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Abstract 7 

Fabric-reinforced cementitious matrix (FCRMs) are composites that produce lighter and 8 

more durable strengthening solutions. In this study, carbon and basalt fabrics were used 9 

to manufactured FRCM plate specimens. These plates were subjected to a centered 10 

punctual load with different punch diameters. Flexural failure mode was observed. 11 

Experimental tests showed that carbon and basalt fabrics improved notably the load 12 

capacity and the stiffness of mortar plates compared to unreinforced ones. Moreover, 13 

failure in the reinforced plates was progressive, preventing the sudden brittle failure of 14 

the unreinforced ones. Analytical and numerical models were adjusted and validated from 15 

experimental results, and both have proved to be effective calculation tools. What is more, 16 

numerical model allowed to determine a sliding tensile stress for the carbon fabric used 17 

in this study. 18 
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1 Introduction 21 

Concrete plates or slabs are one of the most used structural elements in building 22 

construction, especially the well-known concrete reinforced flat slabs, that give the 23 

advantages of providing more free space [1]. 24 

The problem of concrete plates subjected to punctual loads has been studied from the very 25 

beginning. Punctual loads may produce flexural failures but also punching failures, which 26 

are sudden and extremely dangerous. The transition way one to other is not clear and there 27 

are still a lot of research about this issues. 28 

Currently, there are some articles aimed at studying the behavior of reinforced 29 

cementitious matrix plates, see [2][3]. Of particular interest is the work of  [4], this paper 30 

presented experimental tests conducted on square cementitious slabs simply supported on 31 

four edges and subjected to patch load. The test results showed that adding a wire mesh 32 

to ordinary reinforcement increases significantly the punching resistance. Moreover, as 33 

the loaded area size increases both ductility and stiffness increase and the bridging effect 34 

due to the difference in the reinforcement ratio in orthogonal directions was clearly 35 

noticed.  36 

In order to know the difference between flexural and punching failure, the research 37 

presented by [5] carry out an experimental campaign. In this was observed that the failure 38 

load is raised with increasing cross-section of the reinforcement. The load–displacement 39 

curves illustrated that after the maximum load was reached, a flexural failure is 40 

characterized by a smooth decrease of the carrying load with increasing displacement. In 41 

the opposite case, a punching failure results in a sudden decrease of the carrying load after 42 

the maximum load. These results clearly illustrate the difference between both failure 43 

mechanisms for traditional steel reinforcement. 44 

The fabric cementitious matrix (FRCM) is well known as a strengthening system used to 45 

improve the mechanical behavior from structural elements [6][7][8][9][10][11][12]. This 46 

emerged as a promising alternative to organic matrix based fibre reinforced polymers 47 

(FRPs), and also this is an evolution of ferrocement used for manufacturing plate or flat 48 

slab. 49 



FRCM consists of a fabric embedded in an inorganic mortar matrix. This fabric can be 50 

made of diverse materials such as glass, carbon, basalt [13,14], PBO (Polyparaphenylene 51 

benzobisoxazole), and vegetal fibre [15]. 52 

It is essential to understand that FRCM provides tensile strength thanks to the fabrics, and 53 

that these fibres only bear the loads that the mortar is capable of transmitting [16]. 54 

Therefore, the transmission of matrix-mesh stresses is one of the main requirements to be 55 

considered, as well as the geometric adaptability of the fabric and its chemical stability 56 

(durability) within the matrix. 57 

In the case of cementitious plates with fabrics of synthetic fibres, in the research presented 58 

by [17], specimens of carbon fabric reinforced cementitious matrix (FRCM) with 59 

chopped carbon fibre were developed. A series of three-point bending tests were 60 

conducted to investigate the effects of chopped carbon fibre content and the carbon mesh. 61 

The results show that the carbon mesh is effective as reinforcement of cementitious 62 

matrix, where during in the bending test the loads of the specimens continued to increase 63 

after the occurrence of visible cracks, which indicated that the carbon mesh in the center 64 

of FRCM plates enhances the plasticity of cementitious matrix.  65 

From the studies presented above, it can be seen that most of these investigations are 66 

aimed at the study of steel reinforced concrete plates whereas it seems there are no records 67 

of experimental campaigns aimed to demonstrate the flexural behavior of FRCM plates. 68 

The present work is an experimental campaign aimed to analyze the behavior of different 69 

