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Abstract

The wind sector spends roughly 2200Me in repair the wind turbines failures.
These failures do not contribute to the goal of reducing greenhouse gases
emissions. The 25-35% of the generation costs are operation and maintenance
services. To reduce this amount, the wind turbine industry is backing on
the Machine Learning techniques over SCADA data. This data can contain
errors produced by missing entries, uncalibrated sensors or human errors.
Each kind of error must be handled carefully because extreme values are not
always produced by data reading errors or noise. This document evaluates
the impact of removing extreme values (outliers) applying several widely
used techniques like Quantile, Hampel and ESD with the recommended cut-
off values. Experimental results on real data show that removing outliers
systematically is not a good practice. The use of manually defined ranges
(static and dynamic) could be a better filtering strategy.
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1. Introduction

The reduction of greenhouse gases emissions and the independence of the
fossil fuels are main goals of many government policies (

The SCADA system collects data from different parts of the turbine,
which are grouped into systems (

Raw data obtained from SCADA contains several kind of errors catego-
rized as: missed data caused by communications failures, presence of extreme
values due to sensors failures, data coming from poorly calibrated sensors or
by replaced sensors which report outputs in a different range, errors in the
SCADA system or even human errors (

This study shows the importance of outliers in the prognosis models for
wind turbines. Removing outliers systematically, which are frequently con-
sidered noise or extreme values, is not a good strategy. This is also indicated
in several general case studies (see for example Gibert et al. (2016) survey),
but without taking into account that these values are the less frequent tur-
bine’s operation mode (failure states), representing 2% to 3% of the dataset
according to Conroy et al. (2011). This information cannot be removed or
replaced, otherwise the generated models will have high accuracy rates in
the training step but low accuracy rates in the testing step, since the failures
states and the generalization power of the model is reduced.

2. Materials and methods

This section covers the techniques that have been applied in the experi-
ments in order to identify and remove outliers. For each case a description
of the method and the data work-flow over the algorithm is shown. Each
method will be applied separately over the same input dataset to demon-
strate the effect of the method. An independent analysis is done for each
case using all the available information in several wind turbines. Finally
the results generated by the models are analyzed taking into account the
technique used when removing outliers and comparing them with the results
obtained with the original values (i.e.: without removing outliers).

Each dataset is split in two parts, train dataset and test dataset. It is
important to respect the time arrangement because random sampling might
introduce future patterns in the train dataset which will affect the model
estimation and the final prognosis results.

Some studies point out the benefits of removing outliers to improve final
results in a machine learning system. That is the case of (
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2.1. Data background
The used SCADA data follows the IEC 61400-25 format IEC (2006) with

a hierarchical structure of turbines (Logical devices) and physical systems
(Logical nodes). Data was gathered via an OPC(OLE for Process Control)
(OPC Fundation (2016)) with update periods of 5 to 10 minutes, producing
several types of indicators. Only failure events and statistical indicators are
kept. Each sensor usually provides min, mean, max and standard deviation
values.

The dataset is stored in a local database which has been recording values
from the SCADA over the years. The dataset has a structure of table with
the entries at each time interval in rows with as many columns as different
sensors readings. The failure events are stored in a different table since
they are recorded in a different format. These failure events are categorized
as alarms (failure states) and warnings (maintenance service, start or stop
messages). An example of the data format generated is shown in table 1.

date time power bearing temp gen 1 speed temp oil mult
2014-12-08 06:20:00 1701.17 29.40625 1291.84 36.39
2014-12-08 06:30:00 1583.11 28.14462 1055.23 22.08
2014-12-08 06:40:00 1664.03 28.03261 1132.16 23.43
2014-12-08 06:50:00 1722.47 29.8721 1312.66 22.68
2014-12-08 07:00:00 1647.91 29.0121 1231.78 21.82

Table 1: Example of the data analyzed (part of a real table)

Turbine Model Machines Years Rows/ year Variables Triggered alarms Total registers evaluated

Fuhrlander fl2500 5 4 105.120 303 72.422 2.102.400

Vestas V90 ’wf1’ 7 4 52.560 194 9.681 1.471.680

Vestas V90 ’wf2’ 13 4 52.560 63 5.063 2.733.120

Siemens Izar 55/1300 26 1 52.560 24 369.218 1.366.560

Wfa H1 1 7 52.560 406 83.716 52.560
Total 52 20 992 540.100 7.726.320

Table 2: Data summary

2.2. Input data pre-selection
In order to study a specific type of failure, an expert have to choose from

all possible variables, the most relevant to the physical system or subsys-
tem to be analyzed. This variable is the output of the model (Vestas R+D
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(2004)). These experiments are focus on the transmission system, and more
specifically the

Based on the selected subset of events (by an expert for a system), a
contrast of hypothesis is generated in order to identify the variables that are
more related with the selected events. The null hypothesis H0 defines that
a variable presents

The most common value for the threshold t is t = 3, which means that
all points that deviates 3σ from the mean value will be rejected, considering
about 0.3% of the observed data as outliers. This method is very sensitive
to distributions that contains many outliers and it will fail with data con-
taining more than 10% of outliers (Pearson (2005)). The ESD algorithm is
implemented as follows:

Algorithm 1 ESD outlier filter
procedure cleanEsd(variables)

t← 3
for all variable,varID in variables[:, :] do :

mean←mean(variable[:])
σ ← sd(variable[:])
for all entry,entID in variable[:] do :

if entry < mean− (t ∗ σ) or mean+ (t ∗ σ) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

2.3. Quantile filter
Another commonly used method is based on the distance of the points

being above of the third quartile or below of the first quartile. These quartile
values determine the acceptable range of the values following equation 22:

(Q1 − (c ∗ IQR)) < xi < (Q3 + (c ∗ IQR)), (1)
where:

xi : is the i entry from a single variable X
Q1, Q3 : are the first and third quartile of the current variable X
IQR : is the interquartile as in equation (23)

c : is the number of IQR

IQR = (Q3 −Q1). (2)
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A common value for c is c = 1.5. This method is less sensitive to outliers
than the ESD and it is well suited for asymmetric distributions since it does
not depend on the center of the data (Pearson (2005)), but it declares as
outliers many nominal observations determined as non-outliers by a human
expert. The simplified algorithm has been implemented as follows:

Algorithm 2 Quantile outlier filter
procedure cleanQuantile(variables)

c← 1.5
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

Q1← quantile(variable[:], 25%)
Q3← quantile(variable[:], 75%)
IQR← Q3−Q1
for all entry,entID in variable[:] do :

if entry < (Q1− c ∗ IQR) or (Q3 + c ∗ IQR) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

2.4. Hampel identifier
The Hampel identifier is based on two robust measures of location and

scale, the median and the MAD (median of the absolute deviations), respec-
tively. Observations too far from the median of the data with respect to
their MAD are declared to be outliers (Christophe Leys (2013)). Again, a
proportion factor k will modulate how to calculate that distance. In this
case, this factor is derived by using the inverse of the Gaussian cumulative
distribution function (Φ−1) calculated on the 75% confidence interval which
takes the area until the quantile Q3:

k = 1/
(
Φ−1(3/4)

)
≈ 1.4826. (3)

The accepted range for the detection procedure is calculated as follows:

