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Matemàtiques

Escola Tècnica
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Abstract

The recognition of emotions in speech is one of the most challenging topics in
data science. In this work, we define a pipeline for the study of multimodal
speech recognition, using a wide set of features from audio samples and text
transcripts.
This work aims to study the interaction and contribution of multimodal features
and for this purpose, three types of features have been selected. We extract a
set of handcrafted features related to speech prosody, along with classical mel
spectrogram acoustic features and TF-IDF for text. Combining these three types
of data we evaluate the contribution that they represent to each other.
This Thesis also provides a comparative study between the classical machine
learning models performance over neural architectures in terms of performance
and learning potential from speech. Finally, it presents an application that
provides emotion classification and feedback retrieval for misclassified samples.
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Chapter 1

Introduction

Despite the great progress made in artificial intelligence in the last decade, we
are still far from being able to naturally interact with machines. There is still
a big gap between natural human interactions and human-machine interactions,
and this is partly because machines do not understand our emotional states and
therefore they have no way to react to them.
This Thesis presents a comparative study and an effective approach to address
the Emotion Recognition in Speech (SER) task. The following section provides
an introduction to this thesis, organized as follows: in section 1.1 we introduce
the reasons and needs of this work. In section 1.2 we present the main problems
and challenges to be faced. Thereafter in section 1.3 we summarize the goals to
be achieved by this work. And finally, in section 1.4 we describe the structure
of this Thesis.

1.1 Motivation

Communication is the key to human existence, and human interactions lead
frequently and undeniably to ambiguous situations. For instance, the sentence
“This is great.” could be said under either exciting or angry emotional states.
Humans are able to resolve ambiguity in most cases because we can efficiently
comprehend information from multiple domains such as speech, words and im-
ages.

An important application is human-computer interaction, typically in the con-
text of conversational agents. Users of agents such as Siri or Google Assistant
will attest that these systems lack relatability and fail to elicit empathy from
the user. One way to improve the relatability of such systems is to give them
the capacity to detect emotion from speech, allowing the system to respond in
a more appropriate manner.

In developing emotionally aware intelligence, the very first step is building ro-
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2 CHAPTER 1. INTRODUCTION

bust emotion classifiers that display good performance regardless of the appli-
cation. In particular, the speech emotion recognition task (SER) is one of the
most important problems in the field of para-linguistics. This field has recently
broadened its applications, as it is a crucial factor in optimal human-computer
interactions, including dialog systems.
The goal of speech emotion recognition is to predict the emotional content of
speech and to classify speech according to one of several labels (i.e., happy, sad,
neutral, and angry). This emotional prediction can be made using only the fea-
tures contained in our speech, as well as with the semantic meaning of our words.
The combination of both is known as multi-modal speech emotion recognition
(MSER).

MSER basically consists in two steps: feature extraction from text and speech,
and emotion classification. During the last years there’s been an extensive re-
search on both matters, and a large variety of solutions have been proposed. On
one hand, Feature Extraction for SER remains a challenging task, while Emotion
Classification presents a wide variety of possible solutions where there is plenty
room for improvement.

This Master Thesis aims to address the emotion recognition in speech problem,
and propose a solution based on speech and text by comparing different state-
of-the-art architecture approaches to increase the overall accuracy achieved in
previous works.

1.2 Main Challenges

The goal of speech emotion recognition is to predict the emotional content of
speech and to classify speech according to one of several labels. Various types
of deep learning methods have been applied to increase the performance of emo-
tion classifiers; however, this task is still considered to be challenging for several
reasons.

First, insufficient data for training complex neural network-based models are
available, due to the costs associated with human involvement. There are just
a few datasets available for tasks such as SER, and in most cases they are com-
posed of a relatively small amount of samples. The emotion annotations require
a very complex process since the nature of emotions is very subjective.

Variation in voice tones as well as internal physiological changes while uttering
a sentence (or even a single word) combine to generate the speaker’s emotional
state. Perfect recognition of emotions is not easy even by humans when listen-
ing to each other; sometimes the human cannot recognize his own innermost
emotion [Al-Talabani et al., 2015]. Categorizing emotional speech samples is a
serious challenge due to the long debate about the real meaning of “emotion”
and the emotional classes that should be dealt with.
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Another challenge is to identify emotion relevant features that can be extracted
from the raw speech signal or its frequency domain version. Recent studies
observed that emotion related information in the speech is spread along different
kind of features. This could be due to the acoustic variability as a consequent
of the existence of different sentences, speakers, speaking styles, and speaking
rates

1.3 Goals of this work

Considering the challenges observed in the domain of this thesis, this work is
conceived with the following goals:

1. Define a common pipeline for Speech Emotion Recognition that combines
acoustic and textual data. This means defining which are the best type of
features and model architectures for a multimodal approach.

2. Provide a comparative study between the performances of 1) lighter ma-
chine learning and 2) deep learning based models.

1.4 Structure of this Thesis

This Thesis is structured as follows:

• In chapter 2 we explain the background context of Speech Emotion Recog-
nition, the related work and the current State-of-the-art.

• In chapter 3 we explain the Methodology followed in this work and the
approaches taken to fulfill our goals

• In chapter 4 we explain the settings for the experiments taken

• In chapter 5, the obtained results are presented and explained

• And at last, in chapter 6 we explain our conclusions and improvements we
could include in a future work





Chapter 2

Background and related
work

2.1 Dataset

One of the most interesting para-linguistic messages expressed during human
interaction is the emotional state of the subjects, which is conveyed through
both speech and gestures. The tone and energy of the speech, facial expressions,
torso posture, head position, hand gestures, and gaze are all combined in a non-
trivial manner, as they unfold during natural human communication. Even if
we consider only one of these non-verbal feature (such as the voice tone), much
more robust models can be developed and implemented.

2.1.1 Main limitations in existing databases

In this context, one of the major limitations in the study of emotion expression
is the lack of databases with genuine interaction that comprise integrated in-
formation from most of these channels. [Douglas-Cowie et al., 2003] made an
analysis of several existing emotional databases. They concluded that in most of
the databases, the subjects were usually asked to ”act” or ”simulate” emotions
while being recorded. While desirable from the viewpoint of providing controlled
elicitation, these simplifications in data collection could discard important infor-
mation observed in real life scenarios.
As a result, the performance of emotion recognition significantly decreases when
the automatic recognition models developed by such databases are used in real
life applications, where a blend of emotions is observed [Devillers et al., 2005].

Another limitation of existing corpora is that the recorded materials often con-
sist of isolated utterances or dialogues with few turns [Douglas-Cowie et al.,
2003]. This setting neglects important effects of contextualization, which play

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

a crucial role in how we perceive and express emotions. Likewise, most of the
existing databases contain only the acoustic speech channel. Therefore, these
corpora cannot be used to study the information that is conveyed through the
other communication channels.

Other limitations of current emotional databases are the limited number of sub-
jects, and the small size of the databases. Similar observations were also pre-
sented in the review presented by [Ververidis and Kotropoulos, 2012].

2.1.2 IEMOCAP Database

Considering the limitations presented in the previous section, the database cho-
sen for this work has been the interactive emotional dyadic motion capture
database (IEMOCAP).

In this database ten actors were recorded in dyadic sessions (5 sessions with 2
subjects each). They were asked to perform three selected scripts with clear
emotional content. In addition to the scripts, the subjects were also asked to
improvise dialogues in hypothetical scenarios, designed to elicit specific emotions
(happiness, anger, sadness, frustration and neutral state). One participant of
the pair was motion captured at a time during each interaction.

Figure 2.1: IEMOCAP recording session. Source: sail.usc.edu

Also, fifty-three facial markers were attached to the subject being motion cap-
tured, who also wore wristbands and a headband with markers to capture hand
and head motion, respectively. Using this setting, the emotions were elicited
within a proper context, improving the authenticity of the captured emotional
data. Furthermore, gathering data from ten different subjects increases the
plausibility of effectively analyzing trends observed in this database on a more
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general level. In total, the database contains approximately twelve hours of data.

Each utterance in the dataset was annotated by at least 3 human annotators,
and besides the categorical emotion attributes, three dimensional attributes were
also provided: valence, activation and dominance.

2.2 Representation of emotional models

Due to the multi-disciplinary nature of research on emotions, different represen-
tation schemes and models have emerged hampering comparison across different
approaches.

In NLP-oriented sentiment and emotion analysis, the most popular representa-
tion scheme is based on semantic polarity, the positiveness or negativeness of a
word or a sentence, while slightly more sophisticated schemes include a neutral
class or even rely on a multi-point polarity scale. From an NLP point of view,
those can be broadly subdivided into categorical and dimensional models.

2.2.1 Categorical models

Categorical models assume a small number of distinct emotional classes (such
as Anger, Happiness, Fear or Sadness) that all human beings are supposed to
share [Buechel and Hahn, 2017]. Although the view that some emotions are
more “basic” than others is widely accepted by emotion theorists, there is little
agreement on which emotions should be included in the list of the basic ones.
Their number varies depending on the theory.