FRCM materials (carbon and basalt fibres) in the shape of small plates. From the test 70 

results it is aimed to develop analytical and numerical models capable of reproducing the 71 

flexural failure of FRCM plates under simple supported boundary conditions. It is 72 

expected that this study will raise the possibility of replacing steel with synthetic fiber 73 

fabrics, which would reduce the thickness of the plates, making them lighter and avoiding 74 

the durability drawbacks caused by the steel corrosion. Nevertheless, the investigation is 75 

mainly oriented to the material performance and results are prevented to be directly 76 

extended to real size slabs. 77 

 78 

2 Materials and specimens 79 

In order to face the experimental campaign some samples of small FRCM plates were 80 

produced according next conditions. 81 

 82 

2.1 Mortar  83 

A single type of commercial mortar was used in this study. It was an auto-levelling mortar 84 

which includes organic additives (plasticiser polymer). The manufacturing of samples 85 

was performed with a single batch and some test on compression and flexural. The control 86 

mortar specimens were tested to flexion in an electromechanical press of 50 kN, and then 87 

the resulting halves were tested under compression with a hydraulic actuator of 100 kN 88 

capacity. These tests were performed according to EN 1015-11: 2000 [18].   89 

 90 

Table 1. Mortar properties 91 

Mortar 
Flexural strength 

(MPa) 
Compressive strength (MPa) 

Average C.V. Average C.V. 

A 8.84  (11%) 36.60  (7%) 

 92 

2.2 Fabrics 93 



Two type of fabrics were used to manufacture the FRCM plates: carbon and basalt fibres. 94 

The averaged results of a tensile tests and other mechanical properties (supplied by the 95 

manufacturer) are summarized in Table 2. These experimental data were previously 96 

determined in [19] and they were obtained from tests of 5 tows of the each fabric (carbon 97 

and basalt) using the same procedure presented in [20].  98 

 99 
Figure 1. Fabrics 100 

 101 

Table 2. Fibres and fabric properties 102 

Property Units Basalt (B) Carbon (C)  

Fibres 

Ultimate tensile 

strength(1) 
ffib,u [MPa] 3080 4320 

 

Elastic modulus(1) Efib [GPa] 95 240 
 

Ultimate strain(1) εfib,u [%] 3.15 1.80 
 

Fabric 

Fibre orientation(1)  Bidirectional Bidirectional 
 

Equivalent thickness(1) ttex [mm] 0.053 0.047 
 

Distance between tows(1) 
dtows [mm x 

mm] 
15x15 10x10 

 

Elastic modulus(2) Etex [GPa] 87.81 235.69 
 

Ultimate tensile 

strength(2) ffab,u [MPa] 763.7 1915.74 
 

(1) Supplied by manufacturer; (2) results of tensile test [19]. 

 103 

2.3 Specimens 104 

The experimental program included 27 samples of FRCM plates. There is no specific 105 

norm about specimen dimensions for assessing the response to a punctual centered load. 106 

The closer to this research might be a reference related to punching shear on ferrocement 107 

by [4]. This author used plates of effective dimensions 400 mm x 400 mm with thickness 108 

from 40 to 60 mm. He reinforced slabs with a wire mesh and some steel rods. In the 109 

present research the reinforcement is by fabric, with less strength than steel 110 

reinforcement. Therefore the dimensions of the specimens can be taken half of 400 mm 111 

that is enough to create a relevant flexural deformation. Hence, every plate had 112 

dimensions of 200 mm x 200 mm and a thickness of 20 mm.  113 

 114 



 115 
Figure 2. Manufacturing of specimens and traceability labels 116 

 117 

There were three types of plates, the ones without any reinforcement, the ones with carbon 118 

fabric and finally, the ones with basalt fabric. One of the objectives was to compare the 119 

different performance according the nature of fabric. 120 

All plates were manufactured at the same time in a single batch in three molds. Every 121 

mold produced all plates of the same type. Each specimen is labeled with the 122 

reinforcement material: None, Carbon or Basalt and the punching diameter: D16, D30, 123 

D63 in this manuscript. 124 

Every mold was prepared with a grid of wooden strips defining 200 mm x 200 mm gaps. 125 

These strips had only a height of 10 mm, just the half of the total plate thickness, so to 126 

place one continuous reinforcement fabric for all the plates in a mold. Fabric was placed 127 

“as-it-is”. Therefore, bonding was only achieved by chemical and friction with no special 128 

treatment or mechanical device placed at the edge of the samples. A second layer of 129 

wooden strips was placed on the first one to reach the 20mm plate thickness. The 130 

manufacturing procedure was as follows: 131 

✓ Preparing the mold basis with demolding agent. 132 

✓ Mixing the mortar and pouring it up to fill the mold and level it. For unreinforced 133 

plates the procedure was over. 134 

✓ Cover the whole mold with the reinforcement grid and bond it lightly to the 135 

wooden strips using stitches and adhesive tape. 136 

✓ Place a second layer of wooden strips and nail them lightly to the mold. 137 

✓ Pour mortar up to fill the mold and level it. 138 

✓ Manually shake the mold to vibrate mortar. 139 

✓ Cover the mold with a plastic cover to maintain moisture. And keep it in 140 

laboratory conditions for 10 days. 141 

✓ Demold and leave samples to cure in laboratory conditions for other 18 days. After 142 

that the plates were ready to be tested 143 

All samples were measured to ensure the proper dimensions. It was found that square size 144 

was perfect but thickness had some small deviations at a certain point, less than 1 mm, 145 

and it was considered acceptable (less than 5%). 146 

 147 

 148 

3 Experimental campaign 149 

3.1 Test setup and instrumentation 150 



The test is based on placing the plate over a rigid boundary frame and press the top surface 151 

with a concentrate load. Load is applied with a cylindrical tool in the middle of the 152 

sample. For each type of plate three different punching tools were used. One with 153 

diameter 15.9 mm (named D16), other 30 mm (named D30) and finally, 63.5 mm (named 154 

