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Abstract
Bioequivalence studies are the pivotal clinical trials submitted to regulatory agen-
cies to support the marketing applications of generic drug products. Average
bioequivalence (ABE) is used to determine whether the mean values for the
pharmacokinetic measures determined after administration of the test and refer-
ence products are comparable. Two-stage 2×2 crossover adaptive designs (TSDs)
are becoming increasingly popular because they allow making assumptions on
the clinically meaningful treatment effect and a reliable guess for the unknown
within-subject variability. At an interim look, if ABE is not declared with an ini-
tial sample size, they allow to increase it depending on the estimated variability
and to enroll additional subjects at a second stage, or to stop for futility in case of
poor likelihood of bioequivalence. This is crucial because both parameters must
clearly be prespecified in protocols, and the strategy agreedwith regulatory agen-
cies in advance with emphasis on controlling the overall type I error.
We present an iterative method to adjust the significance levels at each stage
which preserves the overall type I error for a wide set of scenarios which should
include the true unknown variability value. Simulations showed adjusted signif-
icance levels higher than 0.0300 in most cases with type I error always below 5%,
and with a power of at least 80%. TSDs work particularly well for coefficients of
variation below 0.3 which are especially useful due to the balance between the
power and the percentage of studies proceeding to stage 2. Our approach might
support discussions with regulatory agencies.

KEYWORDS
average bioequivalence (ABE), generic drug product, significance level adjustment, two-stage
adaptive designs (TSD), type I error control (T1E)
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2 MOLINS et al.

1 INTRODUCTION

Bioequivalence studies typically involve testing two products, test, T, and reference, R, against each other in a two-period,
two-sequence 2×2 crossover RT/TR trial. Primary pharmacokinetic metrics areCmax (maximum observed plasma concen-Q3
tration) and the area under the concentration time curve, AUC0–t and AUC0–∞ (EMA, 2010a; FDA, 2014).
To test for average bioequivalence (ABE), the null hypothesis of bioinequivalence is tested against an alternative of

bioequivalence, as follows:

𝐻0 ∶ 𝜙 ≤ −𝛿 or 𝜙 ≥ + 𝛿

𝐻1 ∶ −𝛿 < 𝜙 < + 𝛿

Based on the “interval inclusion rule,” to declare ABE (i.e., to reject the null hypothesis of bioinequivalence) at a sig-
nificance level α = .05, based on a normal ln-linear model, the two-sided 1 – 2α = 0.9 symmetric confidence intervals for
𝜇𝑇 − 𝜇𝑅, ϕ, should lie fully within the constant ABE limits of±0.223, or equivalently, the back exponentially transformed
confidence interval for the geometric mean ratio, should GMR=eϕ lie fully within 0.80 to 1.25 (= 1/0.80) (EMA, 2010a;
Schütz, 2015).
Regulatory agencies usually accept conducting studies based on RT/TR two-stage adaptive 2×2 crossover designs (TSD)

(Bandyopadhyay &Dragalin, 2007; EMA, 2010a, 2015; FDA, 2018; Health Canada, 2018; Schütz, 2015), whose application is
becoming increasingly popular (Mistry, Dunn, &Marshall, 2017). TSDs allow declaring ABE at an interim look (or stage 1)
with a small number of N1 subjects; and if ABE is not met due to insufficient power, the sample size can be increased in a
stage 2 based on the estimation of the within-subject variability, calculated by means of the pooled coefficient of variation

of R and T, considering 𝐶𝑉𝑊 =

√
𝑒σ

2
𝑊 − 1 where σ2

𝑊
is the estimated value of the residual variance obtained from an

ANOVA model on ln-transformed data. Then, ABE is tested again at stage 2 with cumulated N = N1 + N2 sample size.
Also, TSDs provide investigators with an attractive solution to address some of the uncertainty that exists when the trial

