
Platform-Agnostic Steal-Time Measurement
in a Guest Operating System

Javier Verdú, Juan José Costa, Beatriz Otero, Eva Rodriguez, Alex Pajuelo, Ramon Canal
Department of Computer Architecture, Universitat Politècnica de Catalunya

Barcelona, Spain
Email: {jverdu, jcosta, botero, evar, mpajuelo, rcanal}@ac.upc.edu

Abstract—Steal time is a key performance metric for applications
executed in a virtualized environment. Steal time measures the amount
of time the processor is preempted by code outside the virtualized
environment. This, in turn, allows to compute accurately the execution
time of an application inside a virtual machine (i.e. it eliminates the
time the virtual machine is suspended). Unfortunately, this metric is only
available in particular scenarios in which the host and the guest OS are
tightly coupled. Typical examples are the Xen hypervisor and Linux-based
guest OSes. In contrast, in scenarios where the steal time is not available
inside the virtualized environment, performance measurements are, most
often, incorrect.

In this paper, we introduce a novel and platform agnostic approach to
calculate this steal time within the virtualized environment and without
the cooperation of the host OS. The theoretical execution time of a
deterministic microbenchmark is compared to its execution time in a
virtualized environment. When factoring in the virtual machine load, this
solution -as simple as it is- can compute the steal time. The preliminary
results show that we are able to compute the load of the physical processor
within the virtual machine with high accuracy.

Index Terms—Steal Time, Virtual Machine, Hypervisor, Guest Operat-
ing System

I. INTRODUCTION

Server consolidation (i.e. running different virtual machines (VMs)
in the same physical machine and sharing its resources) is a cost-
effective solution for datacenters [4]. These VMs are handled by an
underlying hypervisor that implements a time-sharing scheduler to
use physical resources. This scheduler assigns a quantum to a given
VM. When the quantum expires the hypervisor preempts the VM,
suspending its execution, and scheduling a different one. The time
between the suspension point and the time the same suspended VM
is restarted again is known as steal time.

Services that run in clouds, like Netflix, a large online video
provider, monitor cpu steal metric to detect contention with other
collocated virtual machines [8]. If so, Netflix kills the virtual machine
and recreates it on maybe a different physical machine.

Different cloud providers use different hypervisors, such as Xen
in Amazon Web Services (AWS) and Hyper-V in Microsoft Azure,
as well as guest VMs based on different virtualization techniques,
mainly with a para-virtualization API (PV) or without it (also known
as hardware assisted virtualization: HVM). Nevertheless, major cloud
providers, such as AWS, are moving to mainly use HVM technol-
ogy [10].

In a para-virtualized environment, in which there is a collaboration
between the guest operating system (OS) and the underlying hypervi-
sor, the steal time metric is accessible within the VM. Knowing the
steal time helps to differentiate if a performance problem for a given
application comes from the same application or from the surrounding
execution environment.

Without this Hypervisor-OS collaboration there is no such distinc-
tion in reported execution time. Consequently, steal time in the guest
OS is accounted as normal execution time. Therefore there is no way

to distinguish if performance problems of applications are due to the
applications themselves or to events from outside the VM.

Being able to detect this stolen CPU situation inside the VM enables
smarter VM management such as moving the application to another
physical machine. Currently this information is only accessible in
scenarios where there exist a tight cooperation between the guest OS
and the underlying hypervisor. For example, in Linux environments
running on top of Xen, there is an available steal time statistic that
accounts the percentage of time being stolen by code outside the
VM. However, if the guest OS is Microsoft WindowsTMbased, the
statistic cannot be updated, unless the VM runs on top of a Hyper-V
hypervisor.

In this paper, we present a novel approach to compute the steal
time of a VM within the same VM, by measuring the difference in
the execution time of a deterministic microbenchmark. We obtain the
theoretical execution time of this microbenchmark as a reference that
is later compared with its execution time inside the VM. The difference
between both measurements, in conjunction with the load of the VM,
results in the steal time. The main benefit of our approach is that it is
platform agnostic. On one hand, it does not depend on the host OS,
or hypervisor, nor on the guest OS. On the other hand, our proposal
works on both PV and HVM environments. Preliminary results show
that this approach is able to detect the load pattern of the physical
CPU within a VM. From this obtained pattern, we derive the steal
time.

The structure of the paper is as follows. In Section II, we provide
a short state of the art. Section III, depicts the main idea of the paper.
In section IV, we explain how to prepare the environment to measure
the steal time which results are shown in Section V. We also present
the future work in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

Steal time is a key metric to detect host contention but, in the
platforms where this metric is not available, we need to consider
alternative approaches like observing differences in the execution time
of the virtualized application[2]. Our approach is based on this work,
but we remove the requirement to know your application execution
time, and instead, we use a deterministic code to get a general
approach.

