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Abstract In this work we analyze self-adjoint boundary value problems on
networks for Schrödinger operators, in which a part of the boundary with a
Neumann condition is always considered. We first characterize when the energy
is positive semi-definite on the space of functions satisfying the null boundary
conditions. To do this, the fundamental tools are the Doob transform and the
discrete version of the trace function. Then, we raise eigenvalue problems with
respect to a weight for general boundary value problems and we prove the
discrete version of the Mercer Theorem. Finally, we apply the obtained results
to a Dirichlet-Robin boundary value problem on a star-like network.
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1 Introduction

The spectral theory for the Poisson equation, for the Dirichlet problem or even
for the Neuman problem on networks, has been widely analized in the literature
for the combinatorial Laplacian or for the normalized Laplacian, see [13–15,
17,20,23,24]. In addition, the study of eigenvalues of the Poisson equation for
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Schrödinger operators has been treated in [9]. In most of the above mentioned
works no weights are considered, except for the case of the Neumann eigenvalue
where the weight is the degree of the vertices, [13]. Moreover, recently B.
Hua et. alt. ([21,22]) have considered eigenvalue Robin type problems for the
probabilistic Laplacian in the context of Cheeger estimates.

In this work we consider general self-adjoint boundary value problems in
which there always exists a part of the boundary with Neumann or Robin
condition, since the other boundary conditions have already been considered,
see for instance [1]. Another novelty of the present work is the consideration of
Schrödinger operators with arbitrary potential. Moreover, we raise the eigen-
value problems with respect to general weights on the vertex set. Therefore,
our work includes the usual case where the weight is given by the degree. This
kind of problems represents the discrete version of self-adjoint boundary value
problems for second order elliptic differential operators in divergence form on
a compact Riemannian manifold with boundary and can be formulated as

Lq(u) = f on F,
∂u

∂n
F

+ qu = g on F
N

and u = h on F
D
.

In the discrete setting, the above mixed Dirichlet-Robin boundary value prob-
lem can be interpreted as the linear system whose coefficient matrix is irre-
ducible and has the following block structure

A =

(
L −C
−CT D

)
where D is a diagonal matrix with positive diagonal entries, C ≥ 0 and L is
a symmetric Z-matrix . Therefore, the results here obtained could be applied
in this matrix context. From the probabilistic point of view the presence of a
mixed boundary condition corresponds to a random walk with both absorbent
states and reflecting barriers.

This manuscript is organized as follows. We first define the discrete version
of the trace function between Sobolev spaces, which allows us to consider
null Robin boundary conditions and to reduce the dimension of the problem
by incorporating the boundary conditions to the Schrödinger operator. This
technique generalizes the methods used in [16,21,22], where the Neumann
problems on subgraphs were reduced to problems of Laplacians on graphs
without boundary; that is, Poisson equations.

Following the guidelines provided by the differential case, we characterize
when the Energy is positive semi-definite on the subspace of functions that
vanish the boundary conditions. For that, the description of admissible po-
tentials throughout Doob potentials that also verify a discrete Poincaré type
inequality is essential. As a consequence we get the discrete version of the
variational characterization of the solution; that is, the Dirichlet Principle.

In Section 4 we define the different resolvent kernels associated with the
boundary value problem and we show their relationship through the addition
of suitable projectors. Among the kernels, we emphasize the so-called Green
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kernel whose associated matrix is the group inverse of the matrix associated
with the boundary value problem. As Lq is a Hilbert-Schmith operator, we
prove through the spectral theorem the existence of an orthonormal basis of
eigenfunctions with respect to an arbitrary weight and hence, we manage to
prove the corresponding Mercer Theorem.

We end the paper with the application of the obtained results to the case of
a star-like network. In particular, we compute the eigenvalues and eigenfunc-
tions for a Dirichlet-Robin boundary value problem on a star-like network and
we give explicit expressions of the Green operators and of the inverse operator
in the regular case.

2 Preliminaries

In this section we briefly present the main definitions and results about linear
difference operators on networks that will be useful in the rest of the paper,
see [10] for a more detailed description.

Given a nonempty finite set V , the set of real valued functions on V ,
respectively the set of non-negative functions, is denoted by C(V ), respectively
by C+(V ), and for any x ∈ V , εx ∈ C(V ) stands for the Dirac function at x.
If u ∈ C(V ), its support is given by supp(u) = {x ∈ V : u(x) 6= 0}. Moreover,
if F is a nonempty subset of V , |F | denotes its cardinal, χ

F
its characteristic

function and we consider the sets C(F ) = {u ∈ C(V ) : supp(u) ⊂ F} and
C+(F ) = C(F ) ∩ C+(V ). We call weight on F any function σ ∈ C+(F ) such
that supp(σ) = F and denote by Ω(F ) the set of weights on F . Alternatively,
when u ∈ C(V ) the notation u ≥ 0 on F means that uχ

F
∈ C+(F ), whereas

the notation u > 0 on F means that uχ
F
∈ Ω(F ).

For any u ∈ C(F ), we define the integral of u as∫
F

u =

∫
F

u(z)dz =
∑
z∈V

u(z).

Given σ ∈ Ω(F ), the map 〈·, ·〉σ : C(V )× C(V ) −→ R defined as

〈u, v〉σ =

∫
F

uvσ

is bilinear and positive semi-definite. The associated seminorm is denoted by
||·||σ and clearly ||u||σ = 0 iff u = 0 on F . Therefore, 〈·, ·〉σ determines an inner
product on C(F ). When σ = χ

F
, then 〈·, ·〉σ and || · ||σ are denoted by 〈·, ·〉

F

and || · ||
F

, respectively. In the sequel we consider Ω
F

the set of normalized

weights defined as Ω
F

=
{
σ ∈ Ω(F ) :

∫
F

σ = |F |
}

. Therefore, χ
F

is the

unique constant weight belonging to Ω
F

.
Any function K : V × V −→ R is called a kernel on V and we denote

by C(V × V ) the space of kernels. Moreover, given two nonempty subsets
F,H ⊆ V , C(F × H) denotes the set of kernels K ∈ C(V × V ) such that
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K(x, y) = 0 if (x, y) /∈ F × H. If we label the elements of F and H, then
each function u ∈ C(H) can be identified with a vector order |H| given by
u =

(
u(x)

)
x∈H and each kernel on F ×H can be identify with the matrix of

order |F | · |H| given by K =
(
K(x, y)

)
x∈F
y∈H

. Throughout this paper we strongly

use these identifications.
If K ∈ C(F ×H) is a kernel, for each x ∈ F and any y ∈ H we denote by

Kx and Ky the functions of C(F ) and C(H) defined respectively by Kx(y) =
Ky(x) = K(x, y). Moreover, we define the homomorphism associated with K
as K : C(H) −→ C(F ) that assigns to each f ∈ C(H), the function K(f)(x) =∫
H

K(x, y) f(y) dy for all x ∈ V . Notice that Ky = K(εy) for any y ∈ H.

An important example of kernels in C(F × H) are those associated with
projectors. Specifically, given u ∈ C(F ), v ∈ C(H), we call projector on u along
v the kernel u⊗ v, defined as (u⊗ v)(x, y) = u(x)v(y) for any x, y ∈ V . Notice
that K ∈ C(F ×H) is a projector iff its associated matrix has rank 1 and then
its associated homomorphism is K(f) = 〈v, f〉

H
u.

The relationship between kernels, integral operators and endomorphisms
is given by the following result. Its first part can be seen as a discrete version
of Schwartz’s Kernel Theorem, because of the natural identification between
C(F ) and its dual space, see [3, Proposition 5.1].

Proposition 1 (Kernel Theorem) Each endomorphism of C(F ) is an integral
operator associated with a kernel on F which is uniquely determined. Moreover,
if K is an integral operator on F and K is its associated kernel, then K is self-
adjoint on C(F ); that is, 〈K(u), v〉

F
= 〈K(v), u〉

F
for any u, v ∈ C(F ) iff K is

symmetric, that is K(x, y) = K(y, x), for all x, y ∈ F . Moreover, if ∅ 6= A ⊆ F ,
then ImgK ⊂ C(A) iff K ∈ C(A× F ) and C(F \A) ⊂ kerK iff K ∈ C(F ×A).

The symmetric kernels K ∈ C(F × F ) such that K(x, y) ≤ 0 for x 6= y
play a fundamental role in many areas of Applied Mathematics. After labeling
F , they can be identified with symmetric Z-matrices of order |F |, see [8].
Moreover if for t ∈ R we consider Kt = K + tI, where I(x, y) = 0 for x 6= y
and I(x, x) = 1, then the matrix identified with Kt is positive definite for t
large enough and hence it is an M -matrix. Taking into account the properties
of irreducible M -matrices, we have the following key result, see [8, Th. 4.16]
for its proof.

Lemma 1 Consider K ∈ C(F ×F ) a symmetric kernel such that K(x, y) ≤ 0
for x 6= y and such that the matrix of order |F | identified with it is irreducible.
If K : C(F ) −→ C(F ) is the endomorphism determined by K, then there exists
ω ∈ Ω(F ) and α ∈ R such that K(ω) = αω.

In the framework of Discrete Mathematics it is usual to introduce the kernels
with the properties mentioned in the above lemma as the main operators on a
network. More specifically, if we consider a symmetric function c : V × V −→
[0,+∞) satisfying that c(x, x) = 0, then the pair Γ = (V, c) is called network,
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where c is named the conductance of the network and we say that vertex x is
adjacent to vertex y iff c(x, y) > 0. We always assume that Γ is connected.

The function κ ∈ C+(V ) defined as κ(x) =
∑
y∈V

c(x, y) for any x ∈ V is

called the degree of Γ . The connectivity assumption on V implies that κ ∈
Ω(V ).

The combinatorial Laplacian or simply the Laplacian of the network Γ is
the endomorphism of C(V ) that assigns to each u ∈ C(V ) the function

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
, x ∈ V.

Given q ∈ C(V ), the Schrödinger operator on Γ with potential q is the endomor-
phism of C(V ) that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu.
The kernel associated with Lq is

Lq(x, y) =

{
−c(x, y), y 6= x,

κ(x) + q(x), y = x

and hence, if Lq is the matrix identified with it, then Lq is an irreducible sym-
metric Z-matrix. Conversely, each irreducible symmetric Z-matrix of order |V |
can be identified with a Schrödinger operator on a connected network whose
vertex set is V . This identification has been strongly used by the authors, see
[5].

Given F ⊆ V , the boundary of F is the set δ(F ) =
{
z ∈ V \ F : c(z, y) >

0 for some y ∈ F
}

and the closure of F is the set F̄ = F ∪ δ(F ). Clearly, F
is a proper subset; that is, ∅ 6= F ⊂ V , iff δ(F ) 6= ∅ and then, the boundary
degree of F is κ

F
∈ Ω

(
δ(F )

)
defined as κ

F
(x) =

∑
y∈F

c(x, y) for any x ∈ δ(F ).

