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Abstract Numerical explorations confirm well-known analytical results on the ex-
istence of ejection-collision orbits in the restricted three-body problem for very
restrictive values of the Jacobi constant C. For different values of C some new types
of ejection-collision orbits are found. The concept of n-ejection-collision orbit is
introduced and numerical explorations are carried out which show a very rich dy-
namics when Hill regions contain both primaries. Complete details on the numerical
methods and the bifurcations of the different families of orbits are given in the
references.

1 Introduction

The object of this piece of work is to contribute with some results on ejection-
collision (EC) orbits in the restricted three-body problem (RTBP). Orbits which
eject from or collide with one of the primaries are of particular interest because they
are relevant to astronomical problems such as the determination of regions of capture
of irregular moons by giant planets (see [1]) or explaining the formation of Kuiper-
belt binaries by means of physical collisions between the binary and intruders (see
[2]). They are also relevant for some microscopic scale problems. The study of the
hydrogen atom subject to a circularly polarised microwave field, where the collisions
between the electron and the core play an important role to explain ionisation, is an
instance of such an application (see [5] and [15]).
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Concerning analytical studies of EC orbits in the RTBP (planar, spatial, circular
and elliptic cases), a perturbation approach is usually considered and the McGehee
regularization ([14]) is typically used. We emphasise that in all the papers published
so far, the EC orbits analysed are what below we will call 1-EC orbits, i.e. orbits
that eject from the primary, reach one maximum distance and come back to collision
with the same primary. The references to be mentioned are: (i) in the planar RTBP,
Llibre [11] (existence of at least two EC orbits for the mass parameter ¢ > 0 small
enough and the energy H small enough), Lacomba and Llibre [10] (by means of
the existence of transversal EC orbits the authors prove that both the Hill problem
and the RTBP have no C'-extensible regular integrals), and Chenciner and Llibre
[6] (existence of four EC orbits for any value of u € (0,0.5] and H small enough).
(ii) In the spatial RTBP, Llibre and Martinez Alfaro [12] (existence of EC orbits for
small enough values of the mass parameter). (iii) In the planar elliptic RTBP, Llibre
and Pinyol [13] and Pinyol [17] (existence of EC orbits for both the mass parameter
and the eccentricity small enough). It is our purpose to prove the existence of n-EC
orbits, n > 1, i.e. ejection orbits that reach n» maxima in the distance before going
back to collision. This will appear in a future paper.

Focussing on numerical results, there are some isolated computations published:
we mention Henon’s paper (see [8]) about the computation of EC orbits obtained
along the continuation of some families of symmetric periodic —non-collision— orbits
in the Copenhagen problem (that is ¢ = 0.5) and also for Hill’s problem (see [9]).
Finally, the evolution of 16 particular collision periodic orbits obtained from the
¢ = 0.5 case was numerically studied for various values of the mass ratio y in [4].

The present piece of work has two main goals. First, it summarises the results
put forward by the authors in [16]: (i) the existence of only four 1-EC orbits for any
value of u > 0 and very small values of H (known analytical results) is confirmed
and this result is numerically extended to less restrictive values of the energy. For
higher values of the energy the Hill region contains the other primary and some
new EC orbits appear. On the other hand, the concept of a family of n-EC orbits is
introduced and some bifurcations along these families appear. The reader is referred
to [16] for complete details on the numerical methods and the description of the
bifurcations of the different families of orbits (not described here). We emphasize
that in the mentioned paper only the McGehee regularization was taken into account
and therefore each EC orbit is regarded as a heteroclinic orbit, so the time from
ejection to collision is infinity. However, in the present work, we will also consider
the Levi-Civita regularization and we will comment on the pros and cons when
comparing both regularizations. This is precisely the second goal of this chapter.

2 Ejection-collision in the RTBP

In this section, (i) we recall some properties of the RTBP, (ii) we introduce two
regularizations, (iii) we analyse the collision manifold, and (iv) we present some
results for n-EC orbits, n > 1.
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2.1 The RTBP

We use the standard setting of the planar restricted three-body problem (RTBP): the
primaries of masses m; = 1 — y and my = u occupy, respectively, the positions
(=1, 0) and (1 — g, 0) on the x-axis of a rotating frame (the synodical frame). With
these assumptions, the equations of motion for the particle in this rotating are given
by
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It is well known that this system of ODE has the following properties (see [21]

for details).
1. There exists a first integral, the Jacobi integral, given by
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Q(x,y) = §(x2+y2)+ +oul =), @

C =2Q(x,y) - & = j°. 3)
2. The equations of motion are invariant under the symmetry

(t’)@y’x’y) — (—f,x,—y,_an)- (4)

which translates into the well-known symmetry of the orbits.

