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Abstract—This paper proposes a change detection and anal-
ysis technique for monitoring the phenological development of
agricultural vegetation by means of multi-temporal Polarimetric
Synthetic Aperture Radar (PolSAR) acquisitions. The technique
relies on the generalized eigendecomposition of the polarimet-
ric covariance matrices of the individual acquisitions. It both
quantifies the magnitude of the change between PolSAR images
acquired at different times as well as provides an interpretation of
occurred change in terms of the modified polarization states. This
makes the algorithm suitable for investigating scattering dynam-
ics associated with the phenological development of agricultural
vegetation. To aid the interpretation of the changes detected, a
representation based on the polarization states affected by the
change process is proposed. The technique is evaluated using
part of the multi-temporal AGRISAR 2006 campaign data set.
This data set consists of 12 quad-polarimetric images acquired
by the German Aerospace Center (DLR) E-SAR airborne system
at L-band from April to August 2006 over the Demmin test site.
It covers large parts of the development cycle of different crop
types. As part of the evaluation, reference ground measurements
are used to facilitate the interpretation of the data. The evaluation
focus on 5 important crop types: wheat, barley, rape, maize and
sugar beet. The results show that the proposed technique is able
to detect and characterize different types of changes related to
distinct development states of different crop types as the plant
growing, maturation and drying processes.

Index Terms—SAR, Polarimetry, Change analysis, Change
detection, Time series, Agriculture, Crop monitoring

I. INTRODUCTION

YNTHETIC Aperture Radar (SAR) configurations are ac-

tive imaging systems that operate in the microwave range
of the electromagnetic spectrum. They are able to provide high
resolution images of the radar reflectivity across large scenes
[1]. Moreover, since the atmosphere is almost transparent at
these frequencies, SAR systems are able to acquire imagery
independently of the weather conditions or the day-night cycle.
Furthermore, when operated on a space-borne platform, they
can achieve global coverage with a regular temporal resolution.
In this sense, the increasing presence of space-borne SAR
sensors has facilitated the construction of temporal series data
sets. These data sets contain different acquisitions of the same
scene at different times. This information is of considerable
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value, as it allows to monitor the temporal evolution or
development of the scene. This trend is expected to continue
in the future, as current and future missions focus on the
systematic coverage of the Earth surface at short repeat pass
intervals. Relevant examples include the ESA Sentinel-1 or
the future JAXA ALOS-4 and DLR Tandem-L missions. All
this makes SAR systems a valuable source of information for
the monitoring of Earth’s environment.

SAR configurations are capable of achieving high spatial
resolution by a coherent processing of the radar echoes
received by a moving platform. Even for high resolution
systems, however, the size of the resolution cell is much larger
than the wavelength. The received echo for each resolution cell
is given by the coherent combination of the responses of all the
individual scatterers, and depends on their distribution within
the cell, which is generally unknown. As a consequence, in
the absence of a dominant scatterer, the resulting image has
a noisy appearance called speckle [2]. Speckle phenomenon
complicates the interpretation of SAR data, especially in the
case of change detection, as it hinders a reliable estimation of
the target response. Numerous speckle reduction techniques
have been proposed, which tend to improve the estimates by
adapting to the content of the image. The employed method-
ologies range from a simple set of directional windows [3] to
a more complex adaptive neighborhood [4] or a region-based
approach [5]. Additionally, some other non-local approaches
have also been proposed as [6], for instance.

Polarimetric SAR (PolSAR) systems provide additional
information by exploiting the vectorial nature of the electro-
magnetic waves. When two orthogonal polarization states are
employed in transmission and reception, polarization synthesis
may be applied in order to explore the target response in the
complete polarimetric domain [7][8]. During the last decade,
PolSAR has been effectively employed for extracting useful
biophysical and geophysical information of the scene, which
makes it very valuable and convenient for monitoring the Earth
surface [9][10][11].

Several methods have been proposed to aid in the interpre-
tation of the obtained polarimetric response for the different
areas of the scene. In this context, polarimetric decompositions
are often used to decompose the target response informa-
tion into a reduced set of parameters. Several polarimetric
decompositions have been proposed, for instance: Huynen
[12], Krogager [13], Cameron [14], Freeman and Durden
[15] or Touzi [16] decompositions. One of the most popular
decompositions, proposed by Cloude and Pottier [17], is based
on the projection of the coherence matrix into the orthogonal



polarimetric basis generated by its eigenvectors. A set of three
parameters, Entropy (H), Anisotropy (A) and mean Alpha
angle (@) are obtained, which may be employed to interpret
the scattering process. In this case Entropy indicates the power
distribution of the different scattering processes, Anisotropy
indicates the dominance of the second eigenvalue versus the
third one, in terms of the reflected power, and the mean Alpha
angle refers to the type of scattering [17].

Well established approaches also exist for POISAR change
detection, as [18][19], where a test statistic is employed to
estimate the probability of change of the different areas of
the image. Other techniques have proposed a similar concept
in a region-based approach, as described in [20]. Although
all these techniques detect the amount of change between
two images, none of them provide information concerning
the type of change. The change interpretation may be per-
formed by analyzing a polarimetric decomposition of both
images, in order to see which parameters differ. However,
this information is not complete, as only a reduced set of
parameters are obtained from the complete polarimetric space.
Additionally, these decompositions describe the scattering for
each of the images, not the change between them, which could
cover up some of the changes. This paper proposes a fully
polarimetric change analysis and decomposition technique to
detect and analyze the changes between two images. A change
representation for the identification and interpretation of the
changes is proposed. This representation is generalized to time
series, where it can be used to determine the principal changes
on the development of different crop types.

