to auctions that
comply with this guarantee as Dominant Strategy Incentive Compatible
(DSIC). An auction with this guarantee is easy to play for bidders, and
assuming that the bidders play their dominant strategies, we can predict
the outcome of the auction.

2. Strong performance guarantees: Social welfare maximization, the
bidder with the highest value gets the item, assuming truthful bids. The
outcome of the auction maximizes

∑n
i=1 vi · xi where xi is the amount of

items allocated to bidder i, in this case it is 1 for the winner and 0 for the
others.

3. Computationally efficient: The auction can be implemented in poly-
nomial time, linear for this case.

We refer to the Vickrey auction as an ideal auction, and we will refer to
any mechanism/auction that has the 3 properties mentioned as an ideal mech-
anism/auction.

5.2.2 Design Approach

The properties in Section 3.2 are well defined for Vickrey Auctions, but we want
to extend them to more general problems. To achieve this we follow a 2-step
approach:

• Step 1: Assume that bidders bid truthfully. How should we allocate
item(s) to bidder(s) so the properties Strong performance guarantee
and Computationally efficient hold?

• Step 2: Given the allocation rule defined in Step 1, how should we set
the selling prices so Strong incentive guarantees holds? Meaning that
our payment rule should promote dominant strategies, and subsequently,
a DSIC mechanism.

In general, an allocation rule defines which bidder gets which item, and a
payment rule defines the payment that bidders make to the mechanism. We
define these concepts more formally later, but it was necessary to mention them
in this Section as to make clear the connection between the design approach and
the next concepts. Furthermore, Myerson’s Lemma is a general and powerful
tool for implementing Step 2, the payment rule.

37

5.2.3 Single-Parameter Environments

This is the level of abstraction at which we are going to set our analysis, and at
which to state Myerson’s Lemma. In this environment there are a number n of
players (or bidders), each player i has a private valuation vi per item. There is
a feasible set X such that each element of this set is an n-vector (x1, x2, ..., xn)
where xi is the amount of items player i gets. For example, in a single-item
auction (an auction where only 1 item is auctioned among n bidders) each
element of X is a 0-1 vector such that

∑n
i=1 xi ≤ 1. In this setting the valuation

vi for when player i wins is a single value vi, and 0 if she loses. On the other
hand, consider the auction where several different items are auctioned at the
same time, in this case there is no single vi for when player i wins some set of
items because the player might have preferences between the items resulting in
a different vi for a different winning outcome. We call this a multi-parameter
environment.

5.2.4 Allocation and Payment Rules

In Section 5.2.2, we saw that our mechanism needs to make two important
choices: allocate items and define payments. In the auction context, these
decisions are formalized as an allocation rule to define who receives what, and
a payment rule that defines how much the winning players has to pay to the
mechanism. The steps to apply these rules are:

1. Collect bids b = (b1, ..., bn) from all bidders (players). Vector b is the bid
vector or bid profile.

2. Through the allocation rule: Choose a feasible allocation x(b) ∈ X ⊆
Rn as a function of the bid vector.

3. Through the payment rule: Choose payments p(b) ∈ Rn as a function
of the bid vector.

The procedure defined in the previous steps is called a direct-revelation mech-
anism because the players reveal their private information in the first step.
There is another type of procedure called indirect revelation mechanism where
the private information revelation is not required, an example is an iterative
ascending auction, also known as English Auction.

We use a quasilinear utility function for our model, where we have that with
allocation rule x and payment rule p, player i has utility:

ui(b) = vi · xi(b)− pi(b)

5.2.5 Monotonicity

In general we have that an allocation rule x, also known as a social choice
function, satisfies Weak Monotonicity if for all players i and all v−i, we have
that x(vi, v−i) = a 6= b = x(v′, v−i) implies that vi(a) − vi(b) ≥ v′i(a) −

38

v′i(b). Meaning that if the social choice changes when a single player changes
his valuations, then it must be because this player increased his value of the
new choice compared to that of the old choice.

Then, for single-parameter environments we have that an allocation
rule x, also known as a social choice function, is called monotone in vi if for
every v−i and every vi ≤ v′i ∈ R we have that x(vi, v−i) ∈ Wi implies that
x(v′i, v−i) ∈Wi, where values are chosen from a subset of winning alternatives
Wi ⊆ A, and A is the set of alternatives. In other words, if value vi makes a
player i win, then bidding v′i > vi will also make player i win.

5.2.6 Myerson’s Lemma

We have two important definitions:

1. Implementable Allocation Rule: An allocation rule x for a single-
parameter environment is implementable if there is a payment rule p such
that the direct-revelation mechanism (x,p) is DSIC. Meaning that im-
plementable allocation rules are those that extend to DSIC mechanisms.
This definition is important because we have that Ideal Auctions as
defined in Section 5.2.1 must be DSIC.

2. Monotone Allocation Rule: An allocation rule x for a single-parameter
environment is monotone if for every player i and bids b−i by the other
players, the allocation xi(z,b−i) to i is non-decreasing in her bid z. Mean-
ing that bidding higher can only get you more items, if there are more
items to win, or continue to win in case there is only 1 item and you
were already winning. An allocation rule must be monotone to be
implementable.

We state Myerson’s Lemma:

Theorem 1 Myerson’s Lemma Fix a single-paramenter environment.

(a) An allocation rule x is implementable if an only if it is monotone.

(b) If x is monotone, then there is a unique payment rule for which the direct-
revelation mechanism (x,p) is DSIC and pi(b) = 0 whenever bi = 0.

(c) They payment rule is given by an explicit formula.

Part (a) states that previous definitions 1 and 2 define the same class of
allocation rules, where definition 2 is the more operational as it is not hard
to check whether an allocation is monotone or not. Part (b) states that if an
allocation rule is implementable then it is straightforward how to set payments
to achieve a the DSIC property; moreover, there is only one way to do it.

We can summarize the most relevant, for our purposes, part of this theorem
as: If a direct-revelation mechanism (x,p) is DSIC, then the allocation rule x
satisfies monotonicity. If there is a monotone allocation rule x, then there is a
payment rule p such that (x,p) is DSIC.

39

5.2.7 Vickrey-Clark-Groves Auction

This is a generalization for multiple items of the Vickrey second price auction
seen in Section 5.1.4. In this general setting we have n players bidding for A
items, players can submit more than one bid, since they might have different
valuations for different amount of items received. This is a direct-revelation
setting where each player’s bids are private. Then, the mechanism considers
all combinations of the bids and picks the combination that maximizes social
welfare x(b) ∈ argmaxa∈A

∑
i vi(a), for an allocation rule x. Then, the players

whose bids were chosen by the mechanism receive their items and pay not the
amount they had bid, but only the marginal harm their bid has caused to the
other players, by making them win less items or none at all, where this payment
can be as high as their original bid, otherwise DSIC is lost because players get
negative utility.

With rational (in the economic sense) players, this mechanism is DSIC and
the dominant strategy for players is to be truthful. Then, we have that:

(a) The only incentive compatible mechanisms that maximize Social Welfare
are those with VCG payments.

(b) In a single-item auction, the amount the wining player pays for the awarded
item is equal to the value of the winner in the case he had not participated
in the auction minus the value of the other players in case he participates
in the auction. Given that in the case where he participates in the auc-
tion the value of the losing players is 0, the VCG payment rule says that
the winning player should play the second highest bid (or value, assuming
truthful bids), which is the same payment rule as in the ideal Vickrey
second price auction.

5.2.8 Knapsack Auction

Knapsack Auctions are another example of single-parameter environments. In
a Knapsack Auction each player has a publicly known size wi and a privately
known valuation. The system has capacity W . The feasible set X is the 0-1
n-vector (x1, x2, ..., xn) such that,

∑
i wixi ≤W , where xi = 1 if i is a winning

bidder.
In Section 5.2.2, we defined a 2-step approach to design a DSIC mechanism.

First, we design an allocation rule that maximizes welfare:

x(b) = argmaxX

n∑
i=1

bixi

The allocation rule solves an instance of the knapsack problem where the
item values are the reported bids b1, b2, ..., bn and the item sizes are the known
sizes w1, w2, ..., wn. When players bid truthfully, this allocation rule maximizes
social welfare. Moreover, this allocation rule is monotone.

Remember that an instance of a knapsack problems consists of 2n+1 positive
numbers. We have the values of the items (the bids in this context) b1, b2, ..., bn,

40

the sizes of the items are w1, w2, ..., wn, and the capacity of the knapsack W .
The objective is to compute the subset of items of maximum total value that
have total size at most W .

Secondly, we define a payment rule that extends the allocation rule to
a DSIC the mechanism. Myerson’s lemma, see Section 5.2.6 guarantees the
existence of a payment rule p such that the mechanism (x,p) is DSIC. Under
this payment rule p, a bidder i that wins pays her critical bid, which is the
lowest bid she can make and continue to win, fixing the other bids b−i. This is
analogous to the payment rule of the Vickrey Second Price Auction.

We have already shown that this mechanism aims at welfare maximization,
but to be ideal it must have the properties described in Section 5.2.1: DSIC,
Welfare Maximizing, and Computationally Efficient. Our allocation rule
should give a result in polynomial time as a function of the input to be considered
computationally efficient, even better is linear time. We know that the Knapsack
problem is NP-hard. This means that there is no polynomial time algorithm
that implements the allocation rule in polynomial time as a function of its
input. However, we can use other methods to attain the required efficiency; for
example, approximation algorithms.

There is a similarity between Mechanism Design and the field of Approxi-
mation Algorithms in that both have the primary goal of designing polynomial
time algorithms for difficult problems, but with the difference that Mechanism
Design also adds an additional monotonicity constraint.

5.2.9 Greedy Knapsack Algorithm

In this section, we study one of the many heuristics that attempt to solve the
Knapsack problem with good worst-case performance guarantee.

Consider a bid profile b and a set of winners I with total size
∑

i∈I wi ≤W .
For all i ∈ I, we have that wi ≤W . Then we follow the steps:

1. Sort and re-index the bidders so that:

b1
w1
≥ b2
w2
≥ · · · ≥ bn

wn

2. Pick items in that order until one does not fit and halt.

3. Return the solution from the previous step or the highest bidder, whichever
has largest social welfare.

Assuming truthful bids, the social welfare achieved by the greedy algorithm
is at least 50% of the maximum social welfare. Furthermore, this algorithm can
achieve even better results if mi ≤ β ·W for every player i and β ∈ (0, 12], then
the approximation guarantee increases to 1− β.