On one hand, HVM isolates the running virtual machine from other
VMs in the physical machine, and therefore the VM is unaware of
the steal time. As far as we know, there is no approach able to obtain
the steal time in this scenario, being ours the first one dealing with
this problem.

PV, on the other hand, allows a cooperation between the guest
OS and the hypervisor, making some guest OS statistics accessible
like steal time. Xen[1] and KVM [7] are the typical examples of
this scenario in which the VM knows when it is suspended, and
recomputes the statistics accordingly. Few studies have been done

about the impact of steal time on benchmark preformance. Schad[6]
measures steal time in different types of AWS servers by using a Linux
performance measurement command, but unfortunately the data is not
available under Windows operating system.

The problem with these approaches is that they assign steal time
at virtual CPU granularity, without knowing the percentage of time
lost by each virtual task. This problem can be solved by gathering
steal time inside a VM and distributing it to the running threads[5].
This method requires that the underlying hypervisor offers a steal time
statistic inside the VM, which is sampled at fixed intervals to calculate
how the inner running threads are affected. Our approach enhances
this work since the VM is agnostic of the underlying hypervisor and
does not require that the steal time statistic is visible within the VM.

Another method to link steal time to specific running processes in
the guest OS requires sampling the hypervisor behavior (VM enter and
VM exit) in the host, characterizing the steal state, and to correlate
this state with the guest processes to obtain the desired steal time[11].
Since this approach queries the hypervisor for given events, it can
only be applied to particular virtualization scenarios.

Chen et al. [3] modify the Xen hypervisor to notify its scheduling
events to the guest OS through a kernel module. Our method does not
need any kernel extension and all the measurements are performed in
user mode.

Finally, there are monitoring services, such as CloudWatch [9]
provided by AWS, that provides steal time monitoring under a given
pricing model. The main constraint of tailored monitoring services, in
addition to the economic cost, is it is not an agnostic solution, since
it directly depends on the cloud provider itself. Therefore, developers
need to adapt the software per every cloud provider under use to
properly track the monitoring information.

III. MAIN IDEA

Figure 1 shows the performance of a CPU bound application when
it is executed in a non-virtualized isolated environment (A) and in a
virtualized environment (B). In (A), the application (M) runs alone
in a processor and it is not preempted by another process. So, Tm

is the minimal time the application needs to complete its execution.
In (B) the application (M) runs in a virtualized environment along
with other applications. In this case, the scheduler of the guest OS
selects another application to execute (G), enlarging the time needed
to execute (M). In addition, since the CPU time is multiplexed among
VMs, the hypervisor can suspend the virtual machine to execute
another VM (H), enlarging, even more, the time to completely execute
the application. So, Tr is the time to execute the application in (B)
and is larger than (A) because it includes the interference of the other
applications in the same VM and the the other co-scheduled VMs.
The main idea in this paper is to estimate (H) having into account
that (M) is known, since we use a synthetic microbenchmark with a
calculable execution time, and (G) is also known since it corresponds
to the CPU load of the guest OS.

Our approach consists in: (1) calculate the theoretical microbench-
mark (M) execution time Tm; and (2) periodically execute (M) inside
the VM to measure its real execution time Tr and the load of the
guest OS (G). As a result, we can estimate the time (H) that other
VMs are executing in the physical processor.

As (M) must be obtainable either theoretically or empirically,
for this paper we implement a synthetic microbenchmark with a
deterministic behavior. Its code (Figure 2) comprises a sequence of
dependent instructions, in this case adds, using the same register
as source and destination to prevent any instruction reordering or
overlapping. The execution of this code presents a cycle per instruction

M

M MG H

time

(A)

(B)

Tm

0 5 10 15

Tr

Fig. 1: Execution times of microbenchmark (M) in (A) a non-
virtualized isolated environment and in (B) a virtualized environment
sharing resources with other applications in the same guest (G) and
other VMs (H)

__asm__ __volatile__ (
"start:\n"

"add %%rax, %%rax\n"
... repeat 50 times ...
"add %%rax, %%rax\n"
"sub $1,%%rcx\n"
"jne start\n"
:: "c"(spincount)

);

Fig. 2: Loop microbenchmark source code

(CPI) of 1, and it is executed 10 million times to take representative
measurements.