The most popular list, sometimes referred to as “The Big Six”, was used by
[Ekman et al., 1969] in their research on universal recognition of emotion from
facial expression. Ekman’s six basic emotions are:

• Happiness

• Surprise

• Fear

• Anger

• Disgust

• Sadness

These emotions are still the most commonly accepted candidates for basic emo-
tions. All Ekman’s six basic emotions are included in IEMOCAP, along with
excitement, frustration and neutral emotions.
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2.2.2 Dimensional models

On the other hand, dimensional models are centered around the notion of
compositionality. They assume that emotional states can be best described as a
combination of several fundamental factors, i.e., emotional dimensions.

One of the most popular dimensional models is the Valence-Arousal-Dominance
(VAD) model, proposed by [Bradley and Lang, 1994] which postulates three
orthogonal dimensions, namely Valence (corresponding to the concept of po-
larity), Arousal or activation (a calm-excited scale) and Dominance (perceived
degree of control in a social situation).

Figure 2.2: The emotional space spanned by the Valence-Arousal-Dominance
model representing Ekman’s six basic emotions Source: [Buechel and Hahn,
2017]

When one of these dimensional models is selected, the task of emotion analysis
is most often interpreted as a regression problem (predicting real-valued scores
for each of the dimensions). On the other hand, a categorical representation
makes the emotion analysis task a classification problem.
In this work, we will use the categorical annotations provided in IEMOCAP for
each of its utterances. Therefore, we will adopt the categorical model for emo-
tions and treat the Speech Emotion Recognition task as a classification problem.

2.3 State-of-the-art

Classical machine learning algorithms, such as hidden Markov models (HMMs),
support vector machines (SVMs), and decision tree-based methods, have been
employed in speech emotion recognition problems [Seehapoch and Wongthanavasu,
2013]. Recently, researchers have proposed various neural network-based archi-
tectures to improve the performance of speech emotion recognition. An initial
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study utilized deep neural networks (DNNs) to extract high-level features from
raw audio data and demonstrated its effectiveness in speech emotion recogni-
tion.[Han et al., 2014]

With the advancement of deep learning methods, more complex neural based
architectures have been proposed. Convolutional neural network (CNN)-based
models have been trained on information derived from raw audio signals us-
ing spectrograms or audio features such as Mel-frequency cepstral coefficients
(MFCCs) and low-level descriptors (LLDs) [Badshah et al., 2017]. These neural
network-based models are combined to produce higher-complexity models and
achieved the best-recorded performance when applied to the IEMOCAP dataset.

Another line of research has focused on adopting variant machine learning tech-
niques combined with neural network based models. One researcher utilized
the multi-object learning approach and used gender and naturalness as auxil-
iary tasks so that the neural network-based model learned more features from a
given dataset [Kim et al., 2017]. Another researcher investigated transfer learn-
ing methods, leveraging external data from related domains [Gideon et al., 2017].

As emotional dialogue is composed of sound and spoken content, researchers
have also investigated the combination of acoustic features and language infor-
mation, built belief network-based methods of identifying emotional key phrases,
and assessed the emotional salience of verbal cues from both phoneme sequences
and words [Schuller et al., 2004] and [Zhang et al., 2019]. However, [Yoon et al.,
2018] seems to be the first to use information from speech signals and text se-
quences simultaneously in an end-to-end learning neural network-based model
to classify emotions.

Since we will be using IEMOCAP dataset, in the next subsections we are going
to focus on the state-of-the-art results achieved when using this dataset.

2.3.1 Deep Dual Recurrent Encoder Approach

In 2018, [Yoon et al., 2018] proposed in his paper a novel deep dual recurrent
encoder model that simultaneously utilizes audio and text data in recognizing
emotions from speech. Using IEMOCAP, they extracted MFCC features from
audio and used the GloVe word embedding for textual feature extraction. They
classified 4 emotions: Happy, Angry, Sad and Neutral.

As shown in figure 2.3, audio signals and textual information were encoded by
using separate recurrent encoders (ARE and TRE) to create a Multimodal Dual
Recurrent Encoder (MDRE). In their approach they also experimented with
adding an attention layer and creating a MDRE with attention (MDREA).



10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: Multimodal dual recurrent encoder architecture

In this last experiment, the attention weight at was calculated as the dot prod-
uct of the last hidden state h′

t of the text-RNN and the final encoding vector of
the audio-RNN. However, the MDREA model did not match the performance
of the MDRE model, even though it utilized a more complex architecture.

They achieved a maximum weighted accuracy of 0.718 with the MDRE model:

Model WAP
ARE 0.546± 0.009
TRE 0.635± 0.018
MDRE 0.718± 0.019
MDREA 0.690± 0.019

Table 2.1: Results achieved by Yoon et al. on IEMOCAP.

2.3.2 Hand-crafted features for Speech Classification

In 2019, [Sahu, 2019] developed a series of hand-crafted features from the audio
signal, different than the traditional MFCC or MEL spectrogram, also using
IEMOCAP. In this study, they extracted audio features such as pitch, har-
monics and pause applying some feature engineering.

This study was focused on comparing the performance of these features when
using different model architectures. As shown in Figure 2.4 they compared a se-
ries of Machine Learning and Deep Learning models among which are an LSTM,
a Multi-Layer Perceptron an XGBoost classifier and a Random Forest classifier.
They classifier 6 different emotions instead of 4, but applying pretty unsophis-
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ticated data augmentation techniques.

Figure 2.4: ML and DL models for multimodal SER with hand-crafted features

[Sahu, 2019] observed that assembling multiple ML models (E1, E2) led to some
improvement in the performance. E1 combined RF, XGB and MLP and E2
ensembled RF, XGB, MLP, MNB and LR. They achieved a maximum accuracy
of 0.703 with one of their assembled models (see Table 2.2).

Model Accuracy F1-score Precision Recall
RF 65.3 65.8 69.3 65.5
XGB 62.2 63.1 67.9 61.7
SVM 63.4 63.8 63.1 65.6
MNB 60.5 60.3 70.3 57.1
MLP 66.1 68.1 68.0 69.6
LR 63.2 63.7 66.9 62.3
LSTM 64.3 64.7 66.1 65.0
E1 70.3 67.5 73.2 65.5
E2 70.1 71.8 72.9 71.5

Table 2.2: Results achieved by [Sahu, 2019] on IEMOCAP.

2.3.3 Self Attention Mechanism approach

Another line of research has focused on Attention based techniques. In 2019
[Li et al., 2019] proposed an attention mechanism for machine translation and
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speech recognition, achieving great results but using only audio features.

The major contributions of this work were classifying emotion using spec-
trogram based self-attentional CNN-BLSTM model and combining emo-
tion classification and gender classification using multitask learning. This
means that they incorporated Gender classification to consider the relationship
between the two tasks (Gender and Emotion classification) and better classify
emotion in a multitask learning manner.

Figure 2.5: Self-Attentional CNN BLSTM model for emotion and gender classi-
fication. Source: [Li et al., 2019]

In this approach, samples are extracted using a STFT and the calculated spec-
trogram is mapped to Mel scale. These samples feed the Neural Network of
the system which integrates a convolutional layer and a max pooling layer, a
bidirectional LSTM and finally a self attention layer.

They achieved great results for the multitask learning task (considering the
classification of gender too), and proved that the self-attentional component
in their architecture improved the state-of-the-art results in SER. Their results
are represented in Table 2.3:
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Method WA UA
Full model 81.6 82.8
Self-attention 55.3 51.1
Multitask learning 70.5 72.6

Table 2.3: Results achieved by Li et al. on IEMOCAP

[Li et al., 2019] reached new state-of-the-art results on the emotion classification
combining it with gender, although the accuracy of gender classification individ-
ually was not as good as common gender classification results. This could be
because IEMOCAP is especially collected for emotion recognition research and
not suitable for gender recognition.

2.3.4 Summary

[Yoon et al., 2018] achieved great results using a Multimodal Dual Recurrent
Encoder architecture, but using only MFCC as audio features. On the other
hand, [Sahu, 2019] also achieved good results using handcrafted audio features
but using common ML classifiers. Finally, [Li et al., 2019] used a Self-Attentional
CNN architecture and achieved great results, but only when classifying emotion
together with gender, and using only audio data as input and not text.

Input Data Features Architecture Year Dataset
Best Score
(accuracy)

Yoon et al. Text + Audio MFCC MDRE 2018 IEMOCAP 71.8

Sahu Text + Audio
Handcrafted

features
Traditional
ML models

2019 IEMOCAP 70.3

Li et al. Audio only
Mel

Spectrogram
CNN-BLSTM 2019 IEMOCAP 81.6

Table 2.5: State of the art summary





Chapter 3

Methodology

The analysis on the current State-of-the-art for SER establish a wide variety of
methods regarding the features, architectures and type of data used in every ap-
proach. But most of all, it determines that there is no consolidated methodology
for a common multimodal approach for SER.