D63). 155 

 156 
Figure 3. Test setup: (a) D16, (b) D30, (C) D63 157 

 158 

Rigid frame was made of connected aluminium profiles. In the contact between the plate 159 

and the frame a very thin rubber strip was placed to avoid stress concentrators that may 160 

modify the crack pattern. Plate was simply supported at every edge (see Figure 3).  161 

A universal electromechanical machine applied the load with displacement control at a 162 

speed 1mm/s. Continuous measurement included displacement and load from the 163 

machine sensors. The test ended when the load decreases 10% of the peak load.  164 

 165 

3.2 Experimental results 166 

3.2.1 Crack patterns 167 

The results of the different tests are shown in Figure 4. In all tests first cracks started at 168 

the bottom side of the specimen under the loading area. Later cracks propagated 169 

diagonally to the boundary condition. The crack pattern followed the classical distribution 170 

of a yield line flexural failure. 171 

The FRCM-plates presented two type of failures: 172 

✓ Fabric sliding failures [21,22]: this occurred in carbon-FRCM, where the fabric 173 

starts to slide when the maximum load was reached. This showed that the bonding 174 

interaction between fabric-mortar was not perfect (mortar debonding, see Figure 175 

4. Carbon D16, D30, D63) after the fabric reached some sliding tensile stress. 176 

✓ Fabric rupture failures: this occurred in the basalt-FRCM, where the fabric reach 177 

its tensile strength. Final crack thickness is wider than for carbon-FRCM 178 

specimens (see Figure 4. Basalt D16, D30, D63). This means perfect interaction 179 

between the fabric and the mortar. 180 

The unreinforced specimens break with a sudden mechanism. As soon as the yield 181 

lines appeared, the sample broke down. Little number of wide cracks were developed 182 

(see Figure 4. None D16, D30, D63). On the contrary, all reinforced specimens 183 

showed a smooth decrease in the applied load while the cracks grew and developed.  184 



 185 
Figure 4. Crack pattern  186 

3.2.2 Maximum load and stiffness coefficient 187 

Table 3 shows the experimental results of maximum load (Pmax) and the initial stiffness 188 

coefficient (Ki) for all the specimens. The initial stiffness was calculated from the first 189 

slope in the load-displacement curve presented in Figure 6. 190 

 191 

Table 3.Experimental results 192 

Punch 

diameter 

None Basalt Carbon 

Pmax  

(kN) 

Ki 

(kN/mm) 

Pmax 

 (kN) 

Ki 

(kN/mm) 

Pmax  

(kN) 

Ki 

(kN/mm) 

D16 

M1 1.71 4.06 2.15 4.06 2.49 3.65 

M2 1.00 2.90 2.17 3.24 2.22 3.84 

M3 1.16 2.95 2.43 4.16 2.61 4.15 

Average 1.29 3.30 2.25 3.82 2.44 3.88 

C.V. 24% 16% 6% 11% 7% 5% 

D30 

M1 1.05 2.84 2.39 3.39 2.68 3.29 

M2 1.89 3.80 2.22 4.09 2.55 3.24 

M3 1.92 3.04 2.49 3.57 3.05 4.13 

Average 1.62 3.23 2.37 3.68 2.76 3.56 

C.V. 25% 13% 5% 8% 8% 12% 



D63 

M1 1.42 2.75 2.84 4.27 3.97 2.64 

M2 2.44 3.30 3.19 3.37 3.73 4.54 

M3 1.82 3.76 3.14 3.87 3.82 3.54 

Average 1.89 3.27 3.06 3.84 3.84 3.57 

C.V. 22% 13% 5% 10% 3% 22% 

 193 

The results presented in  Table 3 show coefficients of variation between 3% and 25%. 194 

