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Abstract

Reliable earthquake detection algorithms are necessary to properly analyze and
catalog the continuously growing seismic records. We report the results of applying a
deep convolutional neural network, called UPC-UCV, over single-station three-channel
signal windows for P-wave earthquake detection and source region estimation in north
central Venezuela. The analysis is performed on a new dataset of hand-picked ar-
rivals of P-waves from local events, named CARABOBO, built and made public for
reproducibility and benchmarking purposes. The CARABOBO dataset consists of
three-channel continuous data recorded by the broadband stations of the Venezuelan
Foundation of Seismological Research (FUNVISIS) in the region of 9.5 to 11.5◦N and
67.0 to 69.0◦W during the time period from April 2018 to April 2019. During this
period, 949 earthquakes were recorded in that area, corresponding to earthquakes with
magnitudes in the range from 1.1 to 5.2 Mw. To estimate the epicentral source re-
gion of a detected event, the proposed network employs geographical distribution of
the CARABOBO dataset into K clusters as a basis. This geographical partitioning
is automatically performed by the k-means algorithm, and the optimality of the K
values for our dataset has been assessed using the Elbow (K = 5) and Silhouette (K
= 3) methods. For target seismicity, the proposed network achieves 95.27% detection
accuracy and 93.36% source region estimation accuracy when using K = 5 geographic
clusters. The location accuracy slightly increases to 95.68% in the case of K = 3 ge-
ographic partitions. The detection capability of this network has also been tested on
the OKLAHOMA dataset, which compiles over two thousand local earthquakes that
occurred in this US state. Without any modification, the proposed network yields ex-
cellent detection results when trained and evaluated on that dataset (98.21% accuracy;
ConvNetQuake, fine-tuned for this dataset, achieves a 97.32% accuracy), corresponding
to a totally different geographical region.

Introduction

The number of seismic networks and monitoring sensors have steadily increased in recent
years, and the continuous growth of seismic records call for new processing algorithms that
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assist in solving problems in seismology. A fundamental endeavor is earthquake recogni-
tion, which pertains to the identification of seismic events in continuous data, with real-time
application to early warning systems, or offline data postprocessing in the search for unde-
tected past earthquakes. Based on time-dependent or spectral analyses of seismic traces,
earthquakes of large or moderate magnitudes are easy to detect by conventional algorithms,
some of which are cited below. Such earthquakes may impact the economy and human
lives, but they are more rare and therefore scarce in seismic catalogs. Alternatively, small-
magnitude earthquakes are more frequent, but they sometimes pass undetected by trained
analysts or automatic recognition if, for instance, traces present poor signal-to-noise (SNR)
ratios or recordings of overlapping events. Thus, seismic catalogs may be incomplete in the
low magnitude range, as mentioned in Rydelek and Sacks (1989), Mignan and Woessner
(2012), Wiemer and Wyss (2002) and Ross et al. (2019). Such catalogs are used in seismic
hazard analysis for ground motion estimation under a given earthquake magnitude, which
serves as a basis for building codes. In addition, accurate detection of the foreshocks and
aftershocks associated with a main shock are used to constrain the actual fault configuration,
total rupture area, and evolution of the tectonic stresses. All of these topics are fundamen-
tal in seismology, and they allow for better understanding of the hosting fault system and
assessment of its destructive potential under surrounding geological conditions.

Conventional algorithms have been developed for automatic detection of seismic phases
and picking the arrival times of primary (P) and secondary (S) waves. Most of these tech-
niques rely on general properties of seismic waves, waveform attributes, and statistical cor-
relation or wave polarization analyses. A popular P-wave detector developed in Allen (1978)
and Allen (1982) calculates the ratio of the average of the absolute amplitude of a signal in
a short time window (STA) to the average of the signal in a long time window (LTA). In
cases in which the STA/LTA ratios exceed a given threshold at a minimum number of net-
work stations, the seismic event is considered as an earthquake. Some generalizations of the
STA/LTA algorithm that also allow phase picking were later proposed in Baer and Kradolfer
(1987), Earle and Shearer (1994) and Nippress et al. (2010). The phase identification of S
waves is usually difficult due to superposition with P coda and converted phases, and some
elaborate picking methods were developed in Roberts et al. (1989), Cichowicz (1993), Diehl
et al. (2009) and Baillard et al. (2014). The P and S detection algorithm presented by
Ross and Ben-Zion (2014) combines some of the aforementioned waveform analyses with
STA/LTA measures. By using recordings from local stations, this method is also able to
pick fault-zone head waves that may be triggered during earthquakes.