3. There exist five equilibrium points: the collinear ones, L;, i = 1,2, 3 on the x axis,
and the triangular ones L;, i = 4,5 located at the vertices of an equilateral triangle
with the primaries. We denote by x, the abscissa of point L;. We assume ulel/2
and x7, > 1—p > x1, 2 —u > xp,, so that Ly is between the primaries, L, is on
the right of the small one and L3 on the left of the large one. We denote by Cr, (1)
the value of the Jacobi constant at L; for a given u.

4. The equations of motion can be written as a Hamiltonian system in the coordinates
(x, y) and associated momenta (px, py). The Hamiltonian function is

1 1 1
H(x, Y, pxo py) = 5 (03 + P3) + YPx = Xpy = B TR )

with r; = y/(x + )2 + y2 and rp = \/(x + u — 1)2 + y2, and the relation between C

and H is given by

C
H:_E' (5)

We denote by Hy, (1), the associated value of the Hamiltonian at L; for a given
M.
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5. Given a value of the Jacobi constant C (or the Hamiltonian H), the motion is
allowed to take place only in the Hill region defined by

R(C) = {(x,y) € R* | 2Q(x, y) > C}.

In this paper we will restrict the values of C to the range C > Cp, (1) (equivalently
H < Hj,(u),seeinFigure 1 the corresponding Hill regions). More precisely, we first
study the existence of EC orbits with the big primary for C > Cr, (u) (see Figure
1 bottom), where only the bounded region around the big primary is taken into
account. Later on, we consider also C > Cp,(u), where the motion can take place
in a bounded region containing both primaries, and therefore, there also exist orbits
that eject from one primary and collide with the other one. Actually, the dynamics
is very rich because of the Lyapunov periodic orbits around L; and their associated
invariant manifolds. Specific values of H can be translated to values of C through
the relation (5).
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Fig. 1 Hill’s region according to the Jacobi constant C. Top left: C = Cp,,; top right: Cp, < C <
Cy,; bottom left: C = Cy,,; bottom right: C > Cp,
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2.2 Two regularizations

As the objective is to study the ejection-collision orbits of the big primary, we
will deal with the singularity r; = 0 in the equations introducing two types of
regularizations: following the work of McGehee (see [14], [7]) and Levi-Civita
coordinates (see [21]).

McGehee regularization
We apply the translation g, = x + y, g» = y, to locate the primary of mass 1 — y at)
the origin of coordinates and that of mass y at (1,0) and we introduce the canonical
change of polar coordinates
g1 =rcosf p1=prcosﬁ—@sin0
r
g>» = rsin@ pzzprsin9+@c0s9
r

which changes the Hamiltonian into

1 ; 1-
H(F,H,Pr,p9)=—<p3+@)—pg— 'u+,u(p,sin9+@cos0)
2 r? r (6)
u 1
- = p(l -
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Then we introduce the new variables
v=rirl?  u=r32%9 @)
and a change of time dt/dt = r3/?, such that the system of ODE becomes
r’'=vr
0 =u
1
V= v+ 2urt? 3 — (1 - p)
2 @®)

r —cosf
(1 +r%—2rcos6)3/?
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where ' = d/dr.
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Levi-Civita regularization

The Levi-Civita regularization consists of the transformation (see Fig. 2) given by

x=—p+ut—v?
£=4(u2+v2)
ds )
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Fig. 2 Levi-Civita transformation for u = 0.1. Left. (x,y) variables. Right. Levi-Civita ones
(u, v). In grey the forbidden Hill’s region for C = 3.58.

Under this transformation the system (1) becomes (see details in [21]):
u” =8 + v = (4U(u2 + vz))

“ (10)

v+ 8 + v = (4U(u2 + vz))v

where ' = d/ds and

U= - (@) e ] s 5T

NI —

with 7| = /(=1 + u2 — v2)2 + 4u2v2.
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2.3 The collision manifold

Two advantages in using McGehee regularization are that the system of ODE in these
variables is simpler, and that we have the so-called collision manifold that describes
both the motion at the ejection/collision (by means of a blow-up) and it gives insight
into the motion close to ejection/collision.