41

5.3 Scheduler Model

The Slurm Scheduler is a complex mechanism that involves several variables
form different sources, some of them depend on the user, others depend on the
users that share a group with the user, others depend on configurations settings.
These variables can also depend on the specific project on which the users are
working on. In this context, it is difficult to perform an analysis of the system
as a single entity; so instead, we take a look at some of the characteristics of the
Slurm Scheduler that can be used in an strategic way by the users. We isolate
these characteristics in an independent environment so we can model them and
get a clear understanding of the mechanics at play, in an attempt to get a better
understanding of the system.

We measure performance as the maximization of an objective function. We
define our objective function as the Total Value achieved by the scheduler,
which is the sum of the values each user has for the execution of her job.

5.3.1 Knapsack Auction Model

We model the Slurm Scheduler as a Knapsack Auction, which is described in
Section 5.2.8. We have seen that the Knapsack Auction model has some desired
properties that will result in potential optimal results that we can analyze and
use for comparison purposes. We will study some variables used by the Slurm
Scheduler that can be adapted to the Knapsack mechanism without making this
model lose its important properties.

One of the main variables in the Slurm Scheduler is Priority, this value is
calculated based on factors that try to capture as much information as possible
from the environment while also trying to preserve some kind of fairness. This
value directly affects how jobs are considered for execution.

In this model, we ignore most of the factors that are used for the calculation
of Priority. This can be seen as starting the system from scratch, where the
Priority calculation described in Section 2.2 is as simple as it gets. We can state
this environment as if there is no data that conditions the calculation of the
Priority.

However, we are not going to ignore Priority completely, since we will still
consider the size and running time (real and planned) of the job that is sent
to the scheduler, as well as the concept of user. However, for our model we
will not consider the hierarchy of users, but a single group to which all users
belong. This can also be seen as if we analyze a single group of the hierarchy
independently, where that group has some reservation of resources, number of
nodes, in which they can run their jobs.

We have a set of n players that submit n jobs, 1 job per player. Player i has
available some currency that she is going to use to pay for the resources her job
i consumes. In the context of Slurm, this currency can be thought as another
factor in the Priority calculation formula. Furthermore, this currency concept
has some resemblance to the concept of Usage, where the user pays with Usage
the execution of her jobs. As a consequence, later jobs receive a penalty in the

42

calculation of Priority by the Slurm Scheduler.
Player i submits job i that has a known size wi representing the number of

nodes that job i requires, and ti representing the number of minutes that job
i requires to finish execution (planned running time). Considering wi and ti,
player i has a privately known value vi that she gives to the execution of job i.
In the Knapsack Auction, the values vi of each player are represented by their
reported bids b1, b2, ..., bn. As we have seen in the definition of the Knapsack
Auction, the best strategy for a player is to report her truthful value, meaning
bi = vi. So we consider this assumption in this model as well.

Consider that when job i is allocated resources for execution, it will run on
the specified number of nodes wi for as long as the specified planned running
time ti. When that time has been consumed, the job is terminated indepen-
dently if it has been completed or not. Player i is aware of this fact, subsequently,
she will not send a value ti lower than the expected required time of her job;
also, to secure the completion of her job, player i might add some extra amount
of time to cover for unexpected variations, some ε.

Consider the idea of a computation resource that we measure as nodes×time.
In our context, we measure this computation resources in units of nodes ×
minutes or equivalently as wi · ti for job i of player i.

Our allocation rule x should try to maximize Social Welfare and do it in a
computationally efficient way. To achieve this objective, we are going to use the
greedy algorithm defined in Section 5.2.9.

1. Sort and re-index the bidders so that:

b1
w1
≥ b2
w2
≥ · · · ≥ bn

wn

2. Pick items in that order until one does not fit and halt.

3. Return the solution from the previous step or the highest bidder, whichever
has largest social welfare.

We maintain that
∑

i wi ≤ W , for the subset of winning jobs/players. The
original greedy algorithm considered only bi

wi
. In our setting, it is tempting to

also consider the time these wi resources are going to be unavailable because
they are allocated to job i, to include this idea we could use bi

wi·rtimei
. Where

rtimei symbolizes the idea of expected running time, meaning that based on
previous runs of similar jobs, the scheduler can calculate an expectation rtimei
of the real time this job is going to be running for. We will see more about the
effect of including the rtimei into the greedy algorithm in Section 6; where we
take rtimei not as an expected value, but as the real running time of the job.
This simplification is made because we can get this value from our datasource,
and we are testing a single attempt model, where there are no previous jobs
from which to get an average.

Another possible improvement could be to alter step 2, so the algorithm does
not stop when it finds a job that does not fit current capacity but keeps going

43

until it finds a job that fits the remaining capacity or it reaches the end of the
list. However, this might result in breaking the monotonicity of the allocation
rule, thus breaking DSIC. We will explore this scenario in Section 6.3.2.

This greedy algorithm allocation rule is monotonic, but we certainly get a
greater or equal allocation guarantee by using a exact optimal solution algo-
rithm. In Section 6, we also test our samples using a branch and bound based
algorithm implemented in Google OR-Tools [6] that finds an optimal solution.
However, due to our choice of bi and the distribution of our datasource, our
optimal solver might take too long to arrive to a solution.

Our payment rule p should extend the allocation rule x to DSIC. For this
purpose we use the VCG Auction payment rule, defined in Section 5.2.7, in
which a winning player pays the marginal harm her bid inflicts to the other
players, such marginal harm can be as high as her original bid.

pi(b) = argmaxz
∑
i 6=j

bj(z)−
∑
i 6=j

bj(a)

Considering a = x(b) as the outcome that includes player i, and z = x(b−i)
as the outcome of the greedy algorithm where i did not participate. In this way,
we calculate the payment of player i as the difference between the result of the
chosen algorithm or solver when i does not participate and the result when i
participates but not aggregating bid bi. The result is a payment that represents
the harm imposed by player i on the other players by participating, or also
mentioned in textbooks as making the player internalize her externalities.

It makes sense to consider a VCG payment rule since we are not trying to
maximize revenue but social welfare. One of the main criticisms of the VCG
payment rule is that it is not designed to maximize revenue, thus it is not widely
applied in practice, but in this case we care only about maximizing social welfare.

Notice that to calculate the VCG payments, our algorithm has to calculate
the solution for k+1 instances of the Knapsack problem, where k is the number
of jobs included in the Knapsack.

Does a VCG payment rule extends our allocation rule to a DSIC mechanism?
We will show it through experimentation results in Section 6.3.

5.4 Knapsack Auction Model + Priority

We have designed a model that tries to capture some important characteristics
of the Slurm Scheduler. This model has some strong performance guarantees
based on the information provided by the user. However, the Slurm Scheduler
implements an important factor that we have disregarded so far, Priority.

If we consider Priority as the deciding factor for the allocation rule, then,
our allocation rule is no longer monotone. As a consequence, we can conclude
that Social Welfare is no longer maximized.

In this model, we no longer use the greedy or optimal algorithm to find an
ordering and select the jobs that will be included in the Knapsack. Instead, we
use a Priority value to calculate the ordering. We test this scenario in Section
6.3.3.

44

6 Experimentation and Results

In Section 4.4, we analyzed data from a workflow management system that runs
jobs in the HPC. In this section, we will use this data to generate samples from
this data. Then, we perform experimentation using these samples.

We have mentioned before that MareNostrum4, the HPC that uses Slurm
as its scheduler, has 3456 computation nodes. This number will be key in our
experimentation, as we will see in the following sections.

6.1 Sample Generation

We proceed to take the output of the analysis performed in Section 4.4 and
produce random samples. We consider that our HPC has 3456 nodes. The
data we have sums 1482526 nodes, which is a very large number that might
be distributed across several days. We will assume that at any given moment
the HPC receives around twice the amount of resource requirement than it
can handle; although, according to MareNostrum4 management, this factor is
closer to 1.2. For experimentation purposes, we will choose jobs uniformly at
random until they sum no less than 6912 nodes. There will be cases where the
last included job makes the sum go over 6912, we still consider it and halt the
sampling procedure.

These samples are then saved in a text format for later usage. For each job
in the sample we save the attributes:

1. job name: A unique string identifier.

2. type: Type of job, might be relevant.

3. nnodes: Number of nodes the job requests wi.

4. qtime: Queuing time in minutes the job spent in the queue of the sched-
uler.

5. rtime: Running time the job took until completion.

6.2 Experimentation Space

Consider the values:

1. W : Total number of nodes in the HPC (3456).

2. n : Number of players (jobs).

3. wi : Weight of job i measured in nodes.

4. bi : Bid of player i for job i.

5. pi : Payment of player i for job i.

6. di :
√

(bi − pi)2.

45

7. xi : 1 if job i is selected into the knapsack, 0 otherwise.

8. mini : Planned time in minutes that player i considers job i will take in
the worst case.

9. rtimei : Time in minutes that player i considers job i will take. Previous
experience running similar jobs gives player i a better idea of how much
time the job will really take, so mini ≥ rtimei.

We explore these results:

1. Total Value: The sum of the bids of all selected players, also known as
the Social welfare, TV =

∑n
i bi · xi.

2. Total Sum of Payments: The sum of the calculated payments for all
selected players, TP =

∑n
i pi · xi.

3. Total Weight: The total weight included. An optimal allocation would
result in it being equal to the maximum weight W of the HPC, TW =∑n

i wi · xi.

4. Total Time Spent: Time spent running the experiment measure in sec-
onds, TTS.

5. Average Difference: The average difference between the bid and the
payment for each selected player. We will explore and ponder about these
differences in Section 6.3. AD =

∑n
i di · xi

6. Pay More Count: Number of players that would pay more than their
bid, PM = |{i : xi ≥ 1 ∧ pi > bi}|

7. Same Payment Count: Number of players that would pay the same
amount as their bid, SP = |{i : xi ≥ 1 ∧ pi = bi}|

8. Jobs Picked Count: Number of jobs included, JP =
∑n

i xi.

9. Negative Payment Count: Number of players that get paid by the
mechanism, NC = |{i : xi ≥ 1 ∧ pi < 0}|

In Experiment 1A we take bi = wi · mini. This choice symbolizes a
situation where the player does not know exactly how long her experiment will
run for, but she knows the number of required nodes and an upper bound on
the maximum running time of the job. Then we evaluate the results using a
solver that finds the optimal Total Value.

