
Vol.:(0123456789)1 3

Climate Dynamics 
https://doi.org/10.1007/s00382-020-05560-4

An anatomy of Arctic sea ice forecast biases in the seasonal prediction 
system with EC‑Earth

Rubén Cruz‑García1   · Pablo Ortega1 · Virginie Guemas2 · Juan C. Acosta Navarro1 · François Massonnet3 · 
Francisco J. Doblas‑Reyes1

Received: 10 May 2019 / Accepted: 24 November 2020 
© The Author(s) 2021

Abstract
The quality of initial conditions (ICs) in climate predictions controls the level of skill. Both the use of the latest high-quality 
observations and of the most efficient assimilation method are of paramount importance. Technical challenges make it fre-
quent to assimilate observational information independently in the various model components. Inconsistencies between the 
ICs obtained for the different model components can cause initialization shocks. In this study, we identify and quantify the 
contribution of the ICs inconsistency relative to the model inherent bias (in which the Arctic is generally too warm) to the 
development of sea ice concentration forecast biases in a seasonal prediction system with the EC-Earth general circulation 
model. We estimate that the ICs inconsistency dominates the development of forecast biases for as long as the first 24 (19) 
days of the forecasts initialized in May (November), while the development of model inherent bias dominates afterwards. The 
effect of ICs inconsistency is stronger in the Greenland Sea, in particular in November, and mostly associated to a mismatch 
between the sea ice and ocean ICs. In both May and November, the ICs inconsistency between the ocean and sea ice leads to 
sea ice melting, but it happens in November (May) in a context of sea ice expansion (shrinking). The ICs inconsistency tend 
to postpone (accelerate) the November (May) sea ice freezing (melting). Our findings suggest that the ICs inconsistency might 
have a larger impact than previously suspected. Detecting and filtering out this signal requires the use of high frequency data.
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1  Introduction

The severe and rapid decline of Arctic sea ice in the last 
two decades (Stroeve et al. 2012; Vaughan et al. 2013) has 
fostered research as well as socio-economic interests in the 
Arctic ocean for sectors such as the maritime transport, oil 
and fishery industries and tourism (e.g. Hall and Saarinen 

2010; Meier et al. 2014; Smith and Stephenson 2013). Inter-
est in predicting the timing of advance and retreat of sea ice 
at seasonal time scales has therefore increased, as illustrated 
by the Sea Ice Outlook initiative (Stroeve et al. 2014).

Seasonal prediction skill largely relies on the quality 
of initialization. Recent years have seen an improvement 
in predictive capacity (e.g. Blockley and Peterson 2018; 
Bushuk et al. 2017; Collow et al. 2015; Wang et al. 2013) 
and enhanced observational efforts over the region (Jung 
et al. 2016). The increasing density and quality of obser-
vations for the various components of the climate system 
has allowed for more accurate initial conditions (ICs) for 
seasonal predictions. The recent improvements in predictive 
capacity of the Arctic sea ice are also related to advances in 
forecast initialization techniques to phase the models with 
the observed climate evolution (e.g. Bushuk et al. 2017; 
Collow et al. 2015; Wang et al. 2013). In particular, efforts 
have been made to improve the initialization of different 
model components such as sea ice (e.g., Blanchard-Wrig-
glesworth et al. 2011; Blockley and Peterson 2018; Dirkson 
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et al. 2017), ocean (in particular the ocean’s top thermal 
structure; e.g., Balmaseda and Anderson 2009; Balmaseda 
et al. 2009), atmosphere (Infanti and Kirtman 2016) and land 
surface (Koster et al. 2010).

The most widely-used method is full-field initialization, 
in which the model begins from an observed or reanalyzed 
state. This method, however, is affected by the presence of 
large model biases which can cause a drift in the predictions 
as the model transitions from the observed climate towards 
its own attractor (e.g. Exarchou et al. 2018; Magnusson et al. 
2013; Meehl et al. 2014; Sanchez-Gomez et al. 2016). Inter-
ferences between the drift and the climate signal to be pre-
dicted could hamper the quality of climate predictions. This 
drift needs to be corrected a posteriori under certain assump-
tions (e.g. that the model drift is independent of the start 
date or the initial state; ICPO 2011), with the downside that 
only direct impacts of the drift can be filtered out through 
simple linear methods, not the non-linear interactions and 
consequences of the drift. On the other side, the model drift 
in climate predictions has been seen as an opportunity to 
track the time evolution of model errors from close-to-null 
to the asymptotic model biases (e.g. Exarchou et al. 2018; 
Vannière et al. 2014). The timescales and chronology of 
error growth hints at the mechanism involved through a dif-
ferentiation of fast (e.g. atmospheric turbulence) versus slow 
(e.g. deep ocean circulation) processes and identification of 
causes versus consequences (e.g. an ocean bias developing 
before the induced sea ice bias). This drift is expected to 
be larger when initializing from reanalyses of another data 
assimilation system, such as ERA-Interim or NCEP/NCAR-
RE1, than in-house reanalyses, since a reanalysis is slightly 
biased towards the attractor of the model which was used in 
its production and interpolation introduces additional errors 
and potential incompatibilities between variables. To mini-
mize this drift, a potential alternative method is anomaly 
initialization, in which the model is started from a synthetic 
state built from observed or reanalized anomalies added on 
top of the mean model climate. However, instabilities can 
be triggered by dynamical imbalances between the observed 
anomalies and the mean model climate or by non-linearities 
such as the dependence of density on temperature and salin-
ity (Boer et al. 2016; Magnusson et al. 2013; Meehl et al. 
2014).

A large variety of techniques has been developed to 
assimilate observations and/or reanalysis into in-house rea-
nalyses with the same model (or components of the coupled 
model) used to perform the forecasts. These go from simple 
approaches, like Newtonian relaxation or nudging (Lindsay 
and Zhang 2006; Tietsche et al. 2013), to more sophisticated 
methods like the Ensemble Optimal Interpolation (EnOI, 
e.g. Dulière and Fichefet 2007; Smith and Stephenson 2013) 
and the Ensemble Kalman Filter (EnKF, e.g. Evensen 2003; 
Massonnet et al. 2013). One of the key advantages of the 

latter is that it is a multivariate method that updates all 
related variables simultaneously according to their statis-
tical relationship through the model-simulated covariance 
matrix. For example, EnKF assimilation of SIC has been 
proven to have a positive impact on the representation of sea 
ice thickness (Massonnet et al. 2013; Mathiot et al. 2012), 
even though sea ice thickness is not directly assimilated.

