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Abstract—In this letter, we consider many users sharing the
same codebook and employing random signatures to modulate
preamble plus payload data. Successive interference cancellation
(SIC) is performed at the receiver side, whereby all user-strengths
are estimated by preamble cross-correlations to set the user-
decoding order, after which SIC operates. Our contribution in the
infinite-user regime is twofold. Firstly, the innovative application
of variational calculus to derive the asymptotic user-energy
distribution that maximizes SIC’s performance. Contrarily to
exponentially decaying distributions obtained under perfectly
ordered SIC, we derive stationary points with piecewise constant
structures as potential locally-optimal solutions for the spectral
efficiency maximization of estimation-based SIC. Secondly, the
proposal of a suboptimal algorithm to compute locally-optimal
solutions with high performance/complexity ratio.

Index Terms—Massive multiple access, dynamically ordered
successive interference cancellation, variational calculus.

I. INTRODUCTION

THE multiple access (MA) channel consists of many users
transmitting simultaneously towards the same destination.

In orthogonal MA, users are decoded independently in time,
frequency or code domains. Nevertheless, in crowded settings,
the simultaneous operation of all users is unfeasible due
to the scarcity of orthogonal resources. In non-orthogonal
MA (NOMA), users exploit the same collision domain. The
system supports a higher number of users when the excess of
interference is resolved through interference cancellation [1].

In this context, a number of multiuser detection techniques
can be adopted to provide reliable MA [2], [3]. Such is the case
if the central node exploits successive interference cancellation
(SIC). In this case, when users, instead of using several rates
[4], employ the same codebook, as in unsourced NOMA [5],
the optimal user-decoding order (UO) entails the SIC operation
from the strongest to the weakest user [6]. However, in large
NOMA settings, the receiver may not know the strength of
each user. Thus, the optimal UO is substituted by a UO based
on statistical CSI [7] when partial knowledge is available, or
on strengths estimation in the absence of such knowledge [8].

This letter concentrates on the latter case, whose successive
decoding operation is referred to as dynamically (estimation-
based) ordered SIC. This applies, for instance, in unsourced
NOMA settings [5] where user identities are unknown, or
in random access satellite networks handling such number
of users that perfect knowledge of received powers is not
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feasible [9]. Some authors have studied, for few users, this
SIC’s outage performance as in [8]. Nowadays, the handicap
is to cope with large systems where difficulty resides in
distinguishing the strongest user among very many of them.

In the satellite context, several energy allocations have been
investigated to improve the spectral efficiency (SE) of massive
MA networks under random spreading waveforms from both
theoretical [10], [11] and practical sides [12], [13]. From a
theoretic view, the SE-optimum user-energy distribution under
perfectly ordered SIC is shown exponential for ideal encoding-
cancellation schemes in [10], and practically exponential for
non-ideal schemes in [11]. Several allocations under more
practical SIC systems are designed for imperfect SIC in [12],
[13]. In all cases, however, the authors take up the optimal
UO that coincides with the order of user symbol energies.

In this work, we adopt a SIC receiver for which symbol
energies from all users are unknown. We analyze a network
handling many users in the asymptotic large-user regime,
where users employ the same encoder-decoder, whose known
error characteristic shows relevant discrepancies relative to that
in the packet-asymptotic case, followed by random signature
waveforms. We answer how the most favorable theoretic user-
energy distribution changes when prior to SIC, symbol ener-
gies of all users are estimated by preamble cross-correlations
and are used to set the UO. We leverage the system model
derived in [14] to analyze the former SIC. Our main result
proves, via variational calculus, that contrarily to exponential
user-energy distributions obtained in [10], [11], piecewise
constant functions constitute the stationary points of the SE
maximization of dynamically ordered SIC. Competitive local
optimums are found using a low complexity algorithm.

Section II states the system model. Section III derives large-
user results. Section IV presents the asymptotic optimization
with results in Section V. Section VI offers conclusions.

Notation: The over-dot ¤G is used for differentiation. Partial
derivatives of � (G1, . . . , G=) are denoted either mG8� or �G8 .

