Flexibly configuring task and motion planning
problems for mobile manipulators™

Siddhant Saoji
Department of Mechanical Engineering
Indian Institute of Technology
Jodhpur, India
saoji.1 @iitj.ac.in

Abstract—Robotic manipulation requires the planning at a
symbolic level (task planning) and at a geometric level (motion
planing). This paper presents a planning framework for both
levels of planning that includes an easy way to configure their
interconnection. Motion planning is done using The Kautham
Project, which is equipped with the Open Motion Planning Li-
brary suite of sampling-based motion planners, and task planning
is done using the Fast Forward task planner. Both planning levels
can be accessed through Robotic Operating System interfaces
using services. A client program then uses these task and motion
planning services and an XML configuration file that defines
the linkage between symbolic actions and geometric values, to
compute the sequence of feasible robot motions that allow to
successfully execute a manipulation task. An illustrative example
using the Tiago mobile manipulator in a kitchen environment is
presented where the flexibility in configuring different instances
of manipulation tasks is shown.

Index Terms—Robotic manipulation, task planning, motion
planning.

I. INTRODUCTION

Mobile manipulators acting as robot co-workers at the
factory floor or as robot helpers at home may face different
problems at the perception level (to sense and interpret the
current state of the environment), at the action level (to suc-
cessfully navigate and execute manipulation motions despite
the uncertainty) and at the planning level (to determine the
sequence of actions to be done and the feasible motions
to perform them). Also, some other advanced manipulation
tasks would require reasoning and interaction with human
operators. To implement solutions to these problems and to
integrate them into a robotic system is a difficult task that
can be alleviated by the use of the Robotic Operation System
(ROS, [1D).

Regarding planning, on the one hand there is the problem
to find the sequence of collision-free motions that allow to
safely move the robot from one configuration to another. For
many degrees-of-freedom robots, like the mobile manipulators,
sampling-based methods are usually used, like the Probabilis-
tic Roadmaps (PRM, [2]) or the Rapidly-exploring Random
Trees (RRT, [3]) and their variants. By taking samples of the
configuration space, these methods capture the connectivity

This work was partially supported by the Spanish Government through the
project DPI2016-80077-R

Jan Rosell
Institute of Industrial and Control Engineering
Universitat Politcnica de Catalunya
Barcelona, Spain

jan.rosell@upc.edu
ORCID: 0000-0003-4854-2370

of the free regions of the configuration space with either
roadmaps or tree-like structures. Very efficient implementations
of these families of motion planning algorithms is available in
the Open Motion Planning library (OMPL, [4]).

On the other hand, there is the need to plan at task level, i.e.
the robot has to be able to determine which is the sequence
of actions to be done to perform a given task. Many problems
can be tackled with classical planning approaches, that assume
known initial values of variables, deterministic actions, and
a set of goals defined over the variables [S]. These can be
well modeled using the Planning Domain Definition Language
(PDDL, [6]), which is an action-centered language that use
pre- and post-conditions to describe the applicability of ac-
tions (atoms describing the state satisfy the pre-conditions)
and effects (positive/negative effects add/delete atoms to the
current state). Planning tasks specified in PDDL are separated
into two files, a domain file for predicates and actions, and a
problem file for objects, initial state and goal specification.

is Both planning levels are interconnected, starting with
the linkage between the symbolic variables used at task level
and the geometric values required for motion level. This
grounding is not unique, for instance there may be different
configurations of the arm of the robot that allow to grasp a
given object, and that may correspond to a pick action that
can be executed when the robot and the object are located at
a given region labeled e.g. with a given symbolic variable A.
The feasibility of a sequence of actions obtained from a task
plan may depend on the grounding used, and if no feasible
solutions exist, the information obtained at the geometric level
may be used to guide the search of a new sequence [7], [8].
Therefore, task and motion planning (TAMP) is a difficult
issue because interactions between planning levels have to be
carefully handled.

This paper presents a simple way to easily link both
planning levels. First, Sections II and III briefly present,
respectively, the motion planning and task planning tools
implemented as ROS servers. Then, Section IV presents the
proposal to interface both levels, and Section V how to use it.
Finally, the proposal is illustrated in section VI and discussed
in SectionVII, where some future works are pointed out.

II. MOTION PLANNING SERVER

As a motion planning server we will use The Kautham
Project (sir.upc.edu/projects/kautham), a C++ based open-
source software for teaching and research in robot motion
planning [9], that fits the needs of mobile manipulation prob-
lems as those considered here. This tool, whose main core of
planners is provided by OMPL, allows to cope with problems
with one or several robots (generally considered as kinematic
trees with a mobile base), and to easily configure the set of
controls that shall move the degrees of freedom of the robot
(with the possibility to define coupling between them).