is originally designed (Coffey et al., 2012), allowing stopping the study at stage 1 with a smallN1, avoiding to unnecessarily
soar N above what is reasonable to attain a desired power, for example, 80%. And they are especially useful in case of
drugs with little evidence about the true within-subject variability, and for highly variable drugs (HVD), that is, with aQ4
𝐶𝑉𝑊 ≥ 0.3 (Knahl, Lang, Fleischer, &Kieser, 2018;Molins, Cobo, &Ocaña, 2017). This discussion is important because the
precisemodel for analysismust be prespecified in the protocol including the sources of variation that reasonably influence
primary metrics (FDA, 2018; Potvin, DiLiberti, Hauck, Parr, & Schuirman, 2008). However, little guidance exists yet on
how investigators should proceed when designing and planning an adaptive clinical trial (Thorlund, Haggstrom, Park, &
Mills, 2018).
The critical point about using TSDs is the difficulty to preserve the type I error rate (T1E) (EMA, 2010a; Fuglsang, 2011;

Kieser & Rauch, 2015; Maurer, Jones, & Chen, 2018). Significance level boundaries can be adjusted in various ways that
are not fully specified in the regulations (EMA, 2010a). Using an a priori fixed sample size split at equal sequential groups,
Pocock (1977) decision to stop the trial or continue was based on repeated significance tests of the accumulated data after
each groupwas evaluated. Based on Pocock’smethod but using sample size reassessment, that is, TSDs, Potvin et al. (2008)
andMontague et al. (2012) proposed twomethods to control the overall T1E rate: Their “Type 1″ method consists on using
the same adjusted significance level at stages 1 and 2, that is, αadj = α1 = α2; and “Type 2” method consists on using an
unadjusted α = .05 in the stage 1, if the interim power is of at least of 80% at stage 1, or else an adjusted α1 and α2 at stages
1 and 2, respectively.
Using simulations, Xu et al. (2016) implemented twomethods (called E and F) to find optimal solutions of α1, α2,N1 (and

a futility parameter) by means of average cost functions of GMR and 𝐶𝑉𝑊 combination values. They presented optimal
solutions for 𝐶𝑉𝑊 ranging from 10% to 30%, and for 30–55%. Maurer et al. (2018) used a principled approach using a
standard inverse-normal p-value combination test, in conjunction with standard group sequential techniques (called it
maximum combination test) to guarantee the control of T1E rate.
We present an iterative method, which is based on simulations, to adjust the significance levels at each stage, α1 and

α2, which preserves the overall T1E (usually at 5%) for a wide set of scenarios which should include the true unknown
variability value. In addition, we propose an extended feature by allowing α1 being different than α2. This method has
been implemented in an R package called betsd, which is hosted on GitHub, which includes the function “t1e.tsd” to help
to calculate both significance levels.
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MOLINS et al. 3

F IGURE 1 Testing ABE using TSD by means of type 1 (on the left) and type 2 (on the right) methodologies, with significance levels α1
and α2 at each stage
Note. Adapted from the figure depicted in detail by Montague et al. (2012) with the restriction of Karalis and Macheras (2014) of not including
more than Nmax subjects (150 by default), and min(N2) (N2 ≥ 0.5N1 by default); α1 and α2, adjusted significance levels at stages 1 and 2 (α1
may be different than α2); TSD, two-stage adaptive designs; ABE, average bioequivalence; N1, initial fixed sample size; N2, additional number
of subjects recruited at stage 2; GMR, geometric mean ratio; 𝐶𝑉𝑊 , simulation-based estimated within-subject coefficient of variation at stage 1

In Section 2, we present the methodology to obtain the adjusted significance levels using simulated samples. Then, we
present the simulation results where we provide comparisons of our method with the most recent articles released by Xu
et al. (2016), and Maurer et al. (2018), and we finalize with a discussion.