II. SYSTEM MODEL

We evaluate a large NOMA setting where  users transmit
=?-symbol packets superposed in the code domain. The packet
structure is divided into => preamble plus =4 payload symbols.
For payload generation, users use the same codebook [13] and
transmit at ' bits per channel use at symbol period )B . The
symbol energy for user : is �x [1≤:≤ ]. User : signs symbol
<, B: [<], using the unit-energy waveform 2:,<(t) made up
of a long pseudorandom code (with period outweighing many
symbols). The waveforms 2:,<(t) are non-orthogonal to each
other with second moment of the cross-correlation 1

# .
Communication takes place over slowly time-varying flat-

fading channels, e.g. in a satellite return link with long
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coherence times and limited peak-to-average power ratio per
user. The channel gain for user : is ℎ[:], and the received
symbol energy from the same user �r [:] = �x [:]ℎ[:]. The
received signal aggregates the transmitted packets 0: under
the (delayed) symbol signatures, and is corrupted by additive
Gaussian noise F(t) as:

H(t) =
 ∑
:=1

√
�r [:]

=?−1∑
<=0

0: [<]2:,<(t−<)B − g[:]) +F(t). (1)

Since users employ non-orthogonal spreading waveforms,
interference is superimposed after the symbol matched filter
of each user. We leverage SIC in conjunction with energy
allocation to provide reliable MA. In this massively populated
setting, we adopt, unlike [10], [11], a more practical SIC
receiver that initially ignores the energies received by all users
and that estimates them featuring the subsequent techniques.
Firstly, we consider an acquisition algorithm based on the
known employed preambles to obtain the spreading code
used by each user. Secondly, we estimate symbol energies
of all users by preamble cross-correlations, after which users
are ranked in non-increasing order of energy estimates. In
this work, and for the sake of simplicity, we assume the
receiver detects all users and focus this work on understanding
the impact of estimation-based UO on SIC’s performance.
Hereinafter, we distinguish between the user-index 1≤:≤ 
set in non-increasing order of received energies as (2), and
the user-order 1≤: ′≤ set according to energy estimates (3):

�r [1] ≥ �r [2] ≥ · · · ≥ �r [:] ≥ · · · ≥ �r [ ], (2)

�̂r [1] ≥ �̂r [2] ≥ · · · ≥ �̂r [: ′] ≥ · · · ≥ �̂r [ ] . (3)

For user-packet demodulation,  -stage SIC is performed
over H(t) (1). At stage : ′ out of  , the spreading waveform
2:′,< (t − g[: ′]) is employed as symbol matched filter to
obtain the noisy symbol sequence associated with the : ′-th
ordered user. Next, channel decoding operates, after which
cyclic redundancy check, encapsulated next to information
data, enables packet error detection. When it checks out, the
decoded packet is regenerated and canceled from the received
waveform. Otherwise, no cancellation is performed.

Our design focuses on the autonomous operation of network
devices. We take advantage of slowly time-varying channels
together with channel reciprocity to allow users 1≤:≤ to
accurately estimate their channel gains ℎ[1≤:≤ ] from a
downlink pilot signal before transmission. This fact enables
power control at transmitters, that may invert their channel
gains so as to arrive at SIC with a specific energy distribution
designed in this work. This simple scheme has an attractive
practicality in satellite environments under SIC operation since
the channel imbalance is usually in the same order as that
needed by SIC to properly operate, and thus, channel inversion
can be done with finite energy expenditure [11].

A. System Model for Dynamically Ordered SIC

We take up, for single-user packet decoding and cancel-
lation, the system model adopted in [11], which generalizes
the modeling of such operations for the short-packet com-
munication and in which MA interference can be assumed

Gaussian after symbol despreading [3]. Hence, the packet error
rate (PER) curve versus signal-to-interference-plus-noise ratio
(SINR) after symbol despreading Γ of the employed encoding
system: PER[Γ], is used to characterize the decoding stage,
considering therein that every time a user is canceled an
(average) fraction Y(Γ) of its energy remains still uncanceled.