(X̂ − (k ∗MAD)) < xi < (X̂ + (k ∗MAD)), (4)
where:

xi : is the i entry from a single variable X
X̂ : is the median of single variable X
k : is the constant scale factor calculated as in equation (24)

MAD : is the median absolute deviation calculated as in equation (26)
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and the MAD is calculated as follows::

MAD = median(|xi − X̂|). (5)

The simplified algorithm has been implemented as follows:

Algorithm 3 Hampel outlier filter
procedure cleanHampel(variables)

k ← 1.4826
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

median←median(variable[:])
MAD ←mad(variable[:])
for all entry,entID in variable[:] do :

if entry < (median− k ∗MAD) or (median+ k ∗MAD) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is marked as outlier,value removed

end if
end for

end for
end procedure

2.5. Evaluation
The evaluation of the methods will be done with the datasets of the wind

farms in table 2. The filtering methods will be applied on the train datasets
and the models will be tested on the (unknown) test dataset respecting the
original time arrangement. All the experiments will be performed using the
same target variable, which is the most important one that indicates the
temperature of the wind turbine gearbox system. Modeling the relationship
between the selected inputs and this target variable, the failures could be
detected because a significant difference will exist between the real and the
modeled result.

To quantify the effect of the filtering step, a set of indicators gathered from
the results from the models are evaluated. One of the most effective method
to evaluate the impact of such filters on machine learning algorithms is to
implement a normality model based on Partial Least Squares (PLS) (Wold
(2001)), which can be evaluated using the mean squared error (MSE). The
model is computed using the same train dataset with and without outliers
and then both models will be applied to the test dataset. Apart from the
MSE, the scatter plots of the real and estimated values are used to compute
the best regression line that fits to them. Ideally, if there is a perfect relation
between the points, a line with a gradient of 45° is obtained.
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3. Results

3.1. Results summary
In table 6 and figure 14, a summary of the experiments performed is

presented. The considered parks and wind turbines are listed in table 2.
For lack of space, the list only contains some wind turbines of each park.
For the sake of clarity, an MSE ratio is calculated as the quotient of MSE
values obtained by filtering and without filtering. Therefore the PLS model
is generated and evaluated, the quotient will be >1 if the filtering strategy
doesn’t work appropriately. On the contrary, if the filtering strategy works
as expected, the ratio will be <1 (these cases are indicated in italics in table
6).
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Figure 1: Result summary bar plot. A MSE ratio of one means no improvement.

As can be seen in table 6, values are usually >1. Note that the results are
much worse using quantile or Hampel filtering than without filtering. (i.e.:
MSE ratios are �1). Only the ESD filter seems to be interesting in some
cases, but even in these cases, corresponding to the ratio <1, the difference
in MSE is small.
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Model Machine id ESD filter MSE Ratio Quantile filter MSE Ratio Hampel filter MSE Ratio

Fuhrlander FL2500

80 1,002 1,002 0,998
81 1,002 1,011 1,008
82 0,999 0,987 1,002
83 1,000 1,002 1,171
84 0,996 1,458 44,838

Vestas V90 wfa1

67 0,935 1,090 5,274
68 0,780 4,640 0,753
69 0,983 1,319 1,868
70 0,983 1,604 8,317
71 0,971 1,162 8,253
72 0,996 1,851 12,410
73 0,985 1,168 6,892
74 1,088 1,347 0,912
75 1,046 0,959 5,505
76 0,992 1,037 4,813
77 0,975 1,267 5,801
78 1,536 1,518 8,010
79 1,085 1,185 4,826

Siemens Izar 55/1300

41 0,961 0,882 210,940
42 0,966 0,928 307,942
43 1,015 0,905 250,313
44 0,895 0,835 242,414
45 1,121 1,147 172,567
46 1,057 1,022 218,819
47 1,208 1,080 280,106
48 1,158 1,133 157,796

Vestas V90 wfa2

112 0,795 1,033 1,239
113 0,971 1,179 1,260
114 1,193 1,247 1,418
115 1,007 1,060 1,156
116 0,908 1,019 1,057
117 1,065 1,193 1,315

Table 3: Result summary

8



Analyzing in detail all the cases reported in table 6, in 17 over 32 cases,
the ESD filtering method is useful when testing the model representing 53%
of the cases. Even if that seems a high number of cases, in all of them the
quotient is ≈1 , indicating that the MSE is almost the same when using the
filter compared to the original (non-filtered) case. For the quantile filter,
only 6 over 32 cases reported a quotient smaller than one. It means that
only about 19% of the cases improved results after filtering. Finally, for the
Hampel filter only 3 cases over 32 reported a quotient higher than one, i.e.:
9% of the cases.

Computing all the filters analyzed, in 73% of the cases the filtering pro-
cedure increased the MSE. Thus, as a rule of thumb, filtering is not a good
strategy, and only in very few cases could slightly improve the results by de-
creasing MSE in the test dataset. According to the experiments carried out,
in the case of needing a filter, the best choice would be to use the ESD filter,
since it is able to eliminate some outliers that are not relevant nor related to
the alarms.

3.2. Detailed results for unfiltered data
In order to better understand how the filtering strategy works, a specific

example is detailed in the following sections, first without filtering, to have a
baseline reference, and then by introducing the analyzed filtering strategies.
The first turbine (named T13 ) of the first plant, composed by Vestas V90
machines, is selected as an example. An expert determined that the target
variable for the model of this turbine is gear oil temp avg, which has the
distribution shown in figure 15. The following list shows the input variables
selected by the method detailed on subsection 2.2:

• gear bearing temp avg: Temperature of bearing that holds the rotor with blades.
• power avg: Average power generated
• wind avg: Average wind speed
• hydraulic oil temp avg: Temperature of the oil which cool the gearbox.
• blades pitchangle max: Angle of the wind turbine blades.
• blades bladea controlvoltage min: Voltage of the motors which controls the angle

of the blades.

In this particular example, the smallest p-value is for gear bearing temp avg.
This is somehow expected because the target variable and this variable are
components that are physically closer and in contact by metal parts which
transfer heat.
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Figure 2: Histogram of target variable gear oil temp avg

Figure 3: Estimation vs. real value of target variable in train and test. In
horizontal axis the real values, while vertical axis the estimated values. The blue
line would be the best prediction, the red one is the best fit line of the model
prediction.

As a reference, the results of the model without filtering are shown in
figure 16 for the train(left) and test(right) datasets. The X axis is the real
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value of the target variable and the Y axis is the estimated value from the
model. The best possible result is indicated by the 45°blue line and the
red line indicates the best fit regression line for the current results, which is
slightly leaned with respect to the reference. In this example the obtained
gradient has a value of 42.4° with an MSE of 2.0768 for the training dataset,
indicating that the model is not estimating all the values perfectly even on
the same training dataset. On the test dataset the gradient is 40° with an
MSE of 2.612 which is worse than the previous one. This is what it was
expected as the model is now dealing with new (unknown) data.