System (8) has an invariant manifold A defined by r = 0, called the collision
manifold. This manifold A is a torus (see Figure 3) given by

A=+ =2(1-p), 6¢€l0,2x]} (11)

and the dynamics on this torus is governed by the equations

0 =u
v'=lv2+u2—(1— )
2 K (12)
, 1
u' = —suv.

Fig. 3 The collision manifold

There exist two circles of equilibrium points on A defined by S* = {r = 0,0,v =
vo,u = 0,0 € [0,27]} and S~ = {r = 0,0,v = —vo,u = 0,0 € [0,27]} with
vo = +4/2(1 — p).

For a value of the Jacobi constant fixed, each equilibrium point P € S* has a 1-d
unstable manifold W*(P) and a 1-d stable one W*(P). Similarly, each equilibrium
point Q € S, has a 1-d stable manifold W*(Q) and a 1-d unstable one W*(Q). In
Figure 3, W“(P) and W*(Q) are symbolically represented by red and blue arrows
respectively.

We distinguish 3 types of orbits: (i) ejection, (ii) collision and (iii) ejection-
collision orbits.
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(i) The set of ejection orbits —those which are ejected from collision with the
big primary— is the set of orbits on the unstable manifold W*(P), for any P =
(0,0, vp,0) € S*. So each ejection orbit may be regarded as an orbit such that r > 0
for all finite time 7 and asymptotically tends to an equilibrium point P € S* as
T — —oo.

(ii) The set of collision orbits —those which arrive at collision with the big
primary— is the set of orbits on the stable manifold W*(Q), for any Q =
(0,0, —vp,0) € S™. So each collision orbit may be regarded as an orbit such that
r > 0 for all finite time 7 and asymptotically tends to an equilibrium point Q € S~
as T — +oo.

(iii) The set of ejection-collision orbits —those which eject from the big primary
and then collide with it— is the set of orbits obtained from the intersection W*(§*) N
W#(S7). So they may be regarded as heteroclinic orbits between P € S* and Q € S~.

Finally we define n-ejection-collision orbits, simply denoted by n-EC orbits, as
those orbits that eject from the big primary, reach n times a relative maximum of
the distance r, with n — 1 close approaches in between, before colliding with the big
primary.

At this point it is worthwhile to compare the two regularizations contem-
plated in this chapter (McGehee and Levi-Civita) when applied to the study of
ejection/collision orbits. When we consider the Levi-Civita regularization, ejec-
tion/collision orbits are simply orbits that leave from/arrive at the origin, which is
now a regular point, so it takes a finite range of time to describe an EC orbit and
we do not have the collision manifold. By contrast, it takes an infinite time to de-
scribe an EC orbit in McGehee coordinates, since they are asymptotic (heteroclinic)
connections. From this point of view, although the system of ODE in Levi-Civita
variables is more intricated, the numerical computations are really faster. Moreover,
the initial conditions of an ejection orbit are on invariant manifolds of equilibrium
points when using McGehee variables, whereas in Levi-Civita variables, we simply
take the set

u=v=0 u' =+8(1-pu)cosh, v =+8(1—u)sing, 6e€[0,2x]. (13)

A simple numerical method to detect EC orbits in McGehee variables can be
implemented: we take a set of initial conditions on W*(S*), integrate forward in
time up to the 2n-th crossing with the Poincaré section v = 0 and detect singularities
in time due to the asymptotic behaviour which characterises EC orbits (see [16] for
details).

When using Levi-Civita variables, we integrate the set of initial conditions (13)
up to the n-th crossing with the Poincaré section r = r,,,,, and obtain a curve on this
section. Then we proceed the same way backwards in time, obtaining another curve
(this last task is not actually computed due to the symmetry (4). The intersection
points between both curves belong to EC-orbits.

In summary, McGehee regularization applied to the study of ejection/collision
orbits requires integrating for a long time, taking initial conditions on the invariant
manifolds —and this means that such initial conditions will be approximated but not
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on the invariant manifold itself—, and dealing with the fact that successive passages
through collision are very badly conditioned because of the impossibility to reach an
infinite time. On the other hand, with Levi-Civita regularization only finite shorter
ranges of time are required, the passage through collision is a regular point and the
initial conditions are exact and there is no problem at all to consider integration
spans with successive collisions. So, from the numerical point of view, Levi-Civita
is really preferable.
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Fig. 4 Examples of n-ejection-collision orbits for n = 1, 2, 3 (from left to right). For n = 2 (n = 3),
there are 1 (2) close passages to collision between ejection and collision.