In Experiment 1B we follow the same formula for bi used in Experiment
1A; however, instead of using an optimal solver, we use the greedy algorithm
described in Section 5.3.1.

In Experiment 2B we take bi = (wi ·rtimei)+(wi ·rtimei) ·0.1 to represent
an experienced player that knows with some 0.1 positive margin of error the
running time of her job. Then, the greedy heuristic uses bi

wi·rtimei
. We find the

46

results using the greedy solver. We use wi to test for the maximum capacity of
the HPC W .

In Experiment 3B we take bi = wi · mini to represent an inexperienced
player. Then, the greedy heuristic uses bi

wi·rtimei
. We use the number of nodes

requested by the jobs wi to test for the maximum capacity of the HPC W .
In Experiment 4B, we take bi = (wi ·rtimei)+(wi ·rtimei)·0.1 to represent

an experienced player that knows with some 0.1 positive margin of error the
running time of his job. Then, the greedy heuristic uses bi

wi
, as originally defined.

We use the number of nodes requested by the jobs wi to test for the maximum
capacity of the HPC W .

We notices during initial testing that some samples defined in Section 6.1
took excessive time to produce a result under the optimal solver, which can be
explained by the distribution of our datasource and our choice of bi. We dropped
these samples to simplify experimentation, bu we still include the plots of their
distributions them in Appendix C as well as in the project repository. This fact
points to another interesting path of experimentation about the distribution of
the jobs that arrive at a given time to the scheduler.

We perform a first round of experimentation described in Section 6.3.1 with
the definitions for experiments previously defined. Then, we proceed to perform
a second round of experimentation described in Section 6.3.2 executing the
same set of experiments but using a modified version of the Knapsack Greedy
Algorithm. We exclude Experiment 1A from this second round, as it does
not pertain to the usage of the greedy algorithm or its modified version. Next,
we perform a third round of experimentation described in Section 6.3.3 where
we discard the greedy algorithm and instead base our allocation in a pseudo
random value for Priority set for each job in the sample. Finally, using the
same samples explored in previous rounds of experimentation, we perform a
fourth round of experimentation where we run the Slurm Simulator [1] to get
the results for Total Value. We compare the Total Value achieved using the
simulator with that of the most relevant experiments of previous rounds. These
results are described in Section 6.3.4.

6.3 Results

6.3.1 Main Experimentation

Compared to 1A and 1B, experiment 4B achieves a lower Total Value because
it is using lower experienced bids. We can see these differences more clearly in
Figure 18.

We see that the Total Value achieved in experiments 1A and 1B is very
similar, as previously predicted by our theoretic foundation. Experiments 1A,
1B, and 3B use similar bids, but for 3B we altered the greedy algorithm to con-
sider also rtimei in the denominator to test its effect on welfare maximization.
As we can see, Total Value is clearly degraded for 3B.

Still in the context of 1A, 1B, and 3B; we see in Table 11 that 1A achieves
the greater Total Payment for almost all samples, with a very large exception

47

Figure 18: Total Value (Social Welfare) for sample and experiment.

for sample 9. We see these variations better in Figure 19. Then, we look at
Table 12 where we find that the experiments 3B and 2B are making players
pay more than their bid (or value), thus breaking the requirement that the
player should not get negative utility in order for this mechanism to be DSIC.
It is in sample 9 where 194 players are forced to pay more than their value,
which explains the high value in Table 11.

Moreover, players pay more than what they originally bid because the dam-
age they inflicted on society by participating in the mechanism is larger than
what they declared as their value. We see in Table 12 that for experiments 1A,
1B, and 4B the VCG payment rule works as intended and we have that no
player regrets participating in this auction. Experiments 2B and 3B both con-
sider rtimei in the denominator, we get that some players end up paying more
than their bid, this is a clear sign that the formula for the greedy algorithm
used for 2B and 3B does not produce a DSIC mechanism and, subsequently,
these settings can be discarded. Until this point, it is reasonable to state that
experiments 1A, 1B, and 4B are the ones that more closely represent the model
described in Section 5.3.1.

In the context of experiments 2B and 4B, we use the same experienced bid
bi but differ in the denominator, 2B considers wi · rtimei in the denominator
while 4B only considers wi. As a result the Total Value for these samples is
lower for 2B compared to 4B. This coincides with what the greedy algorithm
is supposed to do, which is to maximize Social Welfare; while the approach of

48

sample TV 1A TV 1B TV 3B TV 2B TV 4B
1 sample 1.txt 506930 506850 211480 295615 304239
2 sample 2.txt 507305 506785 231310 286779 296064
3 sample 4.txt 472530 472170 221610 283158 291715
4 sample 5.txt 471440 470480 222105 275120 284591
5 sample 6.txt 456315 456275 233180 255977 265832
6 sample 7.txt 504035 503595 251495 290940 298085
7 sample 9.txt 497850 497410 234255 275866 283595
8 sample 10.txt 525810 525450 240445 301627 310999
9 sample 12.txt 526210 525930 237285 308551 318843

10 sample 13.txt 481620 481300 230075 265248 276205
11 sample 14.txt 470820 470220 243990 254506 264714
12 sample 15.txt 437110 436670 234655 255141 264850
13 sample 17.txt 556480 556120 219080 337897 346716
14 sample 18.txt 421015 420415 224040 245285 253124
15 sample 19.txt 353420 353340 222940 188647 199668
16 sample 20.txt 728540 728540 426377 421757 430275

Table 10: Total Value per sample and experiment.

2B deviates theoretically from this result by altering the formula of the greedy
algorithm. We see a similar trend in Table 11 where the payments calculated
for 4B are greater that those of 2B in almost all cases, although the difference
is not great. Nevertheless, as previously mentioned, 2B is breaking DSIC and
even making some players pay more than their original values. Thus, it cannot
achieve a better Total Value than 4B.

From these results, we can say that not only 1A and 1B achieve better Total
Value, but also better behavior guarantees in the form of Total Payments
and Number of Players that Pay More when compared to 3B. We can
affirm the same of 4B when compared to 2B.

Although it might have been tempting at first to consider to include rtimei
in the denominator as a way to balance the assignment of resources not only
according to the number of nodes but also considering the time they will be used,
this inclusion breaks the guarantees of the Knapsack Greedy Algorithm.

We notice that the Total Payment achieved in Table 11 is the same for
experiment 1A for all the samples except sample 20. Samples from 1 to 19
were randomly sampled from our data so they had a high resemblance to the
original source. When experimenting with the random samples from 1 to 19, we
noticed that all these had the same Total Payment. This surprising result led
us to believe that some interesting property of the VCG payment rule could be
shown through this study. We found that current literature does not mention
the sum of VCG payments, this was a signal that the answer to this mysterious
result was in another place, perhaps more experimentation. We looked into the
distribution of the picked jobs, in all cases the job with 40 minutes was the most
common. We have 3456 nodes, if we multiply by 40 we get the common Total

49

Figure 19: Total Payments per sample and experiment.

sample TP 1A TP 1B TP 3B TP 2B TP 4B
1 sample 1.txt 138240 122320 118400 62792 64796
2 sample 2.txt 138240 118400 119700 60788 63460
3 sample 4.txt 138240 119680 115840 63794 63794
4 sample 5.txt 138240 12640 114680 60120 62792
5 sample 6.txt 138240 113280 113920 60454 62124
6 sample 7.txt 138240 118400 113380 61122 63126
7 sample 9.txt 138240 117760 456960 61456 62792
8 sample 10.txt 138240 117760 117120 59786 62458
9 sample 12.txt 138240 112000 106880 58784 60454

10 sample 13.txt 138240 117760 113920 60454 63126
11 sample 14.txt 138240 117760 119240 59786 62792
12 sample 15.txt 138240 117680 110720 61456 63794
13 sample 17.txt 138240 117760 117120 59786 62792
14 sample 18.txt 138240 117880 115200 62792 63460
15 sample 19.txt 138240 121960 115200 63794 65464
16 sample 20.txt 207360 171840 8778 2465 30496

Table 11: Total Payments per sample and experiment.

50

sample size PM 1A PM 1B PM 3B PM 2B PM 4B
1 sample 1.txt 406 0 0 4 5 0
2 sample 2.txt 393 0 0 6 10 0
3 sample 4.txt 415 0 0 4 8 0
4 sample 5.txt 414 0 0 5 9 0
5 sample 6.txt 398 0 0 7 10 0
6 sample 7.txt 396 0 0 5 5 0
7 sample 9.txt 406 0 0 194 6 0
8 sample 10.txt 406 0 0 2 10 0
9 sample 12.txt 425 0 0 2 6 0

10 sample 13.txt 416 0 0 5 8 0
11 sample 14.txt 418 0 0 3 10 0
12 sample 15.txt 430 0 0 2 8 0
13 sample 17.txt 399 0 0 4 9 0
14 sample 18.txt 416 0 0 4 10 0
15 sample 19.txt 403 0 0 7 12 0
16 sample 20.txt 403 0 0 0 0 0

Table 12: Number of players that will pay more than their bid per sample and
experiment.

Payment. So, during the calculation of the Total Payment for each sample, the
difference was established by those common 40 minutes jobs. To test if this was
true, we included a sample 20 that intentionally excludes 40 minutes jobs,
the result is that this sample has a different Total Payment value. The reader
can review the distributions of these samples in the Appendix C, and compare
Figure 45 to any of the other Figures.

Nonetheless, we see that the most common job in sample 20 has 120 min-
utes, and if we multiply it by 3456 we do not get 207360; therefore, the answer
to this value might be more complicated than that. We suspect it has more to
do with the distribution of the sample. Perhaps those 40 minute jobs were too
common. Also, notice that mini is the deciding factor for 1A and 1B ordering.

Notice how in Figure 18 the Total Value is remarkably higher for sam-
ple 20.txt and that in Table 11 the Total Payment seems to follow a simi-
lar trend, except for experiment 4B. This might indicate that the removal of
common planned time jobs might have a big influence in the resulting Social
Welfare. The fact that sample 20.txt achieves the higher Total Value for 1A
and 1B might point out that common planned time jobs (40 mins) were hurting
the resulting Social Welfare of the mechanism. We do not pursue further this
path of study, but intuitively, we get the idea that the removal of jobs that are
too common can yield an overall benefit.

