
Master in Artificial Intelligence

Master Thesis
Generative Query Networks for World Models in 2D and 3D

Environments

Author:
Marek Merten

Supervisors:
Cecilio Angulo
Mario Martin

Universitat Politècnica de Catalunya
Universitat de Barcelona
Universitat Rovira i Virgili

21 January 2020

Abstract

In this thesis, the application of World Models [8] in 2D and
3D environments is explored. Particularly in the CarRacing-v0
environment [3, 16] and the DeepMind Lab [1] environment.

It is shown that the Variational Autoencoder [12] used in the
World Models architecture has some drawbacks and a Generative
Query Network (GQN) [4] is a viable alternative for the vision
component and allows an agent trained with those models to
achieve higher scores in both environments. The ability of a
GQN to compute a structural representation, which is invariant
to changes in rotation and small changes in position, is demon-
strated.

Additionally, it is shown that a fast parallel training of agents
can significantly reduce the training time necessary to train a
full World Model.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3

2 Environments 4
2.1 CarRacing v0 Environment 5
2.2 DeepMind Lab Maze Environment 8

3 Architecture 10
3.1 Vision (V) Model . 10
3.2 Memory (M) Model . 17
3.3 Controller (C) Model . 22
3.4 Combined Models . 25

4 Results 31
4.1 Generative Query Network 31
4.2 Encoding . 33
4.3 CarRacing Scores . 37
4.4 CarRacing Results for the full Architecture (V, M and C) . . 40
4.5 DeepMind Lab . 44

5 Conclusions 48
5.1 Contributions . 48
5.2 Future Work . 49

References 51

i

List of Figures

1.1 World Model architecture [8] . 1

2.1 CarRacing environment . 5
2.2 Different DeepMind Lab mazes 8

3.1 VAE model . 11
3.2 GQN model . 12
3.3 Variational Autoencoder (VAE) encoder 14
3.4 GQN pool encoder [4] . 15
3.5 MDN-RNN . 17
3.6 MDN-RNN modified with action at−1 and zt+δ 18
3.7 RNN architecture comparison 20
3.8 World Model using V and C only 25
3.9 Full World Model using V, M and C 26
3.10 MDN-RNN concurrent training 27
3.11 Evolution Strategy training with iterative agents 28
3.12 Evolution Strategy training with parallel (batch) agents 29

4.1 Comparison of the action space of VAE and GQN models 35
4.2 CarRacing visualisation of zt with UMAP during an episode . . . 36
4.3 DeepMind Lab maximum reward obtained by VAE and GQN

models . 45
4.4 DeepMind Lab reward distribution for VAE and GQN models . . 46
4.5 DeepMind Lab visualisation of zt with UMAP during an episode 47

ii

List of Tables

3.1 Parameter count of encoder used for CarRacing task 16
3.2 Parameter count of decoder used for CarRacing task 16
3.3 Execution times per generation for the DeepMind Lab environment 29

4.1 Results for single layer C Model 37
4.2 Results for agents using the hidden layer C model 39
4.3 Results for MDN-RNN + C Model 41
4.4 Execution times per generation for the CarRacing environment . 42

iii

List of Videos

4.1 GQN query rendering for the CarRacing environment (link: https://
youtu.be/15CaphGkmyg) . 31

4.2 GQN query rendering for the DeepMind Lab Maze (link: https://
youtu.be/agkxv79GkQk) . 32

4.3 CarRacing VAE and GQN encoding (link: https://youtu.be/
GAKcB6mV0zI) . 33

4.4 CarRacing VAE and GQN comparison (link: https://youtu.be/
-UWaKXxZbS4) . 34

4.5 CarRacing with predicted future vector zt+δ (links: https://
youtu.be/OlmWZ97eFew https://youtu.be/BB1Mxjj9bPg) . . . 40

4.6 CarRacing trained with the hidden state ht of the memory model
(links: https://youtu.be/I-1d6NNhHXc https://youtu.be/
z7CZITezPp8) . 42

4.7 DeepMind Lab VAE vs. GQN (links: https://youtu.be/diWdGPEunU0
https://youtu.be/4l-_MX_3WxY) 44

4.8 DeepMind Lab Maze VAE and GQN side by side (link: https://
youtu.be/lhOYVq4Rka0) . 45

iv

https://www.youtube.com/embed/15CaphGkmyg?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/15CaphGkmyg?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/agkxv79GkQk?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/agkxv79GkQk?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/GAKcB6mV0zI?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/GAKcB6mV0zI?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/-UWaKXxZbS4?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/-UWaKXxZbS4?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/OlmWZ97eFew?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/OlmWZ97eFew?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/BB1Mxjj9bPg?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/I-1d6NNhHXc?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/z7CZITezPp8?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/z7CZITezPp8?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/diWdGPEunU0?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/4l-_MX_3WxY?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/lhOYVq4Rka0?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/lhOYVq4Rka0?autoplay=1&rel=0&autohide=1

Acronyms

RL Reinforcement Learning

VAE Variational Autoencoder

GQN Generative Query Network

MDN Mixture Density Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

ReLU Rectified Linear Unit

CMA-ES Covariance Matrix Adaptation Evolution Strategy

UMAP Uniform Manifold Approximation and Projection

DRAW Deep Recurrent Attentive Writer

CPU Central Processing Unit

GPU Graphics Processing Unit

v

Generative Query Networks for World Models in 2D and 3D Environments MAI

Introduction

1.1 Motivation

Most Reinforcement Learning (RL) approaches rely on taking observations of
an environment and applying actions to it step by step. This leads to very
high training times of days or weeks for big problems. The environment
quickly becomes the bottleneck since most RL training can be done rather
fast on modern hardware.

An improvement to this issue is the architecture called World Models de-
scribed in [8]. Ha and Schmidhuber propose to use a Variational Autoen-
coder [12] to extract feature vectors from the environment. A Mixture Den-
sity Network [2] combined with a Recurrent Neural Network (MDN-RNN) is
then trained on the feature vectors to model the probability of future states
based on which actions are taken. A simple controller can be trained by
employing default RL approaches to take actions based upon what the RNN
predicts. After this step, the agent can then take an action on the actual
environment. (See Figure 1.1)

Figure 1.1: World Model architecture [8]

Marek Merten 1

Generative Query Networks for World Models in 2D and 3D Environments MAI

This idea of this architecture is based on how humans perceive their envi-
ronment and models a similar ability of the human mind. That is the ability
to predict the future based on imagined scenarios. This process is useful
to reduce the time needed to train the architecture by splitting it up into
different models.

One of the most crucial parts of the World Model architecture is the Varia-
tional Autoencoder. The quality of its output vector significantly influences
of how well the training of the rest of the model works. Ideally, the VAE
should have a high capability to generalize observed data and encode the
structure of the perceived environment.

In the paper ”Neural scene representation and rendering”, Eslami et al. [4]
describe an interesting alternative to VAEs called Generative Query Net-
work (GQN) which offers a higher capability to abstract the structure of a
3D environment and reduced learning times when used together with RL.
The idea is to train the GQN by having an input of several observations
from different angles of a 3D scene and then ask a generation network to
reconstruct the view from different angles based on the feature vector the
network has created. This forces the encoder part to capture the structure
and properties of the objects (e.g. color and shape) within the scene.

Marek Merten 2

Generative Query Networks for World Models in 2D and 3D Environments MAI

1.2 Objectives

The main objective of this thesis is to explore the viability of using an
Generative Query Network (GQN) instead of an Variational Autoencoder
(VAE) in the World Models architecture described by Ha and Schmidhuber
[8] and to compare the resulting encoded representations that represent the
model’s vision.

Additionally, it is examined how well the VAE and GQN perform in a 3D
navigation environment (e.g. what differences there are between 2D and 3D
environments).