Nowadays, data assimilation is usually applied indepen-
dently to each model component which are also run sepa-
rately to generate the ICs in operational prediction centers 
(Arribas et al. 2011; Molteni et al. 2011; Saha et al. 2010). 
Incompatibilities between the ICs of the different model 
components are prone to appear with such an approach. 
Those incompatibilities can be reduced by running a fully 
coupled climate model between data assimilation steps per-
formed independently in each model component, namely 
using weakly coupled data assimilation. The paradigm 
is currently changing, and many forecast centers develop 
strongly coupled assimilation systems (Kimmritz et al. 2019; 
Penny and Hamill 2017; Penny et al. 2019), i.e. in which 
each assimilation step also occurs in couple mode so that the 
assimilation of observations in one model component also 
leads to direct updates in the other model components. This 
approach is technically challenging but it helps to prevent 
the occurrence of ICs inconsistencies and imbalances in the 
forecasts (Laloyaux et al. 2016), which has been shown to 
benefit the forecast skill (Liu et al. 2017). When present, 
these incompatibilities can lead to initial shocks in the pre-
diction, which are likely to be larger in areas with substan-
tial disparities between the observations and simulations 
(Balmaseda et al. 2009). Other initial imbalances have been 
related to diverse causes, such as the presence of spurious 
trends in some of the initialization products (e.g. surface 
winds in Pohlmann et al. 2017), the interpolation of non-
native reanalyses (e.g. Laloyaux et al. 2016), or the use of 
a different model versions to produce the ICs and perform 
the forecasts (Mulholland et al. 2015). Note that preventing 
or reducing these shocks is expected, but it does not neces-
sarily lead to skill improvements (Pohlmann et al. 2013). 
Incompatibilities between variables can also arise within 
a reanalysis, those incompatibilities being introduced by 
the data assimilation scheme itself at the analysis step (the 
variable updates are linearly related to each other, whereas 
variables can be non-linearly related). In our study, we can 
not distinguish between initial shocks introduced within a 
model component by the assimilation schemes and between 
model components because of independent assimilations. 
We will consider those errors jointly and refer to them as 
ICs inconsistencies.

This article investigates the origin of the different Arctic 
sea ice forecast biases present in the latest seasonal predic-
tions produced with EC-Earth3.2 (Acosta Navarro et al. 
2019). In particular, we are interested in the development of 
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the model bias as a function of forecast time, the impact of 
incompatibilities between ICs, and their relative importance 
along the prediction. This article is organized as follows: 
In Sect. 2, we briefly describe EC-Earth3.2 system and the 
experimental and observational datasets used, together with 
the initialization methodology. Section 3 offers a detailed 
presentation of the different sources of forecast biases. 
Their evolution and contribution to the total forecast bias 
are discussed in Sect. 4. Finally, Sect. 5 summarizes the 
main conclusions.

2 � Methodology

2.1 � Model description and experiments

The forecasts (also referred to as predictions) and their his-
torical counterpart used in this study were produced with 
EC-Earth3.2 coupled climate model (Doblas-Reyes et al. 
2018; http://www.ec-earth​.org/). The ocean component is 
the third version of NEMO (Nucleus for European Model-
ling of the Ocean; Madec et al. 2015) with ORCA1 configu-
ration (about 1 degree with enhanced tropical resolution) 
and 75 vertical levels. The sea ice component is the Lou-
vain-la-Neuve sea ice model (LIM3, Vancoppenolle et al. 
2009) directly embedded into NEMO. For the atmosphere, 
the integrated forecasting system (IFS), from the ECMWF 
is employed, in a configuration with 91 vertical levels and a 
T255 horizontal resolution. All components are coupled via 
OASIS3 (Valcke 2006).

Using EC-Earth3.2 and aerosols, greenhouse gases and 
solar activity forcings from CMIP6 protocol, we performed 
three sets of experiments. The first experiment is a his-
torical simulation (HIST hereafter) which consists of one 
single member covering the 1950-2014 period initialized 
from a perpetual 1950 simulation. The other two sets of 
experiments consist of seven month-long seasonal forecasts 
(PRED hereafter) initialized each year from 1993 to 2008 
on May 1st and November 1st, with an ensemble size of ten 
members. More details about the datasets and simulations 
used in this article can be found in Table 1.

In PRED, the atmosphere is initialized from ERA-
Interim reanalysis (Dee et al. 2011) with initial perturba-
tions between the ten members computed using singular 
vectors. The ocean was initialized from the five members 
(repeated once to get the ten initial members for PRED) of 
the Ocean Reanalysis System 4 (ORAS4, Balmaseda et al. 
2013). The sea ice ICs are from an in-house reanalysis (here-
after referred to as RECON) produced with the ocean-sea 
ice model assimilating daily SIC from ESA-CCI version 1 
(hereafter referred to as ESA, Hollmann et al. 2013) via a 
25-member ensemble Kalman filter (EnKF). This satellite 
SIC dataset is different to the one prescribed to produce 
ORAS4 (Reynolds et al. 2002), which we will refer to here-
after as ORAS4_ice. Only the first 10 members were used 
as ICs for the sea ice. Also note that it is not possible to 
initialize directly LIM3 from observations, as this would 
require comprehensive and coherent information on many 
sea ice variables, which are not all conveniently observed. 
The advantage of the EnKF method is that through the use 
of model covariances, it assimilates specific observations 

Table 1   Brief description of all the simulations and datasets used in this study

Description Members Forcings ICs Additional information

HIST 1950–2014
Historical simulation

1 Aerosols, greenhouse gases 
and solar activity from 
CMIP6 DECK protocol

A 152-year long perpetual 
1950 forced spin-up initial-
ized from a present-day 
climatology

Model: EC-Earth 3.2. Cou-
pled, uninitialized.