The theoretical execution time, Tm, of the microbenchmark is
calculated as the number of total instructions executed (in our case,
500 millions), multiplied by the CPI of the microbenchmark (1 cycle
per instruction) and divided by the frequency (F) of the processor
(1.20GHz), as shown in Formula (1). Empirically it takes 420ms on
average in the selected platform (see Section IV).

Tm =
instructions ∗ CPI

F
(1)

The delay in the microbenchmark execution time, T(m+g) in
Formula (2), due to other applications running in the same VM, such
as (G) in Figure 1, is calculated by combining the theoretical time, Tm,
with the load of the guest OS. This load is calculated as the number
of runnable processes in the guest multiplied by the averaged CPU
load (0..1), ranging from an idle CPU to a totally busy CPU executing
applications. There are multiple tools that supply these measurements.

T(m+g) = Tm ∗ load (2)

Finally, the real execution time, Tr , of the microbenchmark is
obtained empirically inside the VM. The difference between Tr and
T(m+g) is the time other VMs are executing in the same host and
thus, the steal time in Formula (3).

stealtime = Tr − T(m+g) (3)

As it can be seen, this approach is platform agnostic, since its only
requirements are: (1) the guest OS provides the measurement of real
execution time and, (2) the load of the guest OS can be obtained,
which are common features presented in all current operating systems.

IV. EXPERIMENTAL FRAMEWORK

To evaluate our mechanism, we run a prototype of our proposal
to measure the steal time within the virtual machine in 4 different

scenarios: an idle VM, 25%, 50% and 100% busy VM. This load
is simulated through a single process (see Section IV-B). Besides, in
the same host machine we create a particular CPU load pattern (see
Section IV-B) easily recognizable to force resource contention.

A. Platform

The evaluation platform is a PC with an Intel Corei5-3320M @
2.60GHz with 8GB RAM running a Linux Debian 8 operating system
using a kernel 3.16. Although we do not explicitly use a hypervisor in
this experimental environment, the scheduler of the host OS mimics
the behavior of a real hypervisor in our simulated scenarios. On top
of this, VirtualBox 4.3.36 is used to virtualize a single core 1GB of
RAM machine running the same operating system. To obtain more
stable results, the CPU frequency scaling and Turbo Boost features
are disabled and the frequency of the CPU is set to the lowest possible
value (1.20GHz).

To avoid other processes interfering in the measurements, the VM
and the load generator are pinned to the same core, and any remaining
processes in the host are excluded from this core using the Linux
taskset command.

To obtain the execution time of the microbenchmark Tr we use
the clock gettime Linux system call using a monotonic clock. Even
if these measurements are Linux dependent, they can be easily ported
to, e.g. Microsoft Windows, by using the QueryPerformanceCounter
API.

B. CPU load generator

The CPU load generator is an application that generates an specific
amount of CPU load average per second. This generator is an iterative
program with a CPU bound code followed by a delay. The execution
time of the code is known and the delay, defined by a factor, releases
the CPU during a multiple of this execution time. The factor used in
the delay determines the load (Formula (2)) of the guest OS.

The CPU load generator is also used to simulate an easily recog-
nizable pattern in the physical CPU to check if our approach correctly
measures the steal time. This pattern consists in alternating idle (I)
and busy (B) periods, 30 seconds each. The host presents 0% CPU
load during I periods. That is, there are no other VMs multiplexed.
B periods simulate 100% CPU load in the host, meaning the guest
OS is multiplexed with another VM which demands total processor
usage. Thus, B periods expose steal time.

V. RESULTS

The figures in this section present the real execution time, Tr , solid
lines, and steal time, dashed lines, under different load scenarios. The
steal time is obtained by measuring Tr and applying Formula (3).
In all figures, the y-axis shows the time, in milliseconds, and the
x-axis shows the different measurements performed. Along with the
horizontal axis, we depict every idle and busy periods of the host.

Figure 3 shows the execution time when there are no other processes
running in the guest OS. The microbenchmark takes around 430ms to
execute when the VM is alone. However, when other VMs demand
100% CPU the host and the guest OS are multiplexed, B stages,
and the application execution time is increased by 100% accordingly.
That is, busy periods present a steal time of 450ms on average.
The execution time comes back to normal when the host goes idle,
I periods. Although both busy and idle periods take 30 seconds each,
it is interesting to note that the number of measurements in B stages
are smaller than I periods, because every Tr takes longer.