Another objective of this thesis is to explore ways of efficient parallel model
training to reduce the time required to train agents on different environ-
ments. This objective originated from the fact that the original implemen-
tation of the World Models architecture [8] can take weeks to fully train the
described models on a single GPU desktop computer. This is not acceptable
if hyperparameter tuning is used and several different models are trained.

Marek Merten 3

Generative Query Networks for World Models in 2D and 3D Environments MAI

Environments

The models developed for this thesis were trained and evaluated on two dif-
ferent environments: the CarRacing-v0 environment [3, 16] and the Deep-
Mind Lab [1] environment.

The following definitions will be used to describe the environments:

• S is the state space

• A is the action space

• R : S ×A → R is the reward function, which maps a state and action
to a scalar reward

• s ∈ S is the (observable) state of the environment.
At each time step the environment returns an observation vector o
which is a partial observation of the internal state of the environment.
For simplicity in the following chapters a notation where o = s will be
used.

• a ∈ A is an action that is performed on the environment

The CarRacing and DeepMind Lab environments both offer a Python [19]
interface that allows to reset the environment, perform an action (advancing
the environment one step further), and receive an observation and reward
for the currently executed step.

Marek Merten 4

Generative Query Networks for World Models in 2D and 3D Environments MAI

2.1 CarRacing v0 Environment

The CarRacing-v0 environment [16] is part of the collection of machine learn-
ing environments called OpenAI gym [3]. In each trial, a closed circuit track
consisting of 1000 tiles is randomly generated and the agent is rewarded for
visiting as many tiles of the track as possible. Additionally, the agent is pun-
ished with a negative reward of −0.1 at each time step if it has not finished
a lap round the track yet. This results in a theoretical maximum achievable
reward of around 950 and it gets increasingly more difficult to get closer to
this maximum.

Figure 2.1: CarRacing environment (rendered in higher resolution)

The environment contains a physics simulation of each tire and the body
of the car. Furthermore, the traction on different surfaces (road, grass) is
modeled. If the car accelerates too much, it will not be able to make hard
turns and starts to spin around its own axis. If the car leaves the road
and drives on the more slippery grass, this effect is amplified. Therefore, the
challenge of an agent navigating this environment is to find the right balance
of steering, accelerating on straight sections of the track, and braking before
entering turns.

Each observation (s) of the environment is an image with a width and height
of 64 pixels and 3 color channels (red, green, blue). Therefore, the observable

Marek Merten 5

Generative Query Networks for World Models in 2D and 3D Environments MAI

state space is a subset of R64×64×3 with values ranging from 0.0 to 1.0.

The CarRacing environment has a three dimensional continuous action space
(R3) with the following possible actions:

• steer left/right (asteer)

• accelerate (aacc)

• decelerate (brake) (adec)

This can be described with the following vector a′:

a′ =


asteer

aacc

adec

 (2.1)

In order to reduce the complexity of the model and simplify the controller
used to interact with the environment, the implementation in this thesis
maps the 3 dimensional action space to a two dimensional action space
(A ⊂ R2) by combining the accelerate and decelerate actions:

a =

(
a1

a2

)
=

(
asteer

|aacc| − |adec|

)
(2.2)

To perform an action on the CarRacing environment the original action
vector a′ is needed. However, the new action vector a will be used for
the models discussed later. Thus, it is necessary to apply the following
transformation to a to acquire the original action vector a′:

a′ =


asteer

aacc

adec

 =


a1

max(a2, 0)

min(a2, 0)

 (2.3)

Marek Merten 6

Generative Query Networks for World Models in 2D and 3D Environments MAI

Rendering performance

The OpenAI gym uses a relatively slow rendering system based on OpenGL
[17] in Python. It requires a GPU to render each environment and scales
poorly when running multiple environments simultaneously and therefore
can quickly become a bottleneck when training any RL model on it. To
improve the rendering performance and the ability to run it in parallel, a
3D mesh renderer developed by Genova et al. [5] has been used instead.
This allows for fast parallel rendering on CPU cores and assures that GPU
resources are fully available to train agent models.

Specifically, IBM Power9 nodes, which execute 160 parallel threads and con-
tain 4 NVIDIA V100 GPUs provided by the Barcelona Supercomputing
Center, were used to train the models for this thesis.

Marek Merten 7

Generative Query Networks for World Models in 2D and 3D Environments MAI

2.2 DeepMind Lab Maze Environment

DeepMind Lab [1] is a 3D learning environment which contains a variety of
different customizable environments for navigation and puzzle solving tasks.
Three different mazes have been chosen from these environments to train
the models developed for this thesis (Figure 2.2). To offer a wider range
of variability the agent is randomly placed in one of the three mazes at a
random start position. The agent is rewarded for visiting new areas within
the maze and punished for staying in areas it has already explored. This
way, the agent is encouraged to develop a sense of curiosity.

(a) Maze 1 (b) Maze 2 (c) Maze 3

Figure 2.2: Different DeepMind Lab mazes

Similar to the CarRacing environment, each observation is a frame that is
rendered with a width and height of 64 pixels and 3 color channels.

The original DeepMind Lab environment has 7 different possible actions an
agent can perform: look left or right, look up or down, strafe left or right,
move forward or backward, fire, jump and crouch.

For simplicity, the action space used in this thesis has been reduced to two
possible continuous actions encoded with real values (A ⊂ R2):

• turn left or right

• move forward

Marek Merten 8

Generative Query Networks for World Models in 2D and 3D Environments MAI

The ability of an agent to move backward has been removed to avoid finding
policies where the agent never moves forward and only explores the environ-
ment by going backward, which would offer the advantage that the agent
still sees most of the surroundings even if it moves into a corner or hits a
wall. By only going forward, the agent is more likely to deal with the diffi-
cult situation of directly standing in front of a wall and having to decide to
either go left or right. Before an action is applied to the actual environment,
it is translated to the original 7 dimensional discretized action space.

In order to speed up the training process every action performed on the
environment is repeated 8 times. This way, an observation has to be obtained
from the environment only on every 8th step and the training time is reduced
considerably. Additionally this stabilizes the way the agent interacts with
the environment by making its movements less jittery.

The custom reward function defined to evaluate the agent on the mazes is
the following:

R(s, a) =


1 if ‖a‖ 6= 0 and tile not visited
−0.2 if ‖a‖ 6= 0 and tile already visited

0 otherwise

(2.4)

Marek Merten 9

Generative Query Networks for World Models in 2D and 3D Environments MAI

Architecture

In this chapter, the architecture developed based on the World Models paper
by Ha and Schmidhuber [8] is discussed. Furthermore, different ways of
combining its parts and an approach on how to efficiently train the model in
parallel are presented. The World Model architecture consists of three main
parts:

• The Vision (V) model, which processes input images and returns a
compact representation of what it sees.

• The Memory (M) model, which takes actions and representations to
predict future observations.

• The Controller (C) model, which based on the encoded representation
from the V model and internal state of the M model performs actions
on the environment.

3.1 Vision (V) Model

Although training an RL agent directly on observed images is certainly pos-
sible, as demonstrated by Deep Q-Learning [14], where the image processing
(vision) and action calculation is done in a single neural network, splitting
up the agents logic into a separate vision and controller model has certain
advantages. A vision (V) model can be trained in an unsupervised manner
(regarding the task an agent has to solve) and does not necessarily require
the agent to perform meaningful actions. In the simplest case it can be
trained on a random rollout, where an agent follows a random policy to
interact with the environment. Another way to train the V model is to
randomly place the agent at different coordinates within the environment,

Marek Merten 10

Generative Query Networks for World Models in 2D and 3D Environments MAI

obtain an observation, place it in a different location and repeat the process.
This approach has been chosen for this thesis to train the V model.