It is easy to prove that when F is connected if F ⊆ H ⊆ F̄ , then H is also
a connected set.

If F is a proper subset of V , for each u ∈ C(F̄ ) we define the normal
derivative of u on F as the function in C(δ(F )) given by

∂u

∂n
F

(x) =
∑
y∈F

c(x, y)
(
u(x)− u(y)

)
= κ

F
(x)u(x)−

∑
y∈F

c(x, y)u(y),

for any x ∈ δ(F ).

The normal derivative on F is the operator
∂

∂n
F

: C(F̄ ) −→ C(δ(F )) that

assigns to any u ∈ C(F̄ ), its normal derivative on F .
Given F ⊂ V a proper subset we consider c

F
= c·χ

(F̄×F̄ )\(δ(F )×δ(F ))
. Clearly,

if u ∈ C(F̄ ), then

L(u)(x) =
∑
y∈F̄

c
F

(x, y)
(
u(x)− u(y)

)
, x ∈ F,

∂u

∂n
F

(x) =
∑
y∈F̄

c
F

(x, y)
(
u(x)− u(y)

)
, x ∈ δ(F ).



6 A. Carmona et al.

Therefore, if we define Γ (F ) as the network whose vertex set is F̄ and whose
conductance is c

F
and we consider LF its combinatorial Laplacian, then for

any u ∈ C(F̄ ) we have that LF (u) = L(u) on F , whereas LF (u) =
∂u

∂n
F

on

δ(F ). In particular, κ
F

(x) is the degree of x ∈ δ(F ) in this new network.
The above identities allow us to show that the relation between the values

of the Schrödinger operators on F and the values of the normal derivative at
δ(F ) is given by the First Green Identity, see for instance [3,4]:∫

F

vLq(u) =
1

2

∫
F̄

∫
F̄

c
F

(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy

+

∫
F

quv −
∫
δ(F )

v
∂u

∂n
F

,

for any u, v ∈ C(F̄ ). A direct consequence of the above identity is the so-called
Second Green Identity∫

F

(
vLq(u)− uLq(v)

)
=

∫
δ(F )

(
u
∂v

∂n
F

− v ∂u

∂n
F

)
, for any u, v ∈ C(F̄ ).

We define the energy associated with F and q as the symmetric bilinear
form EFq : C(F̄ )× C(F̄ ) −→ R given for any u, v ∈ C(F̄ ) by

EFq (u, v) =
1

2

∫
F̄

∫
F̄

c
F

(x, y)
(
u(x)− u(y)

) (
v(x)− v(y)

)
dx dy +

∫
F̄

q u v.

Clearly to evaluate the energy on the subspace C(F̄ ), the values of the potential
q on V \ F̄ are irrelevant and hence we can suppose, without loss of generality,
that q ∈ C(F̄ ). From the First Green Identity, for any u, v ∈ C(F̄ ) we get that

EFq (u, v) =

∫
F

vLq(u) +

∫
δ(F )

v

[
∂u

∂n
F

+ qu

]
. (1)

3 Discrete trace function and admissible potentials

In this section we study mixed boundary value problems for Schrödinger op-
erators. Specifically, we are interested in obtaining necessary and sufficient
conditions for the existence and uniqueness of solution of such a problems.

Throughout the paper, we consider F ⊂ V a proper subset, ∅ 6= F
N
⊂ δ(F )

and F
D

= δ(F ) \ F
N

; that is, δ(F ) = F
D
∪ F

N
is a partition of δ(F ), where

F
D

can be the empty set. In addition, we always assume that F ∪ F
N

is a
connected subset on the network Γ (F ); that is, it is connected with respect
to the conductance c

F
. Then, we define the outer degree of F , with respect to

F
D

, as the function p
F
∈ C(F ) given by

p
F

(x) =
∑
y∈F

D

c(x, y) =
∑
y∈F

D

c
F

(x, y) for any x ∈ F . (2)
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Therefore, p
F
∈ C+(F ) and moreover p

F
= 0 when F

D
= ∅, whereas ∅ 6=

supp(p
F

) ⊆ δ(V \ F ) when F
D
6= ∅.

Our aim is to study self-adjoint boundary value problems associated with
the Schrödinger operator with potential q ∈ C(F ∪ F

N
). Specifically, for any

f ∈ C(F ), g ∈ C(F
N

) and h ∈ C(F
D

) the boundary value problem on F with
data f, g, h, BVP in the sequel, consists on finding u ∈ C(F̄ ) such that

Lq(u) = f on F,
∂u

∂n
F

+ qu = g on F
N

and u = h on F
D
. (3)

Any u ∈ C(F̄ ) satisfying the above identities is called solution of the BVP.
When g = 0 and h = 0, then Problem (3) becomes

Lq(u) = f on F,
∂u

∂n
F

+ qu = 0 on F
N

and u = 0 on F
D

(4)

and it is called semi-homogeneous boundary value problem with data f . The
associated homogeneous boundary value problem consists in finding u ∈ C(F̄ )

such that Lq(u) = 0 on F ,
∂u

∂n
F

+ qu = 0 on F
N

and u = 0 on F
D

. The space

of solutions of the homogeneous boundary value problem is denoted by VHq ,

whereas the subspace of C(F̄ ) formed by the functions vanishing the boundary
conditions is denoted by Vq. Therefore,

Vq =
{
u ∈ C(F̄ ) :

∂u

∂n
F

+ qu = 0 on F
N

and u = 0 on F
D

}
and clearly, we have VHq ⊂ Vq ⊂ C(F ∪ FN ). The boundary value problem is

called regular when VHq = {0}. Observe that for any u ∈ C(F ∪ F
N

), we have
that

EFq (u, u) =
1

2

∫
F∪F

N

∫
F∪F

N

c
F

(x, y)
(
u(x)− u(y)

)2
dx dy +

∫
F∪F

N

(q + p
F

)u2.

(5)
Moreover, if P

F
= min

x∈supp(p
F

)
{p

F
(x)}, then for any q ≥ −P

F
χ

supp(p
F

)
, it is

satisfied that

EFq (u, u) ≥ 0

and hence the energy is positive semi-definite. We can interpret the value P
F

as a discrete version of the Poincaré constant.
The following result is a by-product of the Green Identities, summarized

in Identity (1).

Lemma 2 (Self-adjointness) The boundary value problem (3) is self-adjoint;
that is, ∫

F

vLq(u) =

∫
F

uLq(v) = EFq (u, v), for all u, v ∈ Vq.
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Problem (3) is generically known as a Mixed Dirichlet-Robin problem and,
in particular, includes the following boundary value problems:

(i) Neumann problem: q = 0 on F
N

, F
N

= δ(F ) and hence F
D

= ∅.
(ii) Robin problem: q 6= 0 on F

N
, F

N
= δ(F ) and hence F

D
= ∅.

(iii) Mixed Dirichlet-Neumann problem: F
N
, F
D
6= ∅ and q = 0 on F

N
.

The boundary value problem (3) when q ∈ C+(F̄ ) has been extensively
treated in the literature, see for instance [2,4,7,13,18] where the existence
and uniqueness of solutions was established. It corresponds to linear systems
with d.d. M -matrices as coefficient matrix, see [5]. The analysis for Dirichlet
Problem (F

N
= ∅) and Poisson equation (F = V ) for more general potentials

has been analyzed in [3,4] and correspond to linear systems with a general
symmetric M -matrix as coefficient matrix. As we are assuming that F

N
6= ∅,

we are not considering here neither Dirichlet nor Poisson problems.

3.1 The trace map

The most common way to solve self-adjoint boundary value problems in PDE
is to raise the weak formulation and to apply the so-called Dirichlet Principle
on the associated affine subspace. The discrete version of this methodology
will be considered in the following section. If the boundary value problem is
of Dirichlet type, another common methodology is to built a smooth enough
function such that the value on the boundary coincides with the boundary data
and hence apply again the Dirichlet principle to a vector subspace. However,
for mixed boundary value problems this technique is unusual because it would
requiere a very precise knowledge of the trace function to obtain a smooth
enough function satisfying the boundary conditions, see [19, Vol. 2]. In the
discrete case, the difficulties due to the regularity of functions and domains
disappear and in very general conditions (that are in force when the Dirichlet
principle is applicable), the trace map can be explicitly described.

Therefore, we first establish that under a simple condition, for any data
the BVP (3) can be transformed into a semi-homogeneous one; that is, a BVP
in which the data is supported by F , or equivalently in which the boundary
conditions are null. Recall that we are assuming F

N
6= ∅ and F∪F

N
is connected

in Γ (F ).

Lemma 3 Suppose that q(x) + κ
F

(x) 6= 0 for any x ∈ F
N

. If given f ∈ C(F ),
g ∈ C(F

N
) and h ∈ C(F

D
), we consider ug ∈ C

(
F
N

)
and fg,h ∈ C(F ) defined

respectively as

ug =
g

q + κ
F

and fg,h = L(ug + h) · χ
F
,

then u is a solution of BVP (3) with data f, g, h iff u = v+ ug + h where v is
a solution of the semi-homogeneous BVP (4) with data f − fg,h.
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Observe that for any x ∈ F we have

L(ug)(x) = −
∑
y∈F

N

c(x, y)g(y)

q(y) + κ
F

(y)
and L(h)(x) = −

∑
y∈F

D

c(x, y)h(y),

and hence fg,h depends only on the values of the data g and h.
Next we prove that under the same hypothesis than before, the values on

F
N

of any solution of BVP (3), depend only on its values on F .

Proposition 2 Suppose that q(x) + κ
F

(x) 6= 0 for any x ∈ F
N

. Then, for
any u ∈ C(F ) there exists a unique extension of u to F ∪ F

N
, γ(u), such that

γ(u) ∈ Vq. Moreover, γ : C(F ) −→ C(F ∪ F
N

) is given by

γ(u)(x) =
1

q(x) + κ
F

(x)

∑
y∈F

c(x, y)u(y), x ∈ F
N
,

and establishes an isomorphism onto Vq. Therefore, dimVq = |F | and when
κ
F

+ q > 0 on F
N

, then ω ∈ Ω(F ) iff γ(ω) ∈ Ω(F ∪ F
N

).