As a way to measure how accurate our experiments and players bids were,
we can look at Table 13 where we see the number of players that end up paying
the same as their original bids. We can also consider Table 15, to get an idea
of what fraction of players per experiment share this characteristic. However,

51

sample size SP 1A SP 1B SP 3B SP 2B SP 4B
1 sample 1.txt 406 82 74 121 75 92
2 sample 2.txt 393 75 65 111 64 85
3 sample 4.txt 415 61 54 117 62 70
4 sample 5.txt 414 69 1 118 52 74
5 sample 6.txt 398 58 53 101 48 68
6 sample 7.txt 396 68 56 109 68 79
7 sample 9.txt 406 72 65 1 56 67
8 sample 10.txt 406 65 58 122 41 61
9 sample 12.txt 425 63 53 108 56 71

10 sample 13.txt 416 59 50 105 53 66
11 sample 14.txt 418 66 59 122 55 72
12 sample 15.txt 430 83 68 114 61 82
13 sample 17.txt 399 60 51 110 45 61
14 sample 18.txt 416 64 61 108 53 72
15 sample 19.txt 403 85 78 103 81 98
16 sample 20.txt 403 22 13 22 1 2

Table 13: Number of players that will pay their bid per sample and experiment.
We can ignore the results for experiment 3B and 2B.

only by looking at the results per sample, we see that the number of players
that end up paying their bid is greater for the experiment 4B in most cases.
Although the number of samples might not give us a clear result, intuitively,
this result coincides with the motivation to include experiment 4B, which is to
represent experienced players that can tell with high accuracy how long their
jobs are going to last.

The results in Table 14 present another way to look at how accurate were
the calculated payments. Experiments 1A and 1B share the same bid formula,
between them we see that the smaller difference is on the side of 1A, the optimal
result. On the other side we have 4B, which represents lower bids and, thus,
reaches lower differences.

We can see how many jobs are included in the Knapsack, or allocated re-
sources for execution, in Table 15. We can ignore experiments 3B and 2B. We
see that the maximum number of served users per sample is shared between
our valid experiments but somewhat leaning towards 1A, which is the optimal
solution that also achieved better Total Weight overall as we see in Table 17.

As a sanity check, we have Table 16 that verifies that our VCG payment rule
does not end up paying the user, which does not make sense in our context. We
have established before that experiments 3B and 2B should not be considered
because they break an important DSIC requirement. In these results, it is
curious that these experiments do not also break this rule and subsequently
generate negative payments. Although, intuitively, we can infer that the order
induced by the modified formula for our invalid experiments still maintained
some sense of truthful behavior. In other words, no job in this ordering became

52

sample AD 1A AD 1B AD 3B AD 2B AD 4B
1 sample 1.txt 908.10 947.12 234.98 580.66 589.76
2 sample 2.txt 939.10 988.26 292.54 593.65 591.87
3 sample 4.txt 805.52 849.37 260.46 542.00 549.21
4 sample 5.txt 804.83 1105.89 266.49 533.54 535.75
5 sample 6.txt 799.18 861.80 309.85 510.73 511.83
6 sample 7.txt 923.72 972.71 355.44 592.18 593.33
7 sample 9.txt 885.74 935.10 732.45 534.18 543.85
8 sample 10.txt 954.61 1004.16 306.61 610.46 612.17
9 sample 12.txt 912.87 973.95 309.56 600.50 607.97

10 sample 13.txt 825.43 873.89 286.19 509.56 512.21
11 sample 14.txt 795.65 843.21 302.61 480.08 483.07
12 sample 15.txt 695.05 741.84 290.92 465.02 467.57
13 sample 17.txt 1048.22 1098.65 261.35 711.28 711.59
14 sample 18.txt 679.75 727.25 267.21 452.65 455.92
15 sample 19.txt 533.95 574.14 277.42 329.83 333.01
16 sample 20.txt 1293.25 1381.39 1036.23 1040.43 992.01

Table 14: Average difference between bid and payment per sample and experi-
ment. Lower is better.

sample size JP 1A JP 1B JP 3B JP 2B JP 4B
1 sample 1.txt 406 216 217 255 203 211
2 sample 2.txt 393 211 211 246 213 212
3 sample 4.txt 415 209 208 249 213 209
4 sample 5.txt 414 218 218 261 211 215
5 sample 6.txt 398 219 220 231 207 217
6 sample 7.txt 396 210 208 252 216 210
7 sample 9.txt 406 215 215 248 210 212
8 sample 10.txt 406 204 203 262 198 201
9 sample 12.txt 425 224 224 263 214 219

10 sample 13.txt 416 208 206 240 206 206
11 sample 14.txt 418 226 226 259 226 223
12 sample 15.txt 430 228 225 253 219 219
13 sample 17.txt 399 209 208 234 207 206
14 sample 18.txt 416 224 225 242 216 221
15 sample 19.txt 403 223 222 237 215 223
16 sample 20.txt 403 213 214 245 212 211

Table 15: Number of jobs picked per sample and experiment

53

sample size NC 1A NC 1B NC 3B NC 2B NC 4B
1 sample 1.txt 406 0 0 0 0 0
2 sample 2.txt 393 0 0 0 0 0
3 sample 4.txt 415 0 0 0 0 0
4 sample 5.txt 414 0 0 0 0 0
5 sample 6.txt 398 0 0 0 0 0
6 sample 7.txt 396 0 0 0 0 0
7 sample 9.txt 406 0 0 0 0 0
8 sample 10.txt 406 0 0 0 0 0
9 sample 12.txt 425 0 0 0 0 0

10 sample 13.txt 416 0 0 0 0 0
11 sample 14.txt 418 0 0 0 0 0
12 sample 15.txt 430 0 0 0 0 0
13 sample 17.txt 399 0 0 0 0 0
14 sample 18.txt 416 0 0 0 0 0
15 sample 19.txt 403 0 0 0 0 0
16 sample 20.txt 403 0 0 0 0 0

Table 16: Number of players that get paid (negative payment) per sample and
experiment

an altruistic job, meaning, one with a bid much higher than necessary that
raised the value considerably by itself.

We can also see the number of nodes that were assigned for each sample and
experiment, also known as the Total Weight, in Table 17. The optimal result
1A achieves total usage, while the others tend to come close or even achieve
total usage in some cases. This result is expected because we consider that the
greedy algorithm halts when it finds a job that does not fit in the Knapsack,
instead of continuing to look for a job that could fit the remaining capacity. In
Section 6.3.2, we experiment with this modification.

Another important point about these results is that the algorithm that finds
the VCG payments for each included job must also consider that it cannot
surpass the amount of covered nodes that the original solution found; otherwise,
the outcome will include negative utilities.

So far we have seen that 1A, which uses the optimal solver, gives overall
better results than 1B that uses the greedy approximation. In Table 18, we
see the running times that each experiment has required per sample. Here we
can see that some instances require excessively long running times to arrive to
a solution. We have seen in Section 2.3 that the scheduler runs in iterations
that happen every 60 seconds. If we consider that it is possible that some
instances might run for over 60 seconds or around 367 seconds, it is not feasible
to pretend an exact optimal solution to the problem. Samples 0,3,8,11, and 16
were excluded from the experimentation space because the solver was not able
to find a solution in reasonable time, less than 5 minutes.

54

sample TW 1A TW 1B TW 3B TW 2B TW 4B
1 sample 1.txt 3456 3454 3452 3441 3450
2 sample 2.txt 3456 3443 3446 3445 3441
3 sample 4.txt 3456 3447 3447 3447 3450
4 sample 5.txt 3456 3432 3449 3456 3455
5 sample 6.txt 3456 3455 3452 3443 3442
6 sample 7.txt 3456 3445 3456 3456 3445
7 sample 9.txt 3456 3445 3454 3444 3451
8 sample 10.txt 3456 3447 3444 3445 3441
9 sample 12.txt 3456 3449 3448 3441 3449

10 sample 13.txt 3456 3448 3442 3455 3456
11 sample 14.txt 3456 3441 3453 3441 3448
12 sample 15.txt 3456 3445 3442 3442 3447
13 sample 17.txt 3456 3447 3452 3446 3449
14 sample 18.txt 3456 3441 3443 3456 3444
15 sample 19.txt 3456 3454 3446 3441 3455
16 sample 20.txt 3456 3456 3426 3425 3448

Table 17: Total Weight per sample and experiment

sample TTS 1A TTS 1B TTS 3B TTS 2B TTS 4B
1 sample 1.txt 0.91 0.80 0.91 0.70 0.75
2 sample 2.txt 17.05 0.69 0.81 0.70 0.71
3 sample 4.txt 1.76 0.73 0.90 0.77 0.80
4 sample 5.txt 10.86 0.83 0.97 0.73 0.84
5 sample 6.txt 5.62 0.83 0.90 0.74 0.78
6 sample 7.txt 1.71 0.89 1.07 0.82 0.79
7 sample 9.txt 0.88 0.91 0.96 0.74 0.82
8 sample 10.txt 0.84 0.75 1.01 0.70 0.73
9 sample 12.txt 9.65 1.00 1.10 1.01 0.85

10 sample 13.txt 5.41 0.76 0.86 0.72 0.73
11 sample 14.txt 0.79 0.88 1.01 0.85 0.96
12 sample 15.txt 1.00 0.88 0.94 0.80 0.81
13 sample 17.txt 0.79 0.73 0.80 0.71 0.70
14 sample 18.txt 65.09 0.86 0.86 0.75 0.80
15 sample 19.txt 367.67 0.84 0.88 0.76 0.81
16 sample 20.txt 0.74 0.86 0.88 0.77 0.73

Table 18: Total Time spent per sample and experiment

55

sample TV 1B TV 1B1 TV 4B TV 4B1
1 sample 1.txt 506910 506850 304308 304239
2 sample 2.txt 507265 506785 296247 296064
3 sample 4.txt 472530 472170 291784 291715
4 sample 5.txt 471415 470480 284609 284591
5 sample 6.txt 456275 456275 265996 265832
6 sample 7.txt 504015 503595 298241 298085
7 sample 9.txt 497830 497410 283663 283595
8 sample 10.txt 525750 525450 311160 310999
9 sample 12.txt 526125 525930 318944 318843

10 sample 13.txt 481600 481300 276205 276205
11 sample 14.txt 470820 470220 264827 264714
12 sample 15.txt 437045 436670 264982 264850
13 sample 17.txt 556480 556120 346803 346716
14 sample 18.txt 420955 420415 253267 253124
15 sample 19.txt 353400 353340 199686 199668
16 sample 20.txt 728540 728540 430354 430275

Table 19: Total Value compared between the Knapsack Greedy Algorithm Mod-
ified TV 1B TV 4B and TV 1B1 TV 4B1 from the Knapsack Greedy Al-
gorithm.