3.3. Detailed results for the ESD filter
With the data being filtered by the ESD filter, many periods of alarm

were identified as outliers, as can be seen in figures 17 and 18. Each fig-
ure corresponds to a different variable. In all these figures, outliers are in
orange color. Violet color corresponds to the values which have been identi-
fied as outliers by the algorithms but at the same time are alarms reported
by the wind turbine. Values with alarms are indicated in red color. Fi-
nally the remaining (non filtered data) are in green color. Two variables are
detailed, corresponding to the variables that have the greatest number of
alarms identified as outliers. This will reduce the number of alarms that feed
theno statistical relevance on the change of its mean on the day when the
alarm/failure event is present. The alternative hypothesis Ha defines that a
variable presents

The most common value for the threshold t is t = 3, which means that
all points that deviates 3σ from the mean value will be rejected, considering
about 0.3% of the observed data as outliers. This method is very sensitive
to distributions that contains many outliers and it will fail with data con-
taining more than 10% of outliers (Pearson (2005)). The ESD algorithm is
implemented as follows:
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Algorithm 4 ESD outlier filter
procedure cleanEsd(variables)

t← 3
for all variable,varID in variables[:, :] do :

mean←mean(variable[:])
σ ← sd(variable[:])
for all entry,entID in variable[:] do :

if entry < mean− (t ∗ σ) or mean+ (t ∗ σ) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

3.4. Quantile filter
Another commonly used method is based on the distance of the points

being above of the third quartile or below of the first quartile. These quartile
values determine the acceptable range of the values following equation 22:

(Q1 − (c ∗ IQR)) < xi < (Q3 + (c ∗ IQR)), (6)
where:

xi : is the i entry from a single variable X
Q1, Q3 : are the first and third quartile of the current variable X
IQR : is the interquartile as in equation (23)

c : is the number of IQR

IQR = (Q3 −Q1). (7)

A common value for c is c = 1.5. This method is less sensitive to outliers
than the ESD and it is well suited for asymmetric distributions since it does
not depend on the center of the data (Pearson (2005)), but it declares as
outliers many nominal observations determined as non-outliers by a human
expert. The simplified algorithm has been implemented as follows:
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Algorithm 5 Quantile outlier filter
procedure cleanQuantile(variables)

c← 1.5
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

Q1← quantile(variable[:], 25%)
Q3← quantile(variable[:], 75%)
IQR← Q3−Q1
for all entry,entID in variable[:] do :

if entry < (Q1− c ∗ IQR) or (Q3 + c ∗ IQR) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

3.5. Hampel identifier
The Hampel identifier is based on two robust measures of location and

scale, the median and the MAD (median of the absolute deviations), respec-
tively. Observations too far from the median of the data with respect to their
MAD are declared to be outliers (Christophe Leys (2013)). Again, a propor-
tion factor k will modulate how to calculate that distance. In this case, this
factor is derived by using the inverse of the Gaussian cumulative distribu-
tion function (Φ−1)a statistically relevant difference in its mean value on the
day when the alarm/failure event is present. The interval of confidence is
defined at 95% which determines a p-value of 0.05. Any variable that has
a p-value smaller than 0.05 is considered as a possible input variable for the
model. All the considered candidates are sort from the lowest to the highest
p-value, then the first six variables are selected to analyze them. In all the
analyzed parks, using more than six variables does not significantly increase
the model performance. On the contrary, computational time also increases
when more than six variables are used. Therefore, the number of variables is
set at six, which is a good trade-off between performance and computational
time. As shown in other works (A. Zaher (2009), Meik Schlechtingen (2011),
Michael Wilkinson (2014)) it is common to use the minimum number of vari-
ables in order to optimize the results while minimizing the complexity of the
system. A diagram of the process is shown in figure ??

13



Figure 4: Flowchart of the process.

3.6. ESD filter
Extreme Studentized Deviate test (ESD) is a statistical test to detect out-

liers in an univariate dataset that have a normally distributed population.
ESD defines that any point further from t standard deviations of the mean is
an outlier. As shown in equation 21, any value falling outside the interval is
considered an outlier:

(µ− (t ∗ σ)) < xi < (µ+ (t ∗ σ)), (8)
where:

xi : is the i entry from a single variable X
µ : is the mean of the current variable X
t : is the number of standard deviations
σ : is the standard deviation of a single variable X

The most common value for the threshold t is t = 3, which means that
all points that deviates 3σ from the mean value will be rejected, considering
about 0.3% of the observed data as outliers. This method is very sensitive
to distributions that contains many outliers and it will fail with data con-
taining more than 10% of outliers (Pearson (2005)). The ESD algorithm is
implemented as follows:
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Algorithm 6 ESD outlier filter
procedure cleanEsd(variables)

t← 3
for all variable,varID in variables[:, :] do :

mean←mean(variable[:])
σ ← sd(variable[:])
for all entry,entID in variable[:] do :

if entry < mean− (t ∗ σ) or mean+ (t ∗ σ) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

3.7. Quantile filter
Another commonly used method is based on the distance of the points

being above of the third quartile or below of the first quartile. These quartile
values determine the acceptable range of the values following equation 22:

(Q1 − (c ∗ IQR)) < xi < (Q3 + (c ∗ IQR)), (9)
where:

xi : is the i entry from a single variable X
Q1, Q3 : are the first and third quartile of the current variable X
IQR : is the interquartile as in equation (23)

c : is the number of IQR

IQR = (Q3 −Q1). (10)

A common value for c is c = 1.5. This method is less sensitive to outliers
than the ESD and it is well suited for asymmetric distributions since it does
not depend on the center of the data (Pearson (2005)), but it declares as
outliers many nominal observations determined as non-outliers by a human
expert. The simplified algorithm has been implemented as follows:
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Algorithm 7 Quantile outlier filter
procedure cleanQuantile(variables)

c← 1.5
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

Q1← quantile(variable[:], 25%)
Q3← quantile(variable[:], 75%)
IQR← Q3−Q1
for all entry,entID in variable[:] do :

if entry < (Q1− c ∗ IQR) or (Q3 + c ∗ IQR) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

3.8. Hampel identifier
The Hampel identifier is based on two robust measures of location and

scale, the median and the MAD (median of the absolute deviations), respec-
tively. Observations too far from the median of the data with respect to their
MAD are declared to be outliers (Christophe Leys (2013)). Again, a propor-
tion factor k will modulate how to calculate that distance. In this case, this
factor is derived by using the inverse of the Gaussian cumulative distribution
function (Φ−1) calculated on the 75% confidence interval which takes the area
until the quantile Q3:

k = 1/
(
Φ−1(3/4)

)
≈ 1.4826. (11)

The accepted range for the detection procedure is calculated as follows:

(X̂ − (k ∗MAD)) < xi < (X̂ + (k ∗MAD)), (12)
where:

xi : is the i entry from a single variable X
X̂ : is the median of single variable X
k : is the constant scale factor calculated as in equation (24)

MAD : is the median absolute deviation calculated as in equation (26)

and the MAD is calculated as follows::

MAD = median(|xi − X̂|). (13)

The simplified algorithm has been implemented as follows:

16



Algorithm 8 Hampel outlier filter
procedure cleanHampel(variables)

k ← 1.4826
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

median←median(variable[:])
MAD ←mad(variable[:])
for all entry,entID in variable[:] do :

if entry < (median− k ∗MAD) or (median+ k ∗MAD) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is marked as outlier,value removed

end if
end for

end for
end procedure

3.9. Evaluation
The evaluation of the methods will be done with the datasets of the wind

farms in table 2. The filtering methods will be applied on the train datasets
and the models will be tested on the (unknown) test dataset respecting the
original time arrangement. All the experiments will be performed using the
same target variable, which is the most important one that indicates the tem-
perature of the wind turbine gearbox system. Modeling the relationship be-
tween the selected inputs and this target variable, the failures could be detected
because a significant difference will exist between the real and the modeled re-
sult.