The authors in [14] suggest, as a shortcut to evaluating the
long-term average system performance when handling a high
number of users, the computation of statistical averages based
on the probability ?:,:′ that user : is ordered the : ′-th, rather
than the Monte Carlo method. ?:,:′ denotes the user-order
probability. Therein, the authors propose an average system
model with the bivariate SINR and noise terms Γ̄[:, : ′] and
#̄C [:, : ′], standing for the corresponding utilities associated
with user : when ordered the : ′-th, which verify,

Γ̄[:, : ′] = �r [:]/#̄C [:, : ′] . (4)

For the computation of the average noise term #̄C [:, : ′], we
introduce the symbol decorrelation between non-orthogonal
signatures \

# [11], and we adopt the model for user : when
ordered at : ′ [14] in which, at previous stages 8 < : ′ the
contribution of other users D ≠ : weighted by their user-order
probabilities have been canceled. Then, we have

Γ̄[:, : ′] = �r [:]
#0+ \#

∑
8<:′

∑
D≠:

A [D, 8]�r [D]?D,8+ \#
∑
8>:′

∑
D≠:

�r [D]?D,8

with A , 1 − (1 − Y(Γ))PSR[Γ] the average fraction of
energy that remains after processing one user [11], [14], with
PSR[Γ],1 − PER[Γ] the packet success rate function.

The user-aggregate SE is given then by the weighted sum

SE ,
'

#

 ∑
:=1

 ∑
:′=1

PSR[Γ̄[:, : ′]]?:,:′ . (5)

III. ASYMPTOTIC SIC PERFORMANCE

We analyze the user-limit case so as to approximate the
behavior of a massively populated system by one with asymp-
totically many users. Then,  →∞ users transmit packets under
very large spreading gains #→∞. This simple fact allows for a
deterministic analysis as a function of the traffic load U =  /#
[10], the user-index C and the user-order C ′ [14]:

C , lim
 →∞

 −1: , C ′ , lim
 →∞

 −1: ′. (6)

Now, since users are condensed in the continuous interval
0 ≤ C, C ′ ≤ 1, asymptotic functions of the continuous argument
C such as �r (C) can be defined in lieu of �r [ C] (of a discrete
argument  C), and for which �r [ C]→�r (C) as  → ∞.
Parameter  is then obviated.

Moreover, the user-order probability ?:,:′ now turned to the
probability that user C ′ is ordered the : ′-th d?(C, C ′), is actually
an infinitesimal quantity because each user can be ordered at
 →∞ positions. Luckily, an explicit form for it is derived in
[14] as a function of the probability distribution of energy es-
timates. For user C, energy estimation �̂r (C) = V−1X2

2 (V�r (C))
follows a scaled non-central chi squared distribution with 2
degrees of freedom and non-centrality parameter V�r (C), with
V , 2=>/(#0 + U\�̄). �̄ ,

∫ 1
0 �r (g)dg is the average energy
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over the user population. Then, the respective density and tail
distribution functions are given by

5 (�r, G) = V2−1 exp
(
−V2−1 (G + �r)

)
�0

(
V
√
�rG

)
, (7)

F̄(�r, G) = Pr[X2
2 (V�r) ≥ VG] = &1

(√
V�r,

√
VG

)
. (8)

where &1 (0, 1) is the Marcum Q function of first order, and
�d (G) the modified Bessel function of first kind and order d.

Then, we finally have [14]

d?(C, C ′)
dC ′

=
dF̄(�r (C), `−1 (C ′))

dC ′
, `(G) =

∫ 1

0
F̄(�r (C), G)dC (9)

where, by expanding the left part of (9) we obtain d?(C, C ′) =
0(C, C ′)dC ′, with 0(C, C ′) the  -independent kernel

0(C, C ′) = − 5 (�r (C), `−1 (C ′))/ ¤̀ (`−1 (C ′)). (10)

A. Asymptotic Utility Functions

We use the previous equations to address some simplifica-
tions next. The SINR utility Γ̄[:, : ′] (4) is now turned to a
separable function of C and C ′ as Γ̄(C, C ′) = �r (C)/#̄C (C ′). Then:

1) The noise plus interference term #̄C (C ′) is the univariate
function of the user-order C ′

#̄C (C ′) = #0 + U\
∫ C′

0

∫ 1

0
A (D, g)�r (D)0(D, g)dDdg

+ U\
∫ 1

C′

∫ 1

0
�r (D)0(D, g)dDdg.