A different class of detection algorithms are based on pattern recognition or intensive au-
tocorrelation. Most methods build appropriate pattern sets of earthquake and noise signals,
and the association of new trace windows with one set based on sufficient similarity serves
as the discrimination basis for detection. Among the early pattern recognition methods,
one can find Anderson (1982), Chen (1984), Joswig (1990) and Klumpen and Joswig (1993).
Earthquake signals that share the same source mechanism, along with similar path and site
conditions, should present strong waveform similarities. Earthquake detection by intensive
autocorrelation is undertaken by the methods in Gibbons and Ringdal (2006) and Brown
et al. (2008). This category of detection algorithms naturally adapts to general regional and
network conditions and behaves reliably, but obtaining results is computationally intensive
when processing large datasets. To reduce the computational cost, this class has evolved
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into the template matching algorithms that maintain a reduced database of representative
waveforms to be fully compared against new traces or that extract and store key discrimi-
native features from waveforms to be used in the similarity search. Some works focused on
earthquake swarms and sequences of foreshocks and aftershocks are those of Shelly et al.
(2006), Harris and Dodge (2011), Skoumal et al. (2015), Benz et al. (2015), and the Fin-
gerprint and Similarity Thresholding (FAST) algorithm in Yoon et al. (2015). In FAST,
discriminative features are binary fingerprints, stored in a special dictionary according to
their similarity, that allow for efficient searches owing to a locality-sensible hashing. Special
FAST adaptations to sparse seismic networks have been recently proposed in Bergen and
Beroza (2018).

Artificial neural networks (ANNs) represent a suitable framework for seismic phase de-
tection due to their proficiency in complex pattern recognition. Since the mid-1990s, there
has been a tremendous amount of contributions that vary in terms of the underlying learn-
ing technique, network architecture and functionality, and spatial extent of the documented
application, among other distinct aspects. Early works based on supervised learning involve
simple feed forward neural networks (FFNNs), which were followed by some scattered cases
of recurrent neural networks (RNNs), and we then find some recent applications of very
deep convolutional neural networks (CNNs). FFNNs for seismic phase detection have been
proposed in Dai and MacBeth (1995), Wang and Teng (1995), Enescu (1996), Dai and Mac-
Beth (1997), Wang and Teng (1997) and Zhao and Takano (1999) and applied to local and
regional earthquake data. In particular, the testing dataset used in Dai and MacBeth (1995)
consists of slightly more than 850 local events, while Zhao and Takano (1999) employed over
1200 seismograms of the IRIS network for training and validation. Alternatively, the FFNNs
introduced in Tiira (1999) make use of a dataset of P-wave signals from 193 teleseismic events
recorded at 3 short period stations in central Finland. In Gentili and Michelini (2006), the
singular network IUANT2 presents a problem adaptive structure that is inferred during the
training process. This technique is used for phase picking by employing records of 342 local
earthquakes recorded by 23 different stations (approximately 5K traces). Wiszniowski et al.
(2014) implement an RNN for real-time detection of small magnitude (below 2.5 Mw) earth-
quakes in populated and noisy areas owing to an elaborate design of filter banks processing
the STA/LTA ratios of seismic waveforms. This process allows for the extraction of relevant
frequencies from input data, making this network less prone to false detection occurrences.
The initial training relies on 170 events, including regional and teleseismic earthquakes, and
the full operating network was tested during different time periods in 2009. Recent applica-
tions of RNNs to early warning systems and to earthquake prediction are given in Ibrahim
et al. (2018) and Bhandarkar et al. (2019), respectively.