6.3.2 Knapsack Greedy Algorithm Modified

In these experiments, we modify the original Knapsack Greedy Algorithm de-
fined in Section 5.2.9 so instead of stopping when a job that does not fit is found,
it continues until it fills the capacity of the Knapsack or reaches the end of the
list of jobs. We compare the results of this setting with the results from the
previous round of experiments described in Section 6.3.1.

We define 1B1 and 4B1 as the experiments 1B and 4B from Section 6.3.1,
respectively.

As we can see in Table 19, the Total Value results obtained with the Knap-
sack Greedy Algorithm Modified are better in most cases, but by a small margin.
If presented in a plot, we would not be able to distinguish between 1B and 1B1,
or 4B and 4B1. Furthermore, we infer that the differences are due to the fact
that the modified version is achieving better usage of the HPC, as shown in
Table 20.

It is clear that the modified version achieves a better Total Value than the
original implementation; however, as wee see in Table 22, there are players that
would regret participating in this mechanism because they will end up paying
more than their original value for the required resources. This result breaks one
requirement for a DSIC mechanism, specifically the Incentive part.

Finally, the results in Table 23 indicate that in this model the payment
rule does not pay the player. Added to the previous results where we see that
this modified model achieves better welfare and payments, these results might
indicate that the Knapsack Greedy Algorithm Modified setting might have some

56

use. We discuss this possibility in Section 7.

sample TW 1B TW 1B1 TW 4B TW 4B1
1 sample 1.txt 3456 3454 3456 3450
2 sample 2.txt 3456 3443 3456 3441
3 sample 4.txt 3456 3447 3456 3450
4 sample 5.txt 3456 3432 3456 3455
5 sample 6.txt 3455 3455 3456 3442
6 sample 7.txt 3456 3445 3456 3445
7 sample 9.txt 3456 3445 3456 3451
8 sample 10.txt 3456 3447 3456 3441
9 sample 12.txt 3456 3449 3456 3449

10 sample 13.txt 3456 3448 3456 3456
11 sample 14.txt 3456 3441 3456 3448
12 sample 15.txt 3456 3445 3456 3447
13 sample 17.txt 3456 3447 3456 3449
14 sample 18.txt 3455 3441 3456 3444
15 sample 19.txt 3456 3454 3456 3455
16 sample 20.txt 3456 3456 3456 3448

Table 20: Total Weight compared between the modified version TW 1B
TW 4B and the original version TW 1B1 TW 4B1

sample TP 1B TP 1B1 TP 4B TP 4B1
1 sample 1.txt 138080 122320 71970 64796
2 sample 2.txt 137240 118400 76399 63460
3 sample 4.txt 135300 119680 72033 63794
4 sample 5.txt 139795 12640 68488 62792
5 sample 6.txt 134340 113280 76356 62124
6 sample 7.txt 138905 118400 73547 63126
7 sample 9.txt 137675 117760 70561 62792
8 sample 10.txt 140525 117760 77461 62458
9 sample 12.txt 142705 112000 71760 60454

10 sample 13.txt 138730 117760 70106 63126
11 sample 14.txt 137300 117760 72010 62792
12 sample 15.txt 141560 117680 71954 63794
13 sample 17.txt 136440 117760 72554 62792
14 sample 18.txt 136520 117880 74619 63460
15 sample 19.txt 138780 121960 69535 65464
16 sample 20.txt 205935 171840 37386 30496

Table 21: Total Payment compared between the modified version TP 1B
TP 4B and the original version TP 1B1 TP 4B1

57

sample PM 1B PM 1B1 PM 4B PM 4B1
1 sample 1.txt 2 0 0 0
2 sample 2.txt 3 0 5 0
3 sample 4.txt 0 0 0 0
4 sample 5.txt 71 0 0 0
5 sample 6.txt 0 0 8 0
6 sample 7.txt 4 0 2 0
7 sample 9.txt 2 0 0 0
8 sample 10.txt 6 0 2 0
9 sample 12.txt 10 0 0 0

10 sample 13.txt 0 0 0 0
11 sample 14.txt 0 0 0 0
12 sample 15.txt 19 0 0 0
13 sample 17.txt 0 0 0 0
14 sample 18.txt 0 0 1 0
15 sample 19.txt 3 0 0 0
16 sample 20.txt 0 0 0 0

Table 22: Number of players that will pay more than their bid compared be-
tween the modified version PM 1B PM 4B and the original version PM 1B1
PM 4B1

sample NC 1B NC 1B1 NC 4B NC 4B1
1 sample 1.txt 0 0 0 0
2 sample 2.txt 0 0 0 0
3 sample 4.txt 0 0 0 0
4 sample 5.txt 0 0 0 0
5 sample 6.txt 0 0 0 0
6 sample 7.txt 0 0 0 0
7 sample 9.txt 0 0 0 0
8 sample 10.txt 0 0 0 0
9 sample 12.txt 0 0 0 0

10 sample 13.txt 0 0 0 0
11 sample 14.txt 0 0 0 0
12 sample 15.txt 0 0 0 0
13 sample 17.txt 0 0 0 0
14 sample 18.txt 0 0 0 0
15 sample 19.txt 0 0 0 0
16 sample 20.txt 0 0 0 0

Table 23: Number of players that will be paid by the mechanism compared
between the modified version NC 1B NC 4B and the original version NC 1B1
NC 4B1

58

Figure 20: Total Value per sample and experiment using Priority.

6.3.3 Experimentation with Priority

We discard the Knapsack Greedy Algorithm completely and instead use a prior-
ity list to decide which jobs are considered for resource allocation. This priority
list is decided based on the formula: priorityi = wi·10000

W + y, where y is a uni-
form random variable between 1 and 10000. We apply this formula to mimic in
some way what the Slurm calculation of Priority would do.

We define 1B1 and 4B1 as the experiments 1B and 4B respectively from
Section 6.3.1.

59

sample TV 1B TV 1B1 TV 4B TV 4B1
1 sample 1.txt 306163 506850 183387 304239
2 sample 2.txt 286326 506785 159129 296064
3 sample 4.txt 272184 472170 167480 291715
4 sample 5.txt 289499 470480 164901 284591
5 sample 6.txt 294235 456275 153504 265832
6 sample 7.txt 310451 503595 192329 298085
7 sample 9.txt 346111 497410 195219 283595
8 sample 10.txt 336130 525450 182885 310999
9 sample 12.txt 231890 525930 130394 318843

10 sample 13.txt 279032 481300 145813 276205
11 sample 14.txt 288413 470220 155136 264714
12 sample 15.txt 229518 436670 117307 264850
13 sample 17.txt 301042 556120 184343 346716
14 sample 18.txt 256163 420415 142429 253124
15 sample 19.txt 211273 353340 119114 199668
16 sample 20.txt 393348 728540 228547 430275

Table 24: Total Value compared between the priority model TV 1B TV 4B
and the Knapsack Greedy Algorithm TV 1B1 TV 4B1

By looking at Figure 20, we get that using this pseudo random Priority value
as the main criteria to decide the order of execution or allocation rule, results
in lower Total Value in both cases, for inexperienced bids 1B and experienced
bids 4B. The Total Payment values from 25 are also not promising, some of
them being negative. Furthermore, there are many players that pay more than
their bid, as seen in Table 26, and also many instances where players will be paid
by the mechanism (Table 27), suggesting that they are regarded as altruistic
by this odd mechanism.

60

sample TP 1B TP 1B1 TP 4B TP 4B1
1 sample 1.txt 116060 122320 61535 64796
2 sample 2.txt -129740 118400 -124659 63460
3 sample 4.txt 4099400 119680 3930069 63794
4 sample 5.txt 776786 12640 132268 62792
5 sample 6.txt 210874 113280 117567 62124
6 sample 7.txt 338780 118400 218388 63126
7 sample 9.txt 177904 117760 109746 62792
8 sample 10.txt 192587 117760 84541 62458
9 sample 12.txt -194261 112000 -146102 60454

10 sample 13.txt 188096 117760 112801 63126
11 sample 14.txt 384991 117760 233289 62792
12 sample 15.txt 210931 117680 106892 63794
13 sample 17.txt 1477868 117760 859302 62792
14 sample 18.txt 383670 117880 163162 63460
15 sample 19.txt 433860 121960 143637 65464
16 sample 20.txt 493232 171840 315593 30496

Table 25: Total Payments compared between the priority model TP 1B TP 4B
and the Knapsack Greedy Algorithm TP 1B1 TP 4B1

sample PM 1B PM 1B1 PM 4B PM 4B1
1 sample 1.txt 44 0 60 0
2 sample 2.txt 5 0 27 0
3 sample 4.txt 161 0 163 0
4 sample 5.txt 162 0 148 0
5 sample 6.txt 43 0 70 0
6 sample 7.txt 122 0 139 0
7 sample 9.txt 45 0 65 0
8 sample 10.txt 86 0 113 0
9 sample 12.txt 3 0 6 0

10 sample 13.txt 54 0 71 0
11 sample 14.txt 176 0 161 0
12 sample 15.txt 78 0 92 0
13 sample 17.txt 53 0 71 0
14 sample 18.txt 149 0 164 0
15 sample 19.txt 157 0 75 0
16 sample 20.txt 170 0 158 0

Table 26: Players Paying More than their bids compared between the priority
model PM 1B and the Knapsack Greedy Algorithm PM 4B and PM 1B1
PM 4B1

61

sample NC 1B NC 1B1 NC 4B NC 4B1
1 sample 1.txt 0 0 7 0
2 sample 2.txt 136 0 129 0
3 sample 4.txt 44 0 46 0
4 sample 5.txt 14 0 14 0
5 sample 6.txt 17 0 0 0
6 sample 7.txt 0 0 0 0
7 sample 9.txt 0 0 0 0
8 sample 10.txt 17 0 17 0
9 sample 12.txt 129 0 129 0

10 sample 13.txt 0 0 0 0
11 sample 14.txt 15 0 15 0
12 sample 15.txt 0 0 0 0
13 sample 17.txt 6 0 1 0
14 sample 18.txt 3 0 0 0
15 sample 19.txt 0 0 3 0
16 sample 20.txt 3 0 3 0

Table 27: Players payed by the mechanism compared between the priority model
NC 1B NC 4B with the main results that use the Knapsack Greedy Algorithm
NC 1B1 NC 4B1

6.3.4 Experimentation with Slurm Simulator

We use the Slurm Simulator to run our samples and produce what would be a
real output from the Slurm Scheduler. Then, we use the formula vi = wi·mini to
calculate the value for each job i and get a Total Value achieved by the resource
allocation outcome of the simulator. Then, we compare it to the experiments 1B
from Section 6.3.1 (Main Experimentation) that we call 1B1, 1B from Section
6.3.2 (Knapsack Greedy Modified) that we call 1B2, and 1B from Section 6.3.3
(Priority) that we call 1B3.