2.4 Results for 1-EC orbits

2.4.1 Existence of four 1-EC orbits.

Although the analytical papers concerning the existence of 1-EC orbits typically
consider very restrictive values of H and small values of u, we have done extensive
numerical explorations on a grid of values of u in the interval [0.01,0.5] and 6, €
[0,27] for H < Hp,(p). The simulations done confirm the existence of only four
ejection-collision orbits. See in Figure 4 examples of n-EC orbits for n = 1,2, 3. In
Figure 5 left, we plot the four 4-EC orbits existing for particular values of H and
pu=0.5.

Figure 5 shows the curves W*(S§*) N Z; and W*(S7) N Z; (where X; denotes the
first intersection with the Poincaré section v = 0) for u = 0.5 (for other values of
u see [18]) and different values of H (Figure S left). Also shown (in black) are the
corresponding 1-EC orbits on the (x, y)-plane.

The existence of only four 1-EC orbits is no longer true for higher values of the
energy H, since new ones show up. We refer the reader to the paper [16] for the
details and the description of appearing bifurcations.
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Fig. 5 Left. u = 0.5, W*(S*) N £y and W*(S™) N X; for values of H -5.25 in blue, -3.25 in red,
-2.75 in green and Hy , (u) in yellow. In black the 1-EC orbits for such values of H. In purple the
points of the EC orbits at X; and in black the projections of the EC orbits on the configuration
plane (x, y). Right. The four n-ejection-collision orbits for u = 0.1 (left) and n = 3 for H = =5.05
(blue) and H = —3.05 (green).

2.4.2 Results for n-EC orbits

We have also done extensive numerical simulations on a grid of values for y €
[0.01,0.5] and energy levels H < Hp, (u) and we can conclude that for all n there
exists a value H (u, n) such that for H < H(u, n) there are four n-ejection-collision
orbits, which can be characterised in a way similar to the characterization of the
1-ejection-collision orbits. For example, see the four 3-EC orbits for ¢ = 0.1 and
different values of H in Figure 5 right.

Further details on the bifurcations of n-EC orbits and the numerical methods can
be found in [16].
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We remark that for high values of n, applying McGehee or Levi-Civita really
makes a difference: using McGehee variables becomes a problem for large n. This
effect is shown in Figure 6: on the x axis we take the angle 6 to characterise an
ejection orbit, on the y axis the time it takes for such orbit to cross for the 2n-th
time the Poincaré section v = 0 (in McGehee variables). The small cusps on each
curve correspond to very close approaches to collision, so that if the grid of 8 values
is refined the spike grows higher and tends to a vertical asymptote (infinite time to
reach the collision). Each singularity (vertical asymptote) in time corresponds to an
EC orbit and for the curve (8, T») only four singularities appear, corresponding to
the four 1-EC orbits. For the curve (8, 74) we observe 8 singularities: there are the
previous existing 1-EC orbits and four new ones corresponding to the 2-EC orbits
we are looking for. It is clear that for large n it is really difficult to detect the new EC
orbits and to distinguish them from any previous ones with a smaller n. We remark
also the big intervals of time needed for the largest values of n. These drawbacks
completely disappear when using Levi-Civita for the same simulation: one would see
almost straight lines, due to the regular ODE, and the ranges of time are sensitively
smaller.

-0.5

Fig. 7 u = 0.5, (x, y) coordinates. An orbit ejecting from the big primary and colliding with the
small one. Left. A direct trajectory. Right. A trajectory describing a turn around the Lyapunov PO.

Finally we remark that for higher values of H, say H < Hp,(u), the dynamics
is richer due to two effects. The first one is that the bounded Hill region allows
connections between both primaries. An example is shown in Figure 7 left, where
an ejection orbit from the big primary collides with the small one. A second effect
is due to the Lyapunov periodic orbit PO around L; and its stable and unstable
manifolds, which play a role when going from the neighborhood of one primary to
the neighborhood of the other one. In Figure 7 right we show an orbit which ejects
from the big primary, describes a turn around the PO and collides with the small
primary.