Among the state-of-the-art CNNs for earthquake detection, we find ConvNetQuake de-
veloped by Perol et al. (2018), the generalized phase detection (GPD) introduced in Ross
et al. (2018), and PhaseNet proposed by Zhu and Beroza (2019). ConvNetQuake operates on
three-channel seismograms from local stations for P-wave detection and has been used for the
recognition of natural or human-induced (related to waste water injection) low-magnitude
events in central Oklahoma, USA (hereafter referred to as the OKLAHOMA dataset). For
training, the authors employ a seismic catalog of over two thousand events that occurred
during 2014-2016 and then validate the network by using 209 additional events. This network
is extensively used in this work as a reference, so additional ConvNetQuake characteristics
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and new performance assessments will be discussed in the following sections. The training
and validation of GDP and PhaseNet make use of the extremely large seismic datasets, prop-
erly labeled by human analysts, that are available from the Californian seismic networks.
In particular, GDP detection has also been tested on the 2016 Bombay Beach, California
swarm of small and moderate (≤ 4.8 Mw) events and with the data of the 7.0 Mw Kumamoto
earthquake that occurred in 2016.

The aforementioned detection ANNs, as well as multiple alternative applications, could
also be compared in terms of data preprocessing (trace normalization, filtering, windowing,
etc.) and achieved accuracy, among other possible aspects. An interested reader, in addition
to directly inspecting our listed references, may review any of the following survey papers:
Baan and Jutten (2000), Florido et al. (2016), Kong et al. (2019) and Rojas et al. (2019).
For locating the earthquake hypocenter, as part of the core information in seismic catalogs,
only a few scattered estimation approaches incorporating ANNs can be found. For instance,
ConvNetQuake maps hypocenters to a cluster of different geographical areas based on a
Voronoi partition. Alternatively, the detection CNN proposed by Kriegerowski et al. (2019)
is trained on an earthquake swarm of 2000 events recorded by several local three-component
stations. During testing, this network locates approximately 900 earthquakes with standard
deviations of nearly 56 m, 124 m and 136 m along the east-west, north-south and vertical
directions, respectively. Lastly, the detection CNN introduced in Zhang et al. (2018) con-
structs a 3D probability volume of location likelihood inside the Earth. This work employs
the OKLAHOMA dataset for training and evaluating the model, and reports an average
error of 4.9 km in the epicenter location estimation (1.0 km in the depth estimation).

Here we address the earthquake detection and epicentral estimation problems for seismic
data collected by broadband stations in north-central Venezuela during the time period from
April 2018 to April 2019. Two main contributions of this study are as follows:

• A new analyst-labeled dataset, called CARABOBO according to the recording region,
was built and made public for result reproducibility and benchmarking purposes. This
dataset contains seismic data related to 949 earthquakes with magnitudes ranging
between 1.1 Mw and 5.2 Mw.

• A deep CNN is proposed, called UPC-UCV and inspired by ConvNetQuake, to ap-
proach the P-wave detection problem by processing three-channel seismic signals in
the mentioned geographic area. The method also performs source region estimation,
mapping positive events to geographical partitions (automatically obtained with the
k-means clustering algorithm) of the study region. Although our epicentral estimation
lacks depth approximation for complete hypocentral location, it represents information
that is available in real time and is complementary to standard earthquake location
procedures.
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Methodology

The CARABOBO Dataset

The CARABOBO dataset of analyst-labeled P-wave arrivals is based on the data provided
by The Venezuelan Foundation for Seismological Research (FUNVISIS), the governmental
agency for monitoring and reporting seismic activity in Venezuela. The FUNVISIS network
includes 35 broadband stations recording three-channel continuous data at 100 Hz. The
stations are mainly deployed in the regions with higher seismic activity which are close to
the active fault systems in northern Venezuela. The dataset is the first for this region and
contains seismic data (in miniSEED format) collected by broadband stations in north-central
Venezuela, in the region of 9.5 to 11.5◦N and 67.0 to 69.0◦W, during the time period from
April 2018 to April 2019. During this period, 949 earthquakes were recorded in that area
by 5 seismological stations (BAUV, BENV, MAPV, TACV and TURV). The dataset also
includes a catalog with the metadata related to the events (hypocenter, P-wave arrival times,
magnitude, etc.) in Nordic format.