Proof Given u ∈ C(F ∪ F
N

), then u ∈ Vq iff for any x ∈ F
N

we have(
q(x) + κ

F
(x)
)
u(x) =

∑
y∈F

c(x, y)u(y),

which, in particular, implies that the values of u on F
N

are uniquely determined
by the values of u on F ; in fact on δ(V \F ). Therefore, if for any u ∈ C(F ) we
define γ(u) ∈ C(F ∪ F

N
) as γ(u) = u on F and as

γ(u)(x) =
1

q(x) + κ
F

(x)

∑
y∈F

c(x, y)u(y), x ∈ F
N
,

then γ(u) extends u to F ∪ F
N

and moreover, γ(u) ∈ Vq.
Clearly γ : C(F ) −→ C(F ∪ F

N
) is linear and moreover Ker γ = {0}, since

γ(u) = 0 on F ∪ F
N

implies that u = 0 = γ(u) on F . In addition, given
u ∈ Vq it is obvious that u = γ(u · χ

F
), and hence Img γ = Vq; that is, γ is an

isomorphism onto Vq.
Finally, when q+κ

F
> 0 on F

N
, the last property follows from the expression

of γ(ω). ut

According with its continuous analogue, the map γ defined in the above
proposition, will be named trace map for F ∪ F

N
.

Notice that if q(x) ≤ −κ
F

(x) for some x ∈ F
N

, then Ω(F ∪ F
N

) ∩ Vq = ∅
and hence, no weight on F can be extend to a weight on F ∪F

N
satisfying the

boundary conditions of the BVP (3).
On the other hand, for any g ∈ C(F

N
) and for any u ∈ C(F ), the function

v = γ(u) + ug is the unique extension of u to F ∪ F
N

such that
∂v

∂n
F

+ qv = g

on F
N

.
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Next, we use the trace function to transform the mixed BVP into a Poisson
Equation on a network without boundary. Thus, we reduce the dimension of
the problem and moreover, this new formulation will allow us to tackle the
spectral analysis in the next section.

Suppose that q + κ
F
> 0 on F

N
and consider the network Γ̂ (F ) = (F, ĉ)

and the potential q̂ ∈ C(F ), where

ĉ(x, y) = c(x, y) +
∑
z∈F

N

c(x, z)c(z, y)

q(z) + κ
F

(z)
, q̂(x) = q(x) +

∑
z∈F

N

c(x, z)q(z)

q(z) + κ
F

(z)
,

for any x, y ∈ F , see Figure 1.

z

x

y

c(x, y)

c(x, z)

c(y, z)

F
N

F

Γ(F )

x

y

ĉ(x, y)F

Γ̂(F )

Fig. 1 Example of a network Γ (F ) and its associated Γ̂ (F ).

Compare the conductance of the above network with the expressions con-
sidered in [16, pg. 581] and [22, pg. 2169].

Proposition 3 The network Γ̂ (F ) is connected and for any u ∈ C(F )

L̂q̂(u) = Lq
(
γ(u)

)
on F .

Moreover, Lq is positive semi-definite (definite) on Vq iff L̂q̂ is positive semi-
definite (definite) on C(F ) and given v ∈ Vq, it is satisfied Lq(v) = 0 on F iff

L̂q̂(v · χF ) = 0 on F .

Proof Given x, y ∈ F there exist x0, x1, . . . , x` ∈ F ∪ F
N

such that x = x0,
x` = y and c

F
(xi, xi+1) > 0 for i = 0, . . . , `−1, since F ∪F

N
is connected with

the conductance c
F

.
If xi, xi+1 ∈ F , then ĉ(xi, xi+1) ≥ c(xi, xi+1) = c

F
(xi, xi+1) > 0.

If xi ∈ F and xi+1 ∈ FN , then xi+2 ∈ F and hence c(xi, xi+1)c(xi+1, xi+2) >
0, which implies that ĉ(xi, xi+2) > 0. Therefore, there exists a path form x to

y in Γ̂ (F ).
On the other hand, for any u ∈ C(F ) it is satisfied that for any x ∈ F

Lq
(
γ(u)

)
(x) =

(
q(x) + κ(x)

)
u(x)−

∑
y∈F

c(x, y)u(y)−
∑
z∈F

N

c(x, z)γ(u)(z)

=
(
q(x) + κ(x)

)
u(x)−

∑
y∈F

[
c(x, y) +

∑
z∈F

N

c(x, z)c(z, y)

q(z) + κ
F

(z)

]
u(y).
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Moreover, since q̂ + κ̂ = q + κ on F , it is satisfied that for any x ∈ F

L̂q̂(u)(x) = Lq
(
γ(u)

)
(x).

Finally, the above identity implies that for any u ∈ C(F ),

Êq̂(u, u) = Eq
(
γ(u), γ(u)

)
and the last claims follow. ut

We remark that the above proposition transforms a mixed boundary value
problem on F ∪ F

N
into a Poisson equation on F with respect to a new

Schrödinger operator. This is due to the fact that the values of a function
verifying the boundary condition on F

N
are uniquely determined by the val-

ues of the function on F . A particular version of this technique was use in
[16,22] in the context of Neumann boundary value problems for the combi-

natorial Laplacian. Therefore, given f ∈ C(F ), then L̂q̂(u) = f iff γ(u) is a
solution of the semihomogeneus BVP (4) with data f . Moreover, for any semi-
homogeneous mixed boundary value problem the Fredholm Alternative is in
force: Given f ∈ C(F ), Problem (4) has a solution iff 〈v, f〉

F
= 0, for any

v ∈ VHq . In particular, Problem (4) has a unique solution iff VHq is the trivial
subspace.

Observe that the procedure we have just described is the operational ver-
sion of the Schur complement method to solve linear systems. In this case,

L̂q̂ = Lq
/
D = Lq(F ;F )− C(F ;F

N
)D−1C(F

N
;F ),

where D is the diagonal matrix whose diagonal elements are k
F

(x) + q(x),
x ∈ F

N
. Moreover, the matrix associated with γ is[

I

−D−1C(F
N

;F )

]
.

3.2 Positive semi-definiteness of the energy

We now study the existence and uniqueness of solution for the BVP (3), see
[4] for a similar analysis when q ∈ C(F̄ ). Clearly, a sufficient condition for
VHq = {0} is that the energy is positive definite on Vq and, in turns, this
property holds when the energy is positive definite on C(F ∪ F

N
). Motivated

by this, a potential q ∈ C(F ∪ F
N

) is called admissible when the Schrödinger
operator Lq; that is, the energy Eq, is positive semi-definite on C(F ∪ F

N
).

Clearly, from Identity (5), the potential q ∈ C(F ∪ F
N

) is admissible when
q ≥ −p

F
on F ∪ F

N
. Moreover, Eq is positive definite except when q = −p

F

on F ∪ F
N

in which case EFq (u, u) = 0 for u ∈ C(F ∪ F
N

) iff u = aχ
F∪F

N
,

a ∈ R. Notice that the inequality q ≥ −p
F

allows q to take negative values on
supp(p

F
) ⊂ δ(F c) ⊂ F . Besides, the above inequality implies that q ≥ 0 on F

N

and hence q + κ
F
> 0 on F

N
.
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We can improve the above result in the sense that we can accurately deter-
mine the positive semi-definiteness of EFq on C(F ∪F

N
) and hence characterize

when q is admissible. To do this, it is useful to introduce a special class of
potentials. Given ω ∈ Ω(F ∪ F

N
), the Doob potential associated with ω is the

function qω ∈ C(F̄ ) defined as

qω = − 1

ω
L(ω) on F , qω = − 1

ω

∂ω

∂n
F

on F
N

and qω = 0 on F
D

, (6)

that clearly satisfies qω ∈ C(F∪FN ), qω > −κχF−κFχF
N

, and hence qω+κ
F
> 0

on F
N

. Notice that if ω ∈ Ω(F ∪ F
N

), then qω = qµ for any µ = aω, a > 0, see
also Lemma 5 below. This motivates us to consider for any σ ∈ Ω

F
the set

Ωσ(F ∪ F
N

) =
{
ω ∈ Ω(F ∪ F

N
) : ||ω||σ = 1

}
.

In particular, when σ = χ
F

the above set is denoted by Ω1(F ∪ F
N

). Notice

that for any σ ∈ Ω
F

, |F |− 1
2χ

F∪F
N

is the unique constant weight belonging to

Ωσ(F ∪ F
N

).
First we show that the function p

F
can be seen as a Doob potential asso-

ciated with constant weights on F ∪ F
N

.

Lemma 4 Given ω ∈ Ω(F ∪ F
N

), then

∫
F̄

ω (qω + p
F

) = 0 and moreover,

qω = −p
F

iff ω = aχ
F∪F

N
, a > 0. In particular, qω + p

F
takes positive and

negative values, except when ω = aχ
F∪F

N
, a > 0.

Proof Applying the Second Green Identity to ω and χ
F̄

, we get that∫
F̄

ωqω =−
∫
F

L(ω)−
∫
F
N

∂ω

∂n
F

∫
F
D

∂ω

∂n
F

=

=−
∫
F
D

∫
F

c(x, y)ω(y) dydx = −
∫
F

ω(y)p
F

(y)dy

and the first claim follows bearing in mind that supp(p
F

) ⊂ F . On the other
hand, if ω = aχ

F∪F
N

, a > 0, it is clear that its associated potential coincides

with −p
F

. Conversely, if qω = −p
F

, then L(ω) = ωp
F

on F ,
∂ω

∂n
F

= 0 on

F
N

, ω = 0 on F
D

and hence

∫
δ(F )

ω
∂ω

∂n
F

= 0. Applying now the First Green

Identity and the Identity (5), we obtain that∫
F∪F

N

ω2p
F

=

∫
F

ω2p
F

=

∫
F

ωL(ω)

=
1

2

∫
F∪F

N

∫
F∪F

N

c
F

(x, y)
(
ω(x)− ω(y)

)2
dxdy +

∫
F∪F

N

p
F
ω2
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which implies that∫
F∪F

N

∫
F∪F

N

c
F

(x, y)
(
ω(x)− ω(y)

)2
dxdy = 0

and hence that ω is constant on F ∪ F
N

, since F ∪ F
N

is connected for c
F

. ut

The motivation to define the class of Doob potentials appears clear after
the following key result. As its proof follows the same reasoning than in [3,
Identity 2.1], we omit it.

Theorem 1 (Doob Transform) Given ω ∈ Ω(F ∪ F
N

), then for any u ∈
C(F ∪ F

N
) the following identities hold:

L(u)(x) =
1

ω(x)

∑
y∈F∪F

N

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
− qω(x)u(x), x ∈ F,(

∂u

∂n
F

)
(x) =

1

ω(x)

∑
y∈F

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
− qω(x)u(x), x ∈ F

N
.

In addition, for any u, v ∈ C(F ∪ F
N

) we get that

EF (u, v) =
1

2

∫
F∪F

N

∫
F∪F

N

c
F

(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

) (
v(x)

ω(x)
− v(y)

ω(y)

)
dxdy

−
∫
F∪F

N

qωu v.

As a by-product of the Doob transform we obtain that if q ∈ C(F ∪ F
N

) is
such that q ≥ qω for some ω ∈ Ω(F ∪ F

N
) then EFq is positive semi-definite

and positive definite except when q = qω in which case EFq (u, u) = 0 iff u

is a multiple of ω. Then, EFq can be positive semi-definite even when q takes
non positive values on F ∪ F

N
. In fact, following the same reasoning as in [3],

we could show that there exist weights on F ∪ F
N

whose associated potentials
take always negative values except on a single vertex. Next we analyze the
properties of this class of potentials.