To quantify the effect of the filtering step, a set of indicators gathered from
the results from the models are evaluated. One of the most effective method
to evaluate the impact of such filters on machine learning algorithms is to
implement a normality model based on Partial Least Squares (PLS) (Wold
(2001)), which can be evaluated using the mean squared error (MSE). The
model is computed using the same train dataset with and without outliers and
then both models will be applied to the test dataset. Apart from the MSE, the
scatter plots of the real and estimated values are used to compute the best
regression line that fits to them. Ideally, if there is a perfect relation between
the points, a line with a gradient of 45° is obtained.

4. Results

4.1. Results summary
In table 6 and figure 14, a summary of the experiments performed is pre-

sented. The considered parks and wind turbines are listed in table 2. For lack
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of space, the list only contains some wind turbines of each park. For the sake
of clarity, an MSE ratio is calculated as the quotient of MSE values obtained
by filtering and without filtering. Therefore the PLS model is generated and
evaluated, the quotient will be >1 if the filtering strategy doesn’t work appro-
priately. On the contrary, if the filtering strategy works as expected, the ratio
will be <1 (these cases are indicated in italics in table 6).
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Figure 5: Result summary bar plot. A MSE ratio of one means no improvement.

As can be seen in table 6, values are usually >1. Note that the results are
much worse using quantile or Hampel filtering than without filtering. (i.e.:
MSE ratios are �1). Only the ESD filter seems to be interesting in some
cases, but even in these cases, corresponding to the ratio <1, the difference
in MSE is small.

Analyzing in detail all the cases reported in table 6, in 17 over 32 cases,
the ESD filtering method is useful when testing the model representing 53%
of the cases. Even if that seems a high number of cases, in all of them the
quotient is ≈1 , indicating that the MSE is almost the same when using the
filter compared to the original (non-filtered) case. For the quantile filter,
only 6 over 32 cases reported a quotient smaller than one. It means that
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Model Machine id ESD filter MSE Ratio Quantile filter MSE Ratio Hampel filter MSE Ratio

Fuhrlander FL2500

80 1,002 1,002 0,998
81 1,002 1,011 1,008
82 0,999 0,987 1,002
83 1,000 1,002 1,171
84 0,996 1,458 44,838

Vestas V90 wfa1

67 0,935 1,090 5,274
68 0,780 4,640 0,753
69 0,983 1,319 1,868
70 0,983 1,604 8,317
71 0,971 1,162 8,253
72 0,996 1,851 12,410
73 0,985 1,168 6,892
74 1,088 1,347 0,912
75 1,046 0,959 5,505
76 0,992 1,037 4,813
77 0,975 1,267 5,801
78 1,536 1,518 8,010
79 1,085 1,185 4,826

Siemens Izar 55/1300

41 0,961 0,882 210,940
42 0,966 0,928 307,942
43 1,015 0,905 250,313
44 0,895 0,835 242,414
45 1,121 1,147 172,567
46 1,057 1,022 218,819
47 1,208 1,080 280,106
48 1,158 1,133 157,796

Vestas V90 wfa2

112 0,795 1,033 1,239
113 0,971 1,179 1,260
114 1,193 1,247 1,418
115 1,007 1,060 1,156
116 0,908 1,019 1,057
117 1,065 1,193 1,315

Table 4: Result summary
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only about 19% of the cases improved results after filtering. Finally, for the
Hampel filter only 3 cases over 32 reported a quotient higher than one, i.e.:
9% of the cases.

Computing all the filters analyzed, in 73% of the cases the filtering pro-
cedure increased the MSE. Thus, as a rule of thumb, filtering is not a good
strategy, and only in very few cases could slightly improve the results by de-
creasing MSE in the test dataset. According to the experiments carried out,
in the case of needing a filter, the best choice would be to use the ESD filter,
since it is able to eliminate some outliers that are not relevant nor related to
the alarms.

4.2. Detailed results for unfiltered data
In order to better understand how the filtering strategy works, a specific

example is detailed in the following sections, first without filtering, to have
a baseline reference, and then by introducing the analyzed filtering strategies.
The first turbine (named T13) of the first plant, composed by Vestas V90
machines, is selected as an example. An expert determined that the target
variable for the model of this turbine is gear oil temp avg, which has the
distribution shown in figure 15. The following list shows the input variables
selected by the method detailed on subsection 2.2:

• gear bearing temp avg: Temperature of bearing that holds the rotor with blades.
• power avg: Average power generated
• wind avg: Average wind speed
• hydraulic oil temp avg: Temperature of the oil which cool the gearbox.
• blades pitchangle max: Angle of the wind turbine blades.
• blades bladea controlvoltage min: Voltage of the motors which controls the angle of

the blades.

In this particular example, the smallest p-value is for gear bearing temp avg.
This is somehow expected because the target variable and this variable are
components that are physically closer and in contact by metal parts which
transfer heat.
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Figure 6: Histogram of target variable gear oil temp avg

Figure 7: Estimation vs. real value of target variable in train and test. In
horizontal axis the real values, while vertical axis the estimated values. The blue
line would be the best prediction, the red one is the best fit line of the model
prediction.

As a reference, the results of the model without filtering are shown in figure
16 for the train(left) and test(right) datasets. The X axis is the real value of
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the target variable and the Y axis is the estimated value from the model. The
best possible result is indicated by the 45°blue line and the red line indicates
the best fit regression line for the current results, which is slightly leaned with
respect to the reference. In this example the obtained gradient has a value
of 42.4° with an MSE of 2.0768 for the training dataset, indicating that the
model is not estimating all the values perfectly even on the same training
dataset. On the test dataset the gradient is 40° with an MSE of 2.612 which
is worse than the previous one. This is what it was expected as the model is
now dealing with new (unknown) data.

4.3. Detailed results for the ESD filter
With the data being filtered by the ESD filter, many periods of alarm were

identified as outliers, as can be seen in figures 17 and 18. Each figure cor-
responds to a different variable. In all these figures, outliers are in orange
color. Violet color corresponds to the values which have been identified as
outliers by the algorithms but at the same time are alarms reported by the
wind turbine. Values with alarms are indicated in red color. Finally the re-
maining (non filtered data) are in green color. Two variables are detailed,
corresponding to the variables that have the greatest number of alarms identi-
fied as outliers. This will reduce the number of alarms that feed the machine
learning model and therefore will reduce its prediction capability. The outliers
detected by this algorithm represents the 2.1% of the training data.
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Figure 8: Labeling of points (variable blade control voltage) on filtered dataset
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Figure 9: Labeling of points (variable blade pitch angle max) on filtered dataset
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The impact on the model results is presentedMain Bearing subsystem
which supports the rotor of the wind turbine, the origin of many alarms and
with the longest downtime (Tavner (2009)).