The study region (figure 1), characterized by shallow seismicity, includes the central part
of the Caribbean mountain system with important cities such as Caracas, Valencia and
Maracay. The magnitudes of the earthquakes range between 1.1 and 5.2 Mw (figure 2 shows
the magnitude distribution of the events); P- and S wave arrival times are reported in the
FUNVISIS catalogs (FUNVISIS (2018), FUNVISIS (2019)). Most seismic events belong to a
seismic swarm with epicenters located within northwestern Valencia (Carabobo state). The
seismicity of the region is associated with the San Sebastián and La Victoria fault systems,
along with some minor faults such as the Las Trincheras and Morón faults, all of which
are right lateral strike-slip faults (Audemard et al. (1995), Singer et al. (2014)). The San
Sebastián and La Victoria faults belong to the continental scale Boconó - San Sebastián -
El Pilar fault system along the interface between the Caribbean and South American plates
(Audemard (2007)).

It is worthy of mentioning that the study region in figure 1 concentrates a large population
and a variety of big industries, and the human and industrial activities induce a high level
of seismic noise. Unfortunately, some of the seismic stations of the local FUNVISIS network
(also shown in figure 1) failed during the recording period of this study, and the seismic
processing of the recorded data was carried out by trained analysts assisted by STA/LTA
detection software. The combination of these facts lead to a detection deficiency of small
events, and reflect on the apparent scarcity of the seismic activity below 2 Mw, as depicted
in figure 2. This cumulative earthquake distribution does not follow a standard frequency
magnitude relation, such as the GutenbergRichter law. However, more elaborate earthquake
detection procedures could reveal several small events, allowing a future enrichment of the
CARABOBO dataset.

Earthquake Detection and Source Region Estimation

Earthquake detection and source region estimation are both approached as a single multiclass
classification problem, in which fixed-size windows of waveform data must be classified into
K + 1 classes. The first K classes are for windows containing a P-wave from an event whose
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epicenter is located in one of the given K source regions. The last class is for windows that are
free of any P-wave arrival. The proposed method (UPC-UCV) is inspired by ConvNetQuake
(Perol et al. (2018)), which addresses these problems with a supervised learning approach.
ConvNetQuake consists of a series of data preprocessing steps to convert the input waveforms
into a set of fixed-size windows and the application of a deep convolutional network to infer
the best class for a given window. ConvNetQuake was the first choice to perform detection
over the CARABOBO dataset. However, the obtained results (81.95% detection accuracy
and 82.08% source region estimation accuracy with K = 5) were not adequate, and it was
necessary to perform a series of enhancements, both in the preprocessing strategy and in the
network design, which are described below.

Data Preprocessing

Several data preprocessing steps are applied in order to obtain the training and evaluation
datasets. First, input streams with no data in any of the three channels are purged. Then,
each input stream is normalized (independently for each of the three channels), and if the
stream contains seismograms from multiple stations, it is divided into multiple 3-channel
streams. Because different events can be detected by a different set of seismic stations (in
different locations, a station is not always operative, etc.), processing single-station data
enables obtaining a more homogeneous and larger training dataset. Each 3-channel stream
is split into multiple 3-channel temporal windows of fixed size (window sizes in the range
of 10-60 sec have been tested). With the event information obtained from the metadata
files, the windows are divided into K + 1 classes (K classes for positive detection origi-
nating in one of the given K source regions and one class for negative detection). These
preprocessing steps are identical to those performed by ConvNetQuake, with the exception
that ConvNetQuake only reports results with 10 sec windows. However, to improve the de-
tection performance, the proposed method incorporates some preprocessing improvements.
Unlike ConvNetQuake, which splits the input streams into non-overlapping windows, the
proposed method applies a sliding window approach so that the resulting windows par-
tially overlap. Another difference with respect to ConvNetQuake involves dataset balancing.
ConvNetQuake works with an extremely imbalanced dataset, but the proposed method bal-
ances the training data by undersampling the negative data. Finally, unlike ConvNetQuake,
bandpass filtering ([0.5, 10] Hz) is applied to attenuate the noise. This preprocessing setup
applied over the CARABOBO dataset results in sixty thousand windows, 50% positive and
50% negative.