The Slurm Simulator computes a total simulation for the whole sample,
meaning that jobs that could not be allocated in a first iteration, are then
scheduled after other jobs finish, but with a higher start time. To establish a
common ground between the Simulator and our models, we iterate through the
result of the Simulator ordered by start time ascending. In this way, we try
to get the scheduling result for the first iteration of the Simulator.

As we can see in Figure 21, the Simulator achieves results closer to the
Priority model than the other models. This might indicate that the intuition
behind our pseudo random Priority calculation was somewhat closer to the
original calculation.

62

Figure 21: Total Value per sample and experiment from the Slurm Simulator
compared to previous results.

sample TV TV 1B1 TV 1B2 TV 1B3
1 sample 1.txt 244007 506850 506910 306163
2 sample 2.txt 254720 506785 507265 286326
3 sample 4.txt 248748 472170 472530 272184
4 sample 5.txt 265446 470480 471415 289499
5 sample 6.txt 283402 456275 456275 294235
6 sample 7.txt 264376 503595 504015 310451
7 sample 9.txt 256051 497410 497830 346111
8 sample 10.txt 247317 525450 525750 336130
9 sample 12.txt 277427 525930 526125 231890

10 sample 13.txt 246755 481300 481600 279032
11 sample 14.txt 276072 470220 470820 288413
12 sample 15.txt 263423 436670 437045 229518
13 sample 17.txt 264798 556120 556480 301042
14 sample 18.txt 266251 420415 420955 256163
15 sample 19.txt 240015 353340 353400 211273
16 sample 20.txt 394505 728540 728540 393348

Table 28: Comparison between the Total Value results achieved by the Slurm
Simulator and previous models TV 1B1 TV 1B2 TV 1B3

63

sample TV TV 1B PoA
1 sample 1.txt 244007 506850 2.08
2 sample 2.txt 254720 506785 1.99
3 sample 4.txt 248748 472170 1.90
4 sample 5.txt 265446 470480 1.77
5 sample 6.txt 283402 456275 1.61
6 sample 7.txt 264376 503595 1.90
7 sample 9.txt 256051 497410 1.94
8 sample 10.txt 247317 525450 2.12
9 sample 12.txt 277427 525930 1.90

10 sample 13.txt 246755 481300 1.95
11 sample 14.txt 276072 470220 1.70
12 sample 15.txt 263423 436670 1.66
13 sample 17.txt 264798 556120 2.10
14 sample 18.txt 266251 420415 1.58
15 sample 19.txt 240015 353340 1.47
16 sample 20.txt 394505 728540 1.85

Table 29: Price of Anarchy based on Total Value of our samples.

6.4 Comments on the Price of Anarchy

Through experimentation we have seen that it is possible to achieve a near
optimal Total Value for our model in a computationally efficient way. We have
also run our samples in a Slurm Simulator to get results as close as possible to
what the real Slurm might have returned. Then, we calculated the Total Value
for the results of the simulator based on the same ideas applied for our near
optimal model. In this way we have established a common ground, the Total
Value, that we can use to compare the outcomes of our models to the outcome
of the simulator.

Having said that, we can now take a look at the results in Table 28 and
make a comparison between the results of TV, the simulator, and TV 1B1,
our ideal Knapsack model defined in Section 5.3.1. Considering this comparison
and Total Value as a common value that we can calculate, we are now able
get a reasonable approximation of the Price of Anarchy.

If we average the PoA results presented in Table 29, we get that PoA ≈ 1.85.
Then, we can say that an ideal outcome of the Slurm scheduling game might
be around 1.8 times better than a usual outcome.

Notice that the Price of Anarchy is defined considering the worst equilib-
rium, but we are only considering a non optimal (usual) equilibrium as a worst
equilibrium. We make this simplification because it is difficult to imagine a
situation or job input distribution that would make the scheduler result in a
worse outcome than it usually returns. Nevertheless, to consider the influence
of different distributions of inputs is an interesting perspective to work on in
the future.

64

6.5 Comments on the Viability of Cooperation

The Knapsack Auction Model does not allow for the possibility of cooperation
in the sense that users could reach some agreement and play a strategy that will
increase their utilities as a coalition. In our model, the best strategy of users is
to selfishly send their jobs stating their true valuations as bids; however, is not
this also a form of cooperation?

Remember the ISP Routing Game defined at the beginning of Section
5.1. In this model the users had a dominant strategy: to act selfishly in order
to get some utility or decrease their costs. What if their dominant strategy was
to inevitably cooperate to get an even greater utility or a lower cost?

The Knapsack Auction Model is an ideal game or auction. The dominant
strategy for the players under this model is to tell the truth, and thus, achieve
their optimal utility; not only that, but the whole mechanism achieves optimal
Social Welfare.

We argue that telling the truth, or being forced to tell the truth, is also a
form of cooperation. It is our Knapsack Auction Model, our design choice, that
imposes the necessary constraints on users, so we achieve the desired guarantees
of: DSIC, maximum Social Welfare, and Computationally Efficient calculation
of the outcome. In short, the mechanism is making players cooperate for the
greater good because that is the only choice players have in this scenario. That
is why we call it an ideal auction or model.

It is not trivial how to translate the desired guarantees achieved by the
Knapsack Auction Model to the Slurm Scheduler. The results of this study hint
that the planned running time that the player establishes for her job plays a
key role in the calculation of execution ordering.

Looking back at our data source, we notice that there is usually a significant
difference between the planned running time and the real running time. For
example, in the case of the 40 minutes jobs from our data source, which are the
most common jobs in all our samples, except sample 20. We see in Figure 22
that most of these jobs have a real running time half of the planned running
time, and that they usually require around 16 nodes. We have also seen that
among the Total Payment results for experiment 4B that uses experienced
bids (Table 11), it is sample 20 the one that achieves the best results for the
players, meaning lower payments. Not only that, but we can see from our results,
comparing Table 13 and Table 15, that for this sample almost all participants
payed less than their values.

Looking back at the formula of the Knapsack Auction Model, if we simplify
it, we see that the dominant factor is mini, or rtimei for the experienced case.
This coincide with the way the backfill procedure works, and how we can
intuitively say it can reach better allocations. Backfill considers the planned
running time to calculate if a job can be allocated resources even if its Priority
is not high enough, with the purpose of filling some idle resources. If the player
sends planned running time closer to real running time, then, we can infer that
the backfill procedure will have more chances to allocate these jobs in tight time
spaces.

65

Figure 22: Distributions from source for 40 minutes (wallclock) planned running
time jobs. Top: Number of jobs per rtime. Bottom: Number of jobs per number
of nodes requested.

66

In conclusion, we can say that more realistic or carefully considered planned
running times are a way in which we can translate the desired guarantees
achieved by the Knapsack Auction Model to the Slurm Scheduler. Further-
more, we posit that by carefully adjusting the planned running times for their
jobs, players (users) would be cooperation with the increase in Social Welfare
of the system.

7 Conclusions

We developed and presented a detailed study of the main factors that play in
the scheduling process of Slurm. We describe how these factors interact with
each other through the use of practical examples and the description of the
main algorithms used by the scheduler. We describe the options available in
Slurm for the configuration of the scheduler. We consider that these tasks were
fundamental in the understanding of the system we wanted to study because the
current documentation of Slurm regarding the scheduler for the version 17.11.7
can be disperse and it might be difficult for some readers to clearly grasp the
main ideas behind the Slurm Scheduler. The developers of Slurm present a
wide array of documentation sources, including presentations of various topics
related to Slurm, or even specific to the scheduling process. We attempt to
centralize this information in our description of the mechanism. The result of
this analysis is described in Section 2.

We present a summary (Section 5.1) of some of the main ideas in the field
of Mechanism Design, also including relevant background theory from Al-
gorithmic Game Theory. The book Twenty Lectures on Algorithmic Game
Theory [10] presents Mechanism Design with an economic perspective and rele-
vant case studies, which are helpful in the understanding of its concepts; how-
ever, it omits an introduction to basic concepts of Game Theory, the author
acknowledges this fact in the Introduction of the book. The chapter on Algo-
rithmic Mechanism Design from the book Algorithmic Game Theory [9] starts
with a Voting Systems perspective and then develops into a more economic
perspective, it is a good extension to the ideas presented in Twenty Lectures
on Algorithmic Game Theory. Moreover, the book Algorithmic Game Theory
presents a great introduction to the basic concepts of Game Theory. We have
selected the theory for our summary and presented it in an order that should
allow a reader, without a strong background on the field, to grasp the main
ideas used for this project.

We have shown through experimentation that the payment rule defined by
a VCG mechanism renders the allocation rule defined by the Knapsack Greedy
Algorithm implementable. Thus, making our model DSIC. Moreover, we have
shown that the allocation rule maximizes Social Welfare, which is a desired
objective. Furthermore, the allocation rule is Computationally Efficient, and
the results are close to the optimal. We also calculate these optimal results
using a specific solver.

We have shown that our ideal auction, the Knapsack Greedy Algorithm,

67

achieves the best results regarding resource allocation in reasonable time, among
other desired guarantees. Also, from the variants of our model, the Knapsack
Greedy Algorithm Modified is the one that best resembles the backfill procedure
that attempts to allocate as many available resources as possible. We have seen
that the payments calculated under this model result in some players having
to pay more than their value, which breaks the DSIC condition. However, this
increase in payment can be seen as a sort of real metric of the damage players
inflict on society by participating; because their participation is preventing other
users to be potentially backfilled.