The content of this paper is structured as follows: Section II
introduces the basics of SAR Polarimetry, focusing on the tar-
get description and its statistics. Section III analyzes different
ways of detecting the changes between two PolSAR images
and describes the proposed polarimetric change analysis and
the corresponding change representation. In Section IV, the
suggested technique is evaluated with a real data set over
agricultural areas, focusing on the detection of the different
crop changes over time. The results are compared with in-
situ collected measurements and photographs to evaluate the
detected changes. Finally, Section V presents the conclusions.

II. SAR POLARIMETRY

A PoISAR system measures the scattering matrix S for each
resolution cell [21][8]. Under the backscattering alignment
convention, S may be vectorized into the scattering vector k
in the Pauli basis [22] as

k= Shh + Smu Shh - Smu ]T

Shv + Svh (1)

5
V2
where S;; represents the complex scattering coefficient for the
received and transmitted polarization combination 4, j € [h, v],
h and v denote horizontal and vertical polarization, respec-
tively, and 7 stands for vector transpose.

If the number of individual scattering elements within the
resolution cell is sufficiently large, then the Central Limit
Theorem applies [23][24]. In this case, k follows a zero-mean
complex Gaussian distribution

exp(—k7T k) )

1
k)= ——
Pl =
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where ¥ represents the complex hermitian transpose and T is
the polarimetric coherency matrix, i.e. the covariance matrix
in the Pauli basis, that parameterizes the distribution

T = E{kk"}, 3)

E{x} denotes the statistical expectation of the stochastic
process x and | - | is the matrix determinant operator.

The polarimetric response is usually described by the sam-
ple coherency matrix Z which corresponds to the Maximum
Likelihood Estimator (MLE) of T. Under the Gaussian hy-
pothesis, it completely characterizes the polarimetric response
[25]

1 n
Z = (kk"), = - > k! 4)
i=1

where k; represents the scattering vector of the i-th pixel and
n represents the number of independent pixels averaged.
Note that this estimation is only valid when averaging
homogeneous samples, i.e. samples with the same statistical
distribution. In this case, the estimated sample coherency ma-
trix Z is Wishart distributed, characterized by the distribution
[25]
pn n—p
p(Z) = |zt

= —etr(—nT 'Z) (5)
IT|"Tp(n)

where etr(X) is the exponential of the trace of matrix X and

p
Ty(n) =a2? @D [T(n—i+1). (6)
i=1
where p = 3 is the dimension of the k vector and I is the
gamma function.

Note that the Wishart distribution defined in (5) is only
valid for n > 3. For n < 3 the sample coherency matrix Z
is singular, i.e. with a rank below 3 and |Z| = 0. Therefore,
some degree of averaging or speckle filtering is required for
an appropriate polarimetric analysis.

III. POLARIMETRIC CHANGE DETECTION AND ANALYSIS

In the following, the sample coherency matrix Z will be
employed assuming the validity of the Gaussian hypothesis
for distributed scattering processes. The detection and analysis
of changes between two polarimetric images of the same
scene acquired at different times is based on the corresponding
sample coherency matrices Z; and Zo.

A. Polarimetric change detection

The sample coherency matrix follows a Wishart distribution
as described in (5). This can be used to assess whether the
two observed coherency matrices Z; and Z, correspond to
the same distribution. This approach was employed in [18] in
order to derive a Wishart test statistic ()

_ oon |Za]" 22|
Z1 + Zo|?"
where both sample coherency matrices Z; and Zo are assumed

to be obtained by averaging the same number of samples
n. Usually, the logarithmic test statistic —In @) is employed,

Q )
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which has a large value when Z; and Z, belong to two
different distributions and a small value otherwise. As long
as Z, and Z, belong to the same distribution, it is assumed
that no changes have occurred. On the other hand, a change
in the scene will induce a change in the coherency matrix
distribution.

Alternatively, the geometry of the hermitian positive definite
matrix cone may be used to define a similarity measure, that
is, a geodesic measure adapted to the coherency matrix space
[26]. This idea was employed in [20] to define a change
measure across N acquisitions. Applying this measure to a
pair of acquisitions, given by Z, and Z,, the same d, measure
as defined in [26] is obtained

dy = |tog (27?2527 (8)

|-

where log(X) refers to the matrix logarithm and ||X||r repre-
sents the Frobenius matrix norm of X. As for the test statistic
above, this will yield lower values when Z; and Z, are
similar to each other, indicating no change, and a large value
otherwise.

B. Polarimetric change analysis

The measures defined in (7) and (8) may be employed to
obtain an idea of the amount of change between Z; and Z but
they do not give information related to the type of change in
the polarimetric space or the direction of change (i.e. increase
or decrease).

One of the first approaches to analyze the change between
two coherency matrices Z; and Zy, was to employ the
polarimetric contrast measure P, at a given polarization state
w [27][28]
wiZyw

P.Z1,Z3,w) 9)

o wHZyw'

This measure may be interpreted as the ratio between the
backscattered power at both acquisitions for the polarization
state w. Since it is a ratio of two powers, P, is always real and
positive. 1 < P, < oo indicates an increase in backscattered
power from Z; to Zo at the polarization state w, whereas
0 < P, < 1 represents a decrease. When P, = 1 there is no
change.