Geographical Clustering

The proposed method is essentially a signal window classifier. With only two classes/labels
(P-wave or not P-wave), the method behaves similar to a P-wave detector. Increasing the
number of classes and properly labeling the windows that contain a P-wave enable inference
of properties about the event that triggered the detected P-wave. One possibility, the one
addressed in this work, is attempting to determine the epicentral source region of the event.
First, the study area is partitioned into K geographic subdivisions. Second, the positive
windows are labeled with the identifier of the subdivision to which the event source location
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belongs. Third, a classifier with K + 1 classes is trained. The first step, geographic parti-
tioning, can be performed in many different ways, including manually. In this work, it is
performed by clustering all of the event locations in the dataset with k-means (MacQueen
(1967)) for different values of K (figure 1 shows the partitioning for K = 5). The tested
values of K are the optimal ones resulting from the application of both the Elbow method
and the Silhouette method. Figure 3 shows the results of both methods for finding the
appropriate number of source regions.

UPC-UCV network architecture

The proposed model is a deep convolutional network inspired by the one described in Perol
et al. (2018) but enhanced to be able to work properly with the CARABOBO dataset. First,
the convolutional part of the network is flattened by enlarging the size of the convolutional
kernels (from 3 to 20) and reducing the number of convolutional layers to only 4 (from 8 in
ConvNetQuake). Greater robustness to noise and distortions is obtained by applying max
pooling after each convolutional layer. Second, two additional fully connected layers are
incorporated. All of these changes result in a significant increase in the number of trainable
parameters (to 70K, from 23K in ConvNetQuake) but not in the training time, as the depth
of the network becomes slightly reduced. Figure 4 shows the proposed network architecture.

The network takes a multiple-channel seismogram window as input and outputs K + 1
detection probabilities. The first K values estimate whether the window contains a P-wave
triggered within one of the given source regions, and the last output is the probability that
the window does not contain any P-wave. The input and output of the network are the
same as those in ConvNetQuake, with the exceptions of the input window size (10 sec in
ConvNetQuake; 50 sec in the best configuration of UPC-UCV) and the value of K (6 for
the OKLAHOMA dataset targeted by ConvNetQuake; 5 and 3 for the CARABOBO dataset
targeted by UPC-UCV).

The input of the model is a window of, in the best configuration of UPC-UCV, 50 sec. As
the signal is sampled at 100 Hz, the window contains 5000 samples. Each sample presents
three values, one for each component (N-S, E-W, and up-down). This would result in a
tensor of shape [5000, 3] ([window size x sampling rate, number of channels]). However,
in the same way as in ConvNetQuake, UPC-UCV’s network works with an input tensor of
[5000, 1, 3] ([window size x sampling rate, 1, number of channels]), a more convenient shape
to feed a ConvNet network, which is typically used to work with color images received as
tensors with shape [width, height, color channels]. Thus, from a conventional ConvNet point-
of-view, UPC-UCV’s input is like a just-one-row image with three color channels. Figure 4
attempts to clarify this by showing the input tensor as a flat cuboid (while a color image
would be a normal 3D cuboid).

The network has four convolutional layers, each with an associated max pooling layer. All
of the layers have 32 convolutional kernels. Conventionally, the deeper layers of a ConvNet,
which work with higher-level features, contain fewer kernels than the first layers. However,
after testing different configurations, it was decided to retain the same configuration as in
ConvNetQuake for this aspect.

The convolutions are applied in 1D fashion (only through the temporal axis), but the
kernels are 2D to process the multiple input channels. Given a 2D kernel k of size s × c
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(width s over c channels) of a given layer l, the weight matrix W k,l ∈ IR2s+1×c is:

W (k,l) =


W

(k,l)
−s,1 . . . W

(k,l)
−s,c

...
...

...