In general, the V model consists of two parts:

• The encoder that processes observations (RGB images) and encodes
them into a latent vector z.

• The decoder that reconstructs an RGB image from the latent vector z.
The quality of this reconstruction can then be used as a loss function
to train the complete V model.

The original World Models paper proposes to use a Variational Autoencoder
as vision model to encode each observed frame into a lower dimensional rep-
resentation (latent vector). This is achieved trough a Convolutional Neural
Network (CNN), which processes the input images by applying convolutional
kernels to them. The last output layer of the CNN is used to compute the
mean µ and standard deviation σ of an observation. From this, a latent
vector z is sampled.

Figure 3.1: VAE model

Figure 3.1 shows the VAE model. It encodes a single input image with a size
of 64x64 pixels and three color channels into a 32 dimensional latent vector.

In contrast to the VAE model, the Generative Query Network (GQN) (Fig-
ure 3.2) is trained with several input images at a time. Between 1 and
5 input images were encoded into a 64 dimensional representation for the
CarRacing-v0 and DeepMind Lab environment.

Marek Merten 11

Generative Query Networks for World Models in 2D and 3D Environments MAI

Figure 3.2: GQN model

The GQN uses the convolutional Deep Recurrent Attentive Writer (DRAW)
architecture described by Gregor et al. [6] as a decoder. This decoder is based
on recurrent convolutional layers and is originally used as a form of concep-
tual compression algorithm [6]. This means that it allows a compressed
vector to contain global information about the scene and less important de-
tails are filled in by the model. In the most extreme case an image could
be compressed down to a single bit. This bit could, for instance, represent
either a cat or a dog. The DRAW architecture then takes this bit and gener-
ates a likely image of the defined animal. If there are more bits available in
the compressed image, then these will be used to encode additional features
like the color and shape, and allow for a more precise reconstruction of the
original image.

Later, only the encoder part will be used as vision model of an agent and the
decoder is only required during the training of the V model and to evaluate
the quality of encoded representations visually. However, the architecture of

Marek Merten 12

Generative Query Networks for World Models in 2D and 3D Environments MAI

the decoder matters substantially, because it forces the encoder to generate a
specific representation that is compatible with the decoder. In other words,
the encoder is trained to match the decoder, due to the fact that the gradient
of the training loss flows backwards from the final decoded image.

The original GQN implementation uses a 7 dimensional view description,
which consists of x,y,z coordinates and sine and cosine of yaw and pitch
angles. For this thesis, this has been reduced to a 4 dimensional description
of its position and angle, which will be called view (v ∈ R4). It consists of:

• Relative ∆x and ∆y

• Sine and cosine of relative yaw angle (∆ψ)

The coordinates are transformed using a rotation matrix Rψ:

Rψ =

(
cosψ − sinψ

sinψ cosψ

)

The mean is subtracted from the absolute coordinates and angle and the
resulting difference is rotated by angle ψ:

∆x = Rψ · (x− x̄)

∆ y = Rψ · (y − ȳ) (3.1)
∆ψ = ψ − ψ̄

v = (∆x,∆y, sin (∆ψ), cos (∆ψ)) (3.2)

In case of using a single image, the coordinates and angles are equal to their
mean:

x = x̄

y = ȳ

ψ = ψ̄

Marek Merten 13

Generative Query Networks for World Models in 2D and 3D Environments MAI

Therefore, the relative position and angle become zero:

∆x = ∆y = ∆ψ = 0

Hence the view v0 of a single input image is constant:

v0 = (0, 0, 0, 1) (3.3)

Encoder models

Both encoders for the VAE and GQN are composed of convolutional layers
to process the input image.

Figure 3.3: VAE encoder

The encoder part of the VAE model (Figure 3.3) consists of 4 convolu-
tional layers with Rectified Linear Unit (ReLU) activation and two densely
connected-layers to compute the mean µ and standard deviation σ.

Marek Merten 14

Generative Query Networks for World Models in 2D and 3D Environments MAI

The latent vector z can then be computed by sampling randomly from a
distribution with the mean µ and standard deviation σ:

z = µ+ σ �N (0, I) (3.4)

In case of the VAE, the encoded representation zt is equal to the sampled
latent vector z at time step t:

zt = z(t) (3.5)

For the GQN, each input image and its view vi is encoded by a pool encoder,
which consists of 6 convolutional layers and an average pooling operation at
the end. After the third convolutional layer, the view vi is broadcasted to
match the shape of the convolutional layer and concatenated into its output.
This way, for each input image and view, a representation ri is generated,
as visualized in Figure 3.4.

Figure 3.4: GQN pool encoder [4]

In case of the GQN the encoded representation zt is equal to the sum of
input representations at time step t:

zt =
∑
i

ri(t) (3.6)

Marek Merten 15

Generative Query Networks for World Models in 2D and 3D Environments MAI

Model size

The amount of parameters needed to train a model properly is an indicator of
how powerful it is. Generally, bigger models tend to yield better results, but
less parameters are preferred in order to minimize computational cost and
memory requirements. Therefore, choosing the right model size with the
least amount of parameters necessary to achieve good results, is a crucial
part of the architecture’s design.

Model Parameter count

VAE encoder 755 744

GQN encoder 72 352

Table 3.1: Parameter count of encoder used for CarRacing task

For the VAE model, the identical model as defined in the original World
Models architecture [8] was used. The implementation of the GQN for this
thesis (based on the work of O. Groth [15]) offers to define the number of
units of the convolutional layers as an adjustable hyperparameter. Hence,
the encoder part of the V model could be trained for the GQN with a
parameter count 10 times fewer than for the VAE model, as illustrated in
Table 3.1.

Model Parameter count

VAE decoder 3 592 803

GQN decoder 1 020 483

Table 3.2: Parameter count of decoder used for CarRacing task

The parameter count of the decoder is considerably higher than in the en-
coder part of the V model (see Table 3.2). Nevertheless, the decoder of the
GQN employing the DRAW architecture requires 3 times fewer parameters.

Marek Merten 16

Generative Query Networks for World Models in 2D and 3D Environments MAI

3.2 Memory (M) Model

In order to mimic the human ability to foresee how an environment will
change based on the own movements and actions taken, Ha and Schmidhuber
propose to incorporate a memory model into the World Models architecture.

This is achieved by combining a Mixture Density Network [2] with a Re-
current Neural Network (MDN-RNN) and training it on encoded represen-
tations to model the probability of future states based on what actions are
taken. This can be written as P (zt+1 | at, zt, ht) and is estimated through a
mixture of Gaussians [7] in the original model that is used to together with
the VAE vision model. The recurrent part of the model consists of Long
Short-Term Memory (LSTM) cells [11], which are connected through the
hidden state h at each time step as illustrated in Figure 3.5.

Figure 3.5: MDN-RNN (source: [8])

During the sampling of zt+1, the model uncertainty can be adjusted by a
temperature parameter τ , as described by Ha and Eck [7]. Lower values of
τ cause a more deterministic prediction of zt+1 and higher values cause the
the output vectors to become more random and unpredictable.

Marek Merten 17

Generative Query Networks for World Models in 2D and 3D Environments MAI

The original M model uses a single densely-connected layer for the Mixture
Density Network. The implementation for this thesis uses 3 fully connected
layers in order to improve the quality of predicted states instead. Further-
more, it is not limited to predicting zt+1. Instead, a tunable hyperparameter
δ is used to allow the MDN-RNN to predict future vectors zt+δ that are
further than one step ahead, if necessary. However, the model has to be
trained separately for different values of δ.