Based on the selected subset of events (by an expert for a system), a
contrast of hypothesis is generated in order to identify the variables that are
more related with the selected events. The null hypothesis H0 defines that a
variable presents

The most common value for the threshold t is t = 3, which means that
all points that deviates 3σ from the mean value will be rejected, considering
about 0.3% of the observed data as outliers. This method is very sensitive
to distributions that contains many outliers and it will fail with data con-
taining more than 10% of outliers (Pearson (2005)). The ESD algorithm is
implemented as follows:

Algorithm 9 ESD outlier filter
procedure cleanEsd(variables)

t← 3
for all variable,varID in variables[:, :] do :

mean←mean(variable[:])
σ ← sd(variable[:])
for all entry,entID in variable[:] do :

if entry < mean− (t ∗ σ) or mean+ (t ∗ σ) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

4.4. Quantile filter
Another commonly used method is based on the distance of the points

being above of the third quartile or below of the first quartile. These quartile
values determine the acceptable range of the values following equation 22:

(Q1 − (c ∗ IQR)) < xi < (Q3 + (c ∗ IQR)), (14)
where:

xi : is the i entry from a single variable X
Q1, Q3 : are the first and third quartile of the current variable X
IQR : is the interquartile as in equation (23)

c : is the number of IQR

IQR = (Q3 −Q1). (15)
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A common value for c is c = 1.5. This method is less sensitive to outliers
than the ESD and it is well suited for asymmetric distributions since it does
not depend on the center of the data (Pearson (2005)), but it declares as
outliers many nominal observations determined as non-outliers by a human
expert. The simplified algorithm has been implemented as follows:

Algorithm 10 Quantile outlier filter
procedure cleanQuantile(variables)

c← 1.5
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

Q1← quantile(variable[:], 25%)
Q3← quantile(variable[:], 75%)
IQR← Q3−Q1
for all entry,entID in variable[:] do :

if entry < (Q1− c ∗ IQR) or (Q3 + c ∗ IQR) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

4.5. Hampel identifier
The Hampel identifier is based on two robust measures of location and

scale, the median and the MAD (median of the absolute deviations), respec-
tively. Observations too far from the median of the data with respect to their
MAD are declared to be outliers (Christophe Leys (2013)). Again, a propor-
tion factor k will modulate how to calculate that distance. In this case, this
factor is derived by using the inverse of the Gaussian cumulative distribution
function (Φ−1) calculated on the 75% confidence interval which takes the area
until the quantile Q3:

k = 1/
(
Φ−1(3/4)

)
≈ 1.4826. (16)

The accepted range for the detection procedure is calculated as follows:

(X̂ − (k ∗MAD)) < xi < (X̂ + (k ∗MAD)), (17)
where:

xi : is the i entry from a single variable X
X̂ : is the median of single variable X
k : is the constant scale factor calculated as in equation (24)

MAD : is the median absolute deviation calculated as in equation (26)
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and the MAD is calculated as follows::

MAD = median(|xi − X̂|). (18)

The simplified algorithm has been implemented as follows:

Algorithm 11 Hampel outlier filter
procedure cleanHampel(variables)

k ← 1.4826
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

median←median(variable[:])
MAD ←mad(variable[:])
for all entry,entID in variable[:] do :

if entry < (median− k ∗MAD) or (median+ k ∗MAD) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is marked as outlier,value removed

end if
end for

end for
end procedure

4.6. Evaluation
The evaluation of the methods will be done with the datasets of the wind

farms in table 2. The filtering methods will be applied on the train datasets
and the models will be tested on the (unknown) test dataset respecting the
original time arrangement. All the experiments will be performed using the
same target variable, which is the most important one that indicates the tem-
perature of the wind turbine gearbox system. Modeling the relationship be-
tween the selected inputs and this target variable, the failures could be detected
because a significant difference will exist between the real and the modeled re-
sult.

To quantify the effect of the filtering step, a set of indicators gathered from
the results from the models are evaluated. One of the most effective method
to evaluate the impact of such filters on machine learning algorithms is to
implement a normality model based on Partial Least Squares (PLS) (Wold
(2001)), which can be evaluated using the mean squared error (MSE). The
model is computed using the same train dataset with and without outliers and
then both models will be applied to the test dataset. Apart from the MSE, the
scatter plots of the real and estimated values are used to compute the best
regression line that fits to them. Ideally, if there is a perfect relation between
the points, a line with a gradient of 45° is obtained.
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5. Results

5.1. Results summary
In table 6 and figure 14, a summary of the experiments performed is pre-

sented. The considered parks and wind turbines are listed in table 2. For lack
of space, the list only contains some wind turbines of each park. For the sake
of clarity, an MSE ratio is calculated as the quotient of MSE values obtained
by filtering and without filtering. Therefore the PLS model is generated and
evaluated, the quotient will be >1 if the filtering strategy doesn’t work appro-
priately. On the contrary, if the filtering strategy works as expected, the ratio
will be <1 (these cases are indicated in italics in table 6).
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Figure 10: Result summary bar plot. A MSE ratio of one means no improvement.

As can be seen in table 6, values are usually >1. Note that the results are
much worse using quantile or Hampel filtering than without filtering. (i.e.:
MSE ratios are �1). Only the ESD filter seems to be interesting in some
cases, but even in these cases, corresponding to the ratio <1, the difference
in MSE is small.

Analyzing in detail all the cases reported in table 6, in 17 over 32 cases,
the ESD filtering method is useful when testing the model representing 53%
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Model Machine id ESD filter MSE Ratio Quantile filter MSE Ratio Hampel filter MSE Ratio

Fuhrlander FL2500

80 1,002 1,002 0,998
81 1,002 1,011 1,008
82 0,999 0,987 1,002
83 1,000 1,002 1,171
84 0,996 1,458 44,838

Vestas V90 wfa1

67 0,935 1,090 5,274
68 0,780 4,640 0,753
69 0,983 1,319 1,868
70 0,983 1,604 8,317
71 0,971 1,162 8,253
72 0,996 1,851 12,410
73 0,985 1,168 6,892
74 1,088 1,347 0,912
75 1,046 0,959 5,505
76 0,992 1,037 4,813
77 0,975 1,267 5,801
78 1,536 1,518 8,010
79 1,085 1,185 4,826

Siemens Izar 55/1300

41 0,961 0,882 210,940
42 0,966 0,928 307,942
43 1,015 0,905 250,313
44 0,895 0,835 242,414
45 1,121 1,147 172,567
46 1,057 1,022 218,819
47 1,208 1,080 280,106
48 1,158 1,133 157,796

Vestas V90 wfa2

112 0,795 1,033 1,239
113 0,971 1,179 1,260
114 1,193 1,247 1,418
115 1,007 1,060 1,156
116 0,908 1,019 1,057
117 1,065 1,193 1,315

Table 5: Result summary
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of the cases. Even if that seems a high number of cases, in all of them the
quotient is ≈1 , indicating that the MSE is almost the same when using the
filter compared to the original (non-filtered) case. For the quantile filter,
only 6 over 32 cases reported a quotient smaller than one. It means that
only about 19% of the cases improved results after filtering. Finally, for the
Hampel filter only 3 cases over 32 reported a quotient higher than one, i.e.:
9% of the cases.

Computing all the filters analyzed, in 73% of the cases the filtering pro-
cedure increased the MSE. Thus, as a rule of thumb, filtering is not a good
strategy, and only in very few cases could slightly improve the results by de-
creasing MSE in the test dataset. According to the experiments carried out,
in the case of needing a filter, the best choice would be to use the ESD filter,
since it is able to eliminate some outliers that are not relevant nor related to
the alarms.