First, notice that Lemma 4 characterizes the constant weight from its as-
sociated potential. The following result shows that this is true for arbitrary
weights and its proof is analogue to the proof for the case F = V , see [3,
Lemma 2.1] .

Lemma 5 Given ω1, ω2 ∈ Ω(F ∪ F
N

), then qω1
≥ qω2

, iff qω1
= qω2

and this
occurs iff ω2 = aω1, a > 0.

As a by-product of the above Lemma, we obtain that fixed σ ∈ Ω
F

, if
ω1, ω2 ∈ Ωσ(F ∪ F

N
) satisfy that qω2 = qω1 , then ω2 = ω1.

The following result shows that any potential; that is, any function in
C(F ∪ F

N
) is closely related with a Doob potential. Its proof follows the same

arguments than in [3, Proposition 3.3], see also [5,12].
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Lemma 6 Given q ∈ C(F ∪ F
N

), there exist a unique ωq ∈ Ω1(F ∪ F
N

) and a
unique αq ∈ R such that q = qωq + αq on F ∪ F

N
. Moreover, q > −κ

F
on F

N

iff αq > − min
x∈F

N

{
ωq(x)−1

∑
y∈F

c(x, y)ωq(y)
}

.

Proof It suffices to apply Lemma 1 to the endomorphism LFq : C(F ∪ F
N

) −→
C(F ∪ F

N
) and hence, there exists αq ∈ R and ωq ∈ Ω1(F ∪ F

N
) such that

LFq (ωq) = αqωq. Therefore, αq = ω−1
q LFq (ωq) = q − qωq . ut

Although the above result would allows us to characterize when the energy
is positive semi-definite and would maintain the subspace VHq under control,
see the above mentioned references or the results below, it still does not fit
perfectly with the boundary value problem (3), since when q = qωq +αq, then

Lq(ωq) = αqωq on F and
∂ωq
∂n

F

+qωq = αqωq on F
N

. Therefore, ωq /∈ Vq, except

when αq = 0.
We can adequately modify our reasoning to obtain a more accurate rep-

resentation of any potential q ∈ C(F ∪ F
N

) satisfying q + κ
F
> 0 on F

N
as

a potential associated to a weight belonging to Vq. As we show next, this
representation is closely related with eigenvalues and eigenfunctions for the
BVP (3) and it can be interpreted as a discrete version of the Krein-Rutman
theorem for an elliptic differential operator, see [19, Vol. 3]. We first obtain
the claimed representation and then we apply it to the characterization of the
positive semi-definiteness of the energy.

Proposition 4 Given q ∈ C(F ∪F
N

) such that q > −κ
F

on F
N

, then for each
σ ∈ Ω

F
there exist a unique ω ∈ Ωσ(F ∪ F

N
) and a unique λ ∈ R such that

q = qω +λσ. Therefore, ω ∈ Vq, αqλ ≥ 0 and αqλ = 0 iff λ = αq = 0 and then
ω = ||ωq||−1

σ ωq.

Proof Suppose that q = qω1
+λ1σ = qω2

+λ2σ on F∪F
N

, where ω1, ω2 ∈ Ωσ(F∪
F
N

) and λ1, λ2 ∈ R. If λ2 ≥ λ1, then qω1
≥ qω2

on F ∪F
N

and hence ω2 = aω1,
a > 0, applying Lemma 5. Moreover, a = 1, since ω1, ω2 ∈ Ωσ(F ∪ F

N
) and

hence λ1 = λ2.
On the other hand, since σ = 0 on F

N
, the representation q = qω + λσ

implies that q = qω on F
N

. Therefore, we have
∂ω

∂n
F

+ qω =
∂ω

∂n
F

+ qωω = 0 on

F
N

, and hence ω ∈ Vq.
In addition, taking into account that q = qωq + αq = qω + λσ on F ∪ F

N

then applying the Second Green Identity we obtain that

λ

∫
F

ωωqσ − αq
∫
F

ωωq =

∫
F

(
ωqL(ω)− ωL(ωq)

)

=

∫
δ(F )

(
ω
∂ωq
∂n

F

− ωq
∂ω

∂n
F

)
= αq

∫
F
N

ωωq,
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which implies that

λ

∫
F

ωωqσ = αq

∫
F∪F

N

ωωq.

Therefore, αq and λ have the same sign and, in addition, αq = 0 iff λ = 0.
Moreover, αq = λ = 0 iff qωq = qω; that is, ω = ||ωq||−1

σ ωq.

Given σ ∈ ΩF , let us consider the operator Kσ : C(F ) −→ C(F ), defined
for any u ∈ C(F ) as

Kσ(u) = σ−
1
2Lq

(
γ(σ−

1
2u)
)

= σ−
1
2 L̂q̂(σ−

1
2u).

If we label the vertices of F , then the kernel Kσ has associated a square matrix
Kσ of order |F |. Moreover, since

Kσ(x, y) =

{
−ĉ(x, y)σ−

1
2 (x)σ−

1
2 (y), x 6= y,(

κ̂(x) + q̂(x)
)
σ−1(x), y = x,

we have that Kσ is an irreductible, symmetric Z-matrix, since Γ̂ (F ) is con-
nected. From Lemma 1, there exists ω̃ ∈ Ω(F ) and λ ∈ R such that that

σ−
1
2L
(
γ(σ−

1
2 ω̃)
)

+ qσ−1ω̃ = Kσ(ω̃) = λω̃ on F.

Defining ω = γ(σ−
1
2 ω̃), we get that ω ∈ Ω(F ∪F

N
)∩Vq and that q = qω +λσ.

ut

We are now ready to characterize the positive definiteness of the energy on
F ∪ F

N
.

Proposition 5 Given q ∈ C(F ∪ F
N

) the following statements are equivalent:

(i) EFq is positive definite on C(F ∪ F
N

).
(ii) αq > 0.
(iii) There exists ω ∈ Ω(F ∪ F

N
) such that q ≥ qω on F ∪ F

N
and q 6= qω.

(iv) q > −κ
F

on F
N

and EFq is positive definite on Vq.
(v) For any σ ∈ Ω

F
, there exists ω ∈ Ω(F ∪ F

N
) such that q = qω + λσ and

λ > 0.
(vi) There exists ω ∈ Ω(F ∪ F

N
) ∩ Vq such that q ≥ qω on F and q 6= qω on F .

Proof The proof itinerary is

(i) =⇒ (ii) =⇒ (iii) =⇒ (i) =⇒ (iv) =⇒ (v) =⇒ (vi) =⇒ (iii).

In many of the steps of the proof we use that given ω ∈ Ω(F∪F
N

) and applying
the Doob transform we have

EFq (u, u) =
1

2

∫
F∪F

N

∫
F∪F

N

c
F

(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

dxdy

+

∫
F∪F

N

(q − qω)u2 ≥
∫
F∪F

N

(q − qω)u2,



16 A. Carmona et al.

for any u ∈ C(F ∪ F
N

).
(i) =⇒ (ii): Since q = qωq + αq applying the Doob transform to ω = ωq we

obtain that

0 < EFq (ωq, ωq) = αq

∫
F∪F

N

ω2
q

which implies that αq > 0.
(ii) =⇒ (iii): It suffices to take ω = ωq to conclude that in fact q > qω on

F ∪ F
N

.
(iii) =⇒ (i): When (iii) is in force, then given u ∈ C(F ∪ F

N
), EFq (u, u) ≥∫

F∪F
N

(q − qω)u2 ≥ 0 and moreover EFq (u, u) = 0 iff u = aω, a ∈ R, and

(q − qω)u2 = a2ω2(q − qω) = 0 on F ∪ F
N

, which implies a = 0.
(i) =⇒ (iv): Since (i) implies (iii), then for some ω ∈ Ω(F ∪ F

N
), q ≥ qω >

−κ
F

on F
N

. The last conclusion follows taking into account that Vq ⊂ C(F∪FN ).
(iv) =⇒ (v): From Proposition 4, given σ ∈ Ω

F
we have ω ∈ C(F ∪F

N
) and

λ ∈ R such that q = qω+λσ, which also implies that ω ∈ Vq. On the other hand,

applying the Doob transform to ω we obtain that 0 < EFq (ω, ω) = λ

∫
F

σω2

and hence λ > 0.
(v) =⇒ (vi): Considering the identity q = qω + λσ we have that ω ∈

C(F ∪ F
N

) ∩ Vq and q > qω on F .
(vi) =⇒ (iii): Since ω ∈ Vq we have that q = qω on F

N
and hence q ≥ qω

on F ∪ F
N

and, in addition, q 6= qω. ut
Similarly, we obtain the characterization of positive semi-definiteness.

Proposition 6 Given q ∈ C(F ∪ F
N

) the following statements are equivalent:

(i) EFq is positive semi-definite on C(F ∪ F
N

) but not positive definite.
(ii) αq = 0 or equivalently, q = qωq on F ∪ F

N
.

(iii) q > −κ
F

on F
N

and EFq is positive semi-definite on Vq but not positive
definite.

In addition, EFq (v) = 0 iff v = aωq.

Next we use the positive definiteness of the energy to obtain the variational
formulation of the main result about existence and uniqueness of solutions of
the BVP (3), see [4].

Proposition 7 (Dirichlet Principle) Suppose that q ≥ qω on F ∪ F
N

for
some ω ∈ Ω(F ∪ F

N
). Given f ∈ C(F ), g ∈ C(F

N
) and h ∈ C(F

D
), consider

the convex set Ch =
{
v ∈ C(F̄ ) : v = h on F

D

}
and the quadratic functional

J : C(F̄ ) −→ R determined by the expression

J (u) =
1

2

∫
F̄

∫
F̄

c
F

(x, y)
(
u(x)−u(y)

)2
dx dy+

∫
F̄

q u2 dx−2

∫
F

f u−2

∫
F
N

g u.

Then, u ∈ C(F̄ ) is a solution of the boundary value problem (3) iff u minimizes
J on Ch. Moreover J has a unique minimum on Ch except when q = qω in
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which case J has a minimum iff

∫
F

ωf +

∫
F
N

ωg =

∫
F
D

h
∂ω

∂n
F

and moreover

for any σ ∈ Ω
F

there exists an unique minimum u ∈ Ch such that 〈u, ω〉σ = 0.

Remark: If Q(F ∪ F
N

) denotes the set of admissible potentials, then

Q(F ∪ F
N

) =
{
q ∈ C(F ∪ F

N
) : q > −κ

F
on F

N

and Eq is positive semi-definite on Vq
}

and the map

q : Ω(F ∪ F
N

)×Ω
F
× [0,+∞) −→ Q(F ∪ F

N
)

(ω, σ, λ) −→ qω + λσ

is surjective. Notice that if q(ω, σ, λ) = q(ω, σ̂, λ̂) for some ω ∈ Ω(F ∪F
N

) and

λ · λ̂ > 0, then λ̂ = λ and σ̂ = σ, since σ, σ̂ ∈ Ω
F

. However, q(ω, σ, 0) = qω for
all σ ∈ Ω

F
, so q is never injective.