The unreinforced samples showed the greatest scattering of data, as it was expected for a 195 

single mortar material. On the contrary, the reinforced ones limited its scattering at 10% 196 

which represents good repeatability of the experiments. 197 

Figure 5 shows the variation of the maximum load and initial stiffness for each type of 198 

specimen and punch diameter. In Figure 5a, it is appreciated that the maximum load 199 

increased with the increase of the punch diameter. The load-bearing capacity was greater 200 

for larger punch diameter because the punch area was nearer to the support, so to reach 201 

the same flexural moment it was necessary to apply a greater load. Also Figure 5a shows 202 

that the basalt and carbon fabrics increased the maximum load in all the specimens, 203 

especially in the case of carbon-FRCM (D63) where this improved 103%. 204 

 205 

 206 
Figure 5. Experimental results 207 

 208 

Figure 5b shows a negligible change (slightly larger) of the initial stiffness in the FRCM 209 

plates compared to the plates without fabric. Basalt and carbon FRCM did not contribute 210 

with significant stiffness. This is an expected result because the reinforcement modifies 211 

the strength of the specimen but its deformation depends mostly on the mortar stiffness 212 

and the specimen geometric inertia, two parameters that the fabric did not modify. 213 

Figure 6 show the average of the load-displacement curves of the experimental results. In 214 

the case of unreinforced plates (“none” in Figure 6) it is shows a sudden decrease of the 215 

carrying load after the maximum loads, in change in the case of FRCM specimen it is 216 

shows a smooth decrease of the carrying load when the maximum loads is reached [5], 217 

this is due to friction between materials that prevents brittle breakage and dissipates more 218 

energy. This confirms the flexural failures showed in the specimens (Figure 4). 219 

Also in the case of FRCM specimen Figure 6 shows a first slope where the fabric and the 220 

mortar have the same deformation, however when the mortar reach the carking stress, 221 

they start a stage of fabric-mortar interaction, and after that there are a stiffness change 222 

controlled by the fabric stiffness. This behavior meets the three lineal tensile model 223 

presented by [23]. 224 



 225 
Figure 6. Average of the experimental load-displacement plots  226 

 227 

4 Analytical model 228 

4.1. Analytical unreinforced model 229 

In the case of unreinforced plate, the symmetric model presented in Figure 7 was 230 

considered, from this model it was possible to obtain the following equations (eq. 1-2).  231 

 232 
Figure 7. Analysis of cross-section for unreinforced section 233 

 234 

Constitutive behaviour of concrete (mortar for this case), is shown in Figure 7 and Figure 235 

8 and according to classical plate theory of yield lines of Johansen. 236 

Where the maximum force (𝐹𝑚𝑎𝑥) is: 237 



𝐹𝑚𝑎𝑥 =
𝑓𝑚𝑡,𝑢ℎ

4
 Eq. 1 

𝑀𝑢 = 𝐹𝑚𝑎𝑥 × 𝑑 Eq. 2 

𝑑 =
2ℎ

3
 Eq. 3 

 238 

𝑓𝑚𝑡,𝑢: is the tensile strength 239 

𝑀𝑢: is the ultimate moment 240 

𝑑: is the distance since the concentrate maximum force until the neutral fiber (lever arm) 241 

The tensile strength was determined from the equation 4 until 7 (which were extracted 242 

from the yield lines method presented in Figure 8). This was possible with the 243 

maximum load (𝑝) obtained from the experimental test. 244 

 245 
Figure 8. scheme representative based in yield lines plate theory 246 

 247 

𝑈 = 4 ×𝑀𝑢 × 𝐿 × 𝛿𝜃 Eq. 4 

 248 

𝛿𝜃 =
𝛿

𝑎
 Eq. 5 

 249 

𝑊 = 𝑝 × 𝛿 Eq. 6 

 250 

𝑝 =
4 ×𝑀𝑢 × 𝐿

𝑎
 Eq. 7 

Where: 251 

𝑈: is the sectional theory energy 252 

𝛿𝜃: is the angular distortion (Figure 8) 253 

𝛿: is the vertical displacement (Figure 8) 254 

𝑎: is the horizontal distance from the plate extreme until the punch extreme (Figure 8) 255 

𝑊: is the work of external forces 256 

From the equations 1-7 was obtained the tensile strength, equivalent to 2.31 MPa, that 257 

was validated by the 3 maximum load average obtained experimentally by the 3 different 258 



punch used in this study (D16, D30, D63), with percentage variation of 4, 9 and 0 % 259 

respectively. This tensile strength was used in the analytical model of the FRCM plates, 260 

and their numerical simulation. 261 

 262 

4.2. Analytical reinforced model 263 

The analytical method to determine the ultimate flexural capacity of the reinforced plate 264 

is based on the following assumptions: (1) strain compatibility during the loading process, 265 

(2) equilibrium of forces of the load-bearing cross-section. The mortar tensile strength 266 

was not considered, because after the cracks formation the fabric is which support the 267 

tensile stress. 268 

 269 
Figure 9.Analysis of cross-section for reinforced section 270 

  271 

The proposed analytical approach is based on the assumptions presented in Figure 9. The 272 

fabric was assumed to behave linear-elastic until failure, and the stresses in the mortar 273 

compression block followed a parabolic-rectangular distribution according to Eurocode 274 