2 METHODOLOGY TO OBTAIN THE ADJUSTED SIGNIFICANCE LEVELS

Figure 1 shows two algorithms to test ABE using TSD by means of the type 1 and 2 methodologies. They include two
constraints, first on the minimum sample size at stage 2 of at least N2 ≥ 0.5N1, and second, as previously discussed in
Molins et al. (2017), Xu et al. (2016)„ and Karalis and Macheras (2014), with a futility criterion to stop the study at stage
1 based on a total study size upper limit, in our case of 150 subjects maximum. In contrast to the algorithms proposed by
Potvin et al. (2008), we allow α1 and α2 being different.
Figure 2 shows the iterative method used to find an optimal significance level adjustment at stages 1 and 2, αadj = (α1,

α2), granting a global significance level below α (usually α = 5%).
These are the main inputs provided to the algorithm to obtain the adjusted α1 and α2:

1. Arbitrary starting initial significance levels at each stage, for example, (α1, α2)= (.0294, .0294) at stages 1 and 2, respec-
tively (based on Potvin et al., 2008, constant). Q5

2. An initial fixed sample sizeN1. Aminimumof 12 subjects are required (EuropeanGenericMedicines Association, 2010;
FDA, 2014).

3. Ameaningful set of 𝐶𝑉𝑊 values trying to cover the true unknown variability value, a scalar or vector (larger set in case
of higher uncertainty), for example, 𝐶𝑉𝑊 = 0.2.

4. An expected GMR for power calculation, for example, 0.95.
5. A true GMR for type I error assessment, let us say 𝜃0, fixed at 1.25.
6. Type 1 or type 2 methodology (as shown in Figure 1).
7. A global significance level, for example, α = .05.

By means of a “current” arbitrary significance level αadj = (.0294, .0294) at stages 1 and 2, respectively, Figure 2 shows
the algorithm which starts with a warm up period assessing the empiric T1E with 30,000 simulations for each test point
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4 MOLINS et al.

F IGURE 2 Iterative method to obtain adjusted α1 and α2 at each stage to grant a global T1E below α
Note. α, desired global significance level (be default, 5%); αadj = (α1 , α2) adjusted significance levels at each stage; N1, sample size at stage 1;
𝐶𝑉𝑊 , within-subject coefficient of variation; T1E, Type I error rate, assessed by means of R function “power.tsd” of Labes and Schütz (2016)
and following Figure 1; P90%, percentile 90% of T1E; AIC, Akaike information criterion

at a grid of predefined {N1, 𝐶𝑉𝑊} combinations (corresponding to N1 × 𝐶𝑉𝑊 Cartesian product), and selecting those
pairs exceeding the percentile 90%. For more accuracy, simulations are repeated for this subgroup 1,000,000 times each.
The N1 and 𝐶𝑉𝑊 pair with the maximum empiric T1E is selected. Six new significance levels of adjustment are then
defined at ±0.0005 distance from the “current” significance level, and the empiric T1E rate is assessed for each one (with
1,000,000 simulations each time), using the previousmaximumN1 and𝐶𝑉𝑊 pair. This is the base to find the new adjusted
significance level, αadj = (α1, α2). To do so, regressionmodels are adjusted with “empiric T1E” as response and “significant
level” as covariate (linear and quadratic) as shown in the Figure 2. The model with the minimum Akaike Information
Criterion (AIC) is selected, and the “adjusted” αadj = (α1, α2) is established by isolating α2 using the estimated parameters
at a fixed T1E equals to 0.05. In summary, we output the solution if the “current” significance level protects the T1E below
α, otherwise, the algorithm starts again from the beginning with the assignment of “current” = “adjusted” significance
level.
To obtain the adjusted significance levels to preserve the overall T1E below α, simulations were performed with a true

effect ratio 𝜃0 of 1.25 (i.e., considering the null hypothesis of bioinequivalence true), where the treatment effect is just on
the ABE frontier so that the likelihood of leading to a false positive result is highest. Under 𝜃0 equals to 1.25, we used an
expected GMR at 0.95 to test for ABE following both TDSs algorithms shown in Figure 1. Once the adjusted significance
levels were obtained and fixed, we conducted new simulations with 𝜃0 and GMR at 0.95 to predict the power at first stage
and overall (stage 1 plus stage 2), the percentage of studies switching to stage 2, and the percentiles 5, 50, and 95 of N = N1
+ N2 subjects.
ParametersN1 andCVW can be scalars or vectors. If they are vectors, for example,N1 = (12, 24) andCVW = (0.1, 0.15, 0.2,