[Li et al., 2019] proposed the best performing architecture (CNN-BLSTM) for
SER but with no feature engineering methods, while [Sahu, 2019] defined a set
of handcrafted features suitable for the study of SER. In this Chapter we will
define a standard approach for SER by combining these two approaches into
an end-to-end pipeline that: 1) uses audio and text data as input, 2) performs
feature engineering to produce handcrafted features and 3) uses a deep neural
approach architecture to classify emotions.

3.1 Our proposal

The pipeline proposed in this Thesis is based on five main stages: Data Pro-
cessing, Feature Extraction, Model Training, Model Evaluation and Emotion
Classification.

The goal of the pipeline presented in Figure 3.1 is the multi-modal emotion
classification of a human speech audio signal. To do so, a classifier needs to be
trained with Machine Learning/Deep Learning techniques, and audio and text
data are needed for training. Both types of training data are extracted from the
same dataset (IEMOCAP). The final emotion classification is performed over a
non-supervised sample.

The main addressed research problem has been the performance study of differ-
ent audio features and which type of architecture worked best for each one.
Another question for analysis has been the interaction between text and

15
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audio features and which combination of features resulted better.

Figure 3.1: General approach pipeline

Another issue considered for analysis has been the performance of several clas-
sifier models with different architectures. Several different types of models have
been optimized and compared in order to conclude with which of them we could
achieve the closest results to the state-of-the-art approaches.

The final step in this pipeline is the emotion recognition from an unseen au-
dio sample by using the best performing trained model. Since we will need
the audio sample along with its text, the transcript of the audio sample will be
extracted using Google Cloud Speech API.

3.2 Data Collection

The very first step in our work has been collecting the needed data from IEMO-
CAP and structuring it to be studied. As described in Section 2.1, IEMOCAP
provides video files besides the audio files and transcripts corresponding to each
utterance. In this initial stage we have retrieved only text and audio files and
structured it into our own file directory.

The emotion annotation for each utterance contains a categorical value for 11
different emotions and three numerical values comprised between 0 and 5, corre-
sponding to valence, arousal and dominance attributes. As we have approached
this work to be a classification problem, we have only extracted the categorical
value for its study. The initial distribution of samples and emotions is repre-
sented in Table 3.1.
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Emotion Number of samples
Anger 1103
Sadness 1084
Happiness 595
Neutral 1708
Excitement 1041
Surprise 107
Fear 40
Disgust 2
Frustration 1849
Other 3
XXX 2507
Total 10,039

Table 3.1: Original IEMOCAP dataset distribution

The sample distribution among the emotion categories has led us to decide
grouping and removing some emotion categories. Not only the num-
ber of samples for some emotions are too small, but also we have considered
that some emotions were too similar to be distinguished by a machine learning
algorithm. This is the case of Happiness and Excitement for which the clas-
sification can be confusing even for a human being. We have also decided to
group the emotions Sad and Frustrated for the same reasons.

The emotions Fear, Disgust and Surprise were too under-represented to be
considered part of the dataset, and for this reason they have been removed from
the studied dataset. On the other hand, the category Other (3 samples) repre-
sents other emotions not considered on the list and because of its small volume
it has also been removed. The category XXX (2507 samples) corresponds to
a class representing ambiguous emotions according to the human annotators.
Since ambiguity would only add noise into our emotional classifier, we have de-
cided to remove XXX category from our dataset as well.

The resulting dataset has a total number of 7,376 samples, and its distri-
bution after the mentioned transformations can be observed in Table 3.2 and
Figure 3.2

Emotion Number of samples
Anger 1101
Happiness 1636
Sadness 2931
Neutral 1708
Total 7,376

Table 3.2: Final dataset distribution
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Figure 3.2: Final dataset distribution

3.3 Feature Extraction

The following section is focused on explaining the feature extraction methods
that we have applied during this work. One of the main goals of this Thesis
is to extract and understand which features are most relevant when working
with audio and text information together, as well as identifying the possible
interference between features. In this section, all the methods and extracted
features used for speech and text are explained and will be later analyzed and
compared in Chapter 4.

3.3.1 Audio Features

The dataset provides the audio files in a WAV format. The first step for extract-
ing features from them is converting those files into audio vectors. To do so, we
first read the audio files using the Python library Librosa and get the original
audio vectors which basically are an array of amplitudes.
As each WAV file contains several utterances, we need to truncate the signal at
the beginning and end of each utterance. To do so, we take the start and end
times associated to each utterance and multiply them by a sampling rate set
to 16000 Hz to get the actual audio windows for each utterance. Finally, we
truncate the original audio vectors with the calculated window to get a more
precise bounded audio vector that contains the exact annotated utterance.
(See Figure 3.3)
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Figure 3.3: Time-domain representation of the original and truncated audio
vectors

Once we have each utterance in a sampled audio vector shape, it’s time to start
extracting the audio features. We have produced two main types of features:
frequency based features and features representing prosody attributes such
as pitch an pause.

3.3.1.1 Spectrogram Based Features

Audio signals are usually much more examined in the frequency domain rather
than the time domain because usually audio signals change with respect to fre-
quencies, and not time. The frequency domain also shows more information
about an audio signal since it shows the audio signal’s amplitude at each specific
frequency of a bandwidth rather than just the averaged amplitude value.

The main way to represent an audio signal in a frequency domain is by calcu-
lating the Fourier Transform of the time signal, which gets a signal in the time
domain as input, and outputs its decomposition into frequencies.

In addition, the Short-Time Fourier Transform (STFT), is a Fourier-related
transform used to determine the sinusoidal frequency and phase content of local
sections of a signal as it changes over time. In practice, the procedure for com-
puting STFTs is to divide a longer time signal into shorter segments of equal
length and then compute the Fourier transform separately on each shorter seg-
ment.
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Figure 3.4: Frequency-domain representation of the truncated audio vector

In our case, we have applied a window size of 800 samples, which corresponds
to a physical duration of 50 milliseconds at a sample rate of 16,000 Hz. For
each frame, a short term Fourier transform (STFT) of length 800 with
hop length 400 is calculated.

3.3.1.1.1 Mel Spectrogram
A spectrogram is a visual representation of the spectrum of frequencies of a

signal as it varies with time. When applied to an audio signal, spectrograms
are sometimes called sonographs, voiceprints, or voicegrams. To calculate the
spectrogram for our signals we have taken the complete utterance, separated it
into frames, and applied the Fourier Transform on each frame.

Usually, when visualizing a spectrogram, both amplitude and frequency are con-
verted to log scale (dB) to be better represented.

Figure 3.5: Spectrogram in Logarithmic scale

However, studies have shown that humans do not perceive frequencies on a lin-
ear scale. We are better at detecting differences in lower frequencies than higher
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frequencies. For example, we can easily tell the difference between 500 and 1000
Hz, but we will hardly be able to tell a difference between 10,000 and 10,500 Hz,
even though the distance between the two pairs are the same.

In 1937, [Volkmann et al., 1937] proposed a unit of pitch such that equal dis-
tances in pitch sounded equally distant to the listener. This is called the mel
scale. To convert frequencies to mel scale we perform a mathematical operation
on frequencies. The reference point between this scale and normal frequency
measurement is defined by assigning a perceptual pitch of 1000 mels to a 1000
Hz tone, 40 dB above the listener’s threshold. Above about 500 Hz, increasingly
large intervals are judged by listeners to produce equal pitch increments. As
a result, four octaves on the hertz scale above 500 Hz are judged to comprise
about two octaves on the mel scale.

Figure 3.6: Spectrogram in Mel scale

Basically, by converting our signal to Mel scale we get to mimic the non-linear
human ear perception of sound. To convert our spectrogram in mel scale
we have taken the entire frequency spectrum, and separated it into 128 (n mels)
frequencies evenly spaced for the human ear.

The Mel-spectrograms are extracted from all utterances using the Python library
Librosa, and have served as the basic features for our experiments.

3.3.1.2 Prosodic Features

Emotional prosody is defined as the ability to express emotions through vari-
ations of different parameters of the human speech, such as pitch contour, in-
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tensity and duration. This ability is probably one of the most basic features of
language. However, the study of prosody is very complex because at the same
time is both universal across human languages and specific to each one.

Prosody allows communication of both linguistic and emotional intentions at
the same time and carries important information related to the sex, age and
emotional state of the speaker. Research into the encoding of emotional states
in speech signals show clear correlation with global properties, such as loudness,
speech rate and pitch contour. For example, depressed and schizophrenic pa-
tients [Alpert et al., 2001] typically show reduced emotional prosody expression,
and depressed children (9–11 years old) [Emerson et al., 1999] show less ability
than non-depressed children to accurately identify affective prosody.