W
(k,l)
0,1 . . . W

(k,l)
0,0 . . . W

(k,l)
0,c

...
...

...

W
(k,l)
s,1 . . . W

(k,l)
s,c

 (1)

Empirically, the value of the s hyperparameter (size of the kernel) has been set to 20
(3 in ConvNetQuake). Thus, each convolutional kernel is a 20 × c matrix, with c denoting
the number of output channels of the previous layer (3 for the first convolutional layer and
32 for the following ones). The 20 × 3 cuboids in figure 4 correspond to the convolutional
kernels of the first layer, i.e., to Equation 1 when l = 1, s = 20 and c = 3. Each kernel is
applied to all of the 20-size windows of the input tensor with a stride of 2 (the same as in
ConvNetQuake). For each of these windows, the discrete convolution of the input 2D tensor
Y with kernel W k,l at position t of the input tensor (the kernel only moves in 1D) is given
by:

(Y ∗W k,l)t =
s∑

u=−s

c∑
v=1

W k,l
u,v ∗ Yt+u,v (2)

The result of equation 2 is known as a convolved feature map. As each kernel is applied to
different windows of the input tensor (different values of t), many convolved feature maps are
obtained for each kernel (e.g., 2500 in the first convolutional layer). A bias and an activation
function are applied to each convolved feature map to provide nonlinearity and obtain the
final output of the layer (also known as a rectified feature map) at each position. The output
at position t of a convolutional layer l and kernel k is computed as:

Y
(l)
k,t = σ(b

(l)
k + (Y (l−1) ∗W k,l)t′) (3)

in which t′ is the index of the input tensor. t′ (t in Equation 2) depends not only on t but also
on the stride (2 in this case). σ(x) = max(0, x) is the nonlinear ReLU (rectified linear unit)

activation function, and b
(l)
k is the bias term for kernel k in layer l. After each convolutional

layer, we apply a max pooling layer with a pooling window of size 5 and stride 3.
After the last convolutional layer, the resulting 2D tensor is flattened into a 1D tensor.

This feature vector is then processed by three fully connected layers with ReLU activation
functions (10 neurons for the first ones and K + 1 neurons for the last one). The size of the
last fully connected layer depends on the number of classes (two if only P-waves are being
detected and K + 1 if the source region where the P-wave originated is also being inferred
from K predefined regions). The outputs of the last fully connected layer, the so-called
logits, are raw prediction values with a range of [−infinity,+infinity]. To transform these
values into probabilities (range of [0, 1], sum to one) a softmax function is applied. Each of
the K outputs of the network is the probability (a float value within the range of [0, 1]) that
the input window contains a P-wave that originated in one of the K regions. One output
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of the network contains the probability that the input window does not contain a P-wave.
This is the same output that is defined in ConvNetQuake.

The network is trained with 80% of the balanced dataset (48K windows), and the re-
maining 20% (12K windows) is used for the evaluation.

Experiments and Results

The main goal of the experiments is to evaluate the detection performance of the different
aspects (including the data preprocessing strategy and the network architecture) of the UPC-
UCV method. All of the reported results are obtained when evaluating each configuration
over a test dataset of previously unseen windows (20% of the dataset). The experiments
were conducted on one of the computing clusters of the Computer Architecture Department
of the UPC. The cluster is accessed through a Sun Grid Engine (SGE) batch-queuing system
and comprises 200 heterogeneous nodes, the newest ones being equipped with 2x Intel Xeon
E5-2630L v4 processors running at 2.20 GHz with 128 GB of RAM.

Before deciding the final configuration, different data preprocessing configurations (win-
dow size, frequency filtering, number of channels, etc.) and different network geometries and
parametrizations were tested. Table 1 summarizes the impacts of the different preprocessing
choices on the performance. The obtained results confirm that all of the proposed modifi-
cations with respect to Perol et al. (2018) exert a positive impact on the performance. The
preprocessing modification with the highest impact is the slicing of the input streams into
highly overlapping windows, which can be seen as a phase shifting-based data augmentation
technique. The usage of the three channels, which is mainly aimed at improving source
region estimation, exerts a small impact on the P-wave detection accuracy, as expected.