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Measurements

T
im

e
 (

m
s)

Tr (VM: 0% avg load)

Steal Time

I B I IB

Fig. 3: Measurements inside an idle Virtual Machine

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Measurements

T
im

e
 (

m
s)

Tr (VM: 25% avg load)

Steal Time

I B I IB

Fig. 4: Measurements inside a Virtual Machine with 25% load

When we add a 25% CPU load inside the VM (Figure 4), we
observe spikes in the measurements with higher variations in busy
periods. Tr increases up to 545ms on average during I periods, about
26.7% compared to an idle VM execution times. The impact is higher
during B periods, about 49% compared to idle VM. In fact, steal
time also increases up to 735ms on average. Besides, as the load
in the guest (Tm+g) increases the real execution time, the number
of measurements in both I and B periods are accordingly smaller
compared to Figure 3.

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Measurements

T
im

e
 (

m
s)

Tr (VM: 50% avg load)

Steal Time

I B I IB

Fig. 5: Measurements inside a Virtual Machine with 50% load

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Measurements

T
im

e
 (

m
s)

Tr (VM: 100% avg load)

Steal Time

I B I IB

Fig. 6: Measurements inside a Virtual Machine with 100% load

Figures 5 and 6 show more noticeable time spikes with a VM load
of 50% and 100%, respectively. Under these scenarios, the Tr presents
a direct impact on execution time increments due to the larger load in
the guest OS and accordingly to T(m+g) increments. On the other side,
the steal time slightly increases up to 775ms and 842ms on average,
respectively.

VI. FUTURE WORK

Even though the results show that our approach differentiates the
execution time, the CPU load from inside a VM, and the steal time, our
current work has two major limitations. The first one is that only one
single core VMs are considered. The second one is that this approach
considers a fixed CPU clock frequency.

As future work we plan to take into account multi–core architectures
and the effects of variations on clock frequency due to CPU throttling,
as its value is key to calculate this steal time. Also, we plan to test our
approach in a more realistic scenario with a real hypervisor in public
elastic cloud infrastructures including dynamic load in guest OSes.

VII. CONCLUSION

The real execution time of a program measured in a VM takes
into account the time that the hypervisor has suspended the virtual
machine, the steal time. This steal time is visible from the guest OS
if it is tightly coupled with the virtualization layer. In other scenarios,
like hardware-assisted virtual machines and not coupled guest OS-
hypervisor setups, this measurement is not available what leads to an
incorrect evaluation of the performance of applications.

This work describes a platform agnostic approach to measure
the steal time in a guest OS without any cooperation from the
virtualization layer. Preliminary results show the feasibility of this
approach and that steal time is effectively computed in a guest Linux
OS running on a hardware-assisted virtual machine.

ACKNOWLEDGMENTS

This work has been partially supported by the AWS Cloud Credits
for Research program. The authors greatly appreciate the recognition
from the Generalitat de Catalunya of VIRTUOS as Emergent Research
Group (2017–SGR–0962).

REFERENCES

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art
of Virtualization. In Procs of SOSP, pages 164–177, NY, USA, October
2003.

[2] Giuliano Casale, Carmelo Ragusa, and Panos Parpas. A Feasibility Study
of Host-Level Contention Detection by Guest Virtual Machines. In Procs.
of CloudCom, volume 2, pages 152–157. IEEE, March 2013.

[3] Huacai Chen, Hai Jin, and Kan Hu. XenHVMAcct: Accurate CPU Time
Accounting for Hardware-Assisted Virtual Machine. In Procs. of PDCAT,
pages 191–198, Wuhan, China, December 2010.

[4] Simon Crosby and David Brown. The Virtualization Reality. Queue,
4(10):34–41, December 2006.

[5] Peter Hofer, Florian Hörschläger, and Hanspeter Mössenböck. Sampling-
based Steal Time Accounting Under Hardware Virtualization. In Procs.
of ICPE, pages 87–90, TX, USA, January 2015.

[6] Schad J. Understanding and Managing the Performance Variation and
Data Growth in Cloud Computing. PhD thesis, Faculty of Natural Science
and Technology I of Saarland University, 2015.

[7] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
KVM: the Linux Virtual Machine Monitor. In Procs. of OLS, pages
225–230, Ontario, Canada, June 2007.

[8] Keri Meredith. Explanation of steal time, December 2012.
[9] Amazon Web Services. Amazon cloudwatch service.

[10] Amazon Web Services. Linux amazon machine images virtualization
types.

[11] Masao Yamamoto and Kohta Kohta Nakashima. Execution Time Com-
pensation for Cloud Applications by Subtracting Steal Time based on
Host-Level Sampling. In Procs. of ICPE, pages 69–73, Delft, The
Netherlands, March 2016.

	I Introduction
	II Related work
	III Main Idea
	IV Experimental Framework
	IV-A Platform
	IV-B CPU load generator

	V Results
	VI Future Work
	VII Conclusion