PRED 7-month-long predictions 
initialized each 1st May 
and 1st November from 
1993 to 2008

10 Aerosols, greenhouse gases 
and solar activity from 
CMIP6 DECK protocol

Sea Ice: RECON
Ocean: ORAS4
Atmos.: ERA-Interim

Model: EC-Earth 3.2. Cou-
pled, initialized.

ORAS4 1958–2018
Ocean reanalysis. Uncou-

pled. Ocean ICs to PRED

5 ERA-Interim atmospheric 
surface fields

– No sea ice model.
Instead: Prescribed sea 

ice from NCEP OI v2 
(ORAS4_ice)

RECON 1974–2008
Sea ice reanalysis. Uncou-

pled. Sea ice ICs to PRED

25 DFS atmospheric surface 
fields (corrected version of 
ERA-Interim)

A 58-year long perpetual 
1958 ocean-sea ice forced 
spin-up intialized from a 
present-day climatology

Model: NEMO-LIM (same 
ocean-sea ice components 
as in EC-Earth 3.2). EnKF 
assimilation of ESA SIC

ESA Satellite SIC. Used for 
RECON assimilation

– – – ESA-CCI Version 1

NSIDC Satellite SIC. Used for 
RECON evaluation

– – – NASA-Team Dataset

http://www.ec-earth.org/
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(in this case of sea ice concentrations) ensuring at the same 
time that the other related variables (in this case all sea ice 
variables) evolve consistently with them. For further details 
on how the EnKF is implemented in the sea ice model, we 
redirect the reader to Mathiot et al. (2012) and Massonnet 
et al. (2015). Our study focuses on 1993-2008, the period 
covered continuously by the ESA SIC product.

In RECON, SIC is assimilated the last day of every 
month. The choice of using 25-members in the EnKF was 
made to reach a compromise between having a large enough 
ensemble to sample model uncertainty and minimizing the 
high computational constraints. The atmospheric fields used 
to force RECON were taken from the Drakkar forcing set in 
its version 5.2 (DFS, Dussin et al. 2016). DFS is based on 
ERA-Interim, but it includes bias corrections in temperature 
and humidity in the Arctic that reduce the mean air tempera-
ture by more than 0.6 ◦

C everywhere in the Arctic except on 
the Baffin Bay (Dussin et al. 2016). The different members 
of atmospheric forcings are produced by adding to each vari-
able random daily perturbations which are representative of 
the observational error. The pool of possible perturbations 
is computed from monthly differences between the DFS 
and ERA-Interim wind. Once randomly picked, monthly 
perturbations are interpolated linearly to obtain daily ones 
(Guemas et al. 2014).

2.2 � Forecast bias analysis

In this study, three different biases are addressed. First, the 
one caused by the ICs inconsistency, that will be charac-
terized as the SIC difference between the ORAS4_ice and 
RECON at lead time 0 (i.e. initialization moment). Second, 
the deviation of the model attractor with respect to the obser-
vational reference, that will be referred to as model bias, and 
is defined as the difference between HIST and RECON cli-
matologies for each calendar day. Finally, the forecast bias, 
that will be defined as the difference between PRED and 
RECON climatologies, and is calculated for each lead time. 
Both the effects of the ICs inconsistency and the develop-
ment of the model bias contribute to the forecast bias. The 
extent of these contributions depend (1) on the magnitude 
of the ICs inconsistency at lead time 0, (2) on the magni-
tude of the model bias for each calendar day and (3) on the 
lead time. An schematic illustration of the different biases 
analyzed in this manuscript is shown in Fig. 1. The effect of 
the ICs inconsistency is represented as a deviation from the 
smooth asymptotic transition of the forecast to the histori-
cal state.

To complement the analysis of the SIC biases, we also 
consider the Integrated Ice Edge Error (IIEE), introduced by 
Goessling et al. (2016). Unlike for the climatological biases 
of the sea ice area (SIA) or sea ice extent (SIE), the IIEE 
does not suffer from spatial error compensation (i.e. areas 

with underestimated SIC being counterbalanced by areas 
with overestimated SIC). The IIEE is defined as the area 
where the forecast and the reference disagree on the SIC 
being above or below 15%. The IIEE can additionally be 
decomposed into the absolute extent error (AEE) and the 
misplacement error (ME) components, which allow to fur-
ther investigate the nature of the errors. The AEE represents 
the absolute difference in sea ice extent between the forecast 
and its reference, while the ME integrates sea ice extent that 
has been predicted at an incorrect location. The reader can 
find more information about these scores in Goessling et al. 
(2016).

To track the relative contribution of the ICs inconsistency 
and the model bias to the SIC forecast bias along the first 
month, at each forecast time, we compute spatial correla-
tions between each different source of forecast biases and 
the pattern of SIC forecast bias, masking out all grid points 
from 80N to 90N due to the extremely low sea ice variability 
at those latitudes.

2.3 � Assessing the sea ice initialization 
and verification product

To evaluate RECON and the efficiency of the EnKF assimi-
lation technique, we consider an independent dataset from 
the one used to produce the ICs, namely the National Snow 
and Ice Data Center (NSIDC, Cavalieri et al. 1996). Since 
no uncertainty is provided for the NSIDC datasets, we esti-
mate it as the absolute difference between the two NSIDC SIC 