Motion planning problems are modeled using an XML file
with information on the models of the robot(s) and obstacles
(using URDF and different geometric formats like .wrl, .stl
or .dae), the controls (name of a separate XML file where
they are defined) and the planner (type, parameters and query
to be solved). In the examples used here, the RRT-connect
planner [10] will be used since it is one of the more efficient
single-query planners (which is the type of planner that fits
the manipulation domain where the locations of the objects in
the scene keep changing).

Kautham provides console, GUI and ROS interfaces. Some
of the utilities offered by Kautham as ROS services are:

o OpenProblem / CloseProblem

o SetPlannerByName / SetQuery / GetPath

o SetRobotsConfig / GetObstaclePos / SetObstaclePos
o AttachObstacle2RobotLink / DetachObstacle

o SetRobControls

The Kautham ROS interface allow to easily integrate Kau-
tham in complex robotic systems requiring planning at differ-
ent levels. The SetRobControls service allows to change the
control file that defines which is the set of degrees of freedom
that are controlled, e.g. those moving the base or those moving
the arm.

III. TASK PLANNING SERVER

One of the most efficient classic task planning approaches
among those that search in the state space is the Fast Forward
(FF, [11]), which performs a heuristic search. It has two main
components. One is the search module that is responsible to
select the more promising successor state using the heuristic
values and the Enforced Hill-Climbing search method. The
other module computes these heuristic values as the estimated
number of actions needed to reach the goal, computed as the
length of a relaxed plan obtained using the Relaxed Graphplan,
which is a graph that interleaves state-levels (involving a
number of literals) and action-levels (representing a set of
actions whose negative effects will be ignored).

The implementation of the FF method is open-source
(fai.cs.uni-saarland.de/hoffmann/ff.html). We have wrapped it
as a ROS service, so that using the PDDL domain and problem
files as request, it returns the sequence of actions as a vector
of strings.

<?xml version="1.0"?>
<Config>
<Problemfiles>
<pddldomain name="PDDL_domair
<pddlproblem name="PDDL _pi
<kautham name="kautham_probler
</Problemfiles>
<States>
<Initial>
<Object name="0}
<Object name="ol

v </Object>
/Object>

<Object name="ol > X ¥ Z g qy qz qw </Object>
<Robot name="obot_id_1" controlfile 1
<Robot name="obot_id_2" controlfile

<Robot name="
</Initial>
</States>
<Actions>
<Pick robot="

<Obj> of

<Link> link
<Cont>

< Regioncontrols >
< Graspconf grasp="grasj cll
< Graspconf grasp="grasp_id_2">c2

bot_id_n" controlfile="contr

" region="P

c12</Graspconf>

c21</Graspconf>
< Graspconf grasp="grasp_name_n" > cnl
<Pose> x yzZ qx qy gz qw <

</Pick>

<Place robot="t

cnl</Graspconf>

" region=" gion™>

<Cont> contr manip </Cont>
< Regioncontrols > c11 cl12</Regioncontrols>
< Graspconf grasp="grasp_id_1" > pl1 p12</Graspconf>

< Graspconf grasp="grasp_id_2" > p21 p21</Graspconf>

11 pnl</Graspconf>

2 qx qy qz qw <Poseregion>

<Move robot="1
<Rob> rot
<Cont> control_f T

" region="
t_id </Rob>

" region="P g ">

</Cont>
<Conf > c11 «
<Conf > c21 ¢
ve>
</Actions>
</Config>

2</Conf>
21</Conf>

Fig. 1. TAMP configuration file template.

IV. INTERFACING LAYERS

An XML file, called TAMP configuration file, is proposed
to act as an intermediate layer for the flexible linkage between
symbolic actions and geometric data involved in task and
motion planning (see Fig 1). The TAMP configuration file
allows for flexibly setting the parameters required to define
the problem, which includes the PDDL domain and problem
files, along with the kautham motion planning problem file.
For instance, here a simple manipulation domain will be used
describing actions like PICK, PLACE, and MOVE, along with
predicates like at, in, holding, and handEmpty, as shown in
Fig. 2, where a simple PDDL problem file involving the
manipulation of a single object is also shown.

The XML configuration file also includes the setting of the
initial state: the objects to be manipulated and their poses
along with the robots, their control files and the controls values
that define the robot initial configurations. By modifying the
initial state, we can flexibly create different instances of a
manipulation task.