Recently, efforts have been made to explore the specific acoustic features of
emotional speech using objective acoustic measures, such as the harmonics, the
speech energy and pauses [Besson et al., 2002]. In this work we have experi-
mented with the following handcrafted prosodic features to analyze their influ-
ence when classifying an emotion in speech:

• Pitch

• Harmonics

• Speech Energy

• Pause

3.3.1.2.1 Pitch
Pitch is the relative highness or lowness of a tone as perceived by the ear,

which depends on the number of vibrations per second produced by the vocal
cords. Pitch is the main acoustic correlate of tone and intonation.

We have considered pitch as a relevant feature to be studied, since wave-forms
produced by our vocal cords change depending on our emotions. Many algo-
rithms for estimating the pitch signal exists and we have used the most common
method, based on auto correlation of center-clipped frames. This method is
based on detecting the highest value of the auto correlation function in the re-
gion of interest. For given input signal x(n), it gives a resultant clipped signal,
y(n):

y(n) =


x(n)− Cl, if y(n) ≥ Cl

0, if |y(n)| < Cl

x(n) + Cl, if y(n) ≤ Cl

(3.1)

where Cl is typically half the mean of the input signal. Later, auto correlation
is calculated for the obtained signal y(n) , which is further normalized and the
peak values associated with the pitch of the given input x(n).
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3.3.1.2.2 Harmonics
The harmonic structure of a vocal sound depends on the wave form produced

by the vibrating vocal cords. Like any musical instrument, the human voice
is not a pure tone (as produced by a tuning fork); rather, it is composed of a
fundamental tone (or frequency of vibration) and a series of higher frequencies
called upper harmonics, usually corresponding to a simple mathematical ratio
of harmonics. Thus, if a vocal fundamental has a frequency of 100 cycles per
second, the second harmonic will be at 200, the third at 300, and so on.

As long as the harmonics are precise multiples of the fundamental, the voice will
sound clear and pleasant. If non-harmonic components are added (giving an
irregular ratio), increasing degrees of roughness, harshness, or hoarseness
will be perceived in relation to the intensity of the noise components in the
frequency spectrum. For this reason we have decided to include harmonics as
part of the features to be studied.

Figure 3.7: Harmonics of angry (red) and sad (blue) audio signals

As it can be observed in Figure 3.8, in the emotional state of anger or for stressed
speech, there is an apparent apparent excitation in the spectrum as harmonics
and cross-harmonics.

3.3.1.2.3 Speech Energy
The distribution of spectral energy of a speech utterance depends directly on

its emotional content. It is observed that high-arousal emotions like happiness or
anger have high energies at higher frequencies, while utterances with low-arousal
emotions like sadness have less energy in the similar range [Bandela and Kumar,
2017].

To represent speech energy we use Root Mean Square Energy (RMSE) using the
equation:
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E =

√√√√ 1

n

n∑
i=1

y[i]2 (3.2)

RMSE is calculated frame by frame and we take the average and standard de-
viation as features.

Figure 3.8: RMSE plots of angry (red) and sad (blue) audio signals

3.3.1.2.4 Pause
The relationship between speech pauses and emotions is the research topic

of a wide variety of studies [Tisljár-Szabó and Pléh, 2014]. The early studies
that investigated the relationship between speech disfluencies (or speech errors)
and anxiety, found that in an anxious state, the number and length of pauses
increase. Also, recognition of happy and sad sentences is markedly affected by a
high speech rate. In most of the sentences, independent of the emotional cate-
gory, if the utterance is slowed down, the sad emotional content increases, while
the frequency of frightened, angry tend to be much faster.

The pause feature aims to represent the silent portion in the audio signal and is
extracted using the RMSE with the following equation:

Pause = Pr(y[n] < t) (3.3)

where t represents a chosen threshold ≈ 0.4 ∗RMSE

3.3.1.3 Audio Feature Extraction Pipeline

The pipeline followes to extract the features from audio files is summariez in
Figure 3.9
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Figure 3.9: Audio Feature Extraction Pipeline

3.3.2 Text Features

The textual information for each speech utterance is provided by IEMOCAP
in a short sentence shape. In order to extract relevant features, we first apply
several text processing steps.

3.3.2.1 Text Normalization

In the first place, non alphabetical characters are removed from each transcrip-
tion and converted to lower case characters. Symbols like commas and hy-
phens are removed from the transcripts and sentences are converted into plain
text. After some experiments, we have decided to keep question marks and
exclamation points since they seem to add emotional value to expressions in
terms of arousal, for emotions like Anger, Surprise or Joy (e.g. ”are you talking
to me!?” and ”are you talking to me”).

3.3.2.2 Stop-words

One of the major forms of text pre-processing is to filter out useless data. In
natural language processing, useless words are referred to as stop words. A stop
word is a commonly used word (such as “the”, “a”, “an”, “in”) which do not
contain important significance to be used in search queries. Usually, these words
are filtered out from search queries because they return a vast amount of unnec-
essary information.

Using a stop list significantly reduces the number of postings that a system
has to store, but in our case we have considered that words considered as stop
words do have significant emotional content (e.g. What!?) and for this
reason we have decided to keep all the words contained in the stop list. Since
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utterances are usually short and do not contain a lot of words, we decided to
avoid removing the less content possible from each transcription.

3.3.2.3 Stemming and Lemmatization

Stemming is the process of reducing inflection in words to their root forms, such
as mapping a group of words to the same stem, even if the stem itself is not
a valid word in a language. On the other hand, Lemmatization, unlike stem-
ming, reduces the inflected words properly ensuring that the root word belongs
to the language. In Lemmatization the root word is called a Lemma, which is
the canonical form, dictionary form, or citation form of a set of words.

As an experiment, we tried building a text corpus by stemming the words in each
transcript but found out that this technique reduced too much the meaning
contained in the transcribed words. On the contrary, lemmatization allowed
us to convert words into their most standard forms, removing the less meaning
possible from them. For this reason we have decided to use lemmatization instead
of stemming in our approach.

Figure 3.10: Stemmed and lemmatized terms

3.3.2.4 Text Features Extraction

Machine learning algorithms cannot work with raw text directly. Rather, the
text must be converted into vectors of numbers. The process of converting text
into vectors is known as textual feature extraction. In this section we explain a
couple of methods for feature extraction and our chosen approach.

3.3.2.4.1 Bag of Words
In natural language processing, a common technique for extracting features

from text is to place all of the words that occur in the text in a bucket. This
approach is called a bag of words model or BoW for short. It’s referred to as
a “bag” of words because any information about the structure of the sentence
is lost. The BoW model is the simplest form of text representation in numbers.
Like the term itself, we can represent a sentence as a bag of words vector (i.e. a
string of numbers).
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The model throws away all of the order information in the words and focuses on
the occurrence of words in a document. This can be done by assigning each word
a unique number. Then any document we see can be encoded as a fixed-length
vector with the length of the vocabulary of known words. The value in each
position in the vector is filled with a count or frequency of each word in the
encoded document.

For example, given the following sentences:

• Sentence 1: This movie is very scary and long

• Sentence 2: This movie is not scary and is slow

would result in a BoW model such as:

this movie is very scary and long not slow
Sentence 1 1 1 1 1 1 1 1 0 0
Sentence 2 1 1 2 0 1 1 1 1 1

Table 3.3: BoW model representation

This is the bag of words model, where we are only concerned with encoding
schemes that represent what words are present or the degree to which they are
present in encoded documents without any information about order. The BoW
model represented in Table 3.3 is built on a vocabulary of 9 different words. If
we wanted to extract features from a sentence that contained new words, we
would need to rebuild our BoW model.

Additionally, the vectors resulting from a BoW model may contain many 0’s,
thereby resulting in a sparse matrix and containing few information. Finally,
with BoW we are retaining no information on the grammar of the sentences nor
on the ordering of the words in the text.

3.3.2.4.2 TF-IDF
One of BoW drawbacks is that all words appearing in the vocabulary have

the same importance in the model. A possible strategy to score the relative
importance of words is by using the so called method Term Frequency-Inverse
Document Frequency (TF-IDF).

The concept of Term Frequency (TF) corresponds to number of times a word
appears in a document divided by the total number of words in the document:

tft,d =
nt,d

Number of terms in the document
(3.4)

On the other hand, Inverse Document Frequency (IDF) is a measure that
represents how important a term is in a document. In other words, while TF
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represents how common a word is in a document, IDF measures how rare the
word is in the same context. IDF can be calculated like this:

idft = log
number of documents

number of documents with term ′t′
(3.5)

Now, the TF-IDF score can be computed for each word in the corpus as the
product of TD and IDF scores:

(tf idf)t,d = tff,d ∗ idft (3.6)

Words with a higher score are more important, rare and therefore more signif-
icant than those with a lower score. Given the nature of the corpus formed by
IEMOCAP transcriptions, which are usually short, and non specific to any topic,
we have considered TF-IDF to be a suitable method for extracting features from
text.

3.3.2.5 Text Feature Extraction Pipeline

The pipeline followed to extract features from transcripts is shown in Figure
3.13.