The maximum (minimum) polarimetric contrast can be
addressed in terms of the optimum polarization state Wy
which maximizes (or minimizes) P. in (9). The solution
for this optimization problem is related to the generalized
eigenvalues of Z; and Z, [27][8]

Zow = \NLiw (10)

which may be obtained as the solution of the equation

Zy — \Zy| = 0. (11)

The generalized eigenvalues A; (for ¢« = 1...3) define the
P, values that are obtained according to (9) using the corre-
sponding generalized eigenvectors w;. Sorted in descending
order such that Ay > Ay > A3 > 0, A\; corresponds to
the maximum and A3 to the minimum P,, while Ay to an
intermediate value.

If Z, is invertible, then from (10) follows

27 Zow = \w, (12)

the classical eigenvalue problem for Z;'Z, with the charac-
teristic equation

72,7, — \| =0. (13)

It is worth noticing that )\; and w; depend on both covari-
ance matrices Z; and Zs. They represent only the relative
changes between them, according to the ratio defined in (9).
Since the Z1_1Z2 matrix is in general not hermitian, the
generalized eigenvectors w; are not orthogonal to each other,
unlike the eigenvectors of Z; and Z,. If both matrices are not
singular, then the set of w; vectors conform a non-orthogonal
basis for the complete polarimetric space [29][30].

The relation between the generalized eigenvalues and the
polarimetric contrast was already analyzed in [31] for polari-
metric change detection, where the generalized eigenvalues
A; were used to obtain the magnitude of the change. Here the
information of the generalized eigenvectors w; is exploited for
the interpretation of the type of change. This interpretation is
based on the fact that any unitary vector can be associated to
a scattering matrix, i.e. a rank 1 scatterer [32][8]. While the
obtained w; are not restricted by orthogonality, it is important
to note that this restriction w? w; = 0 for 7 # j is not broken,
but replaced by [29]

Vi# j

Vi # j.

In fact, the generalized eigenvectors w; conform a non-
orthogonal basis that simultaneously diagonalizes both Z; and
Z- hermitian matrices [33]. Formally, they correspond to the
projection vectors that maximize and minimize (9).

When a temporal series of N coherency matrices
Z1,7Z,,...,7ZxN acquired at different times is available, the
change analysis can be performed between every acquisition
pair Z;, Z;. In this case, the obtained change contributions are
interconnected. For instance, when considering 3 acquisitions,
the change from the first to the second and from the second to
the third acquisition is obtained from the eigendecomposition
of the matrices M;_,o = Zl_1Z2 and My_,3 = Z2_1Z3, as
described in (12). This also implies that

Z; =7,:M_;,

H _
w; Z2Wj =0

H _
w; Z1Wj =0

(14)

so that the change between the first and the third acquisitions
M, _,3 is related to M;_,5 and Ms_,3 as

23 =71yoMy_ 3 = ZM;_oM>_;3

M3 =Z; 'Zs = M;_5My_,3. (15)

In general, for each 7, j pair such that j > ¢, it can be seen
that Z; = Z;M,_,; where
j—1
M, =Z;'Z; = HMk—>k+1-
k=i
For this reason, this change analysis technique is referred to
as multiplicative change analysis [31][34][35], in contrast to
the additive change analysis [36], where changes are defined
in an additive context Zo = Z1 + Cq_,9.

(16)



C. Polarimetric change representation

Following the discussion above, the generalized eigenvalues
and eigenvectors can be used to represent the change between
Z, and Z,. To this end, the generalized eigenvectors w;
normalized such that ||w;|| = 1 and expressed in the Pauli
basis are weighted by the associated generalized eigenvalues
A; in dB [34]. Additionally, the changes are separated into
increasing (A; > 1) and decreasing (\; < 1) in terms of power
ratio. In this way, two 3-dimensional real vectors p,,. and
Pg.. comprising the magnitude of the Pauli elements of w;
weighted by their significance are obtained; p,,. associated
with the increasing and p,.. with the decreasing scattering
contributions. Accordingly, each element k of p,,,. and p,...,
pk.. and pk_ . is defined as [34][35]

S

P
2
Piae= | > (10logy A; - [wf]) (17
i >1
_ 1
D 2
2
Piee = | Y (—10logig A+ [wf[)"| ,  (18)
_il/\i<1
which can also be expressed in vector notation as
- @%
P
Pinc = Z (10logio Ai)* - Wi © w; (19)
iA;>1
- » @%
Pcc = Z (—=10logyg i)™ - w; © Wy ; (20)
_’L‘)\7‘,<1

where © represents the element by element product
(Hadamard product) and a®2 represent the element by element
square root of vector a.

Even if p,,,, and p,.. contain only a subset of the informa-
tion provided by the generalized eigenvalue decomposition in
(10), since the complex phases between different polarimetric
channels are ignored, they still provide a useful visualization of
the magnitude and type of change occurred. In terms of a RGB
representation, it combines the (increasing and decreasing)
change information for all the )\, and w; into two images
where the amount of change is represented by the color
brightness while the color itself indicates the type of change.