The main part of the TAMP configuration file provides
flexibility in defining the actions. A XML tag is defined per
action, with the PDDL symbols of the action as attributes and
the associated geometric information defined in child XML
tags. For the simple manipulation domain we have:

(define (domain manipulation)
(:predicates
(at ?rob ?from) (:objects
(handEmpty) room1 room?2 - location
(holding ?rob ?obs) 0bjA - obstacle
(in ?0bs ?from)) Rob - robot)
(:action move (:init
:parameters (?rob - robot ?from - location ?to - location) (at Rob room1)
:precondition (at ?rob ?from)
seffect (and (at ?rob ?to) (not (at ?rob ?from))))
(:action pick
:parameters (?rob - robot ?obs - obstacle ?from - location)

(define (problem manip_objA)
(:domain manipulation)

(in objA room2)

(handEmpty))
(:goal

(in objA room1))

effect (and (holding ?rob 2obs) (not (handEmpty)))))
(:action place

:parameters (?rob - robot ?obs - obstacle ?from - location)

:precondition (and (holding ?rob ?obs) (at ?rob ?from))

:effect (and (handEmpty) (in ?obs ?from) (not (holding ?rob ?0bs))))

)

Fig. 2. PDDL domain and problem files.

The PICK action is defined for a robot and an object when
located in a given region. Here, first the identifiers of the object
and the robot in Kautham are given, together with the control
file to be used to move the robot. Then, the set of Kautham
controls that define the robot configuration when the robot
is at the region is provided and, optionally, multiple robot
configurations (also defined in kautham controls) to grasp the
object. These configurations will be checked sequentially and
the first feasible one (i.e. with no collisions) will be chosen.
Alternatively, if no grasp configuration is given, the pose of the
object has to be provided. In this case, an internal procedure
will be used to compute the grasp to pick the object at that
pose.

The PLACE action is defined for a robot and an object
when located in a given region. Here, first the identifiers of
the object and the robot in Kautham are given, together with
the control file to be used to move the robot. Then, the set
of Kautham controls that define the robot configuration when
the robot is at the region is provided and, optionally, multiple
robot configurations (defined in kautham controls) to place
the object. These configurations will be checked sequentially
and the first feasible one (i.e. with no collisions) will be
chosen. Alternatively, if no robot configuration is given, the
pose where to place the object has to be provided, or a region
from where to sample a potential placement pose. In these
latter cases, an internal procedure will be used to compute the
robot configurations to reach the placement poses.

The MOVE action is defined for a robot to move between
two specified regions. Here the identifier of the robot in
Kautham is first given together with the control file to be
used to move it. Then, the two robot configurations (defined
in kautham controls) is provided, corresponding to each of the
two regions.

V. THE TASK AND MOTION PLANNING CLIENT

A Python client has been impemented' as a planning man-
ager, sketched in Algorithm 1. It is responsible of reading the
TAMP configuration file and using the ROS services required
for solving the given task and motion planning problem. First,
the PDDL domain and problem files and the Kautham file

ICode can be found in the python-branch of the git repository
https://gitioc.upc.edu/rostutorials/task_and_motion_planning.git.

Algorithm 1 Task and Motion Planning Client

Input fin: XML TAMP configuration file
Output fout: XML Task File
Initialization
: domain < fin.read(PDDL domain file)
: problem < fin.read(PDDL problem file)
: kautham ¢ fin.read(Kautham problem file)
: obstacles <— fin.read(initial state)
: srvOpenProblem(kautham)
: srvSetObstaclePos(obstacles)
Task planning
7. TaskPlan <— srvFF.plan(domain, problem)
Loop all actions in the task plan
8: for Action in TaskPlan do
9: if (Action = PICK) then

10: obj <— fin.read(Pick.Obj)

11: rob < fin.read(Pick.Rob)

12: link < fin.read(Pick.Link)

13: controlfile +— fin.read(Pick.Cont)

14: atregion < fin.read(Pick.Regioncontrols)

15: atpick < selectGrasp(fin.read(Pick.Graspconf),
fin.read(Pick.Pose))

16: srvSetRobControls(controlfile)

17: pathl < srvGetPath(srvSetQuery(atregion, atpick))

18: srvAttachObstacle2RobotLink(obj,rob,link)

19: pathl < srvGetPath(srvSetQuery(atpick, atregion))

20: fout.append(pathl,path2)

21: else if (Action = PLACE) then

22: obj <— fin.read(Place.Obj)

23: rob <— fin.read(Place.Rob)

24: controlfile +— fin.read(Place.Cont)

25: atregion <— fin.read(Place.Regioncontrols)

26: atplace <— selectPlaceConf(f in.read(Place.Graspconf),

fin.read(Place.Pose),fin.read(Place.Poseregion))

27: srvSetRobControls(controlfile)

28: pathl < srvGetPath(srvSetQuery(atregion, atplace))

29: srvDetachObstacle(obj,rob)

30: pathl < srvGetPath(srvSetQuery(atplace, atregion))

31: fout.append(pathl,path2)

32: else if (Action = MOVE) then

33: rob < fin.read(Move.Rob)

34: controlfile <— fin.read(Move.Cont)

35: atregl < fin.read(Move.Conf)