Figure 3.11: Text Feature Extraction Pipeline

3.4 Model architectures

In this work we have used two types of architectures. On one hand, we use
traditional machine learning models to test the performance of the extracted
features. We compare different types of classifier to understand the impact of
each type of feature and how they interfere with each other when using each
model to classify an emotion.

On the other hand, once we have proved which is the best combination of fea-
tures, we define a multimodal model using a deep neural architecture for acoustic
and textual data. We also compare the classification performance achieved by
traditional models with the deep neural architecture results. In this section we
first explain the traditional ML classifiers used for the feature validation ex-
periments. Afterwards, we describe the deep neural architectures used in our
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multimodal model.

3.4.1 Traditional models

This section describes the various ML-based classifiers used for feature valida-
tion, namely, Random Forests, Gradient Boosting, Support Vector Machines,
Naive-Bayes, and Logistic Regression.

3.4.1.1 Random Forest

Random forests are ensemble learners that operate by constructing multiple
decision trees at training time and outputting the class that is the mode of the
classes (classification) of the individual trees. It has two base working principles:

• Each decision tree predicts using a random subset of features

• Each decision tree is trained with only a subset of training samples. This
is known as bootstrap aggregating

Finally, a majority vote of all the decision trees is taken to predict the class of
a given input.

Figure 3.12: Random Forest classification. Source: medium.com

3.4.1.2 Gradient Boosting (XGB)

XGB refers to eXtreme Gradient Boosting, which is an implementation of boost-
ing that supports training the model in a fast and parallelized way. Boosting
is another ensemble classifier combining a number of weak learners, typically
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decision trees. They are trained in a sequential manner, unlike Random Forests,
using forward stagewise additive modeling.

During the early iterations, the decision trees learned are simple. As training
progresses, the classifier becomes more powerful because it is made to focus on
the instances where the previous learners made errors. At the end of training,
the final prediction is a weighted linear combination of the output from the
individual learners.

3.4.1.3 Support Vector Machine (SVM)

Support Vector Machines (SVM) are supervised learning models with associated
learning algorithms that analyze data used for classification and regression anal-
ysis. An SVM training algorithm essentially builds a non-probabilistic binary
linear classifier.

It represents each training example as a point in space, mapped such that the
examples of the separate categories are divided by a clear gap that is as wide as
possible (this is usually achieved by minimizing the hinge loss). New examples
are then mapped into that same space and predicted to belong to a category
based on which side of the gap they fall.

Figure 3.13: Support Vector Machine classification. Source: towardsdata-
science.com

SVMs were originally introduced to perform linear classification; however, they
can efficiently perform a non-linear classification using the kernel trick, implicitly
mapping their inputs into high-dimensional feature spaces. In this work, we have
considered two types of kernel: linear and radial basis function.
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3.4.1.4 Gaussian Naive Bayes (GNB)

Naive Bayes classifiers are a family of simple “probabilistic classifiers” based on
applying Bayes’ theorem with strong naive independence assumptions between
the features.

Under gaussian settings, the feature vectors represent the frequencies with which
certain events have been generated by a gaussian (p1, ..., pn) where pi is the
probability that event i occurs. GNB is very popular for document classification
task in text, which too essentially is a multi-class classification problem.

3.4.1.5 Logistic Regression Classifier (LR)

Logistic Regression classifiers are typically used for binary classification prob-
lems, that is, when we have only two labels. In this work, LR is implemented
in a one-vs-rest manner; four classifiers (one per emotion) have been trained for
each class and finally, we consider the class that is predicted with the highest
probability.

3.4.1.6 Ensemble of models

Having trained the above classifiers, we take the ensemble of the best performing
classifiers and use it for comparison as a separate classifier. This technique is
known as stacking and it can be described as an ensemble learning technique
where the predictions of multiple classifiers (referred as level-one classifiers) are
used as new features to train a meta-classifier.

Figure 3.14: Stacking classifier framework. Source: towardsdatascience.com

Figure 3.14 shows how three different classifiers get trained. Their predictions
get stacked and are used as features to train the meta-classifier which makes
the final prediction. To prevent information from leaking into the training from
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the target, the level one predictions should come from a subset of the
training data that was not used to train the level one classifiers. A
possible way to do this is by using k-fold cross validation to generate the level
one predictions. First, the training data is split into k-folds. Then the first k−1
folds are used to train the level one classifiers. The validation fold is then used
to generate a subset of the level one predictions. The process is repeated for
each unique group.

3.4.2 Deep Learning models

In this section we describe the deep neural architectures that we have built and
experimented with, using the features described in Sections 3.3.1 and 3.3.2 with
the goal to compare their performance with the classical machine learning mod-
els presented in the previous section and with the current state-of-the-art for
emotion recognition on the IEMOCAP dataset.

Figure 3.15: The structure of our multimodal model

Figure 3.15 represents the whole flow of our multimodal model. We have tried
three different approaches to solve the audio feature learning process, namely
a Dense Neural Network (DNN), a Convolutional Neural Network with a a Bi-
LSTM (CBL) and the latter with attention (CBLA).
The text features are learned using a bidirectional LSTM (BLSTM). In the fol-
lowing sections, each architecture is further explained.

3.4.2.1 DNN/BLSTM

The first proposed architecture uses a Dense Neural Network for audio feature
learning, and a Bi-LSTM for textual feature learning. Then, a feature fusion
method is resorted to merge the emotional features of audio and text, and addi-
tional dense layers are used to classify the fusion features. Figure 3.17 represents
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the architecture of the network for this first approach.

3.4.2.1.1 BLSTM for textual feature learning
Long Short Term Memory networks (LSTM) are a special kind of Recur-

rent Neural Network (RNN), capable of learning long-term dependencies.
LSTM relies on its three gates structure, which effectively solves the long-term
dependence in the neural network, and avoids the gradient disappearance prob-
lem in the common recurrent neural network, and it is suitable for the modelling
of speech temporal signals and text signals which are closely related to time.

Figure 3.16: Structure of a LSTM cell

LSTMs, like all RNNs, have the form of a chain of repeating modules (cells) of
neural network. The first step in a LSTM consists in determining what informa-
tion to lose from the cell through the forgetting gate. The next step is deciding
how much new information is added to the cell state. The output gate then uses
a sigmoid layer to determine which cell states to output.

The bidirectional LSTM consists of two ordinary LSTM, a forward one which
uses the past information and an inverse one that obtains the future information.
In this way, the information at t− 1 as well as at t+ 1 all can be used at time t.
It would be more accurate than LSTM and can avoid the long-term dependence
problem in features learning. Hence, it can be utilized for the textual emotion
feature extraction. We feed the textual TF-IDF vectors into the bidirectional
long-short-term- memory network to extract high-level information.

3.4.2.1.2 DNN for audio feature learning
A Dense Neural Network (DNN) is a network which layers are fully connected

(dense) by the neurons in a network layer. Each neuron in a layer receives an



34 CHAPTER 3. METHODOLOGY

input from all the neurons present in the previous layer. A densely connected
layer provides learning features from all the combinations of the fea-
tures of the previous layer, whereas a convolutional layer relies on consistent
features with a small repetitive field. Hence, we have used a DNN for learning
audio features.

Figure 3.17: DNN/BLSTM network architecture

3.4.2.1.3 Feature fusion
After feeding acoustic features into the DNN and textual into the Bi-LSTM

network, we obtain the high-level textual features and acoustic features which
consist of global and local information. In this work, we adopt the feature-level
fusion approach. The advantage is that emotional features extracted from dif-
ferent modes are directly related to the final decision, and the fusion results can
retain the feature information needed in the final decision to the greatest extent.

The final descriptor of the multimodal emotion features vector is created using
an ordered concatenation of textual and acoustics features. After that, we feed
the fusion emotion feature vector into a deep neural network containing four
dense layers and a softmax layer to capture the associations between the features
from different modalities. The output of softmax represents the relative
probability between different emotion classes

p(xa) = softmax(xa) =
exp(xa)∑A
a′ exp(xa′)

(3.7)

where a represents the emotion categories and p(xa) represents the probability
of a-th category.
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In addition, to avoid overfitting, we added regularization in the multimodal fea-
tures training. The principle of regularization is to add an index to describe the
complexity of the model in the loss function.

3.4.2.2 CBL/BLSTM

The second approach we have adopted has been a Convolutional Neural Network
and a Bi-LSTM (CBL) for audio feature learning, and keeping the Bi-LSTM
approach for text feature learning. Figure 3.18 represents this approach archi-
tecture.

Figure 3.18: CBL/BLSTM network architecture

Convolutional neural network (CNN) is one of the common deep learning neural
networks. The infrastructure of CNN includes the convolution layer, pooling
layer and dense layer. CNN can extract some advanced characteristics automat-
ically. Convolution layer weight sharing reduces the complexity of the network
model, alleviates overfitting, pooling operation reduces the number of neurons,
and is more robust to the translation of input space.