IV. EXPERIMENTAL RESULTS

For the evaluation of the proposed technique, a subset of
the data acquired in the frame of the AgriSAR 2006 campaign
[37] is used. The campaign took place from April to August
2006 on the Demmin test site located in northern Germany.
Demmin is mainly an agricultural site with fields of different
crop types. During this time, DLR’s airborne E-SAR sensor
acquired almost every two weeks fully polarimetric SAR data
at L-band as well as dual-pol and single-pol data at C- and X-
band, respectively. Parallel to the SAR acquisitions a large set
of ground measurements including the documentation of the
phenological development stage, vegetation height and plant
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Acq. Date  Heading Notes

19/04/2006 270° Intensive ground measurements
20/04/2006 203° Intensive ground measurements
03/05/2006 270°

11/05/2006 270°

16/05/2006 270°

24/05/2006 270°

06/06/2006 203° Intensive ground measurements
07/06/2006 270° Intensive ground measurements
13/06/2006 270°

21/06/2006 270°

05/07/2006 270° Intensive ground measurements
06/07/2006 203° Intensive ground measurements
12/07/2006 270°

26/07/2006 270°

02/08/2006 270°

TABLE I
L1ST OF E-SAR ACQUISITIONS OVER THE DEMMIN TESTSITE IN THE
AGRISAR 2006 CAMPAIGN. ALL ACQUISITIONS WERE COLLECTED AT
X-, C- AND L-BAND IN SINGLE-, DUAL- AND QUAD-POL, RESPECTIVELY

water content as well as soil moisture has been collected
at every date. On the three “intensive” campaign dates, i.e.
the 18-20th of April, the 5-8th of June and the 3-8th of
July 2006, a higher sampling of ground measurements was
performed and supplementary information was collected. On
the intensive campaign dates the SAR data acquisition was
also performed along two different headings (270° and 203°).
The list of SAR acquisitions and the dates corresponding to the
intensive ground measurements are summarized in Table I. In
the following the 12 L-band acquisitions performed at a single
heading (270°) will be used for the change analysis evaluation.

A. Results of the three intensive measurement acquisitions

We start with the change analysis between the three inten-
sive campaign dates. In order to reduce the effect of speckle
and to obtain a reliable estimation of the polarimetric response,
the Temporal Evolution Binary Partition Tree (TE BPT) with
a pruning threshold of J, = —2dB has been employed, as
described in [20].

The Pauli RGB images of these three acquisitions are shown
in Fig. 1 while Fig. 2 shows the corresponding land-use
map where the different colors represent the different crop
types. Note that the large variation of the incidence angle
my be observed from near- to far-range typical for airborne
acquisitions (in our case from 25 to 55 degrees) entails the
dependence of the scattering mechanisms on the angle of
incidence: even for the same crop type a significant change in
the polarimetric signature from near to far range may occur.

The change of the vegetation height and plant water content
during the campaign is shown in Fig. 3, where the three
intensive campaign dates are marked by a red rectangle. For
the evaluation of the phenological stage of the individual crops,
the BBCH scale (Biologische Bundesanstalt Bundessortenamt
und CHemische Industrie) [38] is used. The BBCH scale
differentiates between 10 main growth stages (indexed from
0 to 9). Within each main growth stage further 10 secondary
development stages (indexed as well from O to 9) are differen-
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(a) 19th April (b) 7th June (c) 5th July

Fig. 1. Pauli RGB of the three L-band acquisitions of the AgriSAR 2006
campaign processed with the Temporal Evolution BPT (§, = —2dB).

Land-use map

[ rape

[ set aside rape
[ winter wheat
[ maize

[ sugar beet
[ winter barley
[ grassland
[_]nocrop

Fig. 2. Land-use map of the imaged area.

tiated so that each field is denoted by an index ranging from
00 to 99, characterizing its phenological stage:

00-09: Germination

10-19: Leaf development

20-29: Formation of side shots / tillering
30-39: Stem elongation or rosette growth
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Fig. 3. Vegetation height and water content evolution for different types of
crops.
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Fig. 4. Phenology evolution measured from ground according to the BBCH
scale.

40-49: Development of harvestable vegetative plant parts or
vegetatively propagated organs / booting

50-59: Inflorescence emergence / heading

60-69: Flowering

70-79: Development of fruit

80-89: Ripening or maturity of fruit and seed

90-99: Senescence

Fig. 4 shows the BBCH scale for the crop types in the site
during the campaign.

The change analysis between the three ”intensive” campaign
dates are shown in Fig. 5. Fig. 5a shows the results of the
Wishart test statistic — In ) measure, with ) defined in (7),
for the acquisitions on the 19th of April and the 7th of June.
Additionally, Figs 5b and 5c show the change according to the
dg measure defined in (8) between the 19th of April and the



7th of June and between the 7th of June and the 5th of July.

(a) —InQ, 19/4 - 7/6 (b) dg, 19/4 - 7/6
0 —nQ 30

I |

0.5 dy 3

(c) dg, 7/6 - 57

Fig. 5. Wishart test statistic — In Q) (7) measure (a) and geodesic similarity
measure dg (8) (b) change detection maps for the acquisition pair 19th April
- 7th June, and d; for acquisition pair 7th June - 5th July (c). No change is
represented in blue and a large change in red.

For both change metrics a larger value indicates a bigger
change, appearing in reddish colors. On the other hand, bluish
regions represent areas that have not changed significantly.