Figure 3.6: MDN-RNN modified with action at−1 and zt+δ

One issue with the original implementation from Ha and Schmidhuber [8] is
the fact that, in order to predict the future representation zt+δ, it is necessary
to know the internal RNN state ht, the current state of the environment
(encoded as zt), and the current action at. However, it is not possible to
obtain zt+δ with a single prediction step if the calculation of the action at
depends on it, but it is desirable to allow an agent to use this predicted
future representation as a means of anticipating changes in its environment.

For this reason, the implementation for this thesis uses the previous action
at−1 instead of at together with zt to predict zt+δ and to update the internal
RNN state ht+1 (see Figure 3.6). This has the advantage that at can be a

Marek Merten 18

Generative Query Networks for World Models in 2D and 3D Environments MAI

function of zt+δ:

at = fa(ht+1, zt, zt+δ) (3.7)

With zt+δ being a function dependent on ht, zt and at−1:

zt+δ = fz(ht, zt, at−1) (3.8)

Now Equation 3.7 and Equation 3.8 together with δ = 1 result in:

zt+1 = fz(ht, zt, fa(ht, zt−1, zt+δ−1)) (3.9)
= f ′z(ht, zt−1, zt) (3.10)

Which means a predicted future state zt+1 can be obtained from previous
states and the internal state of the RNN.

And similar ht can be written as:

ht+1 = fh(ht, zt, at−1) (3.11)

Now the equations 3.7, 3.10 and 3.11 together (with δ = 1) result in:

at = fa(fh(ht, zt, at−1), zt, f
′
z(ht, zt−1, zt)) (3.12)

= f ′a(at−1, ht, zt, zt−1) (3.13)

Equation 3.13 demonstrates that even though an action at uses the future
predicted representation zt+δ, it can be computed from just the previous
states and actions. The original model described by Ha and Schmidhuber
was not able to achieve this, unless two predictions were made (predicting
zt+1 and zt+2 in two separate steps), due to a cyclic dependency between at
and zt+1 (both would depend on each other).

Furthermore, it should be noted that the MDN-RNN is forced to internally
learn a policy of how an action at is implicitly computed from at−1 and the
states zt and ht. Consequently, it can not be trained independently from the
used Controller (C) model.

Marek Merten 19

Generative Query Networks for World Models in 2D and 3D Environments MAI

In order to use the RNN together with a GQN model, a modification was
made to the Mmodel so that P (zt+1 | at−1, zt, ht) is not modeled by a mixture
of Gaussians, but instead zt+δ is predicted directly without sampling from
Gaussian distributions. This is visualized in Figure 3.7, where the graph on
the left side shows the original MDN-RNN with additional hidden layers,
and the right side the modified RNN architecture, which allows the use of a
GQN as vision model.

(a) MDN-RNN for use with a VAE (b) Modified RNN for use with a GQN

Figure 3.7: RNN architecture comparison

As depicted in Figure 3.7a, zt+δ is sampled from several mixture parameters
for the MDN-RNN used together with the VAE. These parameters are the
mixing coefficients αi, the means µi and standard deviations σi.

Marek Merten 20

Generative Query Networks for World Models in 2D and 3D Environments MAI

Based on Bishop [2], the probability of zt+δ can then be computed from αi,
µi and σi, with φi as a function that computes a Gaussian distribution, in
the following way:

P (zt+δ | at−1, zt, ht) = P (zt+δ | αi, µi, σ2i)

=
∑
i

αi φi(zt+δ | µi, σ2i) (3.14)

Each prediction in the original MDN-RNN (Figure 3.7a) is computed with a
mixture of 5 Gaussian distributions (i denotes the index of the distribution).
This results in a total of 15 parameters which need to be calculated by the
MDN for one prediction of zt+δ. On the contrary, zt+δ is computed as a
single parameter in Figure 3.7b for the modified model.

As a consequence of predicting zt+δ directly in the case of the GQN, it
is not possible to adjust the randomness of the sampled vector with the
temperature parameter τ . However, to some extend a certain degree of
randomness helps to improve training results. Therefore, this modification
might have disadvantages in stability when an agent is trained using the
Word Models architecture.

Marek Merten 21

Generative Query Networks for World Models in 2D and 3D Environments MAI

3.3 Controller (C) Model

In the simplest case, C is a single layer neural network that maps the input
vector xt ∈ Rnz at time step t to an action at ∈ A (with A being the action
space of the environment):

at = Wc xt + bc (3.15)

Wc ∈ Rnz×dimA and bc ∈ RdimA are the weight matrix and bias vector and
nz is the number of elements in the input vector. In case of having a hidden
layer in the C model, the equation is extended with the weight matrix Wh

and bias bh of the hidden layer:

at = Wc (Wh xt + bh) + bc (3.16)

The input vector xt can either be the encoded representation zt from the V
model or a concatenated vector of either [ztht] or [ztzt+δ] when the Memory
(M) model is used. ht is the hidden state of the M model at at time step t.
With a concatenated vector [ztzt+δ] an actual prediction of a future vector
δ time steps ahead is used instead of ht.

The C model is trained using Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [9]. In order to train the weights and biases of the C model,
they need to be transformed into a vector of parameters θ ∈ Rnθ :

θ = (Wci,j , bci) ∈ Rnθ (3.17)

In case the model contains a hidden layer:

θ = (Wci,j , bci,Whi,j , bhi) ∈ Rnθ (3.18)

Where i and j iterate over all elements in each matrix and vector. nθ is
the number of parameters to train. In case of the single layer C model,
the parameter count nθ can be computed from the size of Wc and bc in the
following way:

nθ = (nz + 1) · dimA (3.19)

Marek Merten 22

Generative Query Networks for World Models in 2D and 3D Environments MAI

The goal of the evolution strategy is then to minimize the cost function
J(θ) : Rnθ → R which is the negative sum of rewards obtained during tmax
time steps:

J(θ) = −
tmax∑
t=1

R(st, at(θ)) (3.20)

R : S × A → R is the reward function and st ∈ S is the state of the
environment at time step t. S is the state space.

The environments used in this thesis are randomly initialized. (In case of the
CarRacing environment a random track is generated and for the DeepMind
Lab a random maze with a random initial position is chosen.) Thus, the
obtained cost J for a set of parameters θ is nondeterministic. In order to
compute a more stable cost for a set of parameters θ, it is necessary to
perform several trials and average the obtained cost:

J̄(θ) =
1

k

k∑
i=1

Ji(θ) (3.21)

k denotes the number of trials, on which the parameters are evaluated trough
J .

The Covariance Matrix Adaptation Evolution Strategy is in initialized in the
following way:

• Sample random initial parameters θ from a Cauchy distribution

• Set population size λ ∈ N

Marek Merten 23

Generative Query Networks for World Models in 2D and 3D Environments MAI

Afterwards, the CMA-ES performs an update of the parameters θ with each
generation, as follows [10]:

1. Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rnθ

2. Evaluate x1, ..., xλ k times on J

3. Update parameters θ ← Fθ(θ, x1, . . . , xλ, J̄(x1), . . . , J̄(xλ))

With Fθ being the update function which CMA-ES uses. In order to evaluate
the parameters on the cost function J , they are split up and reshaped to
form the original weights and biases of the neural network C model.

Marek Merten 24

Generative Query Networks for World Models in 2D and 3D Environments MAI

3.4 Combined Models

Training the models on an environment is possible either with or without
the M model. In case of training without the M model, an agent consists of
the V model and C model as seen in Figure 3.8.

Figure 3.8: World Model using V and C only

There are only three components in this simpler scenario. The environment
takes an action form the agent, and returns an observation and the reward
for performing this action. The observation is encoded into the latent vector
zt and directly used to train the controller model. Because the agent does
not contain any memory model, there is no internal state which is saved
between time steps. This means the agent needs to extract all necessary
information to, i.e., drive a car from the current static observation. This is
a single image and therefore does not contain any information like the speed
of the car.