5.2. Detailed results for unfiltered data
In order to better understand how the filtering strategy works, a specific

example is detailed in the following sections, first without filtering, to have
a baseline reference, and then by introducing the analyzed filtering strategies.
The first turbine (named T13) of the first plant, composed by Vestas V90
machines, is selected as an example. An expert determined that the target
variable for the model of this turbine is gear oil temp avg, which has the
distribution shown in figure 15. The following list shows the input variables
selected by the method detailed on subsection 2.2:

• gear bearing temp avg: Temperature of bearing that holds the rotor with blades.
• power avg: Average power generated
• wind avg: Average wind speed
• hydraulic oil temp avg: Temperature of the oil which cool the gearbox.
• blades pitchangle max: Angle of the wind turbine blades.
• blades bladea controlvoltage min: Voltage of the motors which controls the angle of

the blades.

In this particular example, the smallest p-value is for gear bearing temp avg.
This is somehow expected because the target variable and this variable are
components that are physically closer and in contact by metal parts which
transfer heat.
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Figure 11: Histogram of target variable gear oil temp avg

Figure 12: Estimation vs. real value of target variable in train and test. In
horizontal axis the real values, while vertical axis the estimated values. The blue
line would be the best prediction, the red one is the best fit line of the model
prediction.

As a reference, the results of the model without filtering are shown in figure
16 for the train(left) and test(right) datasets. The X axis is the real value of
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the target variable and the Y axis is the estimated value from the model. The
best possible result is indicated by the 45°blue line and the red line indicates
the best fit regression line for the current results, which is slightly leaned with
respect to the reference. In this example the obtained gradient has a value
of 42.4° with an MSE of 2.0768 for the training dataset, indicating that the
model is not estimating all the values perfectly even on the same training
dataset. On the test dataset the gradient is 40° with an MSE of 2.612 which
is worse than the previous one. This is what it was expected as the model is
now dealing with new (unknown) data.

5.3. Detailed results for the ESD filter
With the data being filtered by the ESD filter, many periods of alarm were

identified as outliers, as can be seen in figures 17 and 18. Each figure corre-
sponds to a different variable. In all these figures, outliers are in orange color.
Violet color corresponds to the values which have been identified as outliers by
the algorithms but at the same time are alarms reported by the wind turbine.
Values with alarms are indicated in red color. Finally the remaining (non
filtered data) are in green color. Two variables are detailed, corresponding to
the variables that have the greatest number of alarms identified as outliers.
This will reduce the number of alarms that feed theno statistical relevance on
the change of its mean on the day when the alarm/failure event is present.
The alternative hypothesis Ha defines that a variable presents

The most common value for the threshold t is t = 3, which means that
all points that deviates 3σ from the mean value will be rejected, considering
about 0.3% of the observed data as outliers. This method is very sensitive
to distributions that contains many outliers and it will fail with data con-
taining more than 10% of outliers (Pearson (2005)). The ESD algorithm is
implemented as follows:
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Algorithm 12 ESD outlier filter
procedure cleanEsd(variables)

t← 3
for all variable,varID in variables[:, :] do :

mean←mean(variable[:])
σ ← sd(variable[:])
for all entry,entID in variable[:] do :

if entry < mean− (t ∗ σ) or mean+ (t ∗ σ) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

5.4. Quantile filter
Another commonly used method is based on the distance of the points

being above of the third quartile or below of the first quartile. These quartile
values determine the acceptable range of the values following equation 22:

(Q1 − (c ∗ IQR)) < xi < (Q3 + (c ∗ IQR)), (19)
where:

xi : is the i entry from a single variable X
Q1, Q3 : are the first and third quartile of the current variable X
IQR : is the interquartile as in equation (23)

c : is the number of IQR

IQR = (Q3 −Q1). (20)

A common value for c is c = 1.5. This method is less sensitive to outliers
than the ESD and it is well suited for asymmetric distributions since it does
not depend on the center of the data (Pearson (2005)), but it declares as
outliers many nominal observations determined as non-outliers by a human
expert. The simplified algorithm has been implemented as follows:
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Algorithm 13 Quantile outlier filter
procedure cleanQuantile(variables)

c← 1.5
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

Q1← quantile(variable[:], 25%)
Q3← quantile(variable[:], 75%)
IQR← Q3−Q1
for all entry,entID in variable[:] do :

if entry < (Q1− c ∗ IQR) or (Q3 + c ∗ IQR) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

5.5. Hampel identifier
The Hampel identifier is based on two robust measures of location and

scale, the median and the MAD (median of the absolute deviations), respec-
tively. Observations too far from the median of the data with respect to their
MAD are declared to be outliers (Christophe Leys (2013)). Again, a propor-
tion factor k will modulate how to calculate that distance. In this case, this
factor is derived by using the inverse of the Gaussian cumulative distribu-
tion function (Φ−1)a statistically relevant difference in its mean value on the
day when the alarm/failure event is present. The interval of confidence is
defined at 95% which determines a p-value of 0.05. Any variable that has
a p-value smaller than 0.05 is considered as a possible input variable for the
model. All the considered candidates are sort from the lowest to the highest
p-value, then the first six variables are selected to analyze them. In all the
analyzed parks, using more than six variables does not significantly increase
the model performance. On the contrary, computational time also increases
when more than six variables are used. Therefore, the number of variables is
set at six, which is a good trade-off between performance and computational
time. As shown in other works (A. Zaher (2009), Meik Schlechtingen (2011),
Michael Wilkinson (2014)) it is common to use the minimum number of vari-
ables in order to optimize the results while minimizing the complexity of the
system. A diagram of the process is shown in figure ??
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Figure 13: Flowchart of the process.

5.6. ESD filter
Extreme Studentized Deviate test (ESD) is a statistical test to detect out-

liers in an univariate dataset that have a normally distributed population.
ESD defines that any point further from t standard deviations of the mean is
an outlier. As shown in equation 21, any value falling outside the interval is
considered an outlier:

(µ− (t ∗ σ)) < xi < (µ+ (t ∗ σ)), (21)
where:

xi : is the i entry from a single variable X
µ : is the mean of the current variable X
t : is the number of standard deviations
σ : is the standard deviation of a single variable X

The most common value for the threshold t is t = 3, which means that
all points that deviates 3σ from the mean value will be rejected, considering
about 0.3% of the observed data as outliers. This method is very sensitive
to distributions that contains many outliers and it will fail with data con-
taining more than 10% of outliers (Pearson (2005)). The ESD algorithm is
implemented as follows:
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Algorithm 14 ESD outlier filter
procedure cleanEsd(variables)

t← 3
for all variable,varID in variables[:, :] do :

mean←mean(variable[:])
σ ← sd(variable[:])
for all entry,entID in variable[:] do :

if entry < mean− (t ∗ σ) or mean+ (t ∗ σ) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

5.7. Quantile filter
Another commonly used method is based on the distance of the points

being above of the third quartile or below of the first quartile. These quartile
values determine the acceptable range of the values following equation 22:

(Q1 − (c ∗ IQR)) < xi < (Q3 + (c ∗ IQR)), (22)
where:

xi : is the i entry from a single variable X
Q1, Q3 : are the first and third quartile of the current variable X
IQR : is the interquartile as in equation (23)

c : is the number of IQR

IQR = (Q3 −Q1). (23)