Fixed ω ∈ Ω(F ∪ F
N

), the potentials in the set

Qω(F ∪ F
N

) = {qω} ∪
{
qω + λσ : σ ∈ Ω

F
, λ > 0

}
are called admissible potentials based on ω. Therefore, the class of admissible
potentials can be described as

Q(F ∪ F
N

) =
⋃

ω∈Ω(F∪F
N

)

{
Qω(F ∪ F

N
)
}
. (7)

If q ∈ Qω(F ∪ F
N

), then q = qω on F
N

and moreover either q = qω on
F or q > qω on F . Conversely, if q = qω on F

N
and q > qω on F , then

q ∈ Qω(F ∪ F
N

): If a =

∫
F

(
q(x) − qω(x)

)
dx, then a > 0 and it suffices to

define σ = a−1|F |(q − qω) and λ = a|F |−1 to conclude that σ ∈ Ω
F

and
q = qω + λσ. Therefore,

Qω(F ∪ F
N

) = {qω} ∪
{
q ∈ C(F ∪ F

N
) : q = qω on F

N
and q > qω on F

}
.

Motivated by the above identities, fixed ω ∈ Ω(F ∪ F
N

) and given q ∈
Qω(F ∪ F

N
) we define λq ≥ 0 and σq ∈ ΩF

as
λq = 0, σq = χ

F
, when q = qω on F ∪ F

N

λq = |F |−1

∫
F

(q − qω), σq = λ−1
q (q − qω), when q > qω on F .

(8)

Therefore, we have that q = qω + λqσq.
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4 Green Functions and Eigenvalues of a Self-Adjoint BVP

The main objective of this section is to obtain the relation between the spec-
trum of a self-adjoint BVP and its corresponding Green function. For the dis-
crete Poisson Equation, the Green function is closely related with the group
inverse of the matrix associated with the Schrödinger operator. In this case,
the relation between the spectrum and the Green function is well-known and it
is obtained through the so-called Mercer Theorem, see [17] for the case of the
normalized Laplacian. Moreover, other generalized inverses can be obtained
from the group inverse by considering the addition of suitable projectors, see
[6].

In this section, we state the Mercer Theorem for general BVP where the
eigenvalues and eigenfunctions are computed with respect to an arbitrary
weight. In this case, the function obtained from a Mercer-type theorem does
not necessarily coincide with the group inverse of the associated operator, but
with another generalized inverse. Then, the expression of the group inverse is
obtained from the addition of suitable projectors.

If the potential q ∈ C(F ∪ F
N

) satisfies that q > −κ
F

on F
N

then the
conditions of Lemma 3 hold and hence, for any data, the BVP (3) can be
reduced to a semi-homogeneous one. In this section, we assume the above
hypothesis on the potential and we only consider semi-homogeneous BVP;
that is, for any data f ∈ C(F ) the semi-homogeneous boundary value problem
(4)

Lq(u) = f on F,
∂u

∂n
F

+ qu = 0 on F
N

and u = 0 on F
D
.

Moreover, from Proposition 3 we know that the above problem is equivalent
to the Poisson equation Lq(γ(u)) = f on C(F ). In addition, we also assume
that the energy EFq is positive semi-definite on Vq and hence, we can use the
Dirichlet Principle to establish the existence and uniqueness of solution for the
BVP (4).

Given σ ∈ Ω
F

, from Proposition 4 there exists a unique ω ∈ Ωσ(F ∪ F
N

)
and a unique λ ∈ R such that q = qω+λσ. Moreover, λ ≥ 0 since EFq is positive
semi-definite. Under these hypotheses we know that q = qω on F

N
, ω ∈ Vq and

moreover Lq(ω) = λσω on F . Therefore, from the self-adjointness of the BVP
(4), it follows that

〈ω, f〉
F

=

∫
F

ω f =

∫
F

ωLq(u) =

∫
F

uLq(ω) = λ

∫
F

σωu = λ〈ω, u〉σ,

for any u ∈ Vq solution of Problem (4). If we consider now the subspaces

ω⊥ =
{
u ∈ C(F ) : 〈ω, u〉

F
= 0
}

and ω⊥σ =
{
u ∈ Vq : 〈ω, u〉σ = 0

}
,

then, when λ > 0, we have f ∈ ω⊥ iff u ∈ ω⊥σ . On the other hand, when
λ = 0 we also know that the BVP (4) is solvable iff f ∈ ω⊥ and then there
exists a unique solution u ∈ ω⊥σ . Therefore, Lq is an isomorphism from ω⊥σ
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onto ω⊥. In addition, when q 6= qω on F , then Lq is an isomorphism from Vq
onto C(F ) whose inverse is denoted by L−1

q that has L−1
q as kernel.

In this section we consider fixed ω ∈ Ω(F ∪ F
N

) and the set of admissible
potentials based in ω, Qω(F ∪F

N
). If q ∈ Qω(F ∪F

N
), then according with (8),

q = qω + λqσq which implies that q = qω on F
N

and hence Vq = Vqω , ω ∈ Vq
and Lq(ω) = λqσqω.

The above reasonings imply that Lq is an isomorphism from ω⊥σq onto
ω⊥ whose inverse is denoted by Gq. We call Green operator to Gq : C(F ) −→
C(F ∪ F

N
) the extension of Gq to C(F ) defined for any f ∈ C(F ) as Gq(f) =

Gq
(
f − ||ω||−2

σq 〈f, ω〉F σqω
)
. Therefore, for any f ∈ C(F ), Gq(f) is the unique

solution of the semi-homogeneous BVP (4) with data f − ||ω||−2
σq 〈f, ω〉F σqω

belonging to ω⊥σq . We remark that when q > qω on F , then Gq(f) ∈ ω⊥σq for
any f ∈ C(F ). The kernel of Gq is denoted by Gq and named Green function.
If we label the vertex set, then the matrix associated with Gq is the group
inverse of the matrix associated with the operator LFqω on C(F ∪ F

N
).

More generally, given σ ∈ Ω
F

we define the Green operator with respect
to σ as Gσq : C(F ) −→ C(F ∪ F

N
) the operator that to any f ∈ C(F ) assigns

Gσq (f), the unique solution of the semi-homogeneous BVP (4) with data f −
||ω||−2

σ 〈f, ω〉F σω belonging to ω⊥σq . Therefore, when σ = σq, then Gσq = Gq.
We anew notice that when q > qω on F , then Gσq (f) ∈ ω⊥σq for any f ∈ C(F ).

The kernel of Gσq is denoted by Gσq and named Green function with respect
to σ or simply Green function when σ = σq. It is clear that Gσq is singular and
moreover Gσq (f) = 0 iff f = aσω, a ∈ R.

When q = qω on F , given σ, σ̂ ∈ Ω
F

we define Green operator with respect
to σ and σ̂ as the operator Gσ,σ̂qω : C(F ) −→ C(F ∪ F

N
) that to any f ∈ C(F )

assigns Gσ,σ̂qω (f), the unique solution of the semi-homogeneous BVP (4) with

data f − ||ω||−2
σ 〈f, ω〉F σω belonging to ω⊥σ̂ . When σ̂ = χ

F
, then Gσ,σ̂qω = Gσqω

and hence we drop σ̂ in the above notation and refer it simply as the Green
operator with respect to σ.

The kernel of Gσ,σ̂qω is denoted by Gσ,σ̂qω and named Green function with
respect to σ and σ̂ or simply Gσqω and Green function with respect to σ when

σ̂ = χ
F

. It is clear that 〈ω,Gσ,σ̂qω (f)〉σ̂ = 0 for any f ∈ C(F ), that Gσ,σ̂qω is

singular and moreover Gσ,σ̂qω (f) = 0 iff f = aσω, a ∈ R.
From the above definitions, we obtain that if q ∈ Qω(F ∪F

N
), then for any

σ ∈ Ω
F

and any y ∈ F , v =
(
Gσq
)
y

is characterized as the unique solution of

the semi-homogeneous BVP

Lq(v) = εy −
ω(y)

||ω||2σ
σω on F,

∂v

∂n
F

+ qωv = 0 on F
N

v = 0 on F
D

such that 〈v, ω〉σq = 0. In addition, for any σ̂ ∈ Ω
F

and any y ∈ F the function

z =
(
Gσ,σ̂qω

)
y

is characterized as the unique solution of the semi-homogeneous

BVP

Lqω (z) = εy −
ω(y)

||ω||2σ
σω on F,

∂z

∂n
F

+ qωz = 0 on F
N

z = 0 on F
D
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such that 〈z, ω〉σ̂ = 0. If in addition, q 6= qω, then for any σ ∈ Ω
F

and any
y ∈ F , the function u =

(
L−1
q

)
y

is characterized as the unique solution of the

semi-homogeneous BVP

Lq(u) = εy on F,
∂u

∂n
F

+ qωu = 0 on F
N

u = 0 on F
D
.

Our next objective is to find the relations between the above operators and
kernels. To do this, it is useful to introduce for any σ ∈ Ω

F
the functions

τσ = ||ω||−2
σ Gq(σω) and ζσ = ||ω||−2

F
Gσ,σqω (ω). (9)

Then τσ, ζσ ∈ Vq, 〈τσ, ω〉σq = 0, 〈ζσ, ω〉σ = 0 and moreover

Lq(τσ) =
(
||ω||−2

σ σ − ||ω||−2
σq σq

)
ω and Lqω (ζσ) =

(
||ω||−2

F
− ||ω||−2

σ σ
)
ω,

which implies that for any σ̂ ∈ Ω
F

Eq(τσ, τσ̂) =

∫
F

Lq(τσ)τσ̂ = ||ω||−2
σ 〈τσ̂, ω〉σ = ||ω||−2

σ̂ 〈τσ, ω〉σ̂

and

Eq(ζσ, ζσ) =

∫
F

Lqω (ζσ)ζσ = ||ω||−2
F
〈ζσ, ω〉F .

Notice that τσ = 0 iff σ = σq. More generally, if τσ = τσ̂ on F , then τσ =
γ(τσ) = γ(τσ̂) = τσ̂ since τσ, τσ̂ ∈ Vq and hence,

||ω||−2
σ σω − ||ω||−2

σq σqω = Lq(τσ) = Lq(τσ̂) = ||ω||−2
σ̂ σ̂ω − ||ω||−2

σq σqω

which in turns implies that σ̂ = σ.