The full World Model architecture also contains the M model (Figure 3.9).
The MDN-RNN used as M model maintains a hidden state h between time
steps. With each observation and performed action this internal state is
updated.

Marek Merten 25

Generative Query Networks for World Models in 2D and 3D Environments MAI

Figure 3.9: Full World Model using V, M and C

Contrary to the first agent architecture, this design contains a memory
model. This allows the model to form a sense of short term memory. Based
on the actions previously taken, the agent can make an estimation of the
cars velocity and trajectory, which is encoded in the memory models hidden
state ht. A controller model can then use this information to take proac-
tive actions. For instance, it allows an agent to know the exact amount of
braking required to not miss a turn in the CarRacing environment.

Additionally, Ha and Schmidhuber [8] describe an interesting third approach
to train the controller model exclusively based on the output of the memory
model. In this case, the M model has to be pretrained and also predict
the rewards obtained from each taken action. This allows the C model
to be trained entirely without the actual environment and vision model,
and only interact with a generated dream-like simulation instead. This has
a dramatic impact on the required time to train the model, because the
usually slow interaction with the real environment is not necessary and thus
the M model can quickly predict the next state of environment. However,
this approach is only feasible for simpler stochastic environments. More
sophisticated environments require a better memory model, than the MDN-
RNN trained for this thesis. For this reason, this approach has not been
investigated any further.

Marek Merten 26

Generative Query Networks for World Models in 2D and 3D Environments MAI

Iterative Training Procedure

The World Models paper [8] proposes an iterative training procedure for the
M and C model consisting of four steps (originally defined by Schmidhuber
[18]):

1. Initialize M, C with random model parameters.

2. Rollout to actual environment N times and save all actions at and
observations to storage.

3. Train M to model P (zt+1 | at, zt, ht) as a mixture of Gaussians.

4. Go back to (2) if termination condition is not met.

This training procedure is usually implemented using a rather large number
of rollouts N with steps (2) and (3) executed sequentially. This means the
M and C models are restarted and loaded with new parameters in each
iteration.

Figure 3.10: MDN-RNN concurrent training

In contrast, a mechanism has been developed for this thesis that allows to
train the M and C models (steps (2) and (3)) in parallel (depicted in Fig-
ure 3.10). Each generation of the CMA-ES algorithm is considered a rollout
and copied to the training process for the M model using shared memory. On

Marek Merten 27

Generative Query Networks for World Models in 2D and 3D Environments MAI

the other hand, the training process of the MDN-RNN sends updated model
parameters back to the agents running the CMA-ES algorithm. This way,
the two models are updated at every generation and can quickly converge
without having to be restarted.

Parallel Training

Ha and Schmidhuber [8] propose a default way of training the C model,
which requires λ agents, each operating on a separate environment for k
trials times tmax iterations using two nested loops that go through each time
step and trial. At each time step, the agent has to process the current
observation st with the V model and take an action based on the output of
the C model. This results in model inference with a batch size of 1 at each
time step (see Figure 3.11).

Figure 3.11: Evolution Strategy training with iterative agents

However, neural models are very effective in leveraging the parallel com-
puting power of CPUs and GPUs by using bigger batch sizes. Therefore, a

Marek Merten 28

Generative Query Networks for World Models in 2D and 3D Environments MAI

different approach has been developed for this thesis that does not use the
outer loop of performing k trials over a set of parameters, but instead per-
forms a single trial with a batch size of k. This is illustrated in Figure 3.12.

Figure 3.12: Evolution Strategy training with parallel (batch) agents

Each agent has k associated environments (E1, . . . , Ek), which run in par-
allel. For that reason, the agent computes an action matrix (a ∈ Rk×dimA)
instead of an action vector (a ∈ A) at each time step. Table 3.3 shows the
execution times of one iterative agent implementation and parallel imple-
mentation for 16 trials running on a computer with 16 virtual CPU cores.
The model inference at each time step takes place on a GPU device.

Agent Time in s

iterative agent 28.2

parallel agent 3.9

Table 3.3: Execution times per generation for the DeepMind Lab
environment with k = 16 and tmax = 2000

Marek Merten 29

Generative Query Networks for World Models in 2D and 3D Environments MAI

In this case, the parallel agent implementation is about 7 times faster, al-
though this factor can only be obtained when there are enough CPU cores
available to run all environments in parallel. If there are not enough comput-
ing resources available, the speed advantage of the parallel implementation
over the iterative implementation decreases. However, in contrast to gradi-
ent decent based training methods, which use back propagation, evolution
strategy based training scales very well to multiple nodes of a cluster of com-
puters [9]. Each node can execute a set of agents and return the calculated
cost for a subset of the population that is trained by CMA-ES.

As a consequence, all results obtained for this thesis were run using the
parallel (batch) agent approach to reduce training times.

Marek Merten 30

Generative Query Networks for World Models in 2D and 3D Environments MAI

Results

In this chapter, the results of applying the models developed in chapter 3 to
the CarRacing and DeepMind Lab maze environments are presented. First,
the result of training the GQN model on both environments is analyzed in
section 4.1. Subsequently, section 4.2 compares the computed representa-
tions of the VAE and GQN models (V model). It is followed by a review
of the scores obtained in the CarRacing environment in section 4.3 and 4.4.
Finally, the results obtained from the DeepMind Lab maze are discussed in
section 4.5.

4.1 Generative Query Network

One of the advantages of the GQN is its ability to produce a representa-
tion which is mostly rotation and translation invariant. In order to test
this property, the GQN was asked to render an output image with different
query angles ∆ψq or a translational offset in x direction (∆xq) to predict the
resulting image. ∆ψq and ∆xq are continuously increased and decreased to
show how precise the predictions are. The correctness of this prediction can
then be easily evaluated by the human eye, because humans are able to do
the same prediction of what happens when an object (in this case the street)
is moved. For example, the shape of a two dimensional object should not
change when it is rotated or shifted.

Video 4.1: GQN query rendering for the CarRacing environment

Marek Merten 31

https://www.youtube.com/embed/15CaphGkmyg?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

Video 4.1 demonstrates this by using 4 static input images and their corre-
sponding relative views (vi), which were taken from the CarRacing environ-
ment. The model is able to produce correct predictions about how the track
looks like when the position and angle changes.

Similar to the 2D CarRacing environment, the GQN is also able to infer
the correct shape of elements in a 3D scene if the viewing position changes.
Video 4.2 demonstrates this for the DeepMind Lab maze environment. The
model renders the floor, walls and the sky correctly, but due to the low
resolution of 64× 64 pixels, the rendering is not detailed and blurred. The
transitions between frames are slightly jittery, but, overall, the GQN is able
to capture the most important structures of the scene.

Video 4.2: GQN query rendering for the DeepMind Lab Maze

In conclusion, the adaptation of the GQN to the two new environments
using relative coordinates and angles can be considered successful regarding
its ability to encode and decode a variable number of input images and
render a correct output depending on the query view.

Marek Merten 32

https://www.youtube.com/embed/agkxv79GkQk?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

4.2 Encoding

Normally, it is not possible to directly see the encoded representation that
is generated by the VAE and GQN. Only through the used decoder can
a visually perceivable image be reconstructed. However, it is possible to
translate the value of each dimension of an encoded vector to a color and
draw color intensities. This has been done in Video 4.3, where the left
column represents the original observation, which is rotated or translated,
the second column shows the decoded frame in case of the VAE and GQN,
and the third column shows the actual 32 dimensional representation drawn
in a 6× 6 matrix. For the VAE, a range of [−1, 1] is mapped to a red color
value between 0 and 255 and for the GQN, the mapped range is [0, 1].