[24]. 275 

The contribution of the fabric is an effective strength over the total strength of the cross 276 

section.  Figure 9 shows the internal force equilibrium and the strain distribution of a 277 

rectangular FRCM-plate cross-section at maximum bending moment stage. According to 278 

Figure 9, the analytical maximum flexural moment (Mmax,an) is calculated as the following 279 

(Eq. 1 and 2): 280 

𝑀𝑚𝑎𝑥,𝑎𝑛 = 𝑀𝑐 +𝑀𝑓𝑖𝑏 Eq. 8 

where Mc and Mfib are the ultimate flexural contributions by compression strength of the 281 

mortar, and the ultimate flexural contributions of the fibres. The contributions of each 282 

withstanding material and neutral axis depth (x) can be determined according to the 283 

following equations (Eq. 9 - Eq. 17): 284 

● Ultimate flexural contribution of the compressive stresses on mortar: 285 

𝑓𝑐 = 𝑓𝑐𝑑 [1 − (1 −
𝜀𝑐
𝜀𝑐0

)
𝑛

] ; 𝑖𝑓0 ≤ 𝜀𝑐 ≤ 𝜀𝑐0 Eq. 9 

𝑓𝑐 = 𝑓𝑐𝑑; 𝑖𝑓𝜀𝑐0 ≤ 𝜀𝑐 ≤ 𝜀𝑐𝑢 Eq. 10 

The values of mortar breakage deformation (𝜀𝑐0)  and ultimate deformation (𝜀𝑐𝑢) in 286 

compression are set to 0.002 and 0.0035 respectively, both suggested by Eurocode 2 [24]. 287 

These values are valid for concrete with a characteristic compressive strength 𝑓𝑐𝑘 ≤288 

50𝑀𝑃𝑎. Hence the used mortar is assumed to fit into this definition. The compressive 289 

strength of the mortar, 𝑓𝑐𝑑 , as described in section 2.1.   290 

The moment produced by the compression block will be equal: 291 



𝑀𝑐 = 𝑓𝑐𝑥𝑋 Eq. 11 

Where x is the distance from the neutral fiber to most compressed fiber (see Figure 9) and  292 

𝑥 is the distance from center of gravity the compression block to the neutral fiber. 293 

 294 

● Ultimate flexural contribution of the fibre fabric: 295 

𝑀𝑓𝑖𝑏 = 𝑓𝑓𝑖𝑏𝐴𝑓𝑖𝑏(ℎ 2⁄ − 𝑥) Eq. 12 

It is known that for the tested FRCM-plates the fabrics failure occurred before reaching 296 

the maximum compressive mortar deformation. The ultimate fabric deformation (𝜀𝑓,𝑢, 297 

experimental in [19] and Table 2) is taken to calculate the strain in concrete when the 298 

maximum load is reached. Strain compatibility is imposed: 299 

𝜀𝑐 =
𝜀𝑓,𝑢. 𝑥

ℎ 2⁄ − 𝑥
 Eq. 13 

Once the deformations of the materials at the specimens’ failure state are known, the 300 

following condition must be fulfilled to validate the calculation of the bending capacity 301 

of the FRCM-plates: 302 

✓ 𝜀𝑐 ≤ 0.0035 (Code [24]) 303 

 304 

4.3. Analytical model results 305 

The results obtained from the analytical model are presented in Table 4. This shows the 306 

results of maximum load (Pmax) and the ultimate flexural moment (Mu) supported by the 307 

FRCM-plate. Also, this shows the analytical fabric and mortar ultimate strain when is 308 

reached the maximum experimental load of the FRCM-plate. 309 

 310 

Table 4. Analytical model results 311 

Punch 

diameter 

Carbon-FRCM Basalt-FRCM 

Mu 

(MPa) 

Pmax 

(KN) 
εf εc 

Mu 

(MPa) 

Pmax 

(KN) 
εf εc 

D16 
296.71 2.60 

0.0031 0.0008 

257.00 2.26 

0.0061 0.0011 

-(5%) (0.4%) 

D30 
296.71 2.85 257.00 2.40 

(3%) (4%) 

D60 
296.71 3.67 257.00 3.09 

(7%) (4%) 

(%): variation with the experimental 

results           

 312 

The first data to highlight in Table 4 is that the strain of the carbon fibres are less than the 313 

ultimate strain calculated (
𝑓𝑓𝑖𝑏

𝐸𝑓
= 0.0031). This because the fibres sliding before the reach 314 

the ultimate strain. The carbon fibres strain presented in table 4 is the 38% of the ultimate 315 

carbon strain. In the case of basalt-FRCM the fabric reaches 70% of the ultimate strain, 316 

in this case is no reach the ultimate strain, like in the experimental results (fabric rupture). 317 