Proposition 8 The Green operator is singular and self-adjoint on C(F ); that
is, ∫

F

gGq(f) =

∫
F

fGq(g), for any f, g ∈ C(F )

and when q 6= qω then

L−1
q (x, y) = Gq(x, y) + λ−1

q ||ω||−2
σq ω(x)ω(y), x ∈ V, y ∈ F

and hence, L−1
q is self-adjoint on C(F ). Moreover, given σ ∈ Ω

F
we have that

Gσq (x, y) = Gq(x, y)− τσ(x)ω(y), x ∈ V, y ∈ F

and hence, Gσq is self–adjoint on C(F ) iff σ = σq; that is, iff τσ = 0 or equiva-
lently iff Gσq = Gq. In addition, given σ̂ ∈ Ω

F
we have that

Gσ,σ̂qω (x, y) = Gqω (x, y)+Eqω (τσ, τσ̂)ω(x)ω(y)−τσ(x)ω(y)−ω(x)τσ̂(y), x ∈ V, y ∈ F

and hence, Gσ,σ̂qω is self–adjoint on C(F ) iff σ̂ = σ. Moreover,

Gqω (x, y) = Gσ,σqω (x, y)+Eqω (ζσ, ζσ)ω(x)ω(y)−ζσ(x)ω(y)−ω(x)ζσ(y), x ∈ V, y ∈ F.
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Proof Given f, g ∈ C(F ), if u = Gq(f), v = Gq(g), then u, v ∈ ω⊥σq , Lq(u) =
f−||ω||−2

σq 〈f, ω〉F σqω, Lq(v) = g−||ω||−2
σq 〈g, ω〉F σqω and from the self-adjointness

of the BVP (4) we have∫
F

gGq(f) =

∫
F

ug =

∫
F

u
(
g − ||ω||−2

σq 〈g, ω〉F σqω
)

=

∫
F

uLq(v) =

∫
F

vLq(u)

=

∫
F

v
(
f − ||ω||−2

σq 〈f, ω〉F σqω
)

=

∫
F

vf =

∫
F

fGq(g).

Moreover, since Lq(ω) = λqσqω on F and λq > 0 when q 6= qω, then
L−1
q (σqω) = λ−1

q ω and hence

Gq(f) = L−1
q

(
f − ||ω||−2

σq 〈f, ω〉F σqω
)

= L−1
q (f)− λ−1

q ||ω||−2
σq 〈f, ω〉Fω,

which implies the given expression for the kernel L−1
q .

On the other hand, given σ ∈ Ω
F

if û = Gσq (f), then û ∈ ω⊥σq , and

Lq(û) = f − ||ω||−2
σ 〈f, ω〉F σω, on F

which implies that

û = Gq(f)− ||ω||−2
σ 〈f, ω〉F Gq(σω) = Gq(f)− 〈f, ω〉

F
τσ, on F .

We obtain the claimed expression for the kernel Gσq , by taking f = εy, y ∈ F .
Moreover Gσq is self-adjoint on C(F ) iff

Gq(x, y)−τσ(x)ω(y) = Gσq (x, y) = Gσq (y, x) = Gq(y, x)−τσ(y)ω(x), x, y ∈ F ;

that is, iff τσ = aω on F . Since 0 = 〈τσ, ω〉σq = a||ω||2σq , we conclude that
a = 0 and hence σ = σq.

Consider now ũ = Gσ,σ̂qω (f). Then ũ ∈ Vq, 〈ũ, ω〉σ̂ = 0, and Lqω (ũ) =
f − ||ω||−2

σ 〈f, ω〉F σω, which implies that

ũ = Gqω (f)− 〈f, ω〉
F
τσ + ãω

and hence,

ã = ||ω||−2
σ̂

[
〈f, ω〉

F
〈τσ, ω〉σ̂ − 〈Gqω (f), σ̂ω〉

F

]
= Eqω (τσ, τσ̂)〈f, ω〉

F
− 〈f, τσ̂〉F .

Finally, Gσ,σ̂qω is self–adjoint on C(F ) iff Gσ,σ̂qω (x, y) = Gσ,σ̂qω (y, x) for any
x, y ∈ F and this happens iff(

τσ(x)− τσ̂(x)
)
ω(y) =

(
τσ(y)− τσ̂(y)

)
ω(x) x, y ∈ F ;

that is, iff τσ̂ = τσ + aω on F and hence iff τσ̂ = τσ on F since τσ̂, τσ ∈ ω⊥σq .
Therefore, Gσ,σ̂qω is self–adjoint on C(F ) iff σ̂ = σ.

Finally, it suffices to note that

ζσ = −τσ + ||ω||−2
σ 〈τσ, ω〉σω and Eqω (τσ, τσ) = Eqω (ζσ, ζσ) = ||ω||−2

σ 〈τσ, ω〉σ.

ut
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Now, we consider eigenvalue problems for boundary value problems with
respect to a weight. As far as we know this is the first time that this type of
problems is considered in the discrete setting.

A real number µ ∈ R is named eigenvalue of the BVP (4), with respect to
σ ∈ Ω

F
, if there exists a non-null function v ∈ C(F̄ ) such that

Lq(v) = µσv on F,
∂v

∂n
F

+ qv = 0 on F
N

and v = 0 on F
D
. (10)

Equivalently, µ ∈ R is an eigenvalue of (10) iff VHq−µσ is a non trivial subspace;
that is, the problem is not regular.

If µ is an eigenvalue we say that v is an associated eigenfunction if v
satisfies the equalities in (10). In addition, V(µ) ⊂ Vq denotes the subspace of
eigenfunctions associated with µ. Observe that v ∈ C(F̄ ) is an eigenfunction
associated with µ iff Lq

(
γ(vχ

F
)
)

= µσv on F .
The self-adjointness of the BVP (4) leads to the following results.

Lemma 7 Given µ, µ̂ two eigenvalues of the BVP (4), then

µ〈u, v〉σ = EFq (u, v) = µ̂〈u, v〉σ for any u ∈ V(µ) and v ∈ V(µ̂).

In particular, EFq (u, u) = µ||u||2σ and when µ 6= µ̂, then V(µ) and V(µ̂) are
orthogonal each other with respect to σ.

Bearing in mind that the finite dimensionality of Vq implies that it is a
Hilbert space with the inner product 〈·, ·〉σ and moreover that Lq is a Hilbert-
Schmidt operator, we can prove that there exist an orthonormal basis of eigen-
functions. Although we could prove this result by using the Rayleigh quotient,
see for instance [13] for a specific weight, we give here a direct proof based on
the standard Spectral Theorem.

Theorem 2 (Hilbert-Schmidt Theorem) Given σ ∈ Ω
F

, there exist a

sequence µ1 ≤ · · · ≤ µ|F | and {vj}|F |j=1 ∈ Vqω an orthonormal system, with
respect to σ, such that

(i) Lqω (vj) = µjσvj, j = 1, . . . , |F |.
(ii) 0 = µ1 < µ2; that is, µ1 = 0 is a simple eigenvalue and moreover v1 =
||ω||−1

σ ω.

(iii) If µ is an eigenvalue of the BVP (4) for q = qω with respect to σ, then
µ = µj for some j = 1, . . . , |F |.

(iv) Lqω (u) = σ

|F |∑
j=2

µj〈u, vj〉σvj on F for any u ∈ Vqω .

Proof As in the proof of Proposition 4, let us consider the operator Kσ :
C(F ) −→ C(F ), defined for any u ∈ C(F ) as

Kσ(u) = σ−
1
2Lqω

(
γ(σ−

1
2u)
)
.
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Then, Kσ is self-adjoint and positive semi-definite with respect to the standard
inner product in C(F ). By applying the Spectral Theorem to Kσ we get that,

there exist 0 ≤ µ1 ≤ · · · ≤ µ|F | and {uj}|F |j=1 ∈ C(F ) an orthonormal system
such that

(a) Kσ(uj) = µjuj , j = 1, . . . , |F |.
(b) If µ is an eigenvalue of the Kσ, then µ = µj for some j = 1, . . . , |F |.

On the other hand, if we denote by Kσ the matrix associated with Kσ, then
Kσ is an irreducible Z-matrix and hence its first eigenvalue, µ1, is simple and
the corresponding eigenvector, u1, is positive.

Therefore, if we define vj = σ−
1
2uj for each j = 1, . . . , |F |, then Lqω (γ(vj)) =

µjσvj on F and {vj}|F |j=1 is an orthonormal basis of eigenfunctions with respect

to σ in C(F ). Since Lqω (ω) = 0, necessarily µ1 = 0 and v1 = ||ω||−1
σ ω. ut

We call sequence of eigenvalues and orthonormal basis of eigenfunctions,

with respect to σ, for the BVP (4) for q = qω, to {µσj }
|F |
j=1 and {vσj }

|F |
j=1 given

in the Hilbert-Schmidt Theorem. When σ is constant; that is σ = χ
F

, then we
drop the symbol σ in the above sequences.

Corollary 1 Let q ∈ Qω(F ∪ F
N

) such that q = qω + λσ on F , where λ > 0

and σ ∈ Ω
F

and consider {µσj }
|F |
j=1 and {vσj }

|F |
j=1 the sequence of eigenvalues

and orthonormal basis of eigenfunctions, with respect to σ. Then,

(i) Lq(vσj ) = (µσj + λ)σvσj , j = 1, . . . , |F |.

(ii) Lq(u) = σ

|F |∑
j=1

(µσj + λ)〈u, vσj 〉σvσj on F for any u ∈ Vq.

Our next objective is to get the discrete version of Mercer Theorem; that
is, the expressions for Green’s functions in terms of eigenvalues and eigenfunc-
tions. We start with a technical Lemma that will be useful later.

Lemma 8 Let σ ∈ Ω
F

and consider {µσj }
|F |
j=1 and {vσj }

|F |
j=1 the sequence of

eigenvalues and orthonormal basis of eigenfunctions, with respect to σ. Then,
τσ = ||ω||−2

σ Gqω (σω) is given by

τσ = ω||ω||−4
F

|F |∑
j=2

(µσj )−1〈vσj , ω〉2F − ||ω||
−2
F

|F |∑
j=2

(µσj )−1〈vσj , ω〉F vσj

and hence, Eqω (τσ, τσ) = ||ω||−4
F

|F |∑
j=2

(µσj )−1〈vσj , ω〉2F .

Proof Since τσ ∈ Vqω and Lqω (τσ) = ||ω||−2
σ σω − ||ω||−2

F
ω, we have that

Eqω (τσ, τσ) = ||ω||−2
σ 〈τσ, ω〉σ = ||ω||−1

σ 〈τσ, vσ1 〉σ.
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On the other hand, if τσ =

|F |∑
j=1

〈τσ, vσj 〉σvσj , then

||ω||−2
σ σω − ||ω||−2

F
ω = Lqω (τσ) =

|F |∑
j=2

µσj 〈τσ, vσj 〉σσvσj ,

which for any k = 2, . . . , |F | implies that

−||ω||−2
F
〈vσk , ω〉F = 〈vσk , ||ω||−2

σ σω−||ω||−2
F
ω〉

F
=

|F |∑
j=2

µσj 〈τσ, vσj 〉σ〈vσj , vσk 〉σ = µσk〈τσ, vσk 〉σ.