Video 4.3: CarRacing VAE and GQN encoding

In order to observe the encoding during translation or rotation of the input
image, an offset has been applied to the car’s position and yaw angle. As seen
in Video 4.3 the encoding of the GQN is much more stable during rotational
and positional transformations. The VAE encoding flickers considerably
due to the fact that each encoded representation is randomly drawn from a
distribution (represented by µ and σ).

In a direct side-by-side comparison of the best runs of models trained with a
VAE and GQN vision model (Video 4.4), it is noticeable that the steering of
the agent using the VAE model is more shaky compared to the GQN model.

Marek Merten 33

https://www.youtube.com/embed/GAKcB6mV0zI?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

This can be explained with the more unstable encoding as well (as seen in
Video 4.3).

Video 4.4: CarRacing VAE and GQN comparison

In order to compare the actions of the agent trained with the VAE and
GQN vision model, it is also possible to plot the intensity of each action
taken during an episode, namely how much acceleration or deceleration and
steering has been applied at each time step. Analogous to a real driver
driving a car, it is preferable to perform more precise actions and do small
corrections when necessary rather than to constantly hit the brake and the
gas pedal and do very abrupt steering movements.

As seen in Figure 4.1, the actions of the agent based on the GQN model
concentrate more around the center with little steering and mild acceleration.
Moreover, there is an increased number of actions which combine steering
left and braking. This makes sense considering that the car goes around the
track counterclockwise and there are usually no right turns. Consequently,
the agent has to brake and steer left before each turn. In contrast, the agent
consisting of the VAE model and controller drives more aggressively with
more acceleration and steering left and right. Due to the oversteering to
the right, the agent then has to do also stronger corrective actions and as a
result the shaky steering from Video 4.4 is observed.

Marek Merten 34

https://www.youtube.com/embed/-UWaKXxZbS4?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

0.4 0.2 0.0 0.2 0.4 0.6
steer

0.4

0.2

0.0

0.2

0.4

0.6

ga
s/

br
ak

e

VAE
GQN

Figure 4.1: Comparison of the action space of VAE and GQN models

Another possibility of visualising the different found representations of the
VAE and GQN models is represented in Figure 4.2. It depicts a projection
of an episode (car going around the track) using Uniform Manifold Approx-
imation and Projection (UMAP) [13]. UMAP is an algorithm that reduces
high dimensional data into a 2D representation which allows to print the
32 dimensional vector zt in a visually perceivable scatter plot. Each time
step from 0 to tmax is mapped to a single point in the diagram. The color
gradient in Figure 4.2 represents the current time step during the episode.
Dark blue colors are at the beginning, followed by red colors and finally the
episode (track) ends with the yellow colors.

The plot of an episode using the VAE model (Figure 4.2a) shows a cloud
without any clear pattern. The time steps represented by the colors are
distributed evenly across the graph, although some points are closer to each
other and leave small white spaces in between. In contrast, the diagram
on the right, which depicts an episode encoded with a GQN (Figure 4.2b)
possesses much more structure and seems to form rings corresponding to

Marek Merten 35

Generative Query Networks for World Models in 2D and 3D Environments MAI

different parts of the track. Dark blue colors indicating the beginning of
an episode are predominant on the right and top part. Light yellow colors
corresponding to the end of the episode are also more prevalent in the top
area. Essentially, the most important aspects of the track like the curvature
are mapped into a distorted representation.

(a) VAE (b) GQN

Figure 4.2: CarRacing visualisation of zt with UMAP during an episode

Overall, it was demonstrated that the GQN model offers advantages by
encoding the observed structure into the latent vector zt that is to some
extend translation and rotation invariant and therefore allows agents trained
with this representation to take more precise actions. One disadvantage of
using the GQN though, is the considerably higher training time to achieve
visually comparable results to the VAE model. The implementation adapted
for this thesis [15] needed to be trained about 10 times longer.

Marek Merten 36

Generative Query Networks for World Models in 2D and 3D Environments MAI

4.3 CarRacing Scores

In this section, the scores achieved in the CarRacing environments for agents
consisting of a Vision (V) and Controller (C) model are discussed. For the
V model the results using a GQN and VAE are compared and tested in two
cases:

• C model with a single densely-connected layer

• C model with two layers (one hidden layer and an output layer)

Depending on the number of possible actions and the number of dimensions
of zt (nz), the number of parameters nθ the CMA-ES algorithm has to train
changes. nθ can be computed according to Equation 3.19. The results
depicted here were generated with a size of 32 dimensions for zt for the VAE
model and 64 dimensions for the GQN model. The actual size of the latent
vector is an adjustable hyperparameter and the chosen values were found
to work well for the models, but do not dramatically impact the scores. In
case of the VAE, the original described architecture by Ha and Schmidhuber
used a 32 dimensional latent vector and this was adopted for the experiments
run for this thesis. The GQN model seems to perform slightly better with
a size of 64 dimensions rather than with 32 dimensions, but due to the
stochasticity of the obtained results, no scores investigating this further are
presented here. The scores in Table 4.1 were computed by evaluating the
best found policy for each model through 100 trials and computing the mean
and standard deviation (indicated after ±) of the rewards achieved.

Model Score Parameter count nθ
GQN single input image 799 ± 153 160

VAE 806 ± 174 66

original VAE [8] 632 ± 251 99

Table 4.1: Results for single layer C Model

Marek Merten 37

Generative Query Networks for World Models in 2D and 3D Environments MAI

The VAE model attained a slightly better result than the GQN for the single
layer V model (Table 4.1). Both GQN and VAE scores are much higher than
the scores achieved by the original World Models paper and have a lower
variance.

The higher scores for the VAE might be explainable by:

• The fact that 2 instead of 3 actions were used to train the model
(accelerate and brake have been combined).

• A new action has only been performed on the environment every 4th
step. The rest of the time, the last action was repeated, which made
the steering more stable.

• The model’s high sensitivity to initial model parameters. For this
thesis, the agents were trained on an initial pool of completely random
parameters. The best performing agent was chosen and its parameters
formed the initial parameters of the CMA-ES algorithm. Depending
on the initial parameters, it is possible that the CMA-ES algorithm
converges into different local minima instead of the global minimum
for cost J̄ .

The scores of the agents with a hidden layer consisting of 16 units show a
significantly higher average for the agent trained with the GQN as V model
(see Table 4.2). The agent trained with a VAE was not able to obtain results
similar to the original paper and performs 150 points worse on average.
However, this might be improved by adjusting different hyper-parameters
(e.g. not repeating an action 4 times). Similarly to Table 4.1, the scores
were computed by evaluating the final policy on 100 trials and computing
the mean and standard deviation of the obtained cumulative rewards.

Additionally, it should be noted that training the C model with a hidden
layer considerably increases the number of parameters needed and therefore
the computational cost required to find an optimal policy.

Marek Merten 38

Generative Query Networks for World Models in 2D and 3D Environments MAI

Model Score Parameter count nθ
GQN single input image 859 ± 118 1090

VAE 632 ± 201 562

original VAE [8] 788 ± 141 1443

Table 4.2: Results for agents using the hidden layer C model

To conclude, the best score (859) for the agent trained using the V and C
model was attained by using a hidden layer and the GQN model. The second
best result (806) was obtained with a VAE single layer model. Contrary to
the results from the original paper [8] the VAE model with a single layer
performed better than the VAE model with an additional hidden layer.

Marek Merten 39

Generative Query Networks for World Models in 2D and 3D Environments MAI

4.4 CarRacing Results for the full
Architecture (V, M and C)

This section discusses results and scores obtained by using the full World
Models architecture, which includes a vision (V) model, memory (M) model
and controller (C) as defined in Figure 3.9.