Fig. 1   Schematic representation of the Arctic sea ice extent evolu-
tion for a historical simulation (green), an observation reference (dark 
blue), a forecast (light blue) and the initial conditions for two model 
components (yellow and red dots). The different biases analyzed in 
this study are indicated in orange: forecast bias, model bias and ini-
tial conditions inconsistency. The dashed line represents the forecast 
trajectory that would be followed with absence of ICs inconsistency. 
The vertical grey line stands for the time zero, when the forecast is 
initialized
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products: NASA-Team (Cavalieri et al. 1996) and Bootstrap 
(Comiso 2017), which only differ in the algorithm employed 
to estimate sea ice concentrations from passive microwaves 
measurements. A large systematic overestimation of Arctic 
SIC with respect to NSIDC (PRED minus NSIDC) is already 
present during the first forecast day in most of the peripheral 
Arctic regions for the May-initialized predictions (Fig. 2a) and 
across the interior Arctic ocean for the November-initialized 
predictions (Fig. 2c). In both cases (May and November 1st, 
i.e. the forecasts in the first 24 hours), the largest bias ( ∼50%) 
occurs at the Eastern side of the Greenland Sea. These large 
errors arise through the assimilation protocol as a conse-
quence of large observational uncertainties over the region. 
Indeed, Fig. 2b, d illustrates the initial difference between 
RECON (from which sea ice ICs were extracted) and the 
observations from ESA that were assimilated into RECON, 
for the first forecast day. Large differences appear in the same 
regions where the initial forecast biases emerged. Indeed, 
more weight has been given to the model information than 
to ESA SIC data over those areas in the EnKF that produced 

RECON. To understand this, it is important to keep in mind 
how the EnKF works. The strength of assimilation relies on a 
subtle balance between the observational uncertainty and the 
simulated ensemble spread, which is assumed to represent the 
model uncertainty. Whenever observations are uncertain and 
the EnKF ensemble has relatively little spread compared to 
the observations uncertainties, the EnKF reanalysis remains 
close to the simulated model state. This happens, for example, 
in May and November along the East Greenland coast, where 
ESA data exhibit relatively large uncertainties compared to 
the amplitude of the model spread (Fig. 3). By contrast, large 
model spread with well constrained observations lead to large 
EnKF increments and therefore closer EnKF reanalysis to the 
assimilated data. This occurs in November over the Kara Sea, 
where the model shows a large ensemble spread while there is 
relatively little observational uncertainty (Fig. 3). This large 
ensemble spread over the Kara Sea seems to derive from the 
low transitional SIC over the Marginal Ice Zone (hereafter 
MIZ, where 15% < SIC < 85%) (Fig. 4). It appears that the 
wider the MIZ, the larger the ensemble spread/model uncer-
tainty. In the ESA dataset, narrow bands of high observational 
uncertainties appear at the sea ice edge, which could have 
locally larger magnitude than other products such as NSIDC 
(Fig. 3). But the ESA uncertainty, when integrated spatially, 
compares well with other products (e.g. Fig. 3). The estimate 
of model and observational uncertainties play a key role in the 
assimilation weights given to model and observations. Over-
estimation or underestimation of these uncertainties can be 
highly detrimental to the quality of the reanalysis. It is com-
mon practice to initialize climate predictions from reanalyses 
which account for the observational uncertainty and therefore 
do not track observations very closely when they are deemed 
uncertain. It is also common practice to assess forecast quality 
directly against observational datasets without accounting for 
their uncertainties. These are not consistent and a prediction 
whose ICs do not match very closely the observations can 
not be expected to track very closely the observations in the 
course of the prediction. A more consistent approach could 
be adopted either by verifying predictions against a refer-
ence which accounts for observational uncertainty similarly 
as done in the ICs or to develop new prediction scores which 
account for observational uncertainties. In the remainder of the 
manuscript, the biases will be quantified relative to RECON, 
which stands as our best possible estimate of the real climate 
state, since it is assumed to properly balance the observational 
uncertainty and the model uncertainty to produce such esti-
mate. On top of that, since RECON provides our sea ice ICs, 
the sea ice forecast bias is initially 0 with respect to RECON 
and it grows only due to the impact of the ICs inconsistency 
and of the drift towards the model attractor. Thus, the spuri-
ous contribution of another source of bias such as the distance 
between RECON and an observational dataset is eliminated. 
For each month, RECON evolves in free-running mode until 

Fig. 2   Maps of the SIC difference between PRED and NSIDC for (a) 
May 1st and (c) November 1st for the period 1993-2008. The purple 
line represents PRED sea ice edge (15% SIC) climatology, while the 
green one represents the NSIDC sea ice edge. NSIDC is not the data-
set assimilated for the production of the sea ice ICs. (b) and (d) show 
the differences in SIC between RECON and the observations from 
ESA assimilated into RECON for May 1st and November 1st, cor-
respondingly. The purple line represents RECON sea ice edge, while 
the green one represents the ESA sea ice edge. In (a) and (c) blue col-
ours represent regions with a larger sea ice in PRED than in NSIDC, 
while for (b) and (d) they represent regions where RECON simulates 
more sea ice than ESA
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the last day of the month, in which satellite data are assimilated 
by the EnKF. This introduces some discontinuity with respect 
to the past month trajectory. For this reason, we focus on the 
first 30 forecast days, i.e. May and November, before the next 
assimilation phase happens.

3 � Characterization of the forecast bias

3.1 � Model bias

PRED is known to experience a drift as it adjusts towards the 
model (biased) climatology. The rate at which PRED drifts 
depends on how far the model is initialized from its attractor. 
The analysis of HIST allows to determine this attractor and 
therefore the systematic biases. A fast initial adjustment of 
ICs inconsistencies is expected to lead to the development 
of the patterns shown in Fig. 5a, d (see next subsection), 
but probably not to the extent shown in the figures, since 
that would be the maximum amplitude if the ocean did not 
adjust to the sea ice. Indeed, part of the inconsistency is 
expected to be absorbed by the ocean. On longer timescales, 
we expect the patterns shown in Fig. 5b, e to develop. On the 
1st of May, the climatological sea ice edge in HIST is dis-
placed towards the north with respect to RECON in regions 
like the Barents and Bering Seas where the SIC are largely 
underestimated. The opposite occurs in the Labrador Sea 
(Fig. 5b). On the 1st of November, the HIST climatology has 
considerably less ice than RECON around the Arctic con-
tinental margins (Fig. 5e), in particular over the Kara Sea, 
and produces more sea ice in the Baffin Bay. The drift will 
gradually bring the predictions closer to these model biases, 
with regional differences in speed. Note that the systematic 
negative bias in the sea ice is associated with a warm bias in 
the atmosphere and the ocean (not shown). As these three 

Fig. 3   Maps of the EnKF ensemble standard deviation across mem-
bers (10 members) and the SIC uncertainty for the ESA and NSIDC 
observational products for the period 1993–2008. For ESA it was cal-

culated as the SIC standard deviation, while for NSIDC it was meas-
ured as the difference between the two NSIDC products (Bootstrap 
and NASA-Team)

Fig. 4   SIC climatology for RECON on November 1st. The orange 
and purple lines represent the sea ice edge defined by the 15% and 
85% SIC thresholds, correspondingly
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model components are tightly coupled, it is not possible to 
disentangle which one originates first.

