
A methodology approach to compare
performance of parallel programming models for

shared-memory architectures

Gladys Utrera, Marisa Gil, Xavier Martorell

Computer Architecture Department. Universitat Politècnica de Catalunya
c/ Jordi Girona, 1-3, 08034 Barcelona, Catalunya, Spain

gutrera@ac.upc.edu, marisa@ac.upc.edu, xavim@ac.upc.edu

Abstract. The majority of current HPC applications are composed of
complex and irregular data structures that involve techniques such as
linear algebra, graph algorithms, and resource management, for which
new platforms with varying computation-unit capacity and features are
required. Platforms using several cores with different performance char-
acteristics make a challenge the selection of the best programming model,
based on the corresponding executing algorithm. To make this study,
there are approaches in the literature, that go from comparing in isola-
tion the corresponding programming models primitives to the evaluation
of a complete set of benchmarks. Our study shows that none of them
may provide enough information for a HPC application to make a pro-
gramming model selection. In addition, modern platforms are modifying
the memory hierarchy, evolving to larger shared and private caches or
NUMA regions making the memory wall an issue to consider depending
on the memory access patterns of applications. In this work, we propose
a methodology based on Parallel Programming Patterns to consider intra
and inter socket communication. In this sense, we analyze MPI, OpenMP
and the hybrid solution MPI/OpenMP in shared-memory environments.
We demonstrate that the proposed comparison methodology may give
more accurate predictions in performance for given HPC applications and
consequently a useful tool to select the appropriate parallel programming
model.

Keywords: MPI · OpenMP · NUMA · HPC · Parallel programming
patterns.

1 Introduction

Current HPC platforms are composed of varying computation units capacities
and features connected by diverse, increasingly powerful and complex networks
to provide better performance not only for large size messages but also for mas-
sive receive/send from multiple nodes. These are characteristics foreseeable for
the Exascale era.

From the point of view of the software, applications also tend to be composed
of different data structures and the corresponding algorithms to read and modify

Utrera, G.; Gil, M.; Martorell, X. A methodology approach to compare performance of parallel programming models for shared-memory
architectures. A: "Numerical Computations: Theory and Algorithms: Third International Conference, NUMTA 2019, Crotone, Italy, June 15–
21, 2019: revised selected papers, part I". Berlín: Springer, 2020, p. 318-325.
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-39081-5_28

2 G. Utrera et al.

this data. In addition, based on the data size and the order in which the data is
processed, the performance in terms of scalability or reliability, can be affected
depending on the programming model in use.

This scheme has led to several approaches considering the use of pure Message
Passing library Interface (MPI) [?] versus OpenMP [?] primitives inside a node or
exploring several levels of hybrid message-passing and shared-memory proposals
to take advantage of the different cores’ characteristics. Furthermore, modern
platforms are also modifying the memory hierarchy differences, evolving to larger
shared and private caches or NUMA (Non-Uniform Access Memory) regions.

UMA (Uniform Memory Access) architectures, commonly referred to as SMP
(Symmetric Multiprocessing), have equal memory access latencies from any pro-
cessor. On the contrary, NUMA architectures are organized as interconnected
SMPs and the memory access latencies may differ between different SMPs. In
this situation, the memory wall is an issue to consider depending on the memory
access patterns the executing application exhibits: data message size, varied size
of synchronization or mutex areas; and an inter-socket evaluation is necessary.

This increasing complexity at both low- and high-level makes a challenge
the selection of the best programming model, to achieve the best performance
on a specific platform. In this work, we take a pattern-based approach to ana-
lyze application performance, based on the scalability achieved, including data
locality.

Contributions of this work:

– Review a methodology currently used to enhance parallel programming lan-
guages with the objective of comparing them.

– Performance comparison between MPI and OpenMP under the stencil and
reduce parallel patterns.

The rest of the paper is organized in the following way: Section II introduces
background, related work and our motivation; Section III presents the experi-
mental results. Finally, in Section IV are the conclusions and future work.