CNN is a process from local to global (local to global realization is in the dense
layer) while the traditional neural network is the entire process. CNN network
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can reduce variance in frequency of the input and captures local information,
but without considering the global features and context.

Voice is kind of a nonlinear time series signal; text information is closely related
to temporal context, and they are all time-related. Therefore, it is the LSTM
network which is suitable for acoustic and text feature extraction and learning
that models in context and helps to learn the relevance of features. But in
LSTM, there is no intermediate nonlinear hidden layer that causes the increase
in variation in the hidden state factors. In brief, the model capabilities of CNN
and LSTM are both limited.

3.4.2.3 CBLA/BLSTM

In the CBL network, the output of a set of CNN networks was thrown in LSTMs
directly. From this way, we can get the high-level information which contains
both local information and long-term contextual dependencies. However, CNNs
focus on local information and discard a lot of data.

Figure 3.19: CBLA/BLSTM network architecture

To avoid valuable data losing, we constructed the model CBLA which uses bi-
nary channels of CNN and Bi-LSTM. In the CNN channel, we constructed four
one-dimensional convolution layers with different filters’ number and cropped
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for one-dimensional temporal input (audio features).

We employed the maximum pooling layer and global average pooling layer to
carry out the maximum pooling operation and global average pooling operation
for the data. In the Bi-LSTM channel, a set of BiLSTM cells were put up to
extract longterm contextual dependencies information, and an attention mech-
anism was added to find more effective features.

At last, the data from two channels were concatenated and the output was put
into a three dense layers. After the nonlinear change of the dense layer, the cor-
relation between these features was extracted and finally mapped to the output
space. The structure of the CBLA model is shown in Figure 3.19

This approach is the same as the one in Section ?? with adding an attention
layer. A neural attention mechanism equips a neural network with the ability
to focus on a subset of its inputs (or features). This method is most commonly
used in sequence-to-sequence models to attend to encoder states, but can also
be used in any sequence model to look back at past states. Using attention, we
obtain a context vector Ci based on hidden states s1, ..., sm that can be used
together with the current hidden state hi for prediction. The context vector ci
at position is calculated as an average of the previous states weighted with the
attention scores ai:

ci =
∑
j

aijsj (3.8)

ai = softmax(fatt(hi, sj)) (3.9)

In our approach, we use an additive type of attention. This is the original
attention mechanism [Bahdanau et al., 2015], which uses a one-hidden layer
feed-forward network to calculate the attention alignment:

fatt(hi, sj) = v>a tanh(Wa[hi; sj ]) (3.10)

where va and Wa are learned attention parameters.

3.5 Emotion Classification

The final step in our pipeline defined for MSER is the emotion classification per
se. The goal of SER consists in recognizing emotions from unseen audio samples,
and to do so we need to make predictions upon a trained model.
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In order to test our models in a non-theorical environment, we have built a mech-
anism for model consumption and prediction for an unseen audio sample. The
idea behind this is to assess the performance of the system in front of real life
audio samples, considering environmental noises and variations in tones which
aren’t provided by IEMOCAP. However, this application also aims to equip the
system with a continuous retraining and self-improvement mechanism by receiv-
ing feedback for misclassified samples.

To accomplish this, we have built a Telegram bot using the Python Telegram
API telepot. The user must send a recorded voice message and the bot makes
an emotion classification using the best performing model in production. The
predicted emotion is displayed for the user to give his feedback. Once the user
has determined whether it’s been a correct or incorrect classification and indi-
cated the right emotion, the audio sample and the correct emotion are stored to
be later used for a model retraining.

Figure 3.20: Bot feedback retrieval
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Experiments

Having defined a series of light machine learning classifiers and three deep neural
approaches, this section is devoted to explain the experiments performed with
each of them with the extracted acoustic and textual features.

The experiments were designed with three main goals in mind:

• Prove the validity of the extracted features for both audio and text

• Compare the light classifiers with the proposed deep neural architectures
in terms of performance

• Testing the overall performance of the system over an unseen recorded
audio sample.

4.1 Combination of Features

For the sake of proving feature validity and testing the improvement in accuracy
that each feature supposed to each other, we have separated audio features by
type and combined them with text features.

1. Mel audio features: Mel Spectrogram features

2. HC audio features (Handcrafted): Pitch, Pause, Speech energy and
Harmonics features

3. TF-IDF text features: TF-IDF features

Each type of features has been tested individually and combined with each other.
Table 4.1 illustrates the seven feature combinations we have used in our experi-
ments.
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Audio Text
Mel HC TF-IDF

Audio Basic X
Audio HC X
Audio Extra X X
Combined Basic X X
Combined HC X X
Combined Extra X X X
Text Basic X

Table 4.1: Feature combinations

4.2 Experiments with traditional models

In this section we explain the different settings in which we conducted our exper-
iments with the traditional Machine Learning models, namely Random Forest,
XGBoost, Linear Regression classifier, Support Vector Machine, Multi-Layer
Perceptron and Gaussian Naive Bayes classifier.

• We use Librosa Python library to process the audio files and extract the
features described in Section 3.3.1.

• We use scikit-learn and xgboost (machine learning libraries for Python) to
implement all the ML classifiers

As the dataset is not explicitly split beforehand into training and testing sets,
we perform 5-fold cross validation to determine the overall performance of the
model. The data in each fold are split into training and testing datasets (8:2,
respectively). The hyper-parameters for all classifiers have been chosen by using
a Grid Search to find the most optimal estimator. The estimators that have
admitted it, have been trained using L2 regularization to avoid overfitting. In
the cases where we have detected a bias problem, we have adjusted our models
to decrease the regularization parameters.

The ensemble model resulting from stacking the best performing models has
been implemented using a Scikit-learn stacking classifier (as described in section
3.4.1.6).

The results achieved by all ML models have been compared with the performance
of a ”Dummy” model, which always classifies an emotion as the majority class.
This is done in order to assess the contribution of each model in terms of relative
quality.

4.3 Experiments with Deep Neural architectures

The experiments conducted on the three proposed architectures in Section 3.4.2
use the multimodal combinations of features described in Table 4.1. That is,
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Combined Basic (Text + Mel features), Combined HC (Text + Handcrafted
features) and Combined Extra (Text + Mel + Handcrafted features).

The three architectures (DNN/BLSTM, CBL/BLSTM, CBLA/BLSTM) are im-
plemented using keras and optimized using the Adam method. We have trained
each model on 100 epochs with a batch size of 256 samples and saved the best
one as the final model.

We use a learning rate decay, which reduces learning rate when a metric (in
our case, validation loss) has stopped improving. We also set an early stopping
parameter with a patience equivalent to 5, that stops our training if it hasn’t
improved for the last five epochs. We use categorical cross entropy as loss func-
tion, and accuracy as the performance metric.





Chapter 5

Results

In this section we present the results achieved in all the conducted experiments.
By comparing the performance of every setting, we aim to validate the fact that
using text and audio features together, results in an improvement over emotion
classification.

We also draw from the premise that there must be a performance improvement
when using handcrafted features over basic features, and that the proposed deep
neural approaches are expected to provide better results than classical machine
learning classifiers.

The results are presented in two sections. First, we compare the performance of
traditional ML classifiers on each combination of features and analyze the best
performing setting. Afterwards, we test each deep neural approach with three
combinations of multimodal features.

5.1 Traditional model results

The models compared in these experiments have been Random Forest, XGBoost,
Gaussian Naive Bayes, Logistic Regression, Support Vector Classifier and Mul-
tilayer Perceptron.

In order to compare all models between each other, we have first extracted a
table of metrics and also represented their mean accuracy and standard devia-
tion on boxplot figures. Then, for some models we also show the learning curves
for training and validation scores to try understanding which approach could
improve their performances.
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5.1.1 Audio Basic Features

This experiment is conducted over Mel Spectrogram audio features only. Six
ML classifiers have been trained and their performance compared (see Figure
5.1). While GNB performs specially poorly with Mel features, Random Forest
and XGBoost achieve 0.474 and 0.493 of accuracy respectively. The ensemble
classifier stacks these two models but doesn’t overcome their results.

model accuracy f1-score precision recall
Dummy 0,400 0,143 0,100 0,250
LR 0,441 0,307 0,465 0,333
MLP 0,470 0,402 0,465 0,399
SVC 0,444 0,303 0,404 0,345
RF 0,474 0,412 0,468 0,405
XGB 0,493 0,441 0,490 0,432
GNB 0,415 0,197 0,443 0,278
ENSEMBLE 0,490 0,439 0,488 0,428

Table 5.1: Performance metrics for Basic Audio features

Naive Bayes is so called because the independence assumptions that it makes
are indeed very naive for a model of natural language. The conditional indepen-
dence assumption states that features are independent of each other given the
class. This is hardly ever true for terms in documents, and is also the case for
mel spectrogram features.