3.2 � Inconsistencies between the initialization data

Using data from independent origins for initialization can 
introduce some shocks, as the different components adjust 
to each other in the first several days of the forecast. We 
focus here on the inconsistencies of both the atmosphere 
and ocean ICs with those of the sea ice. There exists some 
notable differences between the sea ice in RECON (used 
as sea ice ICs) and the sea ice that was used to produce 
the ocean and atmospheric reanalyses (ORAS4 and ERA-
Interim, respectively). The RECON reanalysis produces 
more ice than the ORAS4_ice observational data (Fig. 5a, 
d), especially along the Eastern Greenland Coast (from 
Iceland to Svalbard). This reflects that the ocean state in 
ORAS4 is not perfectly compatible with the overlaying sea 
ice from RECON, and ORAS4 ocean state will tend to melt 
the RECON sea ice, while the RECON sea ice will tend to 
cool down the ORAS4 ocean state.

We remind here that, as already mentioned in Sect. 2.1, 
it is not possible to initialize the sea ice component of EC-
Earth directly with a given observational dataset of SIC, like 
the data used to drive ORAS4, as the initialization of the sea 
ice model requires providing the simultaneous state of about 
50 different variables which need to be physically consistent 

to avoid shocks. The excess of sea ice along the Eastern 
Greenland coast in RECON with respect to ORAS4_ice is 
associated with substantially colder local temperatures in the 
first (Fig. 6a, b), which implies that in the predictions the rel-
atively warm waters ingested from ORAS4 will act to melt 
part of the sea ice initially imposed above, as already seen 
in Fig. 5c, f for day 1. Similarly, colder surface conditions 
in ORAS4 than in RECON, such as in the Bering Sea will 

Fig. 5   Maps of the SIC differ-
ence between the ORAS4_ice 
and RECON (sea ice ICs) the 
30th of April/31st of October 
(a, d), HIST and RECON (b, e) 
and PRED and RECON (c, f) 
the 1st of May/1st of November 
respectively averaged over the 
period 1993–2008. The green 
line represents RECON sea ice 
edge (15% SIC) climatology, 
while the purple one represents 
the ORAS4_ice (a, d), HIST 
(b, e) and PRED (c, f) sea ice 
edge. For all panels red colours 
represent areas where RECON 
has a larger sea ice than (a, d) 
ORAS4_ice, (b, e) HIST and 
(c, f) PRED, while blue colours 
indicate less sea ice in RECON

Fig. 6   Maps of the SST difference between ORAS4 and RECON for 
the period 1993–2008 for (a) April 30th and (b) October 31st. The 
green line represents RECON sea ice edge (15% SIC) climatology, 
while the purple one represents the ORAS4_ice sea ice edge
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favour sea ice formation early in the forecast. An inconsist-
ency between ORAS4_ice SIC and SST appears in the Lab-
rador, Barents and Bering seas and the Sea of Okhotsk, on 
April 30th and in the Barents Sea on October 31st (Figs. 5a 
and 6a), which will be investigated in an upcoming article.

Inconsistencies between the initialization products for 
the sea ice and the atmosphere may also lead to initial 
shocks. Due to the corrections in DFS compared to ERA-
Interim (colder air temperature by 0.6 ◦

C in the Arctic, 
except on the Baffin Bay, Dussin et al. 2016), during the 
first forecast days we should expect an overall melting 
effect of the atmosphere on the sea ice (that was produced 
with colder atmospheric conditions). The expected pat-
terns of response can be deduced from the comparison of 
the 30th April/31st October air temperature fields in ERA-
Interim and DFS (Fig. 7). These show that ERA-Interim is 
warmer than DFS (and therefore RECON) everywhere in 
the Arctic except in the Canadian Archipelago, Baffin and 
Hudson Bays for April 30th, and except over the Bering 
Sea, Sea of Okhotsk and part of the Canadian Archipelago 

for October 31st. The contribution of both ice-ocean and 
ice-atmosphere inconsistencies to the development of fore-
cast bias will be explored in Sect. 4.2.

4 � Understanding how the forecast biases 
develop

4.1 � IIEE insights on the pan‑Arctic sea ice biases

A summary of SIC biases is provided by the IIEE, which 
can be decomposed into a contribution from a general over/
underestimation (AEE) and a contribution from incorrect pro-
cesses leading to incorrect sea ice locations (ME). In May, 
the PRED IIEE grows slowly (Fig. 8a) and is still less than 
half of the HIST values by the end of the first forecast month. 
Whereas the PRED AEE reaches the asymptotic HIST AEE 
limit in no more than 5 days and dominates the PRED IIEE for 
the first few days, the PRED ME grows slowly and becomes 
predominant only by the end of the month, without having 
reached yet the HIST ME asymptotic limit. The HIST IIEE 
is dominated in May by the ME, which is associated with an 
overestimated SIC in Labrador Sea/Baffin Bay and Chukchi 
Sea and an underestimation along the rest of the sea ice edge 
(Fig. 5b). The PRED SIA bias evolution is consistent with 
the PRED AEE one (Fig. 1 in the supplementary material) 
and does not allow for an identification of the substantial 
errors in regional ice edge locations. The IIEE in November 
grows rapidly during the first week or so and then levels off 
(Fig. 8b). The IIEE is dominated in November by the AEE, 
which reaches the asymptotic HIST level in about one week. 
The November AEE is associated with a overall pan-Arctic 
SICs underestimation (Fig. 1 in the supplementary material). 
ME also grows throughout the month, but at a much lower 
rate and has only reached about half of the ME HIST by the 
end of the month. The ME results from overestimated SIC 
in Labrador and Greenland seas and Hudson Bay and under-
estimated SIC along the rest of the sea ice edge (Fig. 5). In 