(11)

The first noise term is #̄C (0) = #0 + U\�̄ . It is worth
noting that the stated system model is an extension of
that in [11] where single integrals have been substituted
by double integrals that average the contributions of all
users. We then obtain a new differential equation that
models the evolution of the average noise term under a
dynamically ordered SIC. Applying the gradient operator
∇C′ (·) and dividing at both sides by #̄C (C ′) we get

¤̄#C (C ′)
#̄C (C ′)

= −U
∫ 1

0
Φ[Γ̄(D, C ′)]0(D, C ′)dD. (12)

Φ[Γ] , \ (1 − Y(Γ))Γ · PSR[Γ] is analogous to [11].
2) Asymptotic SE: The user-aggregate SE is now given in

the user-asymptotic case by the double integral

SE = U'
∫ 1

0

∫ 1

0
PSR[Γ̄(C, C ′)]0(C, C ′)dCdC ′. (13)

IV. OPTIMIZATION OF THE DYNAMICALLY ORDERED SIC
In this section, we address system optimization for deter-

mining the most favorable asymptotic energy function �r (C)
that maximizes the SE (13) under the average energy constraint∫ 1

0
�r (C)dC = �̄ , (14)

which can be contextualized in some satellite settings to
constrain energy expenditure [11]. First of all, we manipulate
previous equations to simplify the posterior optimization. We
are interested in rewriting (12)–(13), which depend on 0(C, C ′)
(10), in a way so as to suppress the dependence on the inverse
function `−1 (C ′). The subsequent steps are followed:

1) Noise plus interference term: We apply over (12) the
change of variable C ′ = `(G) and define the noise term
#̃C (G) , #̄C (`(G)), for which (12) admits the following simpli-
fied version with the initial term #̃C (∞) = #̄C (0) = #0 + U\�̄ :

¤̃#C (G)
#̃C (G)

= U
∫ 1

0
Φ

[
�r (C)
#̃C (G)

]
5 (�r (C), G)dC, (15)

2) Asymptotic SE: The same change of variable is applied
over (13) under the differential dG = [ ¤̀ (`−1 (C ′))]−1dC ′, so that
0(C, C ′)dC ′ is substituted by − 5 (�r (C), G)dG with the integral
limits `−1 (0) = ∞ and `−1 (1) = 0, as:

SE = U'
∫ ∞

0

∫ 1

0
PSR

[
�r (C)
#̃C (G)

]
5 (�r (C), G)dCdG. (16)

A. Variational Calculus Problem

We remind that we want to maximize SE (16) under the
average energy constraint (14) provided that the sought user-
energy distribution �r (C) generates such a #̃C (G) satisfying the
dynamic equation (15). We have the optimization problem

max
�r (C) , #̃C (G)

SE s.t. eqs. (14)–(15). (17)

For better readability, since all the expressions only depend
on �r (C) and #̃C (G), hereafter, we consider them denoted �r
and #̃C , and the following definitions:

�[�r, #̃C , G] , PSR[�r/#̃C ] · 5 (�r, G), (18)
�[�r, #̃C , G] , Φ[�r/#̃C ] · 5 (�r, G). (19)

With regard to �r, we adopt discontinuous or broken extremal
[15, Ch. 3.15] solutions to our problem, more concretely,
piecewise continuously differentiable candidates comprising a
finite number of pieces ?. Piece : is indicated as � :r (C), or
simply � :r . Regarding the term #̃C , we consider continuously
differentiable solutions in G ≥ 0. Then, we resort to variational
calculus tools to derive the stationary points of (17).