Through the application of Algorithmic Game Theory and specifically Mech-
anism Design tools, we have designed a model that captures some of the most
important characteristics of the Slurm Scheduler. By testing this model and
its variants, we have shown how some variables established by the users of the
system have influenced the outcome of the mechanism. From these results, we
have argued that there is a way to translate the desired guarantees achieved
by our model into the Slurm mechanism. In summary, carefully considering
planned running times might result in an increase in Social Welfare for all users
of Slurm. We consider this as a form of cooperation, or forced cooperation,
where the design choices of the mechanism impose this behavior on users. From
this idea, we expand our thoughts on the Viability of Cooperation in Section
6.5.

The Autosubmit library manages workflows in the HPC platform Marenos-
trum4. We developed a data collection tool that retrieves important experiment
and job information from the users of this library. We analyzed the data ob-
tained using this tool and were able to generate a reliable data source that was
later used for sampling and experimentation. The process of cleaning the data
obtained using the tool is thoroughly documented in Section 4.

We have shown through experimentation that the Social Welfare achieved
by our ideal auction, the Knapsack Greedy Algorithm model, is greater than
that of any of the other proposed variants of this model. Then, we have seen
that an allocation rule based on Priority, which attempts to allocate resource
in a fair way, achieves a lower Social Welfare than that of mechanism that
implements an allocation rule that gives resources to those who value them the
most. We use this fact to argue about an approximate value of the Price of
Anarchy for the Slurm Scheduler that we present in Section 6.4. We conclude
that the Slurm Scheduler might be able to allocate resources 1.8 times better
than it usually does. A way to increase the performance of resource allocation
could be by adjusting the fairness imposed by the factors that influence Priority,
by including the idea of a limited currency that users spend in exchange for
resources to run their jobs. This currency can be compared to the idea of Usage
that is currently included in the calculation of Priority.

The results achieved with the Knapsack Greedy Algorithm comply with the
guarantee we established in our theory summary, which says that if mi ≤ β ·W
for every player i and β ∈ (0, 12], then the approximation guarantee increases
to 1 − β. From our samples we have that β ≈ 0.0174 and our approximation
guarantee is around 1 − β ≈ 0.9826. Comparing our results for 1A and 1B in

68

Table 10, we see that this approximation guarantee boundary is satisfied.
We have seen that our special sample, where we do not consider 40 minutes

jobs, achieves very different results than the rest of samples. This suggests that
the distribution of the input might play an important role in the scheduling
process.

8 Future Work

Experimentation has hinted that the distribution of the jobs that arrive at a
certain time to the scheduler plays an important role in the result of the resource
allocation process. A next step is to pursue more analysis of these distributions
to find if some of them favor certain outcomes.

One of the main purposes of this study was to find if there exists some way
of cooperation that would benefit users more than if they played selfishly. The
models developed in the study only applied to selfish actors, but we argued that
there is indeed some sense of cooperation in our ideal model. Therefore, a next
step would be to study a model that takes as input not only users and its jobs,
but also a mapping of users to coalitions of users.

The results from our experimentation have hinted that the inclusion of some
kind of currency in the calculation of Priority for the Slurm Scheduler might
result in better guarantees for achieving a greater Social Welfare. We posit that
there are two ways to try this idea: First, to include it as another factor for
the calculation of Priority; second, to replace the Usage factor by converting it
into a budget, and then, let the users pay for the resources they request with
currency from that budget. Then, following on the second approach, it would
be interesting to develop and test a scheduler based on the Knapsack Greedy
Algorithm Modified where users spend their assigned budgets. Then, analyze
the results and see if real users arrive at the Dominant Strategy Equilibrium,
and if so, how long it takes them to arrive to that point.

We have looked at results for players that pay more than their bid, or that
pay the same, but we have not analyzed the results for players that pay less
than their bid. The reason that these players pay less is generally explained
by the VCG payment rule; however, it would be interesting to analyze how the
distribution of the bids of the other players affects this result.

The variants 3B and 2B of our approximation model broke the no nega-
tive utility requirement for a DSIC mechanism. However, these variants still
maintained that the players are not paid by the mechanism, and even achieving
closer Total Payments to those of their valid counterparts. Furthermore, 3B
achieved a way bigger Total Payment for sample 9.txt, but way smaller for
sample 20.txt. It might be useful to identify how these variants of our model
can impose other guarantees.

For our analysis and approximation of the Price of Anarchy we used the
idea of an usual equilibrium because it is not clear how a worst equilibrium is
constructed. It can certainly be useful to document under which conditions a
worst equilibrium might occur.

69

References

[1] Ana Jokanovic, Marco D’Amico, Julita Corbalan. “Evaluating SLURM
Simulator with Real-Machine SLURM and Vice Versa”. In: Performance
Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS18) (2018).

[2] Baraglia R., Capannini G., Pasquali M., Puppin D., Ricci L., Techiouba
A.D. “Backfilling Strategies for Scheduling Streams of Jobs On Compu-
tational Farms”. In: Making Grids Work (2008).

[3] Earth Science Department at BSC-CNS. Autosubmit. url: https : / /

autosubmit.readthedocs.io/en/latest/.

[4] D. Braess, A. Nagurney, and T. Wakolbinger. “On a paradox of traffic
planning”. In: Transportation Science 39 (2005), pp. 446–450.

[5] S. Gill Williamson Edward A. Bender. Foundations of Combinatorics with
Applications. Chapter 9: Rooted Plane Trees. Dover, 2006.

[6] Google OR-Tools. 2020. url: https://developers.google.com/optimization/
reference/python/algorithms/pywrapknapsack_solver.

[7] MareNostrum4 User’s Guide. 2020. url: https://www.bsc.es/user-
support/mn4.php.

[8] John Nash. “Non-Cooperative Games”. In: Annals of Mathematics 54
(1951), pp. 286–295.

[9] Noam Nisan, Tim Roughgarden, Éva Tardos, Vijay V. Varizani. Algorith-
mic Game Theory. Cambridge University Press, 2007.

[10] Tim Roughgarden. Twenty Lectures on Algorithmic Game Theory. Cam-
bridge University Press, 2016.

[11] Sergei Leonenkov, Sergey Zhumatiy. “Introducing new backfill-based sched-
uler for SLURM resource manager”. In: Procedia Computer Science 66
(2015), pp. 661–669.

[12] Slurm Documentation. url: https://slurm.schedmd.com/archive/
slurm-17.11.7/overview.html.

70

https://autosubmit.readthedocs.io/en/latest/
https://autosubmit.readthedocs.io/en/latest/
https://developers.google.com/optimization/reference/python/algorithms/pywrapknapsack_solver
https://developers.google.com/optimization/reference/python/algorithms/pywrapknapsack_solver
https://www.bsc.es/user-support/mn4.php
https://www.bsc.es/user-support/mn4.php
https://slurm.schedmd.com/archive/slurm-17.11.7/overview.html
https://slurm.schedmd.com/archive/slurm-17.11.7/overview.html

A Slurm Simulator

Citing directly from the web page1 of the Slurm Simulator:
Having a precise and a fast job scheduler model that resembles the real-

machine job scheduling software behavior is extremely important in the field of
job scheduling. The idea behind Slurm simulator is preserving the original code
of the core Slurm functions while allowing for all the advantages of a simulator.
Since 2011, Slurm simulator has passed through several iterations of improve-
ments in different research centers. We took last available version’s code and
we fixed various issues, we improved the simulator’s performance of about 2.6
times, made it deterministic across several same set-up runs, and improved the
its accuracy.

A.1 Setup Process

It is highly recommended to install the simulator in a fresh Linux installation.
This process was performed in an virtual machine running openSUSE Leap
15.1.

The simulator’s main repository is https://github.com/BSC-RM/slurm_

simulator_tools, there you can find general installation and execution in-
structions. However, if you only consider what is mentioned in the description
of the repository, you might encounter a couple surprises.

In your Linux virtual machine, as root, do the following before attempting
to install the simulator2:

1. Install mariadb zypper install mariadb-server and developer package
zypper install mariadb-devel. It might be already installed as mysql.

2. Enable mariadb server systemctl enable mariadb

3. Start mariadb server systemctl start mariadb

4. Install python zypper install python

5. Install python3 zypper install python3

6. Install python3 developer zypper install python3-devel

7. Install the latest pip for each python installations.

8. Install python packages pip install pymysql, pandas

9. Install R zypper install R

10. Install GCC zypper install gcc

1https://www.bsc.es/research-and-development/software-and-apps/software-list/slurm-
simulator

2Some steps might be unnecessary

71

https://github.com/BSC-RM/slurm_simulator_tools
https://github.com/BSC-RM/slurm_simulator_tools

11. You might need to create a Slurm user in your database: create user

‘slurm’@‘localhost’ identified by ‘slurm’;

These steps should cover all the system requirements necessary to install the
simulator. Lets proceed with the installation process:

1. Clone the repository of the simulator into your home directory: git clone

https://github.com/BSC-RM/slurm simulator tools

2. Inside the cloned folder, run ./install slurm sim.sh. This operation
will take a while and you will receive a lot of information feedback from
the installation in your terminal. At some point the installation might fail
because there is some missing requirement. It will tell you in the terminal
which package is missing. Install the package and retry the installation.

3. Once the installation is complete you do not really see a confirmation
message, but there should not be an error message either.

4. The installation process has copied
https://github.com/BSC-RM/slurm simulator inside the main folder.

Everything should be working fine now, but if you get an error or strange
behavior while testing your traces, it is probably because something failed during
the installation process. Try to install again and pay attention to any error
message you get once the installation is completed.

A.2 Workload Generation

This process can be a little bit tricky. You will have to compile some C code.
Navigate to /slurm simulator/contribs/simulator. Inside that folder

you will find the file swf2trace.c. This is a sort of parser that converts your
input from a text file to a trace file. Open it to see the details of how it works.
It takes as input a text file with format (ordered as position per line):

1. JobID

2. Submit time

3. 0 (not relevant)

4. Running time in minutes (exact running time of job)

5. -1 (not relevant)

6. -1 (not relevant)

7. -1 (not relevant)

8. Total number of cores

9. Planned time in minutes (What the user thinks it will take.)

72

10. -1 (not relevant)

11. 1 (not relevant)

12. 1 (not relevant)

Each job should be organized considering these values separated by commas
(you can define the separator inside swf2trace.c); 1 line per job. All values are
Integer. It is important to leave an empty line at the end of your file; otherwise,
the parser will ignore the last job in your list. This happens because of the
function used by the parser to read the input file.