In addition, since 〈τσ, ω〉F = 0 we also have that

〈τσ, vσ1 〉σ = −||ω||−2
F
||ω||σ

|F |∑
j=2

〈τσ, vσj 〉σ〈vσj , ω〉F = ||ω||−4
F
||ω||σ

|F |∑
j=2

(µσj )−1〈vσj , ω〉2F

and the results follow. ut

Corollary 2 (Mercer Theorem) Let σ ∈ Ω
F

and consider {µσj }
|F |
j=1 and

{vσj }
|F |
j=1 the sequence of eigenvalues and orthonormal basis of eigenfunctions,

with respect to σ. Then,

Gσ,σqω (x, y) =

|F |∑
j=2

(µσj )−1vσj (x)vσj (y), x ∈ V, y ∈ F

and hence,

Gqω (x, y) =

|F |∑
j=2

(µσj )−1vσj (x)vσj (y)

−||ω||−2
F

|F |∑
j=2

(µσj )−1〈vσj , ω〉F
(
vσj (x)ω(y) + ω(x)vσj (y)

)
+||ω||−4

F
ω(x)ω(y)

|F |∑
j=2

(µσj )−1〈vσj , ω〉2F , x ∈ V, y ∈ F.

In addition, if for any λ > 0 we consider q = qω + λσ, then q ∈ Qω(F ∪ F
N

)
and moreover

Gq(x, y) =

|F |∑
j=2

(µσj +λ)−1vσj (x)vσj (y) and L−1
q (x, y) =

|F |∑
j=1

(µσj +λ)−1vσj (x)vσj (y),

x ∈ V, y ∈ F.
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Proof Given y ∈ F , if λ > 0, u = (Gq)y is the unique function in ω⊥σ satisfying
that Lq(u) = εy − ||ω||−2

σ ω(y)σω on F , whereas û =
(
Gσ,σqω

)
y

is the unique

function in ω⊥σ satisfying that Lqω (u) = εy − ||ω||−2
σ ω(y)σω on F .

Since {vσj }
|F |
j=1 is an orthonormal basis of Vq, we know that u =

|F |∑
j=1

〈u, vσj 〉σvσj ,

û =

|F |∑
j=1

〈û, vσj 〉σvσj and moreover, 〈u, vσ1 〉σ = 〈û, vσ1 〉σ = 0, because u, û ∈ ω⊥σ

and vσ1 = ||ω||−1
σ ω. In addition,

εy − vσ1 (y)σvσ1 = εy − ||ω||−2
σ ω(y)σω = Lq(u) =

|F |∑
j=2

(µσj + λ)〈u, vσj 〉σσvσj ,

εy − vσ1 (y)σvσ1 = εy − ||ω||−2
σ ω(y)σω = Lqω (û) =

|F |∑
j=2

µσj 〈û, vσj 〉σσvσj ,

which for any k = 2, . . . , |F | implies that

vσk (y) = 〈vσk , εy − vσ1 (y)σvσ1 〉F =

|F |∑
j=2

(µσj + λ)〈u, vσj 〉σ〈σvσj , vσk 〉F = (µσk + λ)〈u, vσk 〉σ,

vσk (y) = 〈vσk , εy − vσ1 (y)σvσ1 〉F =

|F |∑
j=2

µσj 〈û, vσj 〉σ〈σvσj , vσk 〉F = µσk〈û, vσk 〉σ,

and hence,

u =

|F |∑
j=2

〈u, vσj 〉σvσj =

|F |∑
j=2

(µσj + λ)−1vσj (y)vσj

and

û =

|F |∑
j=2

〈û, vσj 〉σvσj =

|F |∑
j=2

(µσj )−1vσj (y)vσj .

Applying now Proposition 8, for any x ∈ V and any y ∈ F , we have that

L−1
q (x, y) =Gq(x, y) + λ−1||ω||−2

σ ω(x)ω(y)

=

|F |∑
j=2

(µσk + λ)−1vσj (y)vσj (x) + λ−1vσ1 (x)vσ1 (y),

and the claimed expression for L−1
q follows taking into account that µσ1 = 0.

On the other hand, applying again Proposition 8, for any x ∈ V and any
y ∈ F , we have

Gqω (x, y) =

|F |∑
j=2

(µσj )−1vσj (x)vσj (y)

+τσ(x)ω(y) + ω(x)τσ(y)− Eqω (τσ, τσ)ω(x)ω(y),
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and hence, the expression for Gqω follows from the identities in Lemma 8. ut

5 Green functions and spectrum for a Dirichlet-Robin problem in a
star-like network

Here we apply the results of the above section for computing the Green func-
tions and the spectrum of a star-like network. Given the network Γ = (V, c),
for any x ∈ V we denote by V (x) the set of vertices adjacent to x. We say that
Γ is a star-like network with center x0, if V (x0) is an independent set; that
is, no two vertices in V (x0) are adjacent. A star network with center x0 is the
most obvious example of star-like network with center x0. More generally, any
weighted tree is a star-like network whose center can be any of its vertices.
Moreover, any distance-regular graph with diameter at least 2 and parameter
a1 = 0 is also a star-like network.

In the rest of this section we assume that Γ is a star-like network with
center at x0 and moreover that V (x0) = {x1, . . . , xn}. With the notation of

the above sections, F = V (x0), F
N

= {x0} and F
D

=
n⋃
j=1

(
V (xi)\{x0}

)
. Notice

that F
D

= ∅ iff Γ is a star whose center is x0.
Fixed ω ∈ Ω(F ∪ F

N
) and σ ∈ Ω

F
, for any t ∈ R we consider the potential

q = qω + tσ and also the corresponding Schrödinger operator Lq. The Mixed
Dirichlet-Robin Boundary Problem we raise is for j = 1, . . . , n,

Lq(u)(xj) = f(xj),
∂u

∂n
F

(x0) + qω(x0)u(x0) = 0 and u = 0 on F
D
. (11)

x1 xn

x0

x2 xn−1

F
N

F

F
D

cn

c 1 c
n−

1

c 2

Fig. 2 Example of a star-like network.

Our goal is to obtain the Green functions of the above mixed problem when
t ≥ 0, its eigenvalues and their corresponding orthonormal basis of eigenfunc-
tions, with respect to σ when t = 0 and the kernel (Lq)

−1 when the problem
is regular. Recall that the eigenvalues and the eigenfunctions with respect to
σ for Problem (11) can be obtained easily from the corresponding to t = 0
and that the BVP is regular iff −t is not an eigenvalue of Problem (11) for
q = qω. In particular, the problem is regular when t > 0; that is, the case in
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which the Schödinger operator Lq is positive definite. Moreover, when t > 0,
we apply Proposition 8 to compute (Lq)

−1 from the Green function, whereas
when t < 0 and the problem is regular, we compute (Lq)

−1 directly. Of course,
we could use this methodology also in the case t > 0.

For any t ∈ R the value t# is defined as t−1 when t 6= 0 and 0 when t = 0.
For the sake of simplicity, we denote ci = c(xi, x0) > 0, i = 1, . . . , n. Moreover,
given an arbitrary function u ∈ C(V ), we denote ui = u(xi), i = 0, . . . , n and

〈c, u〉 =
n∑
j=1

cjuj . With this notation, we have

qω(xi) = −κi +
ciω0

ωi
, i = 1, . . . , n and qω(x0) = −〈c, 1〉+

〈c, ω〉
ω0

.

To determine all the Green functions defined in the above section, it will
be useful to define for any ν ∈ Ω(F ) the function

ην =
σ

||ω||2σ
− ν

||ω||2ν
∈ C(F ).

In addition, we define the functions Q : R× C(F )× C(F ) −→ (0,+∞) and
Ψ : R −→ R as

Q(t, u, v) =

n∑
j=1

(cjω0 + tσjωj)
#ω3

jujvj and Ψ(t) = ||ω||2σ − tQ(t, σ, σ).

When σ = χ
F

, function Q was already defined by the authors in [11] to com-
pute the Green function of a star. The new Q here introduced is a generaliza-
tion of the former to include the mixed boundary conditions. Related with Q,

we consider the set A =

{
cjω0

σjωj

}n
j=1

and m = |A|. Observe that 1 ≤ m ≤ n,

and we can suppose without loss of generality that A =
{
a1, . . . , am

}
, where

0 < a1 < · · · < am. If for any j = 1, . . . ,m, we consider Ij =
{
i ∈ {1, . . . , n} :

ciω0

σiωi
= aj

}
and mj =

∣∣Ij∣∣, then mj ≥ 1 and moreover,
m∑
j=1

mj = n, since

I1, . . . , Im is a partition of {1, . . . , n}. Moreover, for any j = 1, . . . ,m, we

define Wj =
∑
i∈Ij

ω2
i σi. With these notations, we have that ||ω||2σ =

m∑
j=1

Wj ,

Q(t, σ, σ) =
m∑
j=1

Wj(aj + t)# and

Ψ(t) =



m∑
j=1

ajWj

aj + t
, if −t /∈ A,

Wk +

m∑
j=1
j 6=k

ajWj

aj − ak
, if t = −ak, for some k = 1, . . . ,m,
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which implies that Ψ is continuous and decreasing on R\{−a1, . . . ,−am}, pos-
itive for t > −a1 and negative for t < −am. Moreover, for any j = 1, . . . ,m−1,
Ψ has a unique zero, say −µj+1, in (−aj+1,−aj).

Proposition 9 Assume that t ≥ 0. If f ∈ C(F ) is such that f ∈ ω⊥, then the
unique solution of the Mixed Dirichlet-Robin problem (11) such that u ∈ ω⊥σ
is given by

u0 =− ω0Q(t, ω−1σ, f)

Ψ(t)
,

ui =
ωiaj

Ψ(t)(aj + t)

[ fi
ciω0

Ψ(t)−Q(t, ω−1σ, f)
]
, i ∈ Ij , j = 1, . . . ,m.

Proof From (11), we get

κiui− ciu0 + (qω(xi) + tσi)ui = fi, i = 1, . . . , n and − 〈c, u〉+ 〈c, ω〉u0

ω0
= 0

which implies that

u0 = ω0
〈c, u〉
〈c, ω〉

and ui =
ωi

ciω0 + tσiωi

[
fi +

〈c, u〉
〈c, ω〉

ciω0

]
, i = 1, . . . , n. (12)

Therefore,

〈u, ω〉σ =

n∑
j=1

ujωjσj =

[
ω0
〈c, u〉
〈c, ω〉

n∑
j=1

cjω
2
jσj

cjω0 + tσjωj
+

n∑
j=1

fjω
2
jσj

cjω0 + tσjωj

]
,

which implies that u ∈ ω⊥σ iff

〈c, u〉
〈c, ω〉

= −Q(λ, ω−1σ, f)

Ψ(t)

and hence, the expression for ui results by substituting the value of u0 in the
above expression. ut

The desired expression for the Green function for Problem (11), can be

obtained from the above Proposition by taking f = ε` −
ω`
||ω||2σ

σω, for any

` = 1, . . . , n.