A common value for c is c = 1.5. This method is less sensitive to outliers
than the ESD and it is well suited for asymmetric distributions since it does
not depend on the center of the data (Pearson (2005)), but it declares as
outliers many nominal observations determined as non-outliers by a human
expert. The simplified algorithm has been implemented as follows:
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Algorithm 15 Quantile outlier filter
procedure cleanQuantile(variables)

c← 1.5
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

Q1← quantile(variable[:], 25%)
Q3← quantile(variable[:], 75%)
IQR← Q3−Q1
for all entry,entID in variable[:] do :

if entry < (Q1− c ∗ IQR) or (Q3 + c ∗ IQR) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is labeled as an outlier, value removed

end if
end for

end for
end procedure

5.8. Hampel identifier
The Hampel identifier is based on two robust measures of location and

scale, the median and the MAD (median of the absolute deviations), respec-
tively. Observations too far from the median of the data with respect to their
MAD are declared to be outliers (Christophe Leys (2013)). Again, a propor-
tion factor k will modulate how to calculate that distance. In this case, this
factor is derived by using the inverse of the Gaussian cumulative distribution
function (Φ−1) calculated on the 75% confidence interval which takes the area
until the quantile Q3:

k = 1/
(
Φ−1(3/4)

)
≈ 1.4826. (24)

The accepted range for the detection procedure is calculated as follows:

(X̂ − (k ∗MAD)) < xi < (X̂ + (k ∗MAD)), (25)
where:

xi : is the i entry from a single variable X
X̂ : is the median of single variable X
k : is the constant scale factor calculated as in equation (24)

MAD : is the median absolute deviation calculated as in equation (26)

and the MAD is calculated as follows::

MAD = median(|xi − X̂|). (26)

The simplified algorithm has been implemented as follows:
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Algorithm 16 Hampel outlier filter
procedure cleanHampel(variables)

k ← 1.4826
outlierList← [] . The outlier list is initialized
for all variable,varID in variables[:, :] do :

median←median(variable[:])
MAD ←mad(variable[:])
for all entry,entID in variable[:] do :

if entry < (median− k ∗MAD) or (median+ k ∗MAD) < entry then
outlierList[varID, entID]← entry . save the outlier for analysis
entry ← NULL/NAN . is marked as outlier,value removed

end if
end for

end for
end procedure

5.9. Evaluation
The evaluation of the methods will be done with the datasets of the wind

farms in table 2. The filtering methods will be applied on the train datasets
and the models will be tested on the (unknown) test dataset respecting the
original time arrangement. All the experiments will be performed using the
same target variable, which is the most important one that indicates the tem-
perature of the wind turbine gearbox system. Modeling the relationship be-
tween the selected inputs and this target variable, the failures could be detected
because a significant difference will exist between the real and the modeled re-
sult.

To quantify the effect of the filtering step, a set of indicators gathered from
the results from the models are evaluated. One of the most effective method
to evaluate the impact of such filters on machine learning algorithms is to
implement a normality model based on Partial Least Squares (PLS) (Wold
(2001)), which can be evaluated using the mean squared error (MSE). The
model is computed using the same train dataset with and without outliers and
then both models will be applied to the test dataset. Apart from the MSE, the
scatter plots of the real and estimated values are used to compute the best
regression line that fits to them. Ideally, if there is a perfect relation between
the points, a line with a gradient of 45° is obtained.

6. Results

6.1. Results summary
In table 6 and figure 14, a summary of the experiments performed is pre-

sented. The considered parks and wind turbines are listed in table 2. For lack
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of space, the list only contains some wind turbines of each park. For the sake
of clarity, an MSE ratio is calculated as the quotient of MSE values obtained
by filtering and without filtering. Therefore the PLS model is generated and
evaluated, the quotient will be >1 if the filtering strategy doesn’t work appro-
priately. On the contrary, if the filtering strategy works as expected, the ratio
will be <1 (these cases are indicated in italics in table 6).
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Figure 14: Result summary bar plot. A MSE ratio of one means no improvement.

As can be seen in table 6, values are usually >1. Note that the results are
much worse using quantile or Hampel filtering than without filtering. (i.e.:
MSE ratios are �1). Only the ESD filter seems to be interesting in some
cases, but even in these cases, corresponding to the ratio <1, the difference
in MSE is small.

Analyzing in detail all the cases reported in table 6, in 17 over 32 cases,
the ESD filtering method is useful when testing the model representing 53%
of the cases. Even if that seems a high number of cases, in all of them the
quotient is ≈1 , indicating that the MSE is almost the same when using the
filter compared to the original (non-filtered) case. For the quantile filter,
only 6 over 32 cases reported a quotient smaller than one. It means that
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Model Machine id ESD filter MSE Ratio Quantile filter MSE Ratio Hampel filter MSE Ratio

Fuhrlander FL2500

80 1,002 1,002 0,998
81 1,002 1,011 1,008
82 0,999 0,987 1,002
83 1,000 1,002 1,171
84 0,996 1,458 44,838

Vestas V90 wfa1

67 0,935 1,090 5,274
68 0,780 4,640 0,753
69 0,983 1,319 1,868
70 0,983 1,604 8,317
71 0,971 1,162 8,253
72 0,996 1,851 12,410
73 0,985 1,168 6,892
74 1,088 1,347 0,912
75 1,046 0,959 5,505
76 0,992 1,037 4,813
77 0,975 1,267 5,801
78 1,536 1,518 8,010
79 1,085 1,185 4,826

Siemens Izar 55/1300

41 0,961 0,882 210,940
42 0,966 0,928 307,942
43 1,015 0,905 250,313
44 0,895 0,835 242,414
45 1,121 1,147 172,567
46 1,057 1,022 218,819
47 1,208 1,080 280,106
48 1,158 1,133 157,796

Vestas V90 wfa2

112 0,795 1,033 1,239
113 0,971 1,179 1,260
114 1,193 1,247 1,418
115 1,007 1,060 1,156
116 0,908 1,019 1,057
117 1,065 1,193 1,315

Table 6: Result summary
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only about 19% of the cases improved results after filtering. Finally, for the
Hampel filter only 3 cases over 32 reported a quotient higher than one, i.e.:
9% of the cases.

Computing all the filters analyzed, in 73% of the cases the filtering pro-
cedure increased the MSE. Thus, as a rule of thumb, filtering is not a good
strategy, and only in very few cases could slightly improve the results by de-
creasing MSE in the test dataset. According to the experiments carried out,
in the case of needing a filter, the best choice would be to use the ESD filter,
since it is able to eliminate some outliers that are not relevant nor related to
the alarms.

6.2. Detailed results for unfiltered data
In order to better understand how the filtering strategy works, a specific

example is detailed in the following sections, first without filtering, to have
a baseline reference, and then by introducing the analyzed filtering strategies.
The first turbine (named T13) of the first plant, composed by Vestas V90
machines, is selected as an example. An expert determined that the target
variable for the model of this turbine is gear oil temp avg, which has the
distribution shown in figure 15. The following list shows the input variables
selected by the method detailed on subsection 2.2:

• gear bearing temp avg: Temperature of bearing that holds the rotor with blades.
• power avg: Average power generated
• wind avg: Average wind speed
• hydraulic oil temp avg: Temperature of the oil which cool the gearbox.
• blades pitchangle max: Angle of the wind turbine blades.
• blades bladea controlvoltage min: Voltage of the motors which controls the angle of

the blades.