0.25), then the (N1, CVW) combination of all {N1, CVW} combinations with maximum T1E is selected for αadj adjustment
(see Figure 2). In addition, we propose an extended feature by allowing α1 being different than α2. When this occurs, α1 is
considered fixed, and the adjustment is only based on α2. Since the true CVW is unknown at the time that the simulations
are conducted (before the study starts), and to avoid imprecise specifications for simulations based on tight ranges of CVW
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MOLINS et al. 5

TABLE 1 Adjusted α1 and α2 in both stages preserving the overall T1E below 5%

N1

𝑪𝑽𝑾 LB –
UB

Adjusted
α1 = α2 T1E

% power
Stg. 1

% to
Stg. 2

% overall
Power P: 5, 50, 95

Type 1 methodology
12 0.10–0.19 0.0299 0.046063 47.93 49.08 85.96 12, 12, 36
12 0.20–0.29 0.0307 0.049771 15.49 83.91 80.85 12, 34, 64
12 0.30–0.39 0.0303 0.044972 7.02 92.74 78.63 12, 44, 84
12 0.40–0.49 0.0377 0.044389 1.60 96.30 73.56 24, 66, 124
24 0.10–0.19 0.0381 0.039430 89.59 2.85 91.95 24, 24, 24
24 0.20–0.29 0.0306 0.048095 50.95 47.67 84.87 24, 24, 60
24 0.30–0.39 0.0302 0.049831 29.86 69.90 82.63 24, 50, 84
24 0.40–0.49 0.0306 0.045264 10.55 89.01 79.98 24, 76, 118
Type 2 methodology
12 0.10–0.19 0.0280 0.049858 55.12 39.34 86.54 12, 12, 34
12 0.20–0.29 0.0280 0.049787 35.58 61.06 84.10 12, 22, 44
12 0.30–0.39 0.0295 0.044164 6.88 92.57 78.61 12, 44, 84
12 0.40–0.49 0.0377 0.044501 1.61 96.27 73.68 25, 66, 124
24 0.10–0.19 0.0314 0.049608 96.08 0.23 96.28 24, 24, 24
24 0.20–0.29 0.0301 0.049985 46.96 50.66 83.94 24, 36, 66
24 0.30–0.39 0.0303 0.049815 26.47 72.98 82.13 24, 54, 88
24 0.40–0.49 0.0306 0.044950 10.56 88.95 79.99 24, 76, 118

Note. Burn-in α1 and α2 values were initially set at .0294; N1, Initial fixed sample size; 𝐶𝑉𝑊 LB–UB, lower and upper bound (±0.05) range of the within-subject
coefficient of variation, analyzed at increments of 0.01 units; Adjusted α1 = α2, same adjusted significance levels at stages 1 and 2; T1E, empirical type I error; %
power Stg. 1, power at stage 1; % to Stg. 2, percentage of studies which switch to stage 2; % overall power, overall power; P: 5, 50, 95, percentiles 5, 50, and 95 of
N = N1 + N2.

(or a vague idea about the true/unknown CVW) our methodology controls the T1E considering CVW below and upper
0.05 from the values specified/considered.
By means of the function “power.tsd” included in the R package “Power2Stage,” developed by Labes and Schütz (2016),

and hosted on CRAN, we developed an open R package called “betsd,” and hosted onGitHub https://github.com/eduard-
molins/betsd to allow traceability of all versions. This package includes an accurate description of all functionalities of the
“t1e.tsd” function which serves to calculate the adjusted significance levels at stages 1 and 2. This function implements
both methodologies shown in Figure 1, including the modifications proposed in Molins et al. (2017). Also, source code
to reproduce the results is available as Supporting Information. In order to allow reproducibility of simulations, we used
seed number 1234567.
In turn, this package follows the EMA Questions & Answers document (EMA, 2015), so that, in stage 1, the terms

used in the ANOVA model are sequence, subject within sequence, period, and formulation. Fixed effects, rather than
random effects, are used for all terms. In stage 2, the adjusted ANOVAmodel includes sequence, stage, sequence × stage,
subject within sequence × stage, period within stage, and formulation. Note that models do not include carryover effects
or treatment-by-period interactions.