Also, Naive Bayes works best when having small training data set, and relatively
small features (dimensions). In the case of mel spectrogram, where we have a
big set of features (384 columns), the model may not give accuracy because the
likelihood is most probably distributed and may not follow the Gaussian or other
distribution.
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Figure 5.1: ML models performance over Audio Basic features

5.1.2 Audio Handcrafted Features

This experimented was made using only handcrafted features. Overall, the per-
formance is worse than when using mel spectrogram features. In this case, the
ensemble model combines RF and XGB but doesn’t overcome their results either.

model accuracy f1-score precision recall
Dummy 0,379 0,137 0,095 0,250
LR 0,430 0,295 0,338 0,350
MLP 0,432 0,298 0,339 0,355
SVC 0,419 0,250 0,350 0,322
RF 0,455 0,401 0,448 0,404
XGB 0,448 0,377 0,456 0,386
GNB 0,412 0,246 0,336 0,310
ENSEMBLE 0,448 0,365 0,455 0,381

Table 5.2: Performance metrics for Audio Handcrafted features

On the other hand, the only model that performs slightly better in this case is
the Gaussian Naive Bayes classifier. This might mean that pitch, pause, speech
energy and harmonics are less correlated between each other than in the case
of mel spectrogram. However, the overall accuracy when using handcrafted fea-
tures only is quite poor for all classifiers.
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Figure 5.2: ML models performance over Audio Handcrafted features

In order to better understand the value added by handcrafted features, we have
printed the learning curves for the XGBoost Classifier. A learning curve shows
the validation and training score of an estimator for varying numbers of training
samples. It is a tool to find out how much we benefit from adding more training
data and whether the estimator suffers more from a variance error or a bias error.

Figure 5.3: Learning curves of XGB over acoustic handcrafted features

From Figure 5.3 we observe that validation and accuracies scores converge at a
low level accuracy. This curves indicate a high bias in the model, meaning that
we wouldn’t benefit from adding more training data.
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5.1.3 Audio Extra Features

The audio extra features combine Mel spectrogram with handcrafted features.
The performance of ML classifiers seem to improve slightly when using the two
types of features together. The ensemble classifier in this case also combines RF
and XGBoost, but this time it improves their respective metrics.

model accuracy f1-score precision recall
Dummy 0,393 0,141 0,098 0,250
LR 0,448 0,324 0,462 0,353
MLP 0,480 0,435 0,484 0,424
SVC 0,450 0,321 0,391 0,359
RF 0,493 0,431 0,502 0,422
XGB 0,491 0,442 0,494 0,432
GNB 0,255 0,175 0,315 0,280
ENSEMBLE 0,497 0,451 0,506 0,437

Table 5.3: Performance metrics for Audio Extra features

In this case, the ensemble model is the best classifier, performing slightly better
than XGBoost. Gaussian Naive Bayes performs very poorly due to the presence
of mel spectrogram features, emphasizing the difference between all other clas-
sifiers.

Figure 5.4: ML models performance over Audio Extra features
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By printing the learning curves for the Random Forest Classifier, we have real-
ized that training and cross-validation scores don’t get to converge at any point
and the training score is much higher than the validation score (see Figure 5.6).
Thus, by increasing the size of the training set we would benefit from a higher
validation score. Also, the performance of the model keeps increasing for each
fit. For this reason we conclude that this experiment would perform better for
all classifiers with more available training data.

Figure 5.5: Learning curves of Random Forest model over audio extra features

This experiment proves that using handcrafted features improves the perfor-
mance of classical acoustic features. However, it also demonstrates that in order
to classify emotions with only audio features and higher accuracy, we
need much more data for training.

5.1.4 Text Features only

In connection to the experiments conducted using just audio features, the re-
sults for this experiment have worked much better. While using Spectrogram
and handcrafted features we get a maximum accuracy of 0.497, textual TF-IDF
features provide us with a maximum accuracy of 0.602 (see Table 5.4). In this
case, the Ensemble model stacks Support Vector and Logistic Regression classi-
fiers, which are the two best performing models.
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model accuracy f1-score precision recall
Dummy 0,400 0,143 0,100 0,250
LR 0,587 0,567 0,597 0,553
MLP 0,562 0,549 0,560 0,541
SVC 0,602 0,566 0,627 0,547
RF 0,538 0,465 0,626 0,449
XGB 0,539 0,495 0,565 0,477
GNB 0,545 0,550 0,565 0,565
ENSEMBLE 0,598 0,571 0,612 0,558

Table 5.4: Performance metrics for Text features

Overall, all classifiers highly improve the behavior of a dummy classifier, but
still they are far from state-of-the-art results.

Figure 5.6: Learning curves of Support Vector Classfier (SVC) over text features

Figure 5.7: SVC Confusion ma-
trix with text features

The learning curves for SVC present a low
bias and a high variance. The training score
is high (even well higher than the validation
score), but the gap between the two scores is
big. The model seems to be suffering from
overfitting and at this point it may be ben-
eficial to increase the size of the dataset. It
exists the possibility for the validation score
curve to continue to increasing and converge
with the training score curve (which still has
room to grow with respect to the desired per-
formance).
Using only textual features results in a rel-
atively important confusion between angry
and sad classes. However, the biggest mis-
classification is between neutral and sad
classes.
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Still, even if textual features contributions result on better performances com-
paring to acoustic features, all classifier accuracies are still far from being state-
of-the-art results. We expect to improve the results when combining the two
types of features.

5.1.5 Combined Basic features

We have presented the results obtained when experimenting with acoustic and
textual features separately. We now present the results obtained from perform-
ing the same experiments on combined text and audio data.

model accuracy f1-score precision recall
Dummy 0,400 0,143 0,100 0,250
LR 0,591 0,562 0,640 0,537
MLP 0,598 0,587 0,586 0,590
SVC 0,593 0,571 0,585 0,568
RF 0,482 0,415 0,477 0,411
XGB 0,574 0,546 0,585 0,530
GNB 0,547 0,557 0,589 0,562
ENSEMBLE 0,619 0,593 0,630 0,583

Table 5.5: Performance metrics for Combined basic features

Figure 5.8: ML models performance over Combined Basic features

This experiment is conducted over textual TF-IDF features and acoustic Mel
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spectrogram features. In this case, the Ensemble model stacks the Logistic Re-
gressor, Multilayer Perceptron and Support Vector Machine classifiers, resulting
in the best performing model.

Figure 5.9: Ensemble Confusion
matrix with combined basic fea-
tures

Regarding the results in Section 5.1.4, this
experiment demonstrates that textual and
Mel spectrogram features perform slightly
better when working together. The over-
all accuracy is increased over a 10% re-
garding the classification with only TF-IDF
features (Table 5.4) but is not very repre-
sentative comparing with only textual fea-
tures.

Regarding the emotions classification, com-
bining Mel spectrogram with text helps to im-
prove the misclassification between sad and
angry emotions in comparison with the tex-
tual features performance. However, the error
between sad and neutral emotions remains in-
tact.

5.1.6 Combined Hancrafted features

This experiment is conducted using TF-IDF and handcrafted features. Adding
prosodic features has resulted in an improvement on performance regarding the
experiment with only textual features, but it hasn’t supposed an improvement
in relation to the combination with Mel spectrogram features.

model accuracy f1-score precision recall
Dummy 0,379 0,137 0,095 0,250
LR 0,609 0,599 0,628 0,585
MLP 0,586 0,577 0,586 0,577
SVC 0,618 0,601 0,657 0,580
RF 0,535 0,475 0,613 0,473
XGB 0,566 0,533 0,593 0,518
GNB 0,542 0,556 0,585 0,571
ENSEMBLE 0,615 0,600 0,636 0,588

Table 5.6: Performance metrics for Combined Handcrafted features

In this case, the best performing model has been the Support Vector Classifier,
achieving a 0.618 accuracy. The Ensemble model in this experiment is formed
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by the Linear Regressor, Multilayer Perceptron and Support Vector Classifier.

Figure 5.10: ML models performance over Combined Handcrafted features

In this case, the ensemble classifier clearly improves the performance of the most
optimal models. Unlike in the case of textual features, when working with com-
bined data, XGB, RF and MLP are between the best performing models.

5.1.7 Combined Extra features

As expected, the best results achieved with traditional ML classifiers have been
produced by combining Mel, handcrafted and text features. In this case, we
have improved the classification of emotions with only Mel features by a 14%.
In this case, the Ensemble classifier combines the Support Vector, Logistic Re-
gressor and Multilayer Perceptron classifiers.
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model accuracy f1-score precision recall
Dummy 0,393 0,141 0,098 0,250
LR 0,610 0,568 0,654 0,548
MLP 0,624 0,613 0,623 0,606
SVC 0,615 0,589 0,641 0,572
RF 0,496 0,426 0,512 0,420
XGB 0,549 0,523 0,558 0,509
GNB 0,551 0,565 0,606 0,567
ENSEMBLE 0,631 0,597 0,670 0,582

Table 5.7: Performance metrics for Combined Extra features

Figure 5.11: Learning curves of Ensemble model over combined extra features

Judging by the learning curves produced by the Ensemble classifier, it seems
that the is a high bias and variance that could be improved by increasing the
size of the training dataset.