As mentioned in Section I, polarimetric decomposition tech-
niques may be employed to interpret the scattering occurring in
each of the acquisitions [39]. For comparison the Entropy (H)
and the mean Alpha angle (&) [17] for the three acquisitions
are shown in Fig. 6. Some of the changes detected in Fig.- 5
may be also depicted when looking on the change of H and
@, but many others not. This is specially the case between
the second and the third acquisition, where the mean Alpha
angle remains the same over most of the fields and only small
changes of the entropy are visible. As a result, the detection
and interpretation of changes may not be easy using these
parameters. This is due to the fact that they rather provide
information related to the type of scattering at each acquisition,
than about its change between acquisitions.

In order to obtain the amount and type of change, the
polarimetric change analysis proposed in Section III-B is
applied. The generalized eigenvalues for the acquisitions on
the 19th of April and the 7th of June are shown in Fig. 7.
The eigenvalues are sorted (\; > Ay > A3) and scaled in
dB. No change corresponds to 0dB, while the increase or
decrease appear with positive or negative values, respectively.
The Pauli RGB representations of the associated generalized
eigenvectors are shown in Fig. 8.

Comparing the change detection results in Fig. 5b, with
the corresponding generalized eigenvalues, in Fig. 7, makes
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(a) H 19th April (b) H 7th June (c) H 5th July

(d) & 19th April (e) & 7th June

0 H 1

l |

0 a 90°

(f) & 5th July

Fig. 6. Entropy (H) and averaged alpha angle (&) eigendecomposition
parameters for the three selected acquisitions.

the correlation between the areas affected by large changes
obvious. In fact, since the change measures in Figs. 5a and
10 do not distinguish between increase or decrease, they may
correspond to an increase (A > 0 dB) or a decrease (A < 0 dB)
of the backscattered power and appear reddish in Fig. 7a or
bluish in Fig. 7c, respectively.

Fig. 9 shows the histograms of the generalized eigenvalues
for both dates, expressing the overall behavior of the polari-
metric change. As it may be seen in Fig. 9a, there is a wide
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(a) /\1 (b) )\2

-15 dB 15

Fig. 7. Magnitude representation of the three generalized eigenvalues (in dB)
depicting the change between the acquisitions from 19th April to 7th June.

(©) A3

(a) wi (b) wa (c) ws

Fig. 8. Pauli representation of the three generalized eigenvectors depicting
the change between the acquisitions from 19th April to 7th June.

range of changes occurring between the 19th April and 7th
June. The peak of A; is at about 6dB, while the peak of A3
is at -2.5dB, indicating a relevant increase as well as decrease
of the power of individual scattering contributions. However,
most of the \; values are larger than 0dB, indicating that the
increasing changes are dominating. The changes occurring in

25 Histogram of sorted generalized eigenvalues

o
—e ),
—y )\

20

% samples
-
wn
T

=
o
T

0
-15

(a) 19th April to 7th June

30

Histogram of sorted generalized eigenvalues

% samples

(b) 7th June to 5th July

Fig. 9. Histograms of the generalized eigenvalues \; (a) from 19th April to
7th June and (b) from 7th June to Sth July.

the time between the 7th June and Sth July have a different
behavior as shown in Fig. 9b. The peaks of all the histograms
are negative, indicating a decrease in power of the scattering
contributions for most of the areas. Moreover, the shape of
the histograms is also different, with narrower distributions in
Fig. 9b than on Fig. 9a.

It is important to note here that the full change information
is expressed by the full set of generalized eigenvalues (shown
in Fig. 7) and eigenvectors (shown in Fig. 8). For example,
the wheat field marked with “1” in Fig. 7 is characterized by
a strong increase in A; (Fig. 7a) associated to a change in w;
(shown in Fig. 8a) but no significant change in A3 (Fig. 7¢).
In contrary, the maize field marked with “2” in Fig. 7, shows
the strongest change (a decrease) in A3 associated to the
polarization state ws. Fields that do not change significantly
are characterized by generalized eigenvalues close to 0dB and
appear in green in all )\; images. Such a case is the forested
area marked with “3” in Fig. 7. For these no-change areas,
the obtained generalized eigenvectors (see Fig. 8) are noisier
corresponding to variations induced by speckle. This is in
accordance with the results discussed in [40]. In conclusion,
the change interpretation might only be achieved by combining
the information provided by the generalized eigenvalues and
eigenvectors shown in Figs. 7 and 8.

In order to consider all this information, the change repre-
sentation proposed in Section III-C weights the contribution of
each generalized eigenvector w; according to the magnitude of
the change given by the corresponding generalized eigenvector
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Fig. 10. Polarimetric change representation for differences from 19th April
to 7th June acquisitions. The labels represent the crop type: (W) wheat, (B)
Barley, (R) rape, (M) maize and (SB) sugar beet.

(a) Pinc (b) Pdec

Fig. 11. Polarimetric change representation for differences from 7th June to
Sth July acquisitions.

A;. This representation combines the (increasing and decreas-
ing) change information for all the \; and w; into two images.
Figs. 10 and 11 show the change representation proposed in
(17) and (18), i.e. the Pauli representation of the weighted
polarization states on which the changes are observed. Both
RGB images are scaled from 3 to 10 dB. This scaling filters
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out the small changes introduced by speckle as all areas with
an intensity change below £ 3 dB appear in black.

Fig. 12 shows photographs of the relevant crop fields
acquired at the three intensive campaign days. The numbers
correspond to the field numbers used in the land-use map in
Fig. 2. The changes relevant for the interpretation of Fig. 10
are between the 1st and 2nd row of Fig. 12. Similarly, the
changes appearing in Fig. 11 correspond to the differences
between the 2nd and 3rd row of Fig. 12.