The M model can be used to obtain a predicted latent vector zt+δ, which is
an estimation of the future state of the environment. Video 4.5 visualizes
this for the CarRacing environment with the right column being the predic-
tion at time t + δ and the left and middle column representing the original
observation and decoded latent vector at time t.

Due to the way the GQN representation is calculated, it is not possible to
estimate a future state as a mixture of Gaussians. Therefore, the results in
Video 4.5b were computed without a mixture of Gaussian distributions, and
instead predict the future state directly without any random sampling.

(a) VAE with δ = 1 (b) GQN with δ = 2

Video 4.5: CarRacing with predicted future vector zt+δ

In most instances, the prediction for the VAE (Video 4.5a) is correct and
moves slightly ahead of the frame at time step t. Although the prediction
sometimes showed red stripes which indicate the beginning of a turn even if
there isn’t one.

Marek Merten 40

https://www.youtube.com/embed/OlmWZ97eFew?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/OlmWZ97eFew?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/OlmWZ97eFew?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/BB1Mxjj9bPg?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/BB1Mxjj9bPg?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/BB1Mxjj9bPg?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

The results for the GQN model (Video 4.5b), are in comparison more stable
and also allow to look further into the future without the creation of unre-
alistic states. For this reason the prediction in Video 4.5b is visualized for
zt+2, as opposed to the estimation of zt+1 in case of the VAE model. The
quality of predictions for the VAE model considerably worsens for forecasts
further than one time step ahead.

The full World Model with a VAE or GQN as vision model was trained
for 500 generations while repeating each step either four or two times, in
order to reduce the computation time required to fully train the model. As
depicted in Table 4.3, the mean scores with 4 repeated steps (computed over
100 trials) are higher for the GQN model in comparison to the VAE model,
and have a lower standard-deviation. For the models, which repeated each
step twice, the VAE achieved an average score of 909 and the GQN model
obtained a slightly higher average score of 911, which is 5 points higher than
the result from the original paper [8]. However, the original model has a
lower standard-deviation, meaning it has less outliers of runs that are above
or below the average reward.

Model Repeated steps Score

VAE 4 853 ± 106

GQN 4 859 ± 99

VAE 2 909 ± 60

GQN 2 911 ± 63

original VAE [8] 1 906 ± 21

Table 4.3: Results for MDN-RNN + C Model

The results in Table 4.3 show better scores for models, which repeat an
action twice instead of 4 times. However, training this model with less

Marek Merten 41

Generative Query Networks for World Models in 2D and 3D Environments MAI

repeated steps comes at the cost of increased training times per generation,
as seen in Table 4.4. The measured times have been computed using the
full World Model architecture (V, M and C) with 12 environments running
in parallel per agent and a population size of 16. As a result, actions for
192 environments over 250, 500 or 1000 steps (depending on the number of
repeated steps) had to be computed.

Model Repeated steps Time in s

VAE 4 22

VAE 2 37

GQN 2 45

VAE 1 68

Table 4.4: Execution times per generation for the CarRacing environment
with k = 12 and γ = 16

The measurements in Table 4.4 were taken on an IBM Power9 node which
executes 160 parallel threads and contains 4 NVIDIA V100 GPUs. With a
population size of γ = 16, this means that 4 agents share a GPU to run the
model inference.

(a) VAE (b) GQN

Video 4.6: CarRacing trained with the hidden state ht of the memory
model

Marek Merten 42

https://www.youtube.com/embed/I-1d6NNhHXc?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/I-1d6NNhHXc?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/I-1d6NNhHXc?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/z7CZITezPp8?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/z7CZITezPp8?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/z7CZITezPp8?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

As seen in Video 4.6, the models trained with the memory model are both
able to complete the track in 2/3 of the available 1000 time steps, which
shows that using the predictive abilities of the M model allowed the models
to drive faster without loosing control.

Video 4.6 also visualizes the hidden state ht of the RNN that was concate-
nated with the current latent vector zt and used as input to the C model.
The actual 256 dimensional vector ht is drawn in a 16×16 matrix. Its values
in a range of [−0.5, 0.5] are mapped to a red color value between 0 and 255.

As evident in Video 4.6a, for an agent trained with the VAE model, ht
changes some its values quite quickly during the course (which makes the
corresponding square flicker), while other values remain mostly unchanged or
change gradually. In contrast, if the agent was trained using the GQN model
(Video 4.6b), the values of the RNNs hidden state barley change over the
course of the track. Only during turns the red colors slightly change intensity.
Interestingly, the in section 4.2 discussed visualisation of the encoded vector
zt (Video 4.3) seems to some extend to repeat itself, in terms of how quickly
the values changes, in the hidden state ht of the RNN.

In summary, the modifications made to the M and C model described in
section 3.2 and 3.3 allowed the trained models with two repeated actions to
surpass the score of the original implementation from Ha and Schmidhuber
[8] with the GQN model achieving the best scores. Furthermore, the overall
improvement of using a memory model together with the vision model and
controller in both cases for the VAE model and GQN model was demon-
strated.

Marek Merten 43

Generative Query Networks for World Models in 2D and 3D Environments MAI

4.5 DeepMind Lab

In this section, the results of agents trained using the V and C model on the
DeepMind Lab maze environment are discussed. In Video 4.7a, an episode
consisting of 3000 time steps is shown for an agent using the VAE as vision
model. In Video 4.7b, the same is demonstrated for an agent trained with
the GQN model. In each video the left column shows the original received
observation from the environment and the right column is the decoded image,
reconstructed from the current latent vector zt. For both models, the latent
vector has 64 dimensions.

(a) DeepMind Lab VAE (b) DeepMind Lab GQN

Video 4.7: DeepMind Lab VAE vs. GQN

The reconstruction of the latent vector zt works sufficiently well for both VAE
and GQN to perceive the layout of the environment. The color and shape
of the walls and the floor are correctly reconstructed. Only less important
details like fine textures are blurred and often not visible anymore. Moreover,
both models were not able to reconstruct objects like the green apples in the
environment. The ability to reconstruct details should increase if, instead of
a 64 dimensional vector zt, more dimensions are used to describe the scene.

Marek Merten 44

https://www.youtube.com/embed/diWdGPEunU0?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/diWdGPEunU0?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/diWdGPEunU0?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/4l-_MX_3WxY?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/4l-_MX_3WxY?autoplay=1&rel=0&autohide=1
https://www.youtube.com/embed/4l-_MX_3WxY?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

Video 4.8: DeepMind Lab Maze VAE and GQN side by side

In the side-by-side comparison of the VAE and GQN model in Video 4.8,
it is observable that the policy learned by the agent trained with the GQN
allows it to stay away from the walls in most cases, whereas the policy of
the agent trained with the VAE is mostly to hit walls and then turn left or
right and walk towards the next wall.

0 200 400 600 800 1000 1200 1400
generation

0

5

10

15

20

25

30

re
wa

rd

GQN
VAE

Figure 4.3: DeepMind Lab maximum reward obtained by VAE and GQN
models

Marek Merten 45

https://www.youtube.com/embed/lhOYVq4Rka0?autoplay=1&rel=0&autohide=1

Generative Query Networks for World Models in 2D and 3D Environments MAI

In Figure 4.3, the average reward obtained by the best performing agent
over a training period of 1400 generations is depicted for the VAE and GQN
used as vision model. The values are averaged over 40 generations for better
readability. Apart from the very beginning, the agent trained using the GQN
model consistently achieved higher maximum scores, which were about 10
points higher after 1400 generations than the scores achieved with the VAE
model.