3 SIMULATION RESULTS

Using simulated samples, we found the adjusted significance levels when α1 equals α2, with T1E rates always strictly below
5%. We assumed some credible scenarios for CVW and N1. Table 1 shows the results for 16 scenarios corresponding to a
preplanned fixed initial sample size N1 of 12 and 24, and a priori true intrasubject CVW in the following ranges: from
0.10 to 0.19 (a vector of discrete values analyzed at intervals of 0.01-units, i.e., 0.10, 0.11, 0.12, &0.19), from 0.20 to 0.29,
from 0.30 to 0.39, and from 0.40 to 0.49. We found the adjusted significance levels, T1E, % power at stage 1, % of studies
jumping to stage 2, % overall power, and percentiles 5, 50 and 95 of N. 10E6 simulations were conducted per scenario.

https://github.com/eduard-molins/betsd
https://github.com/eduard-molins/betsd
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6 MOLINS et al.

TABLE 2 Type 1 method to adjust α2 for a fixed α1 preserving the overall T1E below 5%

N1

𝑪𝑽𝑾 LB –
UB

Adjusted
α2 T1E

% power
Stg. 1

% to
Stg. 2

% overall
Power P: 5, 50, 95

α1 = .0294 < α2
12 0.20–0.29 0.0310 0.049891 17.92 81.31 81.45 12, 32, 58
24 0.20–0.29 0.0318 0.048936 45.60 53.35 84.28 24, 36, 64
α1 = .0320 > α2
12 0.20–0.29 0.0279 0.049767 27.96 71.02 83.25 12, 26, 52
24 0.20–0.29 0.0285 0.048875 47.88 51.30 84.54 24, 36, 66

Note. Burn-in α2 value was set at .0300 for α1 = .0294, and at .0294 for α1 = .0320; N1, Initial fixed sample size; 𝐶𝑉𝑊 LB–UB, lower and upper bound (±0.05) range
of the within-subject coefficient of variation, analyzed at increments of 0.01 units; Adjusted α2, adjusted significance level at stage 2; T1E, empirical type I error;
% power Stg. 1, power at stage 1; % to Stg. 2, percentage of studies which switch to stage 2; % overall power, overall power; P: 5, 50, 95, percentiles 5, 50, and 95 of
N = N1 + N2.

Under the type 1method, whenN1 equals 12, and consideringCVW from 0.1 to 0.19, the significance levels were adjusted
at 0.0299 in both stages. This scenario provided 86% of power, with a likelihood of 49% of stepping up to stage 2, and with
a percentile 95 of N equals to 36. When using the type 2 method, the adjusted significance levels were 0.0280, the power
was 87%, and the likelihood of switching to stage 2 was 39% (bioequivalence was claimed at stage 1 frequently).
In all scenarios, significance levels were adjusted in at least 0.0299 and 0.0280 for type 1 and 2 methodologies, respec-

tively, and bioequivalence met with a power of at least 80%, except for N1 = 12 and 24 and true CVW between 0.3 and
0.49, where the power was below 80% (and at stage 1 below 10%), and the likelihood of proceeding to stage 2 higher
than 90%. In all cases, as CVW increased, power at stage 1 decreased and the percentage of studies proceeding to stage 2
increased.
In Table 2, we found the adjusted α2, T1E, % power at stage 1, % of studies jumping to stage 2, % overall power, and

percentiles 5, 50, and 95 of N, for four scenarios with initial sample sizes N1 of 12 and 24, a priori assumption on the true
intrasubject CVW ranging from 0.20 to 0.29 (at intervals of 0.01-units) and given a fixed a priori α1. 10E6 simulations were
conducted per scenario. Results of T1E rateswere always below 5%.We considered both possibilities, to bemore permissive
at stage 1 with α1 ≤ α2, or at stage 2 with α1 ≥ α2. We can compare these results to the ones obtained in the Table 1 where
α1 = α2.
For N1 equals to 12, and a fixed α1 = .0294 < α2, the significance level at stage 2 was adjusted at 0.0310. These results