Looking on Fig. 10, a large number of fields appear in the
P;,. image, indicating an increase, mostly in red and blue
colors. According to the ground measurements in Fig. 3, this
is mainly due to plant growing, as depicted in the vegetation
height plot in Fig. 3a. Specially for wheat, barley and rape
a clear increase in vegetation height is given for most of the
fields where the increase is detected in Fig. 10a. For sugar
beet and maize crops a smaller increase in vegetation height is
observed as they are planted later. This is also clearly indicated
by the BBCH phenology plot on Fig. 4. The changes on the
sugar beet and winter barley fields, that appear in red and
yellow colors in Fig. 10a are shown in Figs. 12f-121 and 12c-
12i, respectively.

The rape fields do not follow this trend, even if they are
characterized by an significant increase of height as indicated
by Fig. 3a and shown in Figs. 12d-12j. Only for a single
field located in near-range, i.e. at the left part of the change
image in Fig. 10a, an increase is visible. All other rape fields
appear black indicating that the polarimetric change is below
4+ 3dB. The reason for this is probably in the dominant
volume scattering contribution that characterizes the rape fields
in both acquisitions: the plant density, the wet biomass and
the water content (see Fig. 3b) is larger for the rape than
for other types of crops in the scene. This increases volume
scattering and limits at the same time the penetration of the
radar waves through the vegetation to the ground, preventing
that the change in vegetation height is translated into a change
in the polarimetric response.

For the winter wheat fields, a strong increase is detected in
Fig. 10a, associated to the plant growth, as shown in the plot
in Fig. 3a and in Figs. 12a-12g and 12b-12h. However, it is
remarkable that some of the fields appear reddish while others
bluish, although no clear difference is observed between these
fields. The different colors indicate that the change occur at
different polarizations, i.e. affects different scattering contri-
butions, which may be induced by the fact that these fields
are in a different phenological state. Unfortunately, the BBCH
measurements in Fig. 4 represent only the average crop type
evolution and are not specific for each field. Moreover, there
are missing measurements for the wheat crop at these dates.
Fortunately, during the intensive measurement campaigns a
large amount of photographs were collected, that allows to
visualize these differences. Some photographs of the wheat
plants on the distinct fields are shown in Fig. 13. They make
clear that the fields appearing in red in Fig. 10a have not started
with the heading process (Figs. 13a-13c), whereas the fields
appearing in blue color have started this process (Figs. 13d-
13f).

Note that this does not mean that the method is able to detect
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Fig. 12. Photographs of the different fields discussed. The field number corresponds to the land-use map in Fig. 2. The columns represent different fields, as
indicated on top, while the rows indicate the three intensive measurement dates, as indicated in the left.

the heading process of the plant directly. It rather means that
the fields have a different polarimetric change between this
two acquisitions, probably due to the different phenological
evolution which alters their polarimetric response in both
acquisitions.

(a) Field 391 (b) Field 291 (c) Field 221

(d) Field 310 (e) Field 292 (f) Field 250

Fig. 13. Photographs of the different winter wheat plants on 7th June. A
zoom is shown in the black rectangle for those plants that have started the
heading process in (d)-(f).

Fig. 11 shows the polarimetric change maps associated to
the changes occurring between the 7th of June and the Sth of
July. Compared to the change maps associated to the changes
occurring between the 19th of April and the 7th of June (see
Fig. 10) they reflect a different change behavior, dominated
by a intensity decrease for most of the fields. The ground
measurement in Fig. 3 indicate that two types of change are
ongoing between these dates. For maize and sugar beet an
increase in vegetation height is observed, while the plant water
content remains constant. Note that these crops grow later,
compared to the other crops, as it may be seen in Fig. 4. The
discussed changes may also be observed in the photographs

in Fig 12. The growth is also documented by 12k-12q for the
maize and Figs. 121-12r for the sugar beet. Accordingly these
fields appear as increasing intensity changes in green (and
some red) colors in Fig. 11a. For all other crops in the scene
(i.e. winter wheat, rape, winter barley), Fig. 3 indicates that
the vegetation height remains constant but the water content
decreases. These crops are at the time of the second acquisition
(7th of June) already grown up and then, in the time between
the second and the third (5th of July) acquisition they undergo
the plant maturation and the drying out at the end of the
phenological stage. Especially the plant drying is associated
to a decrease in the backscattered power clearly visible in the
photographs in Fig 12, indicated by the yellowish color for
the winter wheat (Figs. 12g-12m), rape (Figs. 12j-12p), and
specially winter barley (on Figs. 12i-120). However for the
different crops the changes imposed by the plant drying appear
in p,,. (Fig. 11b) with different colors, i.e., are associated
to different scattering mechanisms. The winter wheat fields
appear in green (indicating a decrease of volume scattering),
whereas a more yellowish color is obtained for the winter
barley crops (i.e. decrease of volume and dihedral). In the
case of the rape, the color depends on the incidence angle:
the rape fields in the left part of the image (in near-range)
appear more greenish (decrease of volume scattering). This
may be because of the larger penetration associated to the
steeper incidence angles. Note that these are the same fields
where the plant growth was detected in Fig. 10a. The rape
fields on the right part of the map (i.e. in far-range) appear
reddish (indicating decrease of dihedral scattering).