2 Background and Motivation

The choice of the parallel programming model can be determinant in perfor-
mance for a given application.

Standard programming models may ensure portability. However, when com-
bined with the platform architecture there is not a general best approach.

In this work we focus on two standards: Message Passing Model (MPI) and
OpenMP. OpenMP [?] is the de facto standard model for shared memory systems
and MPI [?] is the de facto standard for distributed memory systems.

In the following subsections we introduce briefly MPI and OpenMP program-
ming models. After that we make an overview of existing performance compari-
son studies, which conduct us to the motivation of our proposal.

A methodology approach for performance comparison of ppl. 3

2.1 OpenMP

OpenMP is a shared-memory multiprocessing Application Program Inference
(API) for easy development of shared memory parallel programs. It provides a
set of compiler directives to create and synchronize threads, and easily paral-
lelize commonly used parallel-patterns. To that end, it uses a block-structured
approach to switch between sequential and parallel regions, which follows the
fork/join model. When entering a parallel region, a single thread splits into some
number of threads, then when finishing that region, only a sequential thread con-
tinuous execution.

2.2 MPI

MPI is a message passing library specification for parallel programming on a dis-
tributed environment. In a message passing model, the application is composed
of a set of tasks which exchange the data, local or distributed among a certain
number of machines, by message passing. There exist several implementations
like Intel MPI, and also open source like OpenMPI, MPICH.

Each task in the MPI model has its own address space and the access to
others’ tasks address space has to be done explicitly with message passing. Data
partitioning and distribution to the tasks of the application is required to be
programmed explicitly.

MPI provides point-to-point operations, which enable communication be-
tween two tasks, and collective operations like broadcast or reduction, which
implement communication among several tasks. In addition, communication can
be synchronous where tasks are blocked until the message passing operation is
completed, or asynchronous where tasks can defer the waiting for the completion
of the operation until some predefined point in the program. The size of the data
exchanged can be from bytes to gigabytes.

2.3 Related work and Motivation

There is an interesting study by Krawezik et al. [?], which involved the compar-
ison of some communication primitives from OpenMP and MPI, as well work-
sharing constructs from OpenMP and evaluations of the NAS Benchmarks in
shared-memory platforms. They recommend OpenMP for computing loops and
MPI for the communication part. On the other hand, Kang et al. [?] suggest
that for problems with small data sizes OpenMP can be a good choice, while if
the data is moderate and the problem computation-intensive then MPI can be
considered a framework. Another work by Piotrowski [?] which evaluates square
Jacobi relaxation under pure MPI the hybrid version with OpenMP, showed that
in a cluster of shared-memory nodes, none of the hybrid versions outperformed
pure MPI due to longer MPI point-to-point communication times. In the work
by Qi et al. [?] they also use the NAS benchmarks for the evaluation and show
that with simple OpenMP directives the performance obtained is as good a with
shared-memory MPI on IA64 SMP. They also claim that even OpenMP has easy

4 G. Utrera et al.

programming, improper programming is likely to happen leading to inferior per-
formance. In this sense, in the work by [?] they conclude that parallelization with
OpenMP can be obtained with little effort but the programmer has to be aware
of data management issues in order to obtain a reasonable performance. The per-
formance comparison by Yan et al. in their work [?] on the 3D Discrete Element
Method of ellipsoid-like complex-shaped particles, examine memory aspects, task
allocation as well as variations in the combined approach MPI/OpenMP. They
conclude that Pure MPI achieves both lower computational granularity (thus
higher spatial locality) and lower communication granularity (thus faster MPI
transmission) than hybrid MPI-OpenMP in 3D DEM, where computation dom-
inates communication, and it works more efficiently than hybrid MPI-OpenMP
in 3D DEM simulations of ellipsoidal and poly-ellipsoidal particles.