Therefore, we formulate the Lagrangian for a fixed partition
of the variable 0 ≤ C ≤ 1, C0, . . . , C? with C0 = 0 and C? = 1. We
impose the constraint (14) using the scalar _, and the equation
(15) for each G ≥ 0 using V(G). Then,

L ,
∫ ∞

0

?∑
:=1

∫ C:

C:−1

�[� :r , #̃C , G]dCdG − _
( ?∑
:=1

∫ C:

C:−1

� :r dC − �̄
)

−
∫ ∞

0
V(G)

( ¤̃#C
#̃C
− U

?∑
:=1

∫ C:

C:−1

�[� :r , #̃C , G]dC
)
dG. (20)

We follow the rationales in [15] to solve it in each of the
adopted function spaces. The extensive formal proof is omitted
due to lack of space, and only its main steps are shown. Firstly,
the Euler-Lagrange operator (m�r−∇Cm ¤�r ) (·) is applied over the
integrand associated with variable C to obtain the equation that
the stationary � :r must satisfy:∫ ∞

0

[
m�r� + UV(G)m�r�

]
dG = _ in C:−1 ≤ C < C: (21)

The explicit form for partial derivatives is omitted.
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Fig. 1. Spectral efficiency versus traffic load U.

Secondly, (m#̃C
−∇Gm ¤̃#C

) (·) is applied over the integrand
w.r.t. G so as to obtain the condition for the stationary #̃C :

?∑
:=1

∫ C:

C:−1

[
�#̃C
+ UV(G)�#̃C

]
dC = ¤V(G)/#̃C in G ≥ 0 (22)

with the initial value ¤V(0) = 0. Now, we discuss the obtained
results. Specifically, we focus on the stationary � :r in (21),
which integrates the bivariate function m�r�+UV(G)m�r� under
G. This gives, by defining the non-linear function �, the result
of the left part of (21), and by recovering the argument C

� (� :r (C)) = _ in C:−1 ≤ C < C: . (23)

Since the former needs to be satisfied in C:−1 ≤ C < C: , the
only solution is to have intervals with constant (C-independent)
levels � :r (C) = � :r . Then, the stationary �r (C) obey piecewise
constant structures regardless of the partition of C.

B. Vector Calculus Problem
Due to the complexity of determining the globally optimal

solution, we propose a complexity-affordable search to deter-
mine a competitive locally-optimal solution.

We particularize (17) with the stationary structure compris-
ing ? constant pieces. Therefore, we address in (25a)–(25e)
two optimizations. Firstly, for a temporary value of ?, we solve
the inner vector optimization under

Kr , [�1
r , �

2
r , . . . , �

?
r ]) , �t ,

[
ΔC1,ΔC2, . . . ,ΔC?

])
. (24)

Secondly, the remaining parameter to determine is the number
of pieces ?, and that, as it can only take discrete values, we
address by enumerative search in the outer problem. We have:

max
?≥1

max
Kr ,�t

∫ ∞

0
�t) �[Kr, #̃C (G), G]dG (25a)

s.t. �̄ = �t) Kr , 1 = �t) 1? (25b)

s.t.
#̃C (G)
#̄C (0)

= exp
(
−U

∫ ∞

G
�t) �[Kr, #̃C (D), D]dD

)
(25c)

s.t. Kr ≥ 0? , �t > 0? (25d)

s.t. � 8r ≥ � 8+1r , 1 ≤ 8 ≤ ?−1 (25e)

In the previous problem, we have turned the differential
equation (15) to the integral equation (25c), and we have
incorporated the constraint (25e) to consider ordered solutions.
More details about its numerical resolution are addressed next.
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Fig. 2. Effective number of pieces ? versus traffic load U.

C. Numerical Implementation and Computational Benefits

Even if we reduce the searching from a function space to a
parameter space, (25a)–(25b) is also complex.

The inner problem in (25a)–(25e) is non-linear and non-
convex since it depends on the specific forms of PSR[Γ] and
Φ[Γ], which present several intervals of concavity. We follow
an easy strategy with a high performance/complexity ratio:
we solve it using sequential quadratic programming, where
local-optimality is ensured by checking the Hessian, we repeat
the algorithm #init times with random initialization of Kr and
�t, and keep the solution that achieves higher SE. Moreover,
to simplify its numerical evaluation, integrals are turned to
Riemann sums in G ∈ [0, Gmax] with A intervals: G1, . . . , GA . The
noise terms #̃C (G1≤8≤A ) are computed recursively as follows:
(i) #̃C (GA ) = #̄C (0) for GA = Gmax; and (ii) #̃C (G8−1) = #̃C (G8) ·
exp

(− UA �t) �[Kr, #̃C (G8), G8]
)

for 8 = 2, . . . , A .
Regarding the outer optimization, we incorporate a halting

policy to stop the enumerative search in ? when, for increasing
?, we experiment insignificant changes to the locally-optimal
solution. We stop the search in ? when we obtain for two
consecutive ?-values singular solutions having � 8r � �

9
r for

some 8, 9 , or some ΔC: ≈ 0.