Fig. 7   Maps of the 2-meter air temperature difference between ERA-
Interim and DFS for the period 1993–2008 for (a) April 30th and (b) 
October 31st

Fig. 8   IIEE, AEE and ME as 
computed for the forecast bias 
(solid line), the model inherent 
bias (dash line) and the ICs 
inconsistency (dots). IIEE, AEE 
and ME are absolute errors

(a) (b)
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both May and November, the drift towards the model attrac-
tor (Fig. 5b, e) and ICs incompatibility (Fig. 5a, d) lead to an 
overall sea ice underestimation (i.e. red areas dominate over 
the blue ones in Fig. 5). During the freezing season, the overall 
sea ice cover underestimation is reached as fast as during the 
melting season although the model bias has larger amplitude. 
These integrated diagnostics do not provide a comprehensive 
description of regional biases and their compensation which 
would allow to understand the ME development. These require 
the spatial SIC maps described in the next section.

4.2 � Spatial evolution of the forecast biases

The ICs inconsistency (first row in Fig. 9) corresponds to the 
SIC biases which are expected to develop rapidly as an initial 
shock in response to an inconsistent ocean below. The spatial 
maps of SIC biases in May (Fig. 9) evidence that the impact 
of ICs inconsistency could explain large forecast biases over 
the Greenland Sea. The Greenland SIC forecast biases are also 
quite close to the model biases by May 30th in sign and pattern 
(Fig. 9). However, for the ICs inconsistency the pattern has 
a larger longitudinal extension than the one from HIST. The 
PRED pattern of biases seems closer to the ICs inconsistency 
one before the end of the month. In other regions, like the 
Barents and Kara Seas, the model bias dominates the forecast 
bias in less than 10 days. By forecast day 30, the model bias 
is not yet fully developed in the forecasts, in particular in the 
Atlantic sector, which corresponds to regions of maximum 
SIC model biases. As in May, both the model bias and the ICs 
inconsistency exhibit a sea ice deficit in the Greenland Sea in 
November which resembles the pattern of SIC bias in PRED 
(Fig. 10). In the November case, the PRED pattern of SIC 
biases resembles closely the HIST one as early as forecast day 
10. The ICs inconsistency seems to explain the lack of sea ice 
in the forecast over the Baffin Bay, that is still present by the 
end of the month.

4.2.1 � Estimate of SIV melt by the inconsistency 
between RECON and ORAS4 ICs

A robust assessment of the contribution of the ICs inconsist-
ency to the development of forecast biases requires a quanti-
fication of the sea ice volume (SIV) that could be melted by 
the warmer ocean in ORAS4 than in RECON (orange line, 
Fig. 11a–c). To calculate that amount of SIV, we first calculate 
the heat difference in the mixed layer between ORAS4 and 
RECON at t=0, as follows:

where Qml is the heat difference in the mixed layer between 
ORAS4 and RECON integrated over the region of interest 

(1)Qml = ∫A

(�Tml × Cw × hml × �w) da

A and estimated in Joules; a is the area of each grid cell in 
square meters; �Tml is the difference in ocean temperature in 
the mixed layer between ORAS4 and RECON in Kelvin; Cw 
is the water heat capacity (4186 J∕Kg ⋅ K ); hml is the mixed 
layer depth in meters (derived from the first time step in the 
forecast); and �w is the water density (1030 Kg∕m3).

Likewise, the total SIV over the selected region (Fig. 11d) 
that would be melted if all the heat difference in the mixed 
layer between ORAS4 and RECON ( Qml ) was used for it, 
can be derived from the following equation:

where SIV is the sea ice volume (in cubic meters); Li is the 
latent heat of fusion of ice (334000 J/Kg) and �i is the ice 
density (917 Kg∕m3).

The ICs inconsistency will lead to a cooling of the ocean 
and a melting of the sea ice until a new equilibrium is 

(2)SIV = (Qml∕Li)∕�i

Fig. 9   Evolution of SIC forecast biases for the predictions initialized 
in May. The first row corresponds to the ICs inconsistency at lag 0. 
The second and third rows show the SIC differences between PRED 
initialized in May and RECON (left column) and the model bias 
(right column) for lead times 10 and 30 for the period 1993–2008. 
The sea ice edge lines follow the legend of Fig. 5
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reached. This heat transfer from the ocean towards the sea 
ice could be superimposed with an additional model drift 
and internal variability in each forecast. To quantify the 
impact of the ICs inconsistency, we hypothesize that only 
the ocean mixed layer (estimated in EC-Earth as the depth 
at which the density difference with respect to the upper 10 
m is larger than a threshold of 0.01 Kg∕m3 ) contributes to 
sea ice changes in the first month, and estimate its potential 
melting effect by computing the difference in heat content 
between ORAS4 and RECON over this layer, which in the 
Greenland, Baffin and Kara seas goes down to 47, 30 and 
22m respectively. This heat is converted into a SIV follow-
ing Eq. 2, and will represent the maximum SIV that could 
be melted/created by heat content differences in the ocean 
mixed layer due to inconsistencies between ocean and sea 
ice ICs, with negative values corresponding to SIV melting. 
Only the ocean mixed layer is considered in this estimate 
because of its short timescale of interaction with the sea 
ice, which is supposed to be rapid enough to play a key 
role in the initial fast adjustment of the forecast. We focus 
on the Baffin Bay and Greenland and Kara seas during the 
November forecasts because these three regions develop the 

largest negative SIC biases (Fig. 5f). In the Greenland Sea, 
the ORAS4 ocean holds enough excess heat compared to 
RECON to melt about three times as much sea ice than what 
is melted by the end of the month in PRED (Fig. 11a, orange 
and blue lines), which is consistent with a key contribution 
of the ICs inconsistency to the local SIC forecast biases. 
This SIV melt estimate, however, relies on the hypothesis of 
a local isolated mixed layer-ice system and did not consider 
potential lateral and vertical heat exchanges, nor exchanges 
with the atmosphere. This basic heat budget nonetheless 
supports our argument that enough energy is available from 
the warm ORAS4 ocean to explain the forecast sea ice melt-
ing, although other influences cannot be excluded. In the 
Baffin Bay, the initial SIV loss in PRED amounts to about 
2/3 of the estimate of SIV that can be melted by the warm 
ORAS4 by the end of the month (Fig. 11b). In the Kara Sea, 
ORAS4 is colder than RECON and could not contribute to 
melt any sea ice as it is the case in the forecast, which dis-
cards any role of the ICs inconsistency (Fig. 11c).