The reviewed works above perform interesting analysis on selected applica-
tions and/or algorithms but none of them provide enough information for a given
HPC application other than the ones specifically analyzed, to make a proper pro-
gramming model selection. Even more, there are contradictory recommendations
derived from the fact that they were evaluated with different platform charac-
teristics which is a relevant factor.

2.4 Selected patterns

Pattern-based parallel programming consists on a set of customizable parallel
patterns used to instantiate blocks of applications. This approach is being em-
powered in the last years with the objective to provide parallel programming
languages with additional features that bring more flexibility and reduce the ef-
fort of parallelization. In the work by De Sensi et al. [?], the authors demonstrate
the feasibility of the approach.

In this work, we exploit the idea of pattern-based parallel programming lan-
guages to compare them in terms of performance.

We selected the loop-of-stencil-reduce pattern for being representative of
many HPC applications. This parallel pattern is general enough to subsume
other patterns like map, map-reduce, stencil, stencil-reduction and their usage
in a loop [?].

Below we can see a pseudocode of our MPI and OpenMP implementation
versions:

{ MPI version } { OpenMP version }

data-distribution

loop loop

start-border-recv #pragma omp parallel for

stencil-reduce (in, out) stencil-reduce (in, out)

start-border-send swap-matrix-in-out

complete-border-exchange end loop

swap-matrix-in-out

end loop

A methodology approach for performance comparison of ppl. 5

In order to make a fair comparison, we do not take into account any converge
condition; the main loop has a fixed number of iterations. There are no depen-
dencies within the blocks inside the stencil algorithm. At every loop there is an
input matrix and an output matrix. Before next iteration, we perform a swap
between both matrix. The parallelization is block-based. This means that a task
perform the stencil algorithm on a block matrix like the one shown in Fig. ??.

The memory access pattern for our implementation is a 5-point Stencil shown
in Fig. ??. In dark grey is shown the data shared in the border of each block.
Each task share data with top, bottom, left and right tasks.

3 Experimental results

adjacent tasks

shared border

Fig. 1. Memory access pattern for a 5-point stencil

0

2

4

6

8

10

12

14

4 8 16

SP
EE
DU

P

tasks

2D STENCIL
data size >> LLC

OMP compact
OMP scatter
MPI compact
MPI scatter

Fig. 2. OpenMP and MPI loop-stencil-reduce parallel pattern performance comparison
when datasize does not fit in LLC. Bigger is better.

In this section we show the performance results from the evaluation of the
implementation in MPI, OpenMP and MPI/OpenMP of the selected parallel
pattern.

The executions were performed on NordIII [?], a supercomputer based on
Intel SandyBridge processors, with Linux Operating System. It has 3.056 ho-
mogeneous compute nodes (2x Intel SandyBridge-EP E5-2670/1600 20M 8-core
at 2.6 GHz) with 2GB per core. We use the Intel MPI library 4.1.3.049 and C
compiler Intel/2017.4.

The evaluations are performed varying the number of tasks (1-16), task al-
location (within a NUMA-node or inter NUMA-nodes) and data size. For the data

6 G. Utrera et al.

size we consider two cases: 1) fits in the last-level cache (LLC); 2) does not fit
in the LLC but fits in main memory.

The work distribution among tasks in our test is well-balanced, so load bal-
ancing issues are not tackle in this analysis. There are no dependencies between
tasks during a given step, so tasks are embarrasingly parallel. The communica-
tion is performed between adjacent tasks (exchange of borders), but source data
is from the previous step. Notice that, the input matrix is only read and the
output matrix is only written (see the pseudocode at Section ??).

The initialization of data structures is done in parallel taking care of the
first touch Operating system data allocation policy to minimize remote accesses
during calculation. Tasks are binded to cores in order to ensure allocation poli-
cies: 1) compact, that is in the same NUMA node; 2) scatter, that is equally
distributed across NUMA nodes. The results are showed in Fig. ?? and Fig. ??.