Also is observed that the mortar ultimate strain (0.0035) is not reached in both cases, 318 

whereby, is fulfilled the analytical limit imposed. 319 

The analytical model results were properly approximated to the experimental results, with 320 

fitting between 0.4 and 7 % of variation.  321 

 322 

5  FRCM numerical simulation 323 

Commercial mechanical simulation software Abaqus® 6.14-4 [26] was used  to 324 

implement numerical simulations. This choice was based on the aim of using a general 325 

purpose-widely available simulation tool that was capable of representing complex 326 

material models. In addition, many previous studies for the analysis of FRCM and 327 

reinforced concrete successfully used this software (see, for example, [27][28]). 328 

 329 

5.1.General material’s constitutive formulations 330 

One of the most used approaches for the simulation of FRCM subjected to tensile loads 331 

is based on assuming a concrete plastic damage model for cementitious matrix. While 332 

fabric is considered an elastic material only dependent from Young’s modulus. 333 

Plastic damage model is characterized by the definition of two modulus of elasticity: one 334 

corresponding to the elastic zone, and another depending on damage coefficient, which 335 

is function of the cracking situation or the plastic degree achieved. In this model, it is 336 

assumed that the two main failure mechanisms are tensile cracking and compression 337 

crushing of the concrete. The evolution of the yield surface (or failure) is controlled by 338 

two plasticity variables 𝜀𝑡
𝑝𝑙

 y 𝜀𝑐
𝑝𝑙

, linked to the failure mechanisms under tension and 339 

compression, respectively. These are defined as the plastic deformations equivalent to 340 

tension and compression, respectively. 341 

In addition, this model assumes that the strain-stress response for the uniaxial 342 

compression of the concrete is characterized by damaged plasticity, as shown in Figure 343 

10. Under uniaxial tension, the stress-strain response follows a linear elastic relationship 344 

until the cracking stress value is reached (𝜎𝑡0).  The cracking stress corresponds to the 345 

appearance of microcracks in the material. From this point, the tensile tension that 346 

transmits the material does not disappear, but it gradually decreases as the deformation 347 

increases. Damage variable dt, whose minimum value is 0 (intact material) and whose 348 

maximum value is 1 (totally damaged material), defines the slope of the discharge branch. 349 

So, if E0 is the modulus of elasticity of the elastic material, the module of the discharge 350 

branch becomes (1-dt) E0. 351 

Under uniaxial compression, the response is linear up to the value of initial yield (𝜎𝑐0). 352 

In the plastic zone, the response is typically characterized by stress hardening followed 353 

by stress weakening beyond the final stress (𝜎𝑢). This representation, although somewhat 354 

simplified, captures the main characteristics of the concrete response and it is also valid 355 

for mortar. As in the case of tension there is a damage parameter dt that varies between 0 356 

and 1 which reduces the stiffness of the discharge branch. 357 

This model is useful to simulate the interaction between reinforcement and concrete 358 

(fabric and mortar for the case of FRCM), and also provides numerical stability improving 359 

convergence. 360 

 361 



 362 
Figure 10. Uniaxial model [26]: (a) tension, (b) compression 363 

 364 

5.2. Unreinforced plates modelling 365 

The unreinforced plate specimens were modeled to determine the mortar elasticity 366 

modulus and to calibrate the mortar properties for the FRCM-plate simulations. The 367 

particularities to model these specimens is described. 368 

First, the geometry of the specimens was defined based on the geometry of the specimens 369 

manufactured. These were area of 180×180mm (support positioning) and thickness of 370 

20mm. This geometry was defined as a deformable solid part. 371 

To define the material of the cementitious matrix, the aforementioned plastic damage 372 

model was chosen. The elastic behavior of the cementitious matrix was defined by: i) the 373 

elasticity model, which was calibrate with the maximum loads and stiffness coefficients 374 

obtained experimentally (section) , and ii) the Poisson coefficient, which was set to 0.2 375 

as suggested by EHE [25]. 376 

Regarding the plastic zone of the cementitious matrix in tension and compression, it was 377 

necessary to define the following parameters: 378 

a) Dilatation angle: This controls the quantity of the plastic volumetric deformation 379 

developed during the plastic shear and is assumed constant during the plastic 380 

flexibilization. The first value used for this parameter was 13 according [28], but 381 

in our simulations we saw that a value of 31 performed better and facilitate the 382 

convergence of the computations. 383 

b) Eccentricity: This parameter defines the speed at which the function approaches 384 

the maximum stress asymptote. The predetermined eccentricity suggested by 385 

Abaqus is 0.1, which implies that the material has almost the same angle of 386 

expansion in a significant range of confining pressure values. 387 

c) Form parameter of the plasticizing surface K: This is the ratio of the second 388 

invariant tension in the meridian, to that of the compression meridian, in the initial 389 

yield for any given value of the invariant pressure. Default value is equal to 2/3. 390 