A detailed description of the variety of motions for higher values of H (where
the particle can leave a neighborhood of the primaries and even reach infinity) is to
appear in a future paper.



12 Merce Oll§, Oscar Rodriguez and Jaume Soler

3 Acknowledgments

M. OlI¢é and O. Rodriguez were supported by the Spanish MINECO/FEDER grant
MTM2015-65715-P and the Catalan grant 2017SGR-1049. J. Soler was supported
by MINECO/FEDER grant number MTM2016-77278-P.

References

[1] Astakhov, S. A., Burbanks, A. D., Wiggins, S., Farrelly, D. Chaos-assisted capture of irregular
moons. Lett. to Nature 2003;423:264-267.

[2] Astakhov, S. A., Lee, E. A., Farrelly, D. Formation of Kuiper-belt binaries through mul-
tiple chaotic scattering encounters with low-mass intruders. Mon. Not. R. Astron. Soc.
2005;360:401-415.

[3] Barrabés, E., Mondelo, J. M., Ollé, M. Numerical continuation of families of homoclinic
connections of periodic orbits in the RTBP. Nonlinearity 2009;22:2901-2918.

[4] Bozis, G. Sets of collision periodic orbits in the Restricted problem. In: Periodic orbits, stability
and resonances, G.E.O. Giacaglia (eds). Holland: D. Reidel Pub. Co.; 1970, p. 176-191.

[5] Brunello, A. F.,Uzer, T., Farrelly, D. Hydrogen atom in circularly polarized microwaves:
Chaotic ionization via core scattering. Phys Rev A 1997;55:3730-3745.

[6] Chenciner, A and Llibre, J. A note on the existence of invariant punctured tori in the planar
circular RTBP. Ergod. Th. & Dynam. Sys. 1988;8:63-72.

[7] Devaney, R. L. Singularities in Classical Celestial Mechanics. In: Ergodic Theory and Dy-
namical Systems I, Proceedings Special year, Maryland 1979-80, A. Katok (Ed.), p. 211-333.

[8] Hénon, M. Exploration numérique du probléeme restreint I. Masses égales, Orbites périodiques.
Ann Astrophys 1965;28:499-511.

[9] Hénon, M. Numerical exploration of the Restricted Problem V. Hill’s case: Periodic orbits and
Their Stability. Astron Astrophys 1969;1:223-238.

[10] Lacomba, E. A. and Llibre, J. Transversal Ejection-Collision Orbits for the Restricted Problem
and the Hill’s Problem with Applications. J Differ Eq 1988;74:69-85.

[11] Llibre, J. On the Restricted Three-Body Problem when the Mass Parameter is Small. Celest
Mech Dyn Astron 1982;28:83-105.

[12] Llibre, J, and Martinez-Alfaro, J. Ejection and collision orbits of the spatial RTBP. Celest
Mech Dyn Astron 1985;35:113-128.

[13] Llibre, J. and Pinyol, C. On the Elliptic Restricted Three-Body Problem. Celest Mech Dyn
Astron 1990;48:319-345.

[14] McGehee, R. Triple Collision in the Collinear Three-Body Problem. Invent Math
1974;27:191-2217.

[15] Ollé, M. To and fro motion for the hydrogen atom in a circularly polarized microwave field.
Commun Nonlinear Sci Numer Simulat 2018;54:286-301.

[16] Ollé, M.; Rodriguez, O.; Soler, J. Ejection-collision orbits in the RTBP. Commun Nonlinear
Sci Numer Simulat 2017;55:298-315.

[17] Pinyol, C. Ejection-collision orbits with the more massive primary in the planar elliptic
restricted three-body problem. Celest Mech Dyn Astron 1995;61:315-331.

[18] Rodriguez, O. Orbites d’ejeccié-col.lisié en el problema restringit de tres cossos. Master
Thesis. Universitat Politecnica de Catalunya, 2016.

[19] Sanchez, D.P., and Scheeres, D.J. DEM simulation of rotation-induced reshaping and disrup-
tion of rubble-pile asteroids. Icarus, 218, 876-894 (2012).

[20] Stiefel, E. L., Scheifele, G. Linear and regular Celestial Mechanics. Springer-verlag, New
York; 1971.

[21] Szebehely, V. Theory of orbits. Academy Press, Inc., New York; 1967.