Finally, it is important to mention that most of the discussed
changes appearing in the change representation images shown
in Figs. 10 and 11, may also be detected in the Pauli RGB
images and the entropy and mean Alpha angle maps, shown in
Figs. 1 and 6, respectively. However, their identification and
interpretation is either more vague and unclear or not always



possible.

The polarimetric change representation for the acquisitions
from the 19th of April to the 5th of July will not be dis-
cussed in this section. However, it can be inferred from the
previous two analysis. From a mathematical point of view, the
polarimetric change analysis will result in the multiplicative
combination of the previous two, as previously indicated in
(15). Alternatively, the next section describes a systematic
method for change analysis in time-series.

B. Results over all the acquisitions

The AgriSAR 2006 campaign comprises a time-series of 12
L-band fully polarimetric acquisitions at the same geometry,
from the 12th of May to the 4th of August. This allows
66 combinations of different acquisitions pairs for change
analysis. The previous approach, then, becomes infeasible
for the individual analysis of the p,,. and p,.,. for each
of those pairs. Note that, although the different acquisition
pairs are related according to (16), the full picture of all the
change pairs may give a valuable idea of how successive
changes combine with each other. Therefore, for the analysis
of the changes among all the acquisitions of the data set a
different approach is required. A change matrix representation
is proposed, which contains the results of the previously
mentioned change representation between all the acquisition
pairs [41]. Instead of comparing the results pixel by pixel,
a set of regions is defined over the image, corresponding to
homogeneous areas of the agricultural fields, and the change
analysis is performed over the average covariance matrices in
these regions at different dates. The horizontal and vertical
axes of the change matrix correspond to the acquisition dates
of each image. For each combination of acquisition pairs (i, ),
in the upper diagonal the p,,, . representation between the ¢ and
Jj acquisitions is shown, whereas in the lower diagonal (j,4)
the p,.. between 7 and j is displayed.

ajeq

Date

Fig. 14. Scheme of the change matrix and the main expected detected changes.
(a) Seedbed preparation and planting, (b) plant growing, (c) fruit development,
(d) plant drying and (e) harvest.

Fig. 14 presents a scheme of the change matrix and depicts
the main phenological and/or development change signatures
for agricultural crops that may be detected in different colors,
according to the results already analyzed in Section IV-A:
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a Seedbed preparation and planting (e.g. Figs. 12e to 12k).
In this case a decrease in the surface roughness due to
the seedbed preparation is translated into a decrease of
the backscattered signal, appearing in the lower diagonal
of the change matrix.

b The plant growing process (e.g. Figs. 12a to 12g), cor-
responding to phenological stages 30-59 in the BBCH
scale, including the stem elongation, booting and head-
ing. When the plant grows, an increase of the radar
backscattering signal is obtained due to the increased
reflectivity of the plant. In this case, then, it appears in
the upper diagonal of the change matrix.

¢ The fruit development (e.g. Figs. 12g to 12m), corre-
sponding to phenological stages 60-79 in the BBCH
scale, related to the flowering and fruit development of
the plant. After the growing process, the plant develops
its fruit and a moderate reduction in water content is
produced, which is perceived as a decrease in the p...
change representation.

d The plant drying (e.g. Figs. 12i to 120), corresponding
to the BBCH scale stages 80-99, including ripening
and senescence. In the final stages of the plant before
harvesting, a strong decrease in water content is ob-
served, which is translated into a strong decrease of the
backscattering.

e The crop harvesting, associated with a strong decrease
of the volume scattering due to the removal of most
of the plant. However, an additional increase may also
be seen in different polarization states, representing the
increase of the ground scattering component. In some
cases, the lower part of the plant is left over the field
after harvesting, contributing also to this increase of
the ground scattering. Accordingly, harvesting may be
mapped in the lower but also in the upper diagonal block
of the change matrix.

For the interpretation of the change matrix representation it
is important to keep in mind that the amount and nature of
the change processes represented at each entry also depend on
the temporal distance between the associated acquisitions. In
general, for temporally adjacent acquisitions only one type of
change occurs, assuming a sufficiently high temporal sampling
of the ongoing change process. These cases are indicated in
Fig. 14 by the matrix areas framed by solid lines. The same
change process may be visible for a longer time interval and
so present at multiple image pairs, as indicated in Fig. 14
by the matrix areas framed by dashed lines. For instance,
the red dashed area covers the combination of the plant
growing process with the previous seedbed preparation and the
subsequent plant drying process. In these areas, the obtained
change representation will depend on how the combination of
these physical changes are perceived by the sensor, according
to the multiplicative combination of the different M matrices
as described in (16). Then, the obtained results in these areas
will depend on the crop type, the plant geometry and density,
the radar penetration, etc.

In the case of the AgriSAR 2006 campaign, all changes
described in Fig. 14 will not be visible for each crop type as
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the campaign does not cover the whole phenological cycle of
all crops, as it may be seen in Fig. 4. However, the temporal
shift between the phenological cycle of the different crops,
caused by the fact that some crops are planted before others,
allows the detection of each change for at least one crop type.

Fig. 15 shows the change matrices for six fields: two wheat
fields, a barley, a rape, a maize and a sugar beet field. The
observed changes from those described in Fig. 14 have been
labeled employing the same colors for an easy identification
in all the change matrices. For wheat, the two fields selected
correspond to the two different changing behaviors appearing
in Fig. 10a. In Fig. 15, the scaling of the p,,,. and p,.. on the
change matrices is between 1 and 8 dB.