4.2.2 � Inconsistency between the atmosphere and sea ice 
ICs

Most atmospheric variables can not be inconsistent with 
the sea ice cover, since ERA-Interim (i.e. the atmospheric 
ICs) and DFS (i.e. the atmospheric surface fluxes con-
straining RECON) are virtually identical in polar regions, 
except for the temperature (the only variable for which 
DFS introduces substantial corrections over the Arctic 
with respect to ERA-Interim; Dussin et al. 2016). Note 
also that temperature is more prone to generate inconsist-
encies because its vertical profile is expected to be con-
tinuous at the surface. Inconsistencies between the atmos-
phere and sea ice are expected to have a lesser impact 
than between the ocean and sea ice since the atmospheric 
heat capacity is about 3-to-4 times smaller than the for 
the ocean and the atmosphere is also much lighter (ocean 
density is ∼784 times higher). To quantify the effect of 
the warmer atmosphere in ERA-Interim than in RECON 
(Fig. 7), we calculate the difference between the 2-meter 
temperature in ERA-Interim and RECON (i.e. DFS) on 
October 31st over the Kara Sea, since it is the region where 
the contribution of the inconsistency between the ocean 
and sea ice ICs to PRED melting was previously discarded. 
If all the difference in heat from the lowest 100 meters of 
the atmosphere (the typical height of a stable boundary 
layer in polar regions) was used to melt sea ice, only 0.2 
km3 would be melted, which is negligible compared to the 
140 km3 melt by the end of the first forecast month (PRED 
minus RECON, Sea Ice Volume for Kara Sea; Fig. 11c). 
This suggests that the SIC forecast bias in the Kara Sea 
originates in the development of the model bias. It should 

Fig. 10   As Fig. 9 for PRED initialized in November
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be noted that DFS do not have temperatures above 2-meter 
because it is only a surface forcing, so we are assuming 
that the temperature difference between ERA-Interim and 
DFS would be constant along the vertical.

4.2.3 � Competing effect between the ICs inconsistency 
and the model bias

Our final analysis seeks to quantify how much of the pan-
Arctic forecast bias can be explained in each forecast day 
by the ICs incompatibility and the model drift. We first 
compute spatial correlations between the SIC differences 
between ORAS4_ice and RECON at the corresponding 
forecast time 0 in PRED and the forecast bias for each of 
the following 31 days. We also compute the synchronous 
correlation between the model bias and the mean forecast 
bias as a function of forecast time (Fig. 12). Moreover, we 
excluded the region from 80N to 90N to focus only on the 
regions of bias. In May, the influence of ICs inconsistency 
on the mean forecast bias increases during the first 5 days 
(Fig. 12a), which is probably the time required for the warm 
ocean underneath to induce a significant sea ice melting 
(while consuming the excess of heat from ORAS4). After 
5 days, its effects seem to stabilize and correlations slowly 
decrease but remain significant by the end of the month. The 

influence (as indicated by correlation) of model bias grows 
steadily, and by May 25th it becomes predominant over the 
ICs inconsistency one. By the end of the month the model 
bias is largely but not yet fully developed, as evidenced by 
its correlation with the forecast bias ∼0.7, and as already 
shown in Fig. 9. In November, the contributions from both 
sources of biases to the mean forecast bias evolve in a similar 
way to May. The effect of the ICs inconsistency is, however, 
already maximum from the first forecast day. Furthermore, 
the model bias prevails over the ICs inconsistency after 19 
days.

5 � Conclusions

In this study, we have identified and quantified the contribu-
tions from the different sources of Arctic sea ice concentra-
tion forecast biases that arise during the first month in a 
set of seasonal predictions produced with EC-Earth3.2. The 
main novelty of this work derives from the identification of 
the ICs inconsistency as a non-negligible source of forecast 
biases, which hinders the investigation of the model biases 
based on predictions. In our predictions, sea ice was initial-
ized from a forced ocean reanalysis with Ensemble Kalman 
Filter (EnKF) assimilation of SIC (RECON).

Fig. 11   In blue the difference 
in SIV between PRED initial-
ized in November and RECON 
for (a) Greenland Sea, (b) 
Baffin Bay and (c) Kara Sea. 
The orange line represents the 
potential SIV melting that could 
be explained in PRED if all 
the heat difference between the 
sea surface and the mixed layer 
boundary at the ICs inconsist-
ency was used to melt sea ice. 
In the case of the Kara Sea, the 
heat difference would not melt 
sea ice. (d) Map of the Arctic 
ocean regions (a) (b)

(c) (d)
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The main results of this article are described in the 
following:

–	 The comparison of a historical simulation (HIST) and the 
initialized predictions (PRED) has allowed us to study 
the model drift, i.e., how the inherent model bias devel-
ops in time, and to which extent the timescales for the 
development of biases depend on the region. The forecast 
bias in the PRED initialized in May has not reached the 
model bias (estimated as the difference between HIST 
and RECON) by the end of the month (Fig. 9), in particu-
lar in regions like the Baffin Bay and Barents and Kara 
Seas where the largest model biases can be found. For the 
predictions initialized in November, on the contrary, the 
model inherent biases seem to be fully developed before 
the end of the month in basins such as Barents, Kara, 
Chukchi and Bering Seas (Fig. 10).

–	 Another source of forecast bias has been identified in the 
inconsistency between the initialization products used for 
the ocean and sea ice. In this forecast system, the ocean 
ICs, taken from ORAS4, are generally too warm for the 
overlying sea ice conditions from RECON, which leads 
to extensive sea ice melting during the first forecast days.