0

2

4

6

8

10

12

4 8 16

SP
EE
D
U
P

tasks

2D STENCIL
data size < LLC

OMP compact
OMP scatter
MPI compact
MPI scatter

Fig. 3. OpenMP and MPI loop-stencil-reduce parallel pattern performance comparison
when datasize does not fit in LLC. Bigger is better.

We can observe in Fig. ?? that the data size does not fit in the shared NUMA-
node LLC, when the NUMA node is full (8 tasks) or both NUMA nodes are full
(16 tasks) MPI performance degrades dramatically with respect to OpenMP.
However, if data fits in LLC, as shown in Fig. ??, then MPI has better per-
formance when having 8 tasks allocated in different NUMA nodes or when the
NUMA node is full (16 tasks).

The stencil parallel-pattern is characterized for having memory accesses
which are updated by other tasks in previous steps. This means that such data
has to be exchanged before doing the current calculation. There are memory
accesses not only within the block of data processed by a given task, but also for
data managed by neighbouring tasks (adjacent blocks). For shared-memory pro-
gramming models, collaborating tasks allocated to different NUMA-nodes have
a well-documented effect on memory access performance (e.g. OpenMP) [?]).
This is not the case for distributed memory programming models (e.g. MPI). In
parallel programming languages where memory is not shared among tasks (i.e.
MPI), this is exchanged explicitely between steps (i.e. MPI Isend and MPI Irecv
for our current implementation shown in section ??. However, once the data is
brought becomes local (task allocation is transparent).

A methodology approach for performance comparison of ppl. 7

Taking all this into account we can appreciate the NUMA effect when data
fits in LLC. As memory is not an issue for this data size, MPI obtains better
performance than OpenMP. The data managed by each MPI task is local. On the
other hand, when data does not fit in LLC, then as MPI duplicates data faces
memory problems with the consequent increment in cache misses, degrading
performance (Fig. ??). Notice that if allocating tasks in different NUMA nodes,
this effect can be alleviated. Despite LLC misses in MPI for small data sizes are
larger than LLC misses in OpenMP, the remote accesses generated by adjacent
tasks penalize bringing better performance for MPI.

The hybrid approach MPI/OpenMPI performed worse than MPI and OpenMP
in isolation when allocated one MPI task per NUMA-node, which means in our
experimental platform, 2 task per node. The added memory overhead plus the
thread creation and other overheads (e.g. remote memory access) do not com-
pensate in performance. We believe that for larger NUMA-nodes this results
may be different. We are currently undergoing this study.

In conclusion, for small data sizes and small number of tasks, both parallel
programming languages can achieve the same performance no matter where tasks
are allocated (lesser tasks, lesser interaction between them). When incrementing
the number of tasks, there is more interaction between them penalizing remote
accesses for OpenMP, but duplicating data at the same time for MPI.

0

200000000

400000000

600000000

OMP compact OMP scatter MPI compact MPI scatter

LLC misses

Fig. 4. Last Level Cache misses when datasize does not fit

4 Conclusions and Future Work

Based on the idea of pattern-based parallel programming we compared two stan-
dard like OpenMP, MPI and the hybrid approach MPI/OpenMP on a multicore
platform with different memory accesses characteristics. We selected a scheme
pattern representative of many HPC applications like a loop of stencil and re-
duce. We showed that both parallel programming languages can show different
performance characteristics in applications depending on the data size being
processed and the data locality which requires extra and conscious program-
ming effort. Considering the hybrid approach to solve gaps in the context of a
shared-platform showed to not work as good as separately.

In this work we only focused on data-parallel algorithms. We are planning
to extend our study to other parallel patterns like pipeline and unstructured. In

8 G. Utrera et al.

addition, the platform as already shown in terms of memory accesses has a sig-
nificant role so we plan to enrich the work by studying heterogeneous platforms.

Acknowledgements.
This research was supported by the following grants Spanish Ministry of Science
and Innovation (contract TIN2015-65316), the Generalitat de Catalunya (2014-
SGR-1051) and the the European Commission through the HiPEAC-3 Network
of Excellence (FP7/ICT-217068).