V. SIMULATION RESULTS

We have considered a short-packet communication setting
where users use payload =4 = 360 and preamble lengths (in
symbols) 40 and 80, which constitute the 10% and 19% of
the total packet duration. Coding and modulation are jointly
characterized by a PER vs. SINR curve PER[Γ] extracted from
the maximal channel coding rate at blocklength =4 and the
encoding rate ' = 1 bps/Hz. For validation we consider, as
in [11]–[13], a SINR-independent uncanceled energy fraction
Y(Γ) = 0.01 that models systematic inaccuracies in waveform
reconstruction. The decorrelation factor \ is set to 1, and the
average energy constraint �̄/#0 = 10dB.

The first part of this section comprises a theoretical study
of the distributions computed under rationales in Section IV-C
with A = 1000 points, Gmax = 100 and #init = 10. Fig. 1
depicts the SE for perfectly [11] (square) and dynamically
(circle, triangle) ordered SIC. The maximum SE degradation
for preambles of 40 and 80 symbols is about 35% and 28%,
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Fig. 3. User-energy distribution �r (C) at the (high) activity load U = 1.80.

respectively. SE strongly depends on the variance of user-
energy estimations at high U, whereas imperfect estimations
cause negligible detriment on SE at low U. NOMA shows
significant SE improvement relative to OMA.

We draw in Fig. 2 the effective (after correcting singulari-
ties) number of pieces that comprise the locally optimal dis-
tributions. The uniform distribution �r (C) = �̄ (? = 1) is only
optimal at U = 0, whereas more pieces appear at increasing
U. A complex interaction exists between: (i) increasing ? to
approach the distribution with optimal UO and thus, improve
SIC’s performance; and (ii) reducing ? to diminish the impact
of energy estimations on the UO establishment.

The obtained user-energy distributions are depicted in Fig.
3 for a single traffic load. The optimum �r (C) under optimal
UO is almost exponential (square) [11]. When the UO is set
as a function of energy estimates in a large network, it is
better, instead of allocating exponentially decaying energies
[10], [11], to conform groups of users under equal energy. An
intuitive rationale for that piecewise constant structure is that
the estimation of the strongest user (a single user) is equivalent
to the estimation of any user from the same group. For the
cases studied in Fig. 3, we found ? = 4 pieces for => = 40
(triangle), with the last level set to zero so as to avoid the
transmission of 10% of users. For => = 80 symbols (circle),
we found ? = 5. In the OMA case, energy estimations do not
affect SE, which is optimized under �r (C) = �̄/C∗ in 0 ≤ C < C∗
and �r (C) = 0 in C∗ ≤ C ≤ 1 with C∗ = min{1, 1/U}.

The second part of this section assesses, empirically, the
behavior of SIC for the distribution depicted in Fig. 3 using
red diamonds. We average 104 runs of the SIC implementation
in [14, Section II-C]: (i) estimate  symbol energies from =>-
symbol preambles; (ii) order users as (3); and (iii) perform
SIC. The user-asymptotic behavior accurately predicts the
empirical PERs for  ≥ 115 users.

VI. CONCLUSION

We have analyzed a large-user network transmitting pack-
ets towards a practical gateway performing SIC. We have
considered the same codebook for all users together with
random spreading signatures, and that the resulting multiple
access interference at the output of the matched filter follows a
Gaussian distribution. For user-packet demodulation, we have
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Fig. 4. Individual performances in terms of the PER each user experiments.

adopted a SIC gateway that estimates energies of all users at
the initial stage by preamble cross-correlations, and proceeds
in non-increasing order of the former estimates. We have
analyzed the user-asymptotic regime and solved a variational
problem that concludes that the user-energy distribution at
reception that maximizes the SIC’s performance (spectral
efficiency) is a piecewise constant function defined from a
finite set of energy levels. Yet, an analytic expression or bound
to the globally optimal number of pieces remains to be found.
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