contrast with the ones obtained in Table 1with α1 =α2 = .0307, being the test less permissive at stage 1 andmore permissive
at the stage 2. In addition, a power of 81% was reached, with a likelihood of 81% of stepping up to stage 2, and with a
percentile 95 of N equals to 58 subjects. Similarly, for N1 equals to 12, and when α1 = .0320 < α2, α2 was adjusted at .0279.
This test is more permissive at stage 1 and less permissive at stage 2.
Given adjusted significance levels, Table 3 shows the empiric T1E rate and power for CVW at 0.05 above and below the

upper and lower CVW bounds using the type 1 and 2 methodologies. Type 1 error and % overall power were calculated by
means of 10E6 and 10E5 simulations per scenario, respectively.We can see that T1E never exceed the 5% global significance
level and the power was around 80% or higher, except for CVW values of 0.54 affected by the constraint of max(N = N1+
N2) = 150.
Based on our method, protocols for ABE must include an initial N1, a method type (1 or 2) with constraintmax(N = N1

+N2) = 150 (if N > 150, ABE fails), and N2 ≥ N1/2, a target power, and the significance levels to use, obtained by means of
the function t1e.tsd(). Figure 3 shows power contour plots, considering N1 set to 12, the type 1 method, and a target power
of 0.8. True unknown CVW values range from 0.10 to 0.49 (y-axis), and true unknownGMRs between 0.80 and 1.25 (x-axis,
extremes not included), both at increments of 0.05. Significance levels were taken from Tables 1 and 2: α1 = α2 = .0299;
α1 = α2 = .0307; α1 = .0294 α2 = .0310; α1 = .0320 α2 = .0279.We tested 1,760 scenarios per graph (40CVW × 44GMRs) using
the function power.tsd() with 10E5 simulations for scenario. We can see in all graphs that the constraint of a maximum of
150 subjects provokes a power decrease of at least 70% for CVW values above 40%.
Xu et al. (2016) obtained α1, α2, N1, and a futility criterion (f) by means of average cost functions for GMR and CVW

combination values at increments of 5%. They varied (and fixed) the two significance levels α1 and α2, N1, and a futility
criterion (f), and checked whether the power was of at least of 80% (at a trueGMR of 0.95) and the T1E rate (at a trueGMR
of 0.8 of bioinequivalence) controlled for eachGMR andCVW combination value. They obtained optimal designs based on
the lowest cost among valid combinations of α1, α2,N1, and f. We obtained type 1 and 2α1 and α2 using the function t1e.tsd()
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TABLE 3 Empiric type 1 error and power for 𝐶𝑉𝑊 at 0.05 below and above LB and UB

Type 1 error % overall power
N1 𝑪𝑽𝑾 LB – UB Adjusted α1 = α2 𝑪𝑽𝑾 LB – 0.05 𝑪𝑽𝑾 UB + 0.05 𝑪𝑽𝑾 LB – 0.05 𝑪𝑽𝑾 UB + 0.05
Type 1 methodology
12 0.10–0.19 0.0299 0.0299 0.0498 99.99 82.07
12 0.20–0.29 0.0307 0.0379 0.0411 90.09 76.61
12 0.30–0.39 0.0303 0.0498 0.0314 81.63 65.86
12 0.40–0.49 0.0377 0.0499 0.0297 77.01 48.68
24 0.10–0.19 0.0381 0.0378 0.0499 99.99 87.84
24 0.20–0.29 0.0306 0.0304 0.0499 97.48 82.14
24 0.30–0.39 0.0302 0.0436 0.0390 86.70 76.40
24 0.40–0.49 0.0306 0.0497 0.0253 81.97 52.04
Type 2 methodology
12 0.10–0.19 0.0280 0.0499 0.0485 99.99 81.88
12 0.20–0.29 0.0280 0.0498 0.0370 90.29 76.17
12 0.30–0.39 0.0295 0.0499 0.0305 81.38 65.36
12 0.40–0.49 0.0377 0.0499 0.0297 76.91 48.92
24 0.10–0.19 0.0314 0.0496 0.0499 99.99 86.73
24 0.20–0.29 0.0301 0.0496 0.0498 98.63 82.18
24 0.30–0.39 0.0303 0.0492 0.0393 86.00 76.57
24 0.40–0.49 0.0306 0.0499 0.0254 81.75 52.04

Note. N1, initial fixed sample size; 𝐶𝑉𝑊 LB–UB, lower and upper bound values of the within-subject coefficient of variation; Adjusted α1 = α2, same adjusted
significance levels at stages 1 and 2; Type 1 error, empirical type 1 error; % overall power, overall power.