There are a couple of necessary fixes that you can apply to the original
swf2trace.c file. For example, the number of lines to read is a constant large
value. Also, you can implement your own modifications. Anyway, after you are
done modifying it, remember to compile: gcc swf2trace.c -o swf2trace.

Now you are ready to generate your trace using your text files and applying
the format described before, run ./swf2trace PATH TO FILE/yoursample.txt

and you will get a file called simple.trace in the same folder as ./swf2trace.
Copy it wherever you want, and make sure to change its name to something
more recognizable like yoursample.trace and also move it to a place where
you could easily retrieve it.

A.3 Testing Process

The hard part was to generate your trace, now comes the easy part.
Go to your main simulation folder, it should be something like

ROOT PATH/slurm simulator tools/

Then, run ./run simulation local.sh PATH TO FILE/yoursample.trace

and that is basically it. You will see some feedback on your terminal while your
simulation is performed. Sometimes it gets stuck and you will notice that no
progress is performed, stop it and launch it again.

After your simulation is finished, you will see a new folder which name starts
with the name of your trace file followed by some numbers and ending in .trace

in your main simulation folder. Inside this result folder, the most important file
for us is the one ending in .csv, those are our results in a comprehensible CSV
format.

A.4 Changing Cluster Configuration

To change the configuration of your cluster, including the number of nodes,
memory, scheduling policy, etc. Go to:

ROOT PATH/slurm simulator tools/install/slurm conf/

Once there, open the file slurm.conf.template and modify it according to
your preferences. You can find detailed descriptions of the available options in
the Slurm Administrators section of the Slurm Documentation3.

3https://slurm.schedmd.com/archive/slurm-17.11.7/

73

https://slurm.schedmd.com/archive/slurm-17.11.7/

Save your changes and proceed to run your simulations again. For the pur-
poses of this project we copied the node configuration of Marenostrum4 and it
worked without problems.

74

B Experimentation Environment

In this section, we give a general description of our experimentation environ-
ment. We start by describing the main classes of our program and describing
their main methods. For a more detailed description of every variable and
method, go to the repository https://earth.bsc.es/gitlab/wuruchi/tfm_

agt where you can also find all the code involved in data generation and anal-
ysis of results, among other resources. Our experimentation environment was
developed using Python3.

B.1 Structure

B.1.1 Job

This class represents a job in the context of scheduling. It captures the main
information that we need from a job, such as the number of nodes, the minutes
it is supposed to run, the value it has for its owner, etc. An important constant
is EXPERIENCE that represents the percentage of extra time a user assigns to
the running time of her job to guarantee its completion. We suppose the user
calculates this percentage based on her experience running similar jobs.

B.1.2 Platform

This class provides the main methods to parse data and make it available for
the Scheduler class. It can read the data source and generate samples from it,
or it can read a sample and prepare it for scheduling.

Methods:

• source size: Returns the number of jobs in the platform. For example,
the number of jobs in a sample.

• experiment ingestion: Reads a sample file and converts it into an in-
ternal Job list.

• print jobs: Prints a string representation of every job in the Job list.

• print summary: Prints a summary of the Job list.

• random sample: Generates a random sample from the current Job list and
saves it in a file.

• special sample: Generates a special sample from the current Job list
and saves it in a file.

• add priority: Adds the priority value to each job in the Job list and
saves it in a file.

• generate trace: Uses the current Job list and generates a trace text
format that can be read by the Slurm Simulator.

75

https://earth.bsc.es/gitlab/wuruchi/tfm_agt
https://earth.bsc.es/gitlab/wuruchi/tfm_agt

Figure 23: Class diagram of the testing platform.

76

B.1.3 Scheduler

This class implements in its methods the main scheduling procedures (for our
models) that we test in our project. It uses the information provided by
Platform to produce an scheduling outcome.

Methods:

• knapsack Solver: Solves the knapsack instance using an optimal solver.

• knapsack approximation simple: A function that helps the calculation
performed by knapsack approximation.

• knapsack approximation: Solves the knapsack instance using the Knap-
sack Greedy Algorithm, also implements the variants we studied.

B.1.4 SlurmScheduler

This class is in charge of handling the data generated by the Slurm Simulator.
Its main task is to read the result data and calculate the value of the scheduling
process in the same terms generated by the class Scheduler methods.

Methods:

• slurm ingestion: Reads the .csv file generated by the Slurm Simulator
and saves it in an internal Job list.

• calculate and save single attempt: Using the internal Job list, it gen-
erates a solution comparable to those generated by our models imple-
mented by Scheduler.

B.1.5 Main

This class represents our main workflow. The methods of this class represent
the main steps we have taken during the experimentation process developed for
this project.

Methods:

• random sample: Performs the random sample operation and saves the
results as text files in a folder.

• special sample: Generates the special sample and saves it as a text file
in a folder.

• generate traces: Reading the samples from text files, generates the
traces in the format that the Slurm Simulator can read and saves them as
text files in a folder.

• add priority: Reading the samples from text files, calculates and adds
the priority value. Then, it stores these modified samples as text files in
a different folder.

77

• sample approximation: Reads a sample, processes it, and calculates the
result of the scheduling process using a defined variant of the Knapsack
Greedy Algorithm.

• sample optimal: Reads a sample, processes it, and calculates the result
of the scheduling process using the Optimal Algorithm.

• experimentation: Performs the experimentation process for our first ex-
perimentation round. Main experimentation in Section 6.3.1.

• experimentation knapsack modified: Performs the experimentation pro-
cess for our second experimentation round. Knapsack Greedy Modified in
Section 6.3.2.

• experimentation priority: Performs the experimentation process for
our third experimentation round. Experimentation with Priority in Sec-
tion 6.3.3.

• parsing from slurm: Performs the experimentation process for our fourth
experimentation round. Experimentation using the Slurm Simulator in
Section 6.3.4.

B.2 Workflow

Our source data file is jobs subset mn4.txt, where the results from our data
source analysis and cleaning is stored. Then, our main workflow can be described
as the following sequence:

1. Generates the random samples from the data source by executing the
method random sample.

2. Generate the special sample by executing special sample.

3. Generate the samples with priorities using add priority, these results
are stored in a separate folder so they do not mix up with the original
samples.

4. At this point you can generate the traces by executing generate traces.
We copy these traces to our virtual machine where the Slurm Simulator
has been installed as described in Appendix A. We run the simulation
for each trace and then copy the results (the .csv file) from the virtual
machine to our experimentation environment.

5. Now you are ready to perform the main experimentation round by using
the method experimentation. However, during this process you might
notice that some samples take too much time for the optimal solver, be-
cause of the NP nature of this problem. We recommend to avoid these
samples. Inside experimentation you can specify which samples to con-
sider. Through experimentation, we have seen that around 4 or 5 samples
will not run in under 5 minutes for the optimal solver.

78

6. You have identified valid samples. We continue with our experimentation
process by executing experimentation knapsack modified.

7. Then we proceed with experimentation priority. We have now went
through the main 3 rounds of experimentation defined by our models and
implemented in our tool.

8. We proceed to execute the final round of experimentation that consists on
reading the results retrieved from the Slurm Simulator and producing a
comparable result. For this purpose, we execute parsing from slurm.

You can find the folder jobs analysis inside the project repository. Then,
inside this folder, you can find the file Experiments Analysis.Rmd that in-
cludes, apart from the whole data source generation and cleaning process, the
tools to evaluate the results, generate plots, tables, and some other relevant
functions.

79

C Samples

Figure 24: Distribution of source dataset.

80

Figure 25: Distribution of sample 0.

Figure 26: Distribution of sample 1.

81

Figure 27: Distribution of sample 2.

Figure 28: Distribution of sample 3.

82

Figure 29: Distribution of sample 4.

Figure 30: Distribution of sample 5.

83

Figure 31: Distribution of sample 6.

Figure 32: Distribution of sample 7.

84

Figure 33: Distribution of sample 8.

Figure 34: Distribution of sample 9.

85

Figure 35: Distribution of sample 10.

Figure 36: Distribution of sample 11.

86

Figure 37: Distribution of sample 12.

Figure 38: Distribution of sample 13.

87

Figure 39: Distribution of sample 14.

Figure 40: Distribution of sample 15.

88

Figure 41: Distribution of sample 16.

Figure 42: Distribution of sample 17.

89

Figure 43: Distribution of sample 18.

Figure 44: Distribution of sample 19.

90

Figure 45: Distribution of sample 20. Excludes jobs with 40 nodes.

91

	Introduction
	Slurm Scheduling Overview
	Slurm Users
	Users Hierarchy
	Usage Definitions
	Usage Accounting

	Priority Calculation
	Age
	Size
	Fair-share
	Quality of Service QoS

	Scheduling Overview

	Scheduling Analysis
	Scheduling Context
	Scheduling Mechanism

	Data
	Overview
	Data Retrieval
	Description
	Analysis
	Experiment Data Analysis
	Job Data Analysis

	Games
	Game Theory
	Introduction
	Simultaneous Move Game
	Dominant Strategy Solution
	Vickrey Auction
	Pure Strategy Nash Equilibrium
	Mixed Strategy Nash Equilibria
	The Price of Anarchy

	Mechanism Design
	Introduction
	Design Approach
	Single-Parameter Environments
	Allocation and Payment Rules
	Monotonicity
	Myerson's Lemma
	Vickrey-Clark-Groves Auction
	Knapsack Auction
	Greedy Knapsack Algorithm

	Scheduler Model
	Knapsack Auction Model

	Knapsack Auction Model + Priority

	Experimentation and Results
	Sample Generation
	Experimentation Space
	Results
	Main Experimentation
	Knapsack Greedy Algorithm Modified
	Experimentation with Priority
	Experimentation with Slurm Simulator

	Comments on the Price of Anarchy
	Comments on the Viability of Cooperation

	Conclusions
	Future Work
	Slurm Simulator
	Setup Process
	Workload Generation
	Testing Process
	Changing Cluster Configuration

	Experimentation Environment
	Structure
	Job
	Platform
	Scheduler
	SlurmScheduler
	Main

	Workflow

	Samples