One important hyperparameter is the window size. Window sizes in the range of 10-60
sec have been tested. Figure 5 shows the impact of the window size on the detection accuracy
for both UPC-UCV and ConvNetQuake. It is interesting to observe how the optimal window
size differs between methods, with larger windows (approximately 50 sec) being better for
the proposed method.

Table 2 summarizes the results of UPC-UCV (with all of the described preprocessing
and network architecture improvements) in comparison with the reference method, Con-
vNetQuake. UPC-UCV achieves a 95.27% detection accuracy, which is significantly better
than the 81.95% (balanced) accuracy obtained by ConvNetQuake in its original setup (10
sec windows and without the proposed preprocessing improvements). UPC-UCV is also
better if the proposed preprocessing improvements are also applied to ConvNetQuake while
retaining its optimal 10 sec window size. Table 2 summarizes the results of UPC-UCV (with
all the described preprocessing and network architecture improvements) in comparison with
the reference method, ConvNetQuake. While the goal of this work is to provide reliable
detection and source region estimation for the target region, its performance when trained
and evaluated on the dataset employed in Perol et al. (2018) (the OKLAHOMA dataset)
has also been assessed to study the applicability of the proposed network setup to different
seismic data. Because the experiment is based on an already preprocessed dataset, the test
is limited to a configuration of 10 sec windows without overlap. Although the UPC-UCV hy-
perparameters were not fine-tuned over this dataset, it achieves a 98.21% detection accuracy,
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while ConvNetQuake reaches a similar 97.32% (balanced) accuracy.
Figures 6 and 7 compare test cases with satisfactory and wrong P-wave detections. Most

of the false positives are windows shortly after the P-wave (out-of-phase detection). When
applied in a real setup, these false positives could be avoided by introducing an exclusion
window after the detection of the P-wave (if there is a true positive detection). In the worst
cases, out-of-phase detection implies a false negative followed by a false positive. Irregular
waveforms related to the heterogeneous characteristics and states of the sensors are the other
main source of detection errors.

Table 3 shows the results obtained in the performed source region estimation experiments
(for both the reference model and the proposed model). These results, a 95.68% accuracy
with K = 3 and a 93.36% accuracy with K = 5, are satisfactory considering that the source
region is being estimated with the information of just one seismic station, and they con-
firm that the conclusions obtained by Perol et al. (2018) are also extrapolatable to other
seismicities. The UPC-UCV results are also significantly better than those achieved with
ConvNetQuake.

Regarding the computational efficiency of UPC-UCV during inference time, processing
a window (which happens every 10 sec of the input stream) takes an average of 4.4 millisec-
onds. Such performance would enable our network to process a one hour stream in less than
2 seconds, allowing an efficient real-time processing. This performance is very similar to
that observed for ConvNetQuake, which takes an average of 3.8 milliseconds to process each
window. Regarding the memory footprint, UPC-UCV (which has 70K parameters) occupies
about 3.5 MB of memory during inference time. ConvNetQuake, which has only 23K param-
eters, occupies about 3 MB, that represents a similar cost. Some of the overheads introduced
by TensorFlow are not actually proportional to the number of network parameters.