–	 For the month of November, we have quantified the 
potential SIV melting associated to the ocean temper-
ature differences between RECON and ORAS4 in the 
three regions with the largest SIC forecast biases. These 
estimations suggest that the ICs inconsistency could 
explain the negative SIC biases in the Baffin Bay and the 
Greenland Sea by the end of the month, but not in the 
Kara Sea, where it is probably linked to the model drift 
towards its attractor. Incompatibilities between the sea 
ice and the atmosphere ICs have also been investigated, 
but the latter have been shown to have a negligible melt-
ing effect on the sea ice.

–	 By comparing the patterns of SIC forecast biases with 
those of the ICs inconsistency on one hand and the model 
bias on the other hand, we have been able to quantify 
their contributions to the forecast bias as a function of 

time. The analysis suggests that the initialization incon-
sistency dominates the forecast bias during the first 25 
(19) days in May (November), while the model bias 
dominates afterwards. However, for particular regions 
like the Baffin Bay or the Greenland Sea the effect of 
ICs inconsistency can overshadow that of the model drift 
beyond one month.

The effect of the ICs inconsistency in the forecast biases has 
prevented the examination of the mechanisms behind the 
development of the model biases in our seasonal forecasts. 
Sanchez-Gomez et al. (2016) investigated in depth the devel-
opment of model systematic errors in a decadal prediction 
system in which the atmosphere and the ocean were consist-
ently initialized, and identified that ocean processes (includ-
ing ENSO and changes in the North Atlantic ocean circula-
tion) induced a slow adjustment towards the model attractor. 
The ocean and the atmosphere are known to influence Arctic 
sea ice at different timescales, and in this way can contribute 
to the development of the local model biases. In particular, 
previous studies have demonstrated that atmospheric pro-
cesses can have large impacts on the sea ice cover: Woods 
and Caballero (2016) showed how the observed moist air 
intrusions into the Barents Sea reduce the local SIC up to 
a 2%. Another example would be the storm transiting over 
the Arctic during the summer of 2012, which favoured the 
Arctic SIE low record registered in September of that year 
(Parkinson and Comiso 2013). Therefore, model biases 
affecting the trajectory or frequency of occurrence of simi-
lar storms could affect the SIC as well. Or more generally, 
any bias affecting the atmospheric circulation, as illustrated 
in the analyses of Lecomte et al. (2016), who showed that 
wind biases could lead to systematic errors in the timing of 
the Antarctic sea ice growth, and by Smedsrud et al. (2011), 
that analyzed the link of wind-driven sea ice exports across 
the Fram Strait with Arctic sea ice decline. The ocean can 
also induce important sea ice biases, either through a direct 
influence of ocean temperature biases, or via key dynami-
cal ocean processes that are not properly represented. For 

Fig. 12   Correlation between the 
ICs inconsistency the day 0 and 
the forecast bias the first month 
(light blue) and synchronous 
correlation between the model 
bias and the forecast bias the 
first month (dark blue) for (a) 
May and (b) November. Cor-
relations were calculated using 
the 2D bias point to point. Dots 
represent the significant values 
at the 95% level as estimated 
from a one-sided student-T 
distribution

(a) (b)
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instance, the northward ocean heat transport, which can be a 
major precursor of rapid pan-Arctic sea ice declines (Auclair 
and Tremblay 2018), or the inflow of Atlantic Waters into 
the Arctic, which is key to understand the local temperature 
biases (Ilıcak et al. 2016).

The results from this article suffer from a few limitations. 
First, the calculation of the model bias has relied on the only 
historical simulation that had been produced with the same 
version of the model as used for the forecasts. Ideally, more 
ensemble members would be needed to filter out the internal 
climate variability and thus better constrain the model bias. 
This recommends some caution in the interpretation of our 
results, in particular at the regional level, where the true bias 
might not be accurately estimated. On top of that, the fore-
casts only expanded along 16 start dates, without covering 
the last decade, which could influence the robustness of the 
results discussed in this study. Finally, the sea ice reanalysis 
could have assimilated some ocean surface data to reduce 
sea ice uncertainty. Those are plans for the development of 
our assimilation system.

Using RECON as the reference for PRED and HIST could 
be viewed as the comparison between an ocean-sea ice and 
coupled systems. However, we consider RECON as the most 
trustworthy coherent estimation of the true sea ice state for 
this analysis because: 1) the atmospheric surface forcings 
provide a strong observational constraint which can be con-
sidered sufficient on its own to generate a sea ice reanalysis 
(Chevallier et al. 2013; Guemas et al. 2014); 2) it addition-
ally assimilates remotely-sensed SIC data once a month, 
whose information can persist until the next assimilation 
time step, the persistence of SIC data being a few months 
(Blanchard-Wrigglesworth et al. 2011; Day et al. 2014); 3) 
it accounts for the observational uncertainty in the data it 
assimilates; 4) it has been produced with the same ocean and 
sea ice components than the forecast model; and 5) it pro-
vides their ICs, and thus allow us to easily track the develop-
ment of the biases from t=0.

Despite the different biases identified and characterized 
in our analysis affecting the first forecast month, this same 
seasonal forecast system has been proven to be skillful over 
the Arctic and mid-latitudes, including the representation 
of extreme climate events (Acosta Navarro et al. 2019). 
There are potential ways to avoid, or at least minimize, the 
initial shocks, such as initializing all system components 
from strongly coupled assimilation runs performed with 
the same model version as used for the forecasts. However, 
reducing the initial shock does not necessarily translate into 
an improvement in predictive capacity as will be illustrated 
in an upcoming article. Recently, Kimmritz et al. (2019) 
showed how strongly coupled assimilation for the sea ice 
and ocean components enhances the sea ice skill up to 10 
months for the Barents Sea, while reduces the SIT bias in 
comparison with ocean-only assimilation. The future of sea 

ice initialization points to strongly coupled assimilation, 
including the joint update of the atmosphere. However, the 
different temporal and spatial scales of the sea ice, ocean and 
atmosphere represents a challenging implementation (e.g. 
Penny et al. 2019), at the same time that it introduces a large 
computational cost. We are currently developing an ocean-
sea ice coupled assimilation system and we plan to present 
its added value on the sea ice skill in the future.
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