Corollary 3 If t ≥ 0, the Green function for the Mixed Dirichlet-Robin Prob-
lem (11) is given for i ∈ Ij , ` ∈ Ik by

Gq(x0, x`) =
ω0ω`

||ω||2σ(ak + t)

[
akQ(t, σ, σ)

Ψ(t)
− 1

]
,

Gq(xi, x`) =
ωiω`

||ω||2σ(aj + t)(ak + t)

[
ajakQ(t, σ, σ)

Ψ(t)
− aj − ak − t

]
+

εx`(xi)

σi(aj + t)
.
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Moreover, for any ν ∈ Ω(F ) we have

τν(x0) =
ω0

Ψ(t)
Q(t, σ, ην),

τν(xi) =
ωi

Ψ(t)
[
aj + t

][σ−1
i ην(xi)Ψ(t) + ajQ(t, σ, ην)

]
, i ∈ Ij .

In addition, when t > 0, then

(Lq)
−1(x0, x`) =

ω0ω`ak
tΨ(t)(ak + t)

, ` ∈ Ik,

(Lq)
−1(xi, x`) =

ωiω`ajak
tΨ(t)(aj + t)(ak + t)

+
1

σi(aj + t)
εx`(xi), i ∈ Ij , ` ∈ Ik,

whereas when t = 0, given ν̂ ∈ Ω(F ), we have

Eq(τν , τν̂) = Q(0, ην , ην̂)

and hence,

ζν(x0) =− ω0

||ω||2ν
Q(0, ν, ην),

ζν(xi) =
ωiην(xi)

ajσiω0
− ωi
||ω||2ν

Q(0, ν, ην), i ∈ Ij .

Next we compute the eigenvalues and the corresponding eigenfunctions
with respect to the weight σ for the Mixed Dirichlet-Robin problem

Lqω (v) = µσv on F,
∂v

∂n
F

(x0) + qω(x0)v(x0) = 0 and v = 0 on F
D
.

(13)
Recall that in this case,

qω(xi) = −κi +
ciω0

ωi
and qω(x0) = −κ0 +

〈ω, c〉
ω0

.

From the Robin condition, we get
v0

ω0
=
〈c, v〉
〈c, ω〉

, whereas from the first equation

on Problem (13) we obtain

Lqω (v)(xi) = ci

(
− v0 +

ω0

ωi
vi

)
= µσivi

which implies that[
ciω0 − µσiωi

] vi
ωi

= civ0 = ciω0
〈c, v〉
〈c, ω〉

, i = 1, . . . , n. (14)

If µ = aj for some j = 1, . . . ,m then, from Equation (14), we get that
v0 = 0, which implies that 〈c, v〉 = 0. Moreover, for any i /∈ Ij , we have that
vi = 0.



30 A. Carmona et al.

If mj = 1, then the identity 〈c, v〉 = 0 determines that v = 0, so aj cannot
be an eigenvalue.

If mj > 1, then aj is an eigenvalue and V(aj) = span
{εjmj
cjmj

− εjs
cjs

: s =

1, . . . ,mj − 1
}

is the corresponding space of eigenfunctions. Therefore, the

multiplicity of aj is mj − 1.

In conclusion, we have obtained
m∑
j=1

(mj − 1) = n−m linearly independent

eigenfunctions and hence n−m different eigenvalues at most.
Moreover, an orthonormal basis of the subspace V(aj) with respect to σ,

is vr =
ur

||ur||σ
, where

ur = cjr

r−1∑
s=1

ωjsεjs −
(
cjmjωjmj +

r−1∑
s=1

cjsωjs

)
εjr + cjrωjmj εjmj ,

||ur||2σ = σjr

( r−1∑
t=1

cjtωjt + cjmjωjmj

)( r∑
t=1

cjtωjt + cjmjωjmj

)
.

for any r = 1, . . . ,mj − 1.

To find the remainingm eigenfunctions, let first define the function Φ : R \A −→
R given by

Φ(t) = tΨ(−t) = t

m∑
j=1

ajWj

aj − t
.

Then,

Φ′(t) =

m∑
j=1

a2
jWj

(aj − t)2

and in particular, Φ′(0) = ||ω||2σ.
Consider now an eigenvalue 0 ≤ µ /∈ A of the Problem (13). If v is a non-

null eigenfunction associated with µ, from Equation (14), necessarily v0 6= 0
and hence 〈c, v〉 6= 0. Moreover,

vi =
〈c, v〉ciω0ωi

〈c, ω〉
(
ciω0 − µσiωi

) =
〈c, v〉ωiaj
〈c, ω〉(aj − µ)

, i ∈ Ij , j = 1 . . . ,m

which implies that

〈c, v〉 =
ω0〈c, v〉
〈c, ω〉

n∑
j=1

c2jωj

cjω0 − µσjωj
=
〈c, v〉
〈c, ω〉

m∑
j=1

aj
aj − µ

∑
i∈Ij

ωici

and hence

0 =

m∑
j=1

aj
aj − µ

∑
i∈Ij

ωici−〈c, ω〉 =

m∑
j=1

µ

aj − µ
∑
i∈Ij

ωici =
µ

ω0

m∑
j=1

ajWj

aj − µ
=
Φ(µ)

ω0
.
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As a conclusion, 0 ≤ µ /∈ A is an eigenvalue of Problem (13) iff it is a zero of
Φ; that is, iff either µ = 0 = µ1 or µ = µj , j = 2, . . . ,m. Since dimV(µ) ≥ 1,
we conclude that µ1, . . . , µm are simple eigenvalues. Moreover the normalized
eigenfunction corresponding to µj is uj , where

uj0 =
ω0√
Φ′(µj)

, j = 1, . . . ,m.

uji =
ωiak√

Φ′(µj) (ak − µj)
, i ∈ Ik, j, k = 1, . . . ,m.

Notice that the above formula for j = 1 gives u1
i =

ωi√
Φ′(0)

= ||ω||−1
σ ωi as

expected.

We end this paper considering the case t < 0 when −t is not an eigenvalue
of the Problem (13) with respect to σ.

Proposition 10 Let q = qω + tσ when t < 0 and µ1 = 0. Then, the boundary
value problem (11) is regular iff either t /∈ {−aj ,−µj}mj=1 or there exists k =
1, . . . ,m such that t = −ak and mk = 1. Moreover, the following identities
hold:

(a) t /∈ {−aj ,−µj}mj=1, then for ` ∈ Ik, i ∈ Ij

(Lq)
−1(x0, x`) =

ω0ω`ak
tΨ(t)(ak + t)

,

(Lq)
−1(xi, x`) =

ωiω`ajak
tΨ(t)(aj + t)(ak + t)

+
εx`(xi)

σi(aj + t)
.

(b) If t = −ak with mk = 1, for some k = 1, . . . ,m and Ik = {r} then

(Lq)
−1(x0, xr) =− 1

cr
,

(Lq)
−1(xr, xr) =

ak
c2rω

2
0

[
Ψ(−ak)− 2σrω

2
r

]
,

(Lq)
−1(xi, xr) =

ωiaj
crω0(ak − aj)

, i ∈ Ij , j 6= k

whereas for ` ∈ Is, s 6= k,

(Lq)
−1(x0, x`) =0,

(Lq)
−1(xr, x`) =

ω`as
crω0(ak − as)

,

(Lq)
−1(xi, x`) =

εx`(xi)

σi(ak − aj)
, i ∈ Ij , j 6= k.
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Proof If f ∈ C(F ), then the unique solution of the Mixed Dirichlet-Robin
problem (11) is given by Equation (12)

u0 = ω0
〈c, u〉
〈c, ω〉

and (ciω0 + tσiωi)ui = ωi
[
fi + ciu0

]
= ωi

[
fi +

〈c, u〉
〈c, ω〉

ciω0

]
,

for any i = 1, . . . , n.
(a) If t /∈ {−aj ,−µj}mj=1, then

u0 = ω0
〈c, u〉
〈c, ω〉

and ui =
ωi

aj + t

[
fi
σiωi

+
〈c, u〉
〈c, ω〉

aj

]
, i ∈ Ij .

Therefore,

〈c, u〉 =

m∑
s=1

1

as + t

∑
r∈Is

crfrσ
−1
r +

〈c, u〉
〈c, ω〉

m∑
s=1

as
as + t

∑
r∈Is

cirωr,

which implies that

〈c, u〉
〈c, ω〉

[
m∑
s=1

t

as + t

∑
r∈Is

crωr

]
=

m∑
s=1

1

as + t

∑
r∈Is

crfrσ
−1
r

and hence
〈c, u〉
〈c, ω〉

=
ω0

tΨ(t)

m∑
s=1

1

as + t

∑
r∈Is

crfrσ
−1
r .

Therefore, we have obtained that for any j = 1, . . . ,m and i ∈ Ij ,

u0 =
ω2

0

tΨ(t)

m∑
s=1

1

as + t

∑
r∈Is

crfrσ
−1
r ,

ui =
ωi

aj + t

[
fi
σiωi

+
ω0aj
tΨ(t)

m∑
s=1

1

as + t

∑
r∈Is

crfrσ
−1
r

]
.

The desired expression for (Lq)
−1 can be obtained by taking f = ε`, for

any ` = 1, . . . , n.
(b) If t = −ak with mk = 1, for some k = 1, . . . , ` and Ik = {r}, then

u0 = −fr
cr

and for i ∈ Ij , j = 1, . . . ,m, j 6= k

ui =
ωi
[
crfi − cifr

]
cr
[
ciω0 + tσiωi

] =
fi

σi(aj − ak)
− ωiajfr
crω0(aj − ak)

.

which implies that

−fr
cr

= u0 =
ω0

〈c, ω〉

[
crur+

1

ω0

m∑
j=1
j 6=k

aj
aj − ak

∑
i∈Ij

ωifi−
fr
crω0

m∑
j=1
j 6=k

aj
aj − ak

∑
i∈Ij

ciωi

]
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and hence

crur =
fr
crω0

[
− crωr +

ak
ω0

m∑
j=1
j 6=k

ajWj

aj − ak

]
− 1

ω0

m∑
j=1
j 6=k

aj
aj − ak

∑
i∈Ij

ωifi

=
fr
crω2

0

[
akΨ(−ak)− 2crω0ωr

]
− 1

ω0

m∑
j=1
j 6=k

aj
aj − ak

∑
i∈Ij

ωifi.

The desired expression for (Lq)
−1 can be obtained by taking f = ε`, for

any ` = 1, . . . , n. ut

References
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