Conclusions

Results of the proposed UPC-UCV method, consisting of applying a convolutional neu-
ral network to single-station 3-channel waveforms for P-wave earthquake detection and
source region estimation in north-central Venezuela, have been reported. In addition, the
CARABOBO dataset of analyst-labeled P-wave arrivals, named after the studied seismic re-
gion, has been built and made public for reproducibility and benchmarking purposes. Both
the UPC-UCV network and the CARABOBO dataset are the first developed for this ge-
ographic region. This convolutional network is inspired by ConvNetQuake developed by
Perol et al. (2018) but incorporates many improvements, both in the data preprocessing
strategy and the network architecture, to yield higher detection accuracy (13.3 percentage
point increase) for the new target seismicity. Regarding the preprocessing strategy, the main
modifications are the usage of larger and overlapping windows, the balancing of the dataset
and the application of a bandpass filter to input seismic signals. Regarding the network ar-
chitecture, the main enhancements are the flattening of the convolutional part (fewer layers
with larger kernels), max pooling and more fully connected layers. UPC-UCV achieves a
95.27% detection accuracy over a subset of windows of the CARABOBO dataset that were
never seen during training, while ConvNetQuake obtains a 81.95% detection accuracy over
the same subset. Regarding source region estimation, UPC-UCV achieves a 95.68% accuracy
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with K = 3 geographic partitions, while ConvNetQuake obtains an 84.58% accuracy. In the
case of K = 5 geographic partitions, UPC-UCV reaches a 93.36% accuracy, compared to
ConvNetQuake that yields an 82.08% accuracy. The dataset partitioning into K geograph-
ical clusters is automatically performed by the k-means algorithm, and the optimality of
these K values has been assessed using the Elbow and the Silhouette methods. In addition,
without any modification, this network yields excellent detection results when trained and
evaluated on the OKLAHOMA dataset, which corresponds to a totally different geographical
region (98.21% detection accuracy; ConvNetQuake, fine-tuned for this dataset, achieves a
97.32% detection accuracy).

Data and Resources

Both the data and the source code used in this work are publicly available in order to enable
the reproducibility of our results and to facilitate the evaluation and benchmarking of other
methods. The source code of the UPC-UCV method is available on https://github.com/

rtous/deepquake (last accessed May 15, 2020). The CARABOBO dataset is available on
https://github.com/rtous/CARABOBO2019 (last accessed May 15, 2020).
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Table 1: Impact of different hyperparameters.

Overlapping Filtering [0.5, 10] Hz Components Accuracy
yes yes 3 95.27%
no yes 3 89.9%
yes no 3 92.48%
yes yes 1 94.11%

Impact of different hyperparameters on the detection accuracy of the proposed method on the CARABOBO dataset.

Table 2: Final P-wave detection results.

Preprocessing Model Win. size Accuracy
ConvNetQuake ConvNetQuake 10 81.95%∗

ConvNetQuake ConvNetQuake 50 83.25%∗

UPC-UCV ConvNetQuake 10 89.63%
UPC-UCV ConvNetQuake 50 90.10%
UPC-UCV UPC-UCV 10 89.96%
UPC-UCV UPC-UCV 50 95.27%

Detection accuracy results for both the reference model (ConvNetQuake) and the proposed model (UPC-UCV) on the
CARABOBO dataset with two different window sizes (10 sec and 50 sec). ∗Accuracy values for the ConvNetQuake pre-
processing are balanced accuracies, as the dataset is imbalanced.

Table 3: Source region estimation accuracy results.

Model Accuracy (K=3) Accuracy (K=5)
ConvNetQuake 84.58% 82.08%
UPC-UCV 95.68% 93.36%

Source region estimation accuracy results for both the reference model (ConvNetQuake) and the proposed model (UPC-UCV)
on the CARABOBO dataset.
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Figure 1: Epicenters of seismic activity in the center-north region (67◦W - 69 ◦W, 9.5◦N -
11.5◦N) of Venezuela (circles), seismological stations (triangles), and active faults (red lines)
compiled by Beltrán (1993); inset: relative location of the study area at the Caribbean-South
American plate interaction. The figure also shows the geographical partitioning (obtained
with k-means and K=5) of the events (yellow lines).
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Figure 2: Magnitude distribution of the events.

Figure 3: Results of the methods for finding the appropriate number of source regions
(clusters). Elbow method (left), and Silhouette method (right).

18



Figure 4: Network architecture with 3-channel input, 4 convolutional+max pooling layers,
3 fully connected layers and a softmax layer.

Figure 5: Impact of window size on accuracy for both the reference model (ConvNetQuake)
and the proposed model (UPC-UCV). Models are trained with the CARABOBO dataset.
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Figure 6: Example seismograms (only Z component for readability) with P-waves successfully
detected (true-positive windows are overlaid in green).
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Figure 7: Example seismograms (only Z component for readability) with detection errors
(false positive in red and false negative in cyan).
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