d) Relationship between the maximum uniaxial and biaxial compression stress at the 391 

beginning of the loading process. Default value is equal to 1.16. 392 

e) Viscoplastic regularization: models of materials that exhibit a smoothing behavior 393 

and a degradation of rigidity often lead to serious convergence difficulties in 394 

implicit analysis programs. A common technique for overcoming some of these 395 

convergence difficulties is the use of a viscoplastic regularization of the 396 

constitutive equations, which causes the constant tangent stiffness of the softening 397 

material to become positive during sufficiently small increments of time. In a 398 

range from 0.001 to 0.004, 0.003 proved to be the most stable and provided 399 

convergence. 400 

Once these materials properties were defined, the matrix stress-strain curves and the 401 

corresponding damage variables were calculated using the procedure from  [28].  402 



Next step was defining boundary conditions. The inferior perimeter of the deformable 403 

solid was simply supported (restriction of vertical displacements), and the maximum 404 

displacement obtained experimentally was imposed on the center of the opposite face, in 405 

a superficial circular area, defined by the three different punch diameter used in this study 406 

(see Figure 11) . 407 

 408 
Figure 11. (a) Boundary conditions and (b) Mesh size of deformable solid 409 

 410 

Then the mesh was defined. Three meshes of 2.5 mm, 5 mm and 10 mm characteristic 411 

size were tested for results convergence analysis, resulting that no significant difference 412 

was observed between the results of meshes of 2.5 and 5 mm (2% variation of the 413 

maximum load). Hence, the size of elements used was set to 5 mm to reduce calculation 414 

cost.  415 

 416 

5.2.1. Determining of elasticity modulus of mortar 417 

Mortar’s modulus of elasticity was not known. Hence, it was necessary to calibrate this 418 

property with the aim of reproducing the experimental stiffness and maximum load of 419 

the unreinforced plates. With this purpose, 4 different moduli for each punch diameter 420 

were numerically tested, interpolating or extrapolating the value that best fits 421 

experimental results with a parabolic fitting (Figure 12), excepting in the case of the 422 

D30 punch, where the results obtained with the modulus of 2388 MPa gave variation 423 

with experimental results of 1%. Finally, the three fitted values (one per punch 424 

diameter) were averaged. The results are presented in  425 

Table 5. 426 
 427 

Table 5. Determining of elasticity modulus 428 

  D16 D30 D60 

E  

(MPa) 

Ki 

(KN/mm) 

Pmax 

(KN) 

Ki 

(KN/mm) 

Pmax 

(KN) 

Ki 

(KN/mm) 

Pmax 

(KN) 

2388.00 2.92 1.41 3.19 1.63 4.94 2.21 

2089.50 2.69 1.33 - - 4.41 2.09 

1791.00 2.34 1.27 - - 4.06 1.98 

1492.50 2.01 1.19 - - 3.40 1.85 

Em (MPa) 2098.14 

 429 



 430 
Figure 12. Tendency of elasticity modulus 431 

 432 

5.3.FRCM-plates modelling 433 

Two FRCM-plates were modeled, one for each type of fibres used in the experimental 434 

campaign (carbon and basalt). Here, the particularities to model these specimens is 435 

described. 436 

The geometry and properties of the deformable solid was the same that the used in the 437 

unreinforced plate simulation, with the elasticity modulus previous determined (Em).  438 

To simulate the fabrics, truss elements were chosen, like in other studies [29]. These are 439 

long and thin structural members that can transmit axial force only. These are typically 440 

used to model thin, line-like structures that support loading only along the axis or the 441 

center line of the element and no moments or forces perpendicular to the center line are 442 

considered. Truss elements were used in this case to reduce the high computational costs 443 

that the use of three-dimensional elements would cause, as well as to avoid convergence 444 

problems.  445 

In carbon-FRCM model, 34 "truss" elements were used (17 in weft direction and 17 in 446 

warp direction), and in the basalt-FRCM were used 22 elements (11 in each directions). 447 

These simulated tows in the FRCM-plates. These were defined as elastic material, where 448 

the Young modulus was the presented in Table 2. Due that the bonding interaction 449 

between the mortar and the fabrics was not known, it was considered the fabric totally 450 

bonded to the matrix (embedded) without allowing slipping in the fabric-matrix interface. 451 

The same boundary condition than for the unreinforced plate were imposed (section 5.2).  452 

The mesh size used was set to 5 mm, the same than the deformable solid modelling in 453 

section 5.2. 454 

 455 

5.4. FRCM-plate results 456 

Figure 13 shows the stress contour plots of the matrix and the reinforcement fabric at the 457 

state when the fabric reached the tensile stress taken as failure criterion. The tensile stress 458 

taken as failure criteria was determined for each type of fibres by comparing the mean 459 

maximum load from the experimental results with the numerical analysis results for each 460 

punch size loading. From this initial result it was possible to determine the average tensile 461 

stress in the fibres when the numerical analysis reached the experimental maximum load 462 