As it may be seen, the two different wheat growing changes
observed in Fig. 10a may also be seen in Figs. 15a and 15b,
especially on the first row, which correspond to the comparison
of the first acquisition, on the 19th of April, with the rest
of acquisitions, as the change analyzed in Section IV-A.
Apart from these small color changes, the change matrices
for the two wheat fields are very similar, having the same
change regions associated to the growing period, the fruit
maturation and the plant drying as labeled in Figs. 15a and
15b. Comparing Figs. 15a to 15c, it may be observed that the
wheat and barley crops present similar growing periods, but
the drying process (marked in blue) is faster for the barley,
as seen in Fig. 15c. For the barley even the harvesting is
observed at the end of the acquisition campaign, marked in
yellow color. Interestingly, the harvesting phase appears as
a combination of a decrease of volume scattering due to the
elimination of the plant structure and an increase of the ground
component. Therefore, the decrease and increase observed
due to the harvest appear with different colors, indicating a
different type of change.

In the rape field, as discussed before in Section IV-A, the
plant growth is not observed due to the incapacity of the radar
to penetrate to the ground. However, the later changes in the
vegetation due to the fruit maturation and plant drying clearly
appear in the change matrix as marked in Fig. 15d. For the
maize and sugar beet crops, shown in Figs. 15e and 15f which
are planted later, only the growing period is observed, marked
in a red polygon. Additionally, in the maize field even the
seedbed preparation and planting may be seen in the first
acquisitions, labeled in green color.

It is worth noticing that for most of the cereal crops,
including wheat, barley and maize, the change corresponding
to the growing period, labeled in red, starts around the stem
elongation phase, equivalent to 30s in the BBCH scale, de-
picted in Fig. 4. However, for the sugar beet crop this change
is detected much earlier, in the leaf development phase, which
corresponds to 10s in the BBCH scale. This could be produced
by the fact that the sugar beet leaves are bigger, having a higher
surface than those of the cereals, or also due to the higher
water content of these crops. In any case, this exemplifies
how the changes and evolution of the different crop types are
perceived unevenly by the radar.

Looking at the different change matrices presented in
Fig. 15, it may be seen that they are distinct for every type
of crop, as every crop follows a different temporal evolution.

Even the two distinct changes for the wheat fields, shown in
Figs. 15a and 15b, are very similar between them. Then, the
change matrix may be seen as a crop signature, which may be
very useful for crop identification and land use classification.

Apart from the big generic change processes labeled ac-
cording to the scheme in Fig. 14, some small changes or
dots may also be observed. This is especially the case for
the acquisition of the 11th of May, since smaller changes may
be observed in this date for some of the change matrices. This
was a particularly dry acquisition as no rain was measured
during the two weeks before. Hence, a faint spot is observed
as a decrease in the change matrix, especially for the species
with lower vegetation height, as wheat, barley and sugar beet.
However, since this change is an isolated fact occurring only in
one acquisition, the spot observed in the change matrices is not
continued in time, as opposite to the other changes observed
due to the crop evolution and marked in the different colors.
Therefore, sufficiently dense time series are desired in order
to be able to separate these isolated cases from the rest of the
temporal evolution.

V. CONCLUSIONS

A new change detection technique able to quantify and
interpret changes in multi-temporal polarimetric SAR acqui-
sitions has been proposed. It is based on the generalized
eigendecomposition of the covariance matrices of the indi-
vidual acquisitions. The generalized eigenvalues are related to
the polarimetric contrast ratio, and thus to the maximum and
minimum changes between the covariance matrices. The gen-
eralized eigenvectors represent the polarization states (i.e. scat-
tering mechanisms) associated to these changes. This allows
not only the estimation of the change magnitude but also the
physical interpretation of the occurred changes. Weighting the
scattering mechanisms by the amount of their change allows
the visualization and interpretation of the change information
in terms of two Pauli change images that comprise the type of
change in the color information and the magnitude of change
in the intensity.

The proposed technique has been employed and tested
for monitoring the phenological development of agricultural
vegetation on the multi-temporal AGRISAR 2006 L-band
campaign data. The analysis focused on 5 important crop
types: wheat, barley, rape, maize and sugar beet. For the
different crop types, the proposed technique was able to detect
and interpret a number of changes related to crop development
as the growing, maturation and drying processes. Even for
the same crop type, for example the winter wheat crops, a
different change behavior can be observed at different fields.
This is related to a temporal shift of the phenological cycle
at the different fields, as on some fields the heading process
started earlier than on others.

For a better visualization and interpretation of the changes
occurring in long time series, the change matrix representation
has been introduced. It has proven to be able to indicate
and interpret changes related to important development stages
and/or transitions between them, including the seedbed prepa-
ration, planting, growing, fruit development, senescence and
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Fig. 15. Change matrices for different types of crops. The upper diagonal represents the increase p;,,. and the lower diagonal the decrease p .. between
each acquisition pair. The visible changes of those described in Fig. 14 are marked, employing the same colors.

harvest. The results indicate the potential of this approach
for monitoring the temporal evolution of agricultural plants.
It is worth mentioning that the interpretation of the change
matrices is strongly dependent on the frequency at which the
SAR acquisitions are made and it may be different for other
frequencies.

Finally, it is worth to mention that the proposed polarimetric
change analysis uses only a subset of the parameters provided
by the generalized eigendecomposition, namely the intensities
of the changing polarization states. The associated phase
information remains unused and may be further exploited in
the future.
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