36: atreg2 < fin.read(Move.Conf)

37: path < srvGetPath(srvSetQuery(atregl, atreg2))

38: fout.append(path)

39: end if

40: end for

41: return fout

are read. The PDDL files are passed as a request to the Fast
Forward task planning service, which returns the sequence
of actions. Then, the Kautham problem is opened using the
OpenProblem service and the object poses modified using the
SetObstaclePos service, according to the values given in the
TAMP configuration file. Finally, the actions of the plan are
processed, calling the Kautham SetQuery and GetPath services
to find the robot paths, and the AttachObstacle2RobotLink and
DetachObstacle services to update the state when pick and
place actions are involved. The sequence of paths obtained

TOP GRASP

LATERAL GRASP

w
4
3
a
=
<
0

cA@BIs

b

Counter B Counter A

Counter B

Fig. 4.
sir.upc.edu/projects/kautham/videos/tampconfig.webm

Snapshots of the complete task execution. Video available at

are stored in a single XML file as a sequence of Transit and
Transfer actions that can be visualized with the Kautham GUI.

VI. AN EXAMPLE

The Tiago-kitchen problem demonstrates the task and mo-
tion planning of a PAL-Robotics TIAGo robot in a kitchen
environment with two different counters and two cans and
glasses. The example demonstrates the flexibility in configur-
ing different instances of the manipulation task. The TIAGo
robot uses two different control files, as specified in the TAMP
configuration file. The manipulation tasks use a control file
that defines controls for the torso, the arm and the gripper,
while the base remains fixed, Whereas for the navigation
tasks, a control file defines controls only for the base while
the arm remains in a fixed position as the robot navigates
through the environment. For grasping the objects, two grasp
configurations, namely the lateral grasp and the top grasp, are
checked sequentially for feasibility and chosen, while using
the controller that controls only the arms and the gripper.
Also, while placing the manipulated red can in the example,
these configurations are again considered. The example is
available in the python-branch branch of the git repository
given above, where the readme file provided describes the
steps to reproduce the example and the requirements.

VII. DISCUSSION AND FUTURE WORK

The availability of a flexible and easy way to set task
and motion planning problems is a key point towards the
exploration of the tight coupling between planning levels that
exists in some manipulation problems, and in the proposal and
benchmarking of combined ways of planning.

The framework presented here gives the tools to get easy
access to task and motion planing servers and the simple inter-
connection through an XML file. This XML file is currently
configured by hand, and the challenge is now to automatically
generate it. With this in mind, we are focusing the future
working in:

o the use of deep learning vision techniques to automati-
cally set the initial state (which objects are in the scene
and which are their poses);

o the use of reasoning procedures and ontological knowl-
edge to automatically set the PDDL problem file (the
objects involved in the planning, the initial symbolic state,
and the conditions that the goal has to satisfy);
the use of methods to automatically generate action-
oriented grasp configurations, like those explored in [12],
that use strategies to simultaneously satisfy the stability
and the semantic constraints that have to be satisfied for
an action to be feasible.

REFERENCES

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, 2009,
p. 5.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566-580, 1996.

[3] S. M. Lavalle and J. J. Kuffner, “Rapidly-Exploring Random Trees:
Progress and Prospects,” Algorithmic and Computational Robotics: New
Directions, pp. 293-308, 2001.

[4] 1. Sucan, M. Moll, L. E. Kavraki et al., “The open motion planning
library,” Robotics & Automation Magazine, IEEE, vol. 19, no. 4, pp.
72-82, 2012.

[5] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory &
practice. Elsevier, 2004.

[6] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL—The Planning Domain Definition
Language,” 1998.

[71 N. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “Incremen-
tal task and motion planning: A constraint-based approach,” in Robotics:
Science and Systems, 2016.

[8] A. Akbari, F. Lagriffoul, and J. Rosell, “Combined heuristic task and
motion planning for bi-manual robots,” Autonomous Robots, pp. 1-16,
2018.

[9] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and

N. Garcia, “The Kautham Project: A teaching and research tool for

robot motion planning,” in IEEE Int. Conf. on Emerging Technologies

and Factory Automation, 2014.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach

to single-query path planning,” in Robotics and Automation, 2000.

Proceedings. ICRA’00. IEEE International Conference on, vol. 2. 1EEE,

2000, pp. 995-1001.

J. Hoffmann and B. Nebel, “The FF planning system: Fast plan genera-

tion through heuristic search,” Journal of Artificial Intelligence Research,

pp. 253-302, 2001.

M. U. Din, M. U. Sarwar, I. Zahoor, W. M. Qazi, and J. Rosell,

“Learning action-oriented grasping for manipulation,” in /EEE Int. Conf.

on Emerging Technologies and Factory Automation, 2019, pp. 1575-

1578.

[10]

(11]

[12]