(see Figure 13).  463 

 464 



 465 
 466 

Figure 13. Stress state of the fabric and mortar simulation at the time to reach the failure 467 

criteria 468 

 469 

The principal stress in the matrix of the FRCM plates shown in Figure 13 describes 470 

failures mode similar to the experimental results. 471 

The tensile stress of carbon fabric was 1419.33 MPa (coefficient of variation of 4% for 472 

the three punch size used), and 763.7 MPa (0%) for the basalt fabric. These values are 473 

74% of the carbon-fabric tensile strength, and exactly the tensile strength of the basalt-474 

fabric (reaching the tensile rupture). In the case of carbon-FRCM this result can be mean 475 

that for this percentage of fabric tension strength, the fabric sliding starts.  476 

The fabric sliding (carbon-FRCM) and the fabric rupture (basalt-FRCM) were the type 477 

of failure observed in the experimental campaign (section 3.2.1). Although, in the 478 

analytical model (section 4.3) the percentage of carbon tensile strength when the fabric 479 

sliding started was 38%. The difference between the numerical and analytical results may 480 

be due to the fact that the numerical model considers a full 3D that allows to increase the 481 

bidirectional fabric contribution in contrast to the 1D simplification of the analytical 482 

model. 483 

Also this sliding failures were presented in a previous experimental tensile study of 484 

carbon-FRCM [30], where the sliding tensile stress was 57% of the tensile fabric strength. 485 

This mean that the flexural behavior of the FRCM-plate improves 17% the fabric sliding 486 

stress, maybe because of the out-of plane normal stress induced friction. 487 

The results obtained from the numerical model are presented in Table 6. This shows the 488 

results of maximum load (Pmax) and the initial stiffness coefficient (Ki) for all the punch 489 

diameters. The initial stiffness was calculated from the first slope in the load-displacement 490 

curve presented in Figure 14. 491 

 492 

Table 6. Numerical model results. 493 

Fibres Properties D16 D30 D63 

Basalt-FRCM 

Fmax (KN) 1.95 2.25 3.07 

Δexp -13% -5% 0% 

Ki (KN) 2.28 3.18 4.47 



Δexp -40% -14% 16% 

Carbon-

FRCM 

Fmax (KN) 2.38 2.78 3.97 

Δexp -2% 1% 3% 

Ki (KN) 2.29 2.62 4.41 

Δexp -41% -26% 24% 

Δexp: variation with the experimental results 

 494 

The results presented in Table 6 show that maximum load results of the numerical model 495 

fit better the experimental results than the initial stiffness output.  496 

Figure 14 show the contrast of the load-displacement diagrams of the experimental and 497 

numerical results. These demonstrate that the proposed numerical models are able to 498 

reproduce the experimental response with sufficient approximation. However, this 499 

numerical model is not capable to reproduce the sliding process. Including frictional 500 

and/or cohesive contacts may led to a more accurate model of the post-critic sliding 501 

response. Nevertheless, it is far beyond the scope of the current research. 502 
 503 

 504 
Figure 14. Contrast of the experimental and numerical load-displacement plots. 505 

 506 

5 Conclusions 507 



In this work, an experimental, analytical and numerical research was conducted to 508 

investigate the flexural performance of FRCM plates. According the achieved results: 509 

● The basalt and carbon fabrics improve the flexural capacity in load and stiffness. 510 

Especially in the case of carbon-FRCM (D63) that improves 103% the maximum 511 

load. 512 

● The carbon-FRCM presented fabric sliding failures and the basalt-FRCM 513 

presented fabric rupture failures. These types of failures were related to the degree 514 

of bonding behavior between the different materials (fabric-mortar). 515 

● The maximum load increased with the increase of the punch diameter. However, 516 

the stiffness was not affected significantly by the increase of the punch diameter. 517 

● The analytical and numerical analysis of FRCM may be performed similarly to 518 

reinforced concrete. Concrete formulations and models were useful to calculate 519 

the experimental results of this research. 520 

● The mortar tensile strength and Young modulus were obtained from fitting the 521 

analytical calculation of the load-bearing capacity of mortar plates without 522 

fabrics. These values were successfully used to FRCM´s numerical simulation 523 

proving that unreinforced mortar properties are representative to the proposed 524 

model. 525 

● The tensile sliding stress of the carbon fabric was obtained by comparing the 526 

experimentally determined maximum loads with the numerical results. The 527 

carbon fabric started to slide when it reached the 74 % of its tensile strength. 528 

● The proposed numerical model was able to reproduce the experimental maximum 529 

load with sufficient approximation (between 0-13%). However, this numerical 530 

model is not yet capable to reproduce the sliding process. 531 
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