In this particular example, the smallest p-value is for gear bearing temp avg.
This is somehow expected because the target variable and this variable are
components that are physically closer and in contact by metal parts which
transfer heat.
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Figure 15: Histogram of target variable gear oil temp avg

Figure 16: Estimation vs. real value of target variable in train and test. In
horizontal axis the real values, while vertical axis the estimated values. The blue
line would be the best prediction, the red one is the best fit line of the model
prediction.

As a reference, the results of the model without filtering are shown in figure
16 for the train(left) and test(right) datasets. The X axis is the real value of
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the target variable and the Y axis is the estimated value from the model. The
best possible result is indicated by the 45°blue line and the red line indicates
the best fit regression line for the current results, which is slightly leaned with
respect to the reference. In this example the obtained gradient has a value
of 42.4° with an MSE of 2.0768 for the training dataset, indicating that the
model is not estimating all the values perfectly even on the same training
dataset. On the test dataset the gradient is 40° with an MSE of 2.612 which
is worse than the previous one. This is what it was expected as the model is
now dealing with new (unknown) data.

6.3. Detailed results for the ESD filter
With the data being filtered by the ESD filter, many periods of alarm were

identified as outliers, as can be seen in figures 17 and 18. Each figure cor-
responds to a different variable. In all these figures, outliers are in orange
color. Violet color corresponds to the values which have been identified as
outliers by the algorithms but at the same time are alarms reported by the
wind turbine. Values with alarms are indicated in red color. Finally the re-
maining (non filtered data) are in green color. Two variables are detailed,
corresponding to the variables that have the greatest number of alarms identi-
fied as outliers. This will reduce the number of alarms that feed the machine
learning model and therefore will reduce its prediction capability. The outliers
detected by this algorithm represents the 2.1% of the training data.
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Figure 17: Labeling of points (variable blade control voltage) on filtered dataset

0

25

50

75

Jan Apr Jul Oct
date time

bl
ad

es
_p

itc
ha

ng
le

_m
ax

type alarm healthy outlier outlier alarm

Figure 18: Labeling of points (variable blade pitch angle max) on filtered dataset
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The impact on the model results is presented in figure 19 which reveals an
increase of the performance on the train dataset (left) filtering the outliers:
MSE error decreases from 2.0768 to 1.963 and the slope increases from 42.4°
to 42.5° . But on the other side, when the model is tested with the test dataset
(right), the MSE error increases from 2.612 to 2.836 which means a worse
prediction capability. Concerning the slope of the regression line, even if the
gradient is almost the same, there is a new small region of points far from
the diagonal line indicating that the model is behaving worse.

Figure 19: Estimation vs. real value of target variable in train and test. In
horizontal axis the real values, while vertical axis the estimated values. The blue
line would be the best prediction, the red one is the best fit line of the model
prediction.

6.4. Detailed Results for quantile filter
Using the same procedure as in previous filtering strategy, the effects of

the quantile filter is tested on the data with the highest alarm periods labeled
as outliers see figures 20 and 21. Following the same color coding as in the
ESD case, filtering will reduce the number of alarms that feed the model and
therefore it will reduce its prediction capability. The outliers detected by this
algorithm represent the 20.8% of the training data.
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Figure 20: Labeling of points (variable blade control voltage) on filtered dataset
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Figure 21: Labeling of points (variable blade pitch angle max) on filtered dataset

45



Results in figure 22 show an increase of performance in the training
dataset (right) with MSE decreasing from 2.0768 to 1.893. This value is
smaller than the one obtained with the ESD filter due to robustness of the
quartile to the outliers. On the contrary, results on the test dataset (right)
reveal a higher increase of the MSE from 2.612 to 3.096 and the plot of esti-
mation vs. real values indicates a decrease in the angle of the linear regression
from 40° to 39.7°, which means that the model generalization performance is
worse than the ESD. Some holes on the region between 50-60 can be observed
due to the removal of values considered as outliers in the input variables.

Figure 22: Estimation vs. real value of target variable in train and test. In
horizontal axis the real values, while vertical axis the estimated values. The blue
line would be the best prediction, the red one is the best fit line of the model
prediction.

6.5. Detailed Results for Hampel identifier
Finally the third filtering system is analyzed in the same way as the pre-

vious ones. Figures with the results, using the same kind of representations,
are shown in figures 23 and 24 for each variable. Again, the two variables
which present the highest number of alarms identified as outliers are depicted.
The outliers detected by this algorithm represents the 32.2% of the training
data, taking into account all the variables.
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Figure 23: Labeling of points (variable blade control voltage) on filtered dataset
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Figure 24: Labeling of points (variable blade pitch angle max) on filtered dataset

47



Figure 25 shows an increase on performance using the training dataset
(left). The results reveals an even higher decrease of the MSE error from
2.0768 to 1.816 and 42.4° to 40.3° which is a better regression line for es-
timation vs real value. But the analysis of the test dataset (right) reveals it
as the worst of all the filtering methods with a MSE of 12.6°. The plot of
the results shows clear regions of values that were removed by the filter and
therefore these points are missing from the input variable when estimating
the target variable. The angle of the linear regression line is about 17° which
is clearly far from the theoretical one.

Figure 25: Estimation vs. real value of target variable in train and test. In
horizontal axis, the real values while vertical axis, the estimated values. A blue line
will be the best prediction, the red one is the best fit line of the model prediction.

7. Conclusions

This paper has explored several methods for outliers detection and com-
pared their performance against the non-filtered data.

Experimental results demonstrate that using filters to eliminate outliers
can decrease error in the train data set but unfortunately increases the error
in the test data set. This is because many outliers were failure states of
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the wind turbine, which are less frequent operation modes, as indicated in
section 6 with the variables affected by each filtering method. Filtered data
performance could generate good results with cross-validation on the same
train dataset, which is already filtered and the values of each variable are
closer, hence easier to model, but the performance is reduced using new data
in all the cases due to the poor generalization capability by removing failure
patterns that are present on the future datasets. In this case the performance
of prognosis models over SCADA data performs best on new data with non-
filtered train datasets. The effect of removing points labeled as outliers but
that in fact contributes to identifying alarm states can be observed in figures
17, 18, 20, 21, 23 and 24 (red points).

In the light of these results, systematically filtering outliers with the meth-
ods described before has to be reconsidered to derive better prognosis models.
The proposed strategy for the filtering step is to manually define ranges (ab-
solute and relative) for the values of the variables. This is also stated in
Gibert et al. (2016), for example, but our strategy differs in the way on how
the ranges are defined. In order to define them, each variable has its own op-
eration range specified by the manufacturer or by a human expert taking into
account that the absolute range is broad enough to contain values of healthy
and damaged wind turbines, excluding real outliers. The relative range is
generated at each register entry by computing the range in reference to an-
other variable with which it is closely related to the system. For example,
the temperatures of bearings must be between +-30°C from the current ambi-
ent temperature assigned at the same register entry. These relatively defined
ranges require knowledge of the wind turbineâĂŹs system structure. This
filtering strategy removes less real alarms events and therefore the models
contain more information about failure patterns. This results in lower man-
agement and maintenance costs and will allow us to increase the economic
competitiveness of the wind energy with respect to fossil fuels and accelerate
the transition towards ecologically sustainable systems.
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