5.2 Deep Neural Architectures

In section 5.1 we have reviewed the results when experimenting with different
types of features, and concluded that the best performance was achieved when
using Mel spectrogram and Handcrafted features together with textual TF-IDF
features. We have also concluded that in some cases, the performance of tra-
ditional ML classifiers could be improved by increasing the size of our training
dataset. However, the performance improvement wouldn’t be big enough to be
compared with state-of-the-art results.

In this section we present the results obtained by training the neural architec-
tures described in Section 3.4.2, all trained with Combined Extra features.
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5.2.1 DNN/BLSTM Results

The Dense-BLSTM Neural approach described in Section 3.4.2.1 improved the
results achieved by ML classifiers. This approach has achieved a 0.6267 in test-
ing accuracy. Table 5.8 contains the complete classification report. The network
has been trained with 4 dense layers for audio input, with 512, 256, 128 and 32
hidden layers respectively. The text input has been fed to a BLSTM and a dense
layer with 512 and 32 hidden layers respectively. Both flows have been merged
using a concatenate layer followed by three additional dense layers with 1024,
512 and 4 hidden layers respectively.

precision recall f1-score support
angry 0,647 0,538 0,588 221
happy 0,763 0,657 0,706 329
sad 0,576 0,829 0,680 580
neutral 0,626 0,315 0,419 346
accuracy 0,627
macro avg 0,653 0,585 0,598 1476
weighted avg 0,640 0,627 0,611 1476

Table 5.8: Performance metrics for DNN/BLSTM

The training and validation curves (Fig 5.12 may suggest that we are using a
number too large of features for training. While training validation achieves an
0.8 of accuracy, validation accuracy gets stuck around fit number 5 and valida-
tion loss hits its minimum around the 4th fit. After that, it starts overfitting
and the validation loss starts increasing.

Figure 5.12: DNN/BLSTM Learning curves
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precision recall f1-score support
angry 0.724 0.574 0.640 221
happy 0.778 0.760 0.769 329
sad 0.664 0.815 0.731 580
neutral 0.583 0.450 0.508 346
accuracy 0,681
macro avg 0.687 0.650 0.662 1476
weighted avg 0.679 0.681 0.673 1476

Table 5.9: Performance metrics for CBL/BLSTM

5.2.2 CBL/BLSTM Results

This experiment is based on the neural architecture described in Section 3.4.2.2.
This network feeds the audio input into a Bi-directional LSTM and a Convolu-
tional neural network, and the text input into a single BLSTM. The CNN for
audio is formed by two convolutional layers collated with one MaxPooling layer
each (with 64 and 32 hidden layers respectively). The audio BLSTM output is
merged with the CNN audio output and the BLSTM text output.

In this experiment we observe an improvement on performance compared to the
previous one. In order to avoid overfitting, the number of TF-iDF features is
reduced. When building the vocabulary, we have ignored terms that have a doc-
ument frequency strictly higher than a threshold set to 10. Still, the validation
learning curve comes to a standstill around epoch number 6 and stops increasing.
This may indicate that further feature selection could be needed.

Figure 5.13: CBL/BLSTM Learning curves



56 CHAPTER 5. RESULTS

5.2.3 CBLA/BLSTM Results

In this experiment we have tested the same architecture than in Experiment
5.2.2, but with the addition of an attention layer with 64 hidden layers. This
layer is added after the BLSTM layer for audio, and later merged with the CNN
audio and BLSTM text flows.

precision recall f1-score support
angry 0,647 0,548 0,593 221
happy 0,701 0,669 0,684 329
sad 0,558 0,800 0,657 580
neutral 0,608 0,251 0,356 346
accuracy 0,604
macro avg 0,628 0,567 0,573 1476
weighted avg 0,615 0,604 0,583 1476

Table 5.10: Performance metrics for CBLA/BLSTM

The learning curves for this experiment show a low bias case, where adding
additional data wouldn’t help. The component of attention doesn’t seem to
add any improvements in terms of accuracy, but the model seem to learn more
gradually. This may suggest that the attention component may have a good
potential but the architecture of the network is not complex enough.

Figure 5.14: CBLA/BLSTM Learning curves

5.2.4 Summary of results

The following table presents the results achieved by the best ML models and
each Neural Network for all the experiments explained above.
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method model accuracy f1-score precision recall
Audio Basic XGB 0.493 0.441 0.490 0.432
Audio HC RF 0.455 0.401 0.448 0.404

Audio Extra ENSEMBLE 0.497 0.451 0.506 0.437
Text only SVC 0.602 0.566 0.627 0.547

Combined Basic ENSEMBLE 0.619 0.593 0.630 0.583
Combined HC SVC 0.618 0.601 0.657 0.580

Combined Extra ENSEMBLE 0.631 0.597 0.670 0.582
Combined Extra DNN/BLSTM 0,627 0,611 0,640 0,627
Combined Extra CBL/BLSTM 0,681 0,662 0,687 0,650
Combined Extra CBLA/BLSTM 0,604 0,583 0,615 0,604

Table 5.11: Summary of results by all classifiers





Chapter 6

Conclusions and future
work

In this chapter we summarize the work developed during this Thesis and detail
the most notable conclusions that we have drawn. Later on we present some
lines for future research.

6.1 Conclusions

Despite the lately progresses made in the field of Speech Emotion Recognition,
it remains a challenging task. The multimodal approaches to solve this task are
still very immature in terms of methodology. Even though there are sophisti-
cated methods that aim to tackle this task ([Li et al., 2019], [Yoon et al., 2018]),
there is no established criteria for choosing the best features to study. Emotion
recognition is, by definition, an extremely ambiguous task even for humans. Un-
like other tasks related to Natural Language, there isn’t a specific architecture
that seems to work specially better when it comes to emotion recognition.
Another limitation regarding SER is certainly the lack of quality, available data
to build systems upon. Despite that IEMOCAP provides a good quality of an-
notated utterances, the volume of data remains too low to achieve great results.

Regarding the observed constraints in SER, in this work we have defined an
end-to-end pipeline for multimodal recognition, using a wide variety of
features and we have assessed their contributions and interactions between each
other. With the goal of comparing the potential of classical Machine Learn-
ing and Deep Learning methods for this specific task, we have made an study
using different types of features and evaluated their performances. Fi-
nally, we have developed an application for retrieving new audio and text data,
allowing us to keep retraining and improving a model. This way, we have
tackled the problem of the amount of available data. This application can be
used in a future to keep retrieving utterances labeled with emotions.
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Having extracted three types of different features (mel-spectrogram, prosodic
and TF-IDF features) from both audio and text, we have observed that our ex-
periments improved when using the combination of all these features
together. In the case of some classifiers, they appeared to be overfitted when
using mel-spectrogram features. We concluded that this could be due to the
great number of features that mel spectrogram contains and could be avoided
with further feature selection. On the other hand, mel features and prosodic
features didn’t contribute much with each other when performing clas-
sification with only audio features, but jointly improved the emotion
classification when using text.

The deep neural approaches have resulted to perform slightly better than the
classical ML classifiers, but with no major difference. We have observed that
there is no clear correlation between the complexity of the network used and its
results. DNN and CBL worked better than when using an attention mechanism.
The main conclusion that we extract from this experiment is that DL methods
seem to have better potential and capacity for improvement than classical ML
models for multimodal tasks, as long as their architectures remain simple enough
when using audio and text inputs.

The error analysis made in all our experiments shows that the highest confusion
rate appears always between ”Neutral” and ”Sad” emotions. We conclude that
this can be due to a problem of class imbalance (having much more ”Sad” than
”Neutral” samples) but also emotion ambiguity. We consider class imbalance
as a particular problem of lack of training data which can be solved increasing
the training set. Based on this premise, the bot developed to retrieve feedback
from classifications appears to be a good solution that allows a future continuous
retraining and data retrieval.

6.2 Future work

Working with text and audio data simultaneously is not a trivial task. In this
work we have combined these two types of information without giving an special
weight to any feature. In other words, a spectral component of and audio sample
had the same importance as one word. A future line for research could be
focused on defining the best way to combine this information into a weighted
set of features with relative importances.
Also, since two of the major limitations in this work have been the lack of a
larger training set and a class imbalance problem, we propose data augmenta-
tion as a future research direction. One possible approach for this line of research
could be the generation of synthetic audio samples using an algorithm such as
SMOTE [Chawla et al., 2011] that would contribute on improving the overall
performance of the system.
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Another future work could be focused on studying the feature selection mecha-
nisms suitable for high-dimensional features such as the mel spectrogram. The
selection of spectral features could help us on focusing on the frequency com-
ponents that bring most information for each audio sample. Regarding textual
information, different methods than TF-IDF such as word embeddings, could be
included in this study.
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