VAE GQN
60

40

20

0

20

40

60

80

to
ta

l r
ew

ar
d

pe
r e

pi
so

de

Figure 4.4: DeepMind Lab reward distribution for VAE and GQN models

The reward distribution of the trained agent models illustrated in Figure 4.4
shows that the scores of the GQN model have a higher range than the VAE
model. However, the lowest scores obtained in both models are both close
to -60. In general, the plot shows the high variability in scores received due
to the random nature of the environment.

Similarly to Figure 4.2, the color gradient in Figure 4.5 represents the current
time step during an episode. Dark blue colors are at the beginning of the
episode, followed by red colors, and finally the episode ends with the yellow
colors. The 64 dimensional vector zt is reduced to a 2D point using the
UMAP [13] algorithm.

Marek Merten 46

Generative Query Networks for World Models in 2D and 3D Environments MAI

(a) VAE (b) GQN

Figure 4.5: DeepMind Lab visualisation of zt with UMAP during an
episode

The plot of the agent trained using the VAE model results in a point cloud.
Darker points (closer to the start) are more concentrated on the right side
of the graph. In contrast, the plot for the GQN model shows much more
structure with a denser center part and separate areas on the right and
bottom, whereas later time steps seem to be predominantly in the bottom
part. Similar to the results obtained from the CarRacing environment, it
is evident that the GQN representation is more structured than the latent
vector used by the VAE.

To summarize, the GQN model improved the ability of an agent navigating a
3D simulation compared to agents using the VAE as vision model and allowed
it to explore a bigger area of the environment. As a result, it attained higher
scores due to a more structured encoding of each observation.

Marek Merten 47

Generative Query Networks for World Models in 2D and 3D Environments MAI

Conclusions

In this master thesis, it was shown that the VAE used in the World Mod-
els architecture has some drawbacks and that a Generative Query Net-
work (GQN) is a viable alternative for the models vision component, al-
lowing an agent trained with those models to achieve higher scores in the
CarRacing and DeepMind Lab environments. The advantages of including
a memory model in the architecture were explored and it was illustrated
that a combination of a modified MDN-RNN and GQN allows to obtain
better results for the CarRacing environment than an agent consisting of a
MDN-RNN and VAE model. The ability of a GQN to compute a structural
representation that is invariant to changes in rotation and small changes in
position was demonstrated. Furthermore, it was illustrated that the devel-
oped models are applicable to both, 2D and 3D environments without the
need to treat them differently.

Additionally, it was demonstrated that a fast parallel training of agents can
significantly reduce the time necessary to train the full World Model.

5.1 Contributions

• A novel approach of combining the World Models architecture with
the GQN as Vision (V) model has been developed.

• The GQN was trained on new environments not discussed by Eslami
et al. [4] which are the CarRacing environment and a custom Deep-
Mind Lab maze environment.

• The existing World Models architecture was improved for the efficient
use of parallel computing units by running several environments per
agent during training.

Marek Merten 48

Generative Query Networks for World Models in 2D and 3D Environments MAI

• The Memory (M) model used in the World Models architecture was
improved to produce more accurate predictions of future latent vectors
by using the previous input action at−1 at each time step and using
several layers to model the Mixture Density Network that forms a part
of the MDN-RNN

• The memory model has been modified and adopted to allow the use
together with the GQN model in a way that does not require future
vectors zt+1 to be modeled as a mixture of Gaussians.

5.2 Future Work

In this thesis, the VAE and GQN models were trained separately from the
controller and memory models. This is practical for environments which
allow sufficient sampling at random positions and angles. In a more complex
changing environment like the real world, an agent would not be able to do
this. Therefore, it could be investigated how to dynamically update the
vision model while the agent explores new areas of an environment. To do
this effectively for the GQN model, additional information like the position
and view angle of the agent is required. These could either be directly
supplied by the environment or estimated by another neural network. The
advantage of estimating the agent’s position is that this approach could be
used in the real world where, apart from rather rough positioning systems
like GPS (with accuracies ranging in the range of several meters), there is no
precise positional data available. Given the current observation and previous
actions of the agent, its current position could be estimated, similar to how
a human is able to infer his or her position in e.g. a room.

Finally, investigating how to train an agent in an completely imagined envi-
ronment (dream) is an interesting topic for future work. The authors of the
World Models paper [8] tested this approach with a game environment called
VizDoom. This game is fairly simple to emulate and they show that an agent

Marek Merten 49

Generative Query Networks for World Models in 2D and 3D Environments MAI

solely trained in a dream achieves good results in the actual environment.
However, they admit that this is only viable in a stochastic environment.
The MDN-RNN they used as memory model is not able to produce a good
deterministic sequence of states to emulate a more complex environment.
For this reason, it is more difficult to create a realistic dream of the CarRac-
ing task, because it requires consecutive observations to properly simulate
the physics of the car and continue the track correctly.

Marek Merten 50

Generative Query Networks for World Models in 2D and 3D Environments MAI

References

[1] Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus
Wainwright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor
Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson, Sarah York,
Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King,
Demis Hassabis, Shane Legg, and Stig Petersen. Deepmind lab, 2016.

[2] Christopher M. Bishop. Mixture density networks. 1994.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[4] S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Vi-
ola, Ari S. Morcos, Marta Garnelo, Avraham Ruderman, Andrei A.
Rusu, Ivo Danihelka, Karol Gregor, David P. Reichert, Lars Buesing,
Theophane Weber, Oriol Vinyals, Dan Rosenbaum, Neil Rabinowitz,
Helen King, Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray
Kavukcuoglu, and Demis Hassabis. Neural scene representation and
rendering. Science, 360(6394):1204–1210, 2018. doi: 10.1126/science.
aar6170.

[5] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel
Vlasic, and William T. Freeman. Unsupervised training for 3d mor-
phable model regression. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[6] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka,
and Daan Wierstra. Towards conceptual compression, 2016.

[7] David Ha and Douglas Eck. A neural representation of sketch drawings,
2017.

[8] David Ha and Jürgen Schmidhuber. World models. CoRR, 2018.

Marek Merten 51

Generative Query Networks for World Models in 2D and 3D Environments MAI

[9] N. Hansen, S.D. Muller, and P. Koumoutsakos. Reducing the time com-
plexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18, 2003.

[10] Nikolaus Hansen. The cma evolution strategy: A tutorial, 2016.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[12] Diederik P Kingma and Max Welling. Auto-Encoding Variational
Bayes. arXiv e-prints, art. arXiv:1312.6114, Dec 2013.

[13] Leland McInnes, John Healy, and James Melville. Umap: Uniform
manifold approximation and projection for dimension reduction, 2018.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning, 2013.

[15] O. Groth. tf-gqn. https://github.com/ogroth/tf-gqn, 2019.

[16] OpenAI. CarRacing-v0 environment. https://gym.openai.com/
envs/CarRacing-v0/.

[17] CORPORATE OpenGL Architecture ReviewBoard. OpenGL Refer-
ence Manual: The Official Reference Document for OpenGL, Release
1. Addison-Wesley Longman Publishing Co., Inc., USA, 1992.

[18] Juergen Schmidhuber. On learning to think: Algorithmic information
theory for novel combinations of reinforcement learning controllers and
recurrent neural world models, 2015.

[19] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum
voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995.

Marek Merten 52

https://github.com/ogroth/tf-gqn
https://gym.openai.com/envs/CarRacing-v0/
https://gym.openai.com/envs/CarRacing-v0/

	Introduction
	Motivation
	Objectives

	Environments
	CarRacing v0 Environment
	DeepMind Lab Maze Environment

	Architecture
	Vision (V) Model
	Memory (M) Model
	Controller (C) Model
	Combined Models

	Results
	Generative Query Network
	Encoding
	CarRacing Scores
	CarRacing Results for the full Architecture (V, M and C)
	DeepMind Lab

	Conclusions
	Contributions
	Future Work

	1cmReferences