TABLE 4 Xu et al. optimal TSD designs of methods E and F and our methodology (type 1 and 2 methods)

𝑪𝑽𝑾 range: 0.10–0.30N1 = 18 𝑪𝑽𝑾 range: 0.30–0.55N1 = 48
Method E (Xu et al.) α1: .0249α2: .0363f: 93.74 – 106.67 α1: .0254α2: .0357f: 93.05 – 107.47
Method F (Xu et al.) α1: .0248α2: .0364f: 94.92 – 105.35 α1: .0259α2: .0349f: 93.50 – 106.95
Type 1 method α1 = α2 = .0303 α1 = α2 = .0305
Type 2 method α1 = α2 = .0331 α1 = α2 = .0331

Note. Type 1 and 2 based on Nmaximum of 150 subjects and N2 ≥ 0.5N1

𝐶𝑉𝑊 values were analyzed at increments of 0.05.

based on the N1 and CVW obtained by Xu et al. (Table 4). Due to design similarities, type 1 method (modified Potvin B)
can be compared with Xu et al. Method E, and type 2 (modified Potvin C) to compare with Method F.
We used the power.tsd() function with 10E6 simulations per N1 and CVW pair with target power 80% and planned and

true GMR 0.95 to calculate percentiles of N = (N1 + N2) 5th, 50th, 95th, and % of studies in stage 2. Table 5 shows results
which are comparable between type 1 andMethod E, and type 2 andMethod F. A power close to 80% was always obtained
except for CVW of 0.55 where maximum target of 150 subjects was reached (data not shown).
Maurer et al. (2018) used a standard inverse-normal p-value combination test, in conjunction with standard group

sequential techniques (called it maximum combination test), to guarantee the control of T1E rate at any given signifi-
cance level. The sample size N2 at the second stage was based on comparing a “target conditional power,” with the power
achieved at first stage, versus a “conditional power,” with the conditional errors for maximum combination test (using the
CVW estimation at interim), a formulation effect of 0.95, andN2. Starting on an initialN2 set to 4, the “conditional power”
was assessed at increments of two subjects until it exceeded the “target conditional power.”
Table 6 shows the power and sample size of differentmethods forHVD.Results fromPotvin et al. (2008) (α1=α2 = .0294)

and Maurer et al. (2018) (α1 = α2 = .0263 for maximum combination test with (w, w*): (0.5, 0.25)) were taken from Mau-
rer et al. (2018) manuscript (table 8). Type 1 significance levels were obtained using the function t1e.tsd(), considering Q6
N1 = (12, 24, 36), CVW between 0.4 and 0.8 at increments of 0.01; and constraints N ≤ 4,000 and N2 ≥ 0.5N1. The result
was α1 = α2 = .0302. Then, we used the power.tsd() function with 10E6 simulations perN1 and CVW pair with target power
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8 MOLINS et al.

F IGURE 3 Power assessment based on true GMR and 𝐶𝑉𝑊 with N1 = 12 and type 1 methodology
Note. All combinations of GMR between 0.80 and 1.25 (extremes not included), and 𝐶𝑉𝑊 between 0.10 and 0.49, both defined as vectors of
discrete values at intervals of 0.01-units, resulted on 1,760 scenarios which were simulated 10E5 times each

TABLE 5 Percentiles of N (5th, 50th, 95th) and % of studies in stage 2

Xu et al. Our method
𝑪𝑽𝑾 LB– UB, and N1 𝑪𝑽𝑾 Method E Method F Type 1 method Type 2 method
0.10–0.30 N1 = 18 0.10 (18,18,18) 0% (18,18,18) 0% (18,18,18) 0% (18,18,18) 0%

0.15 (18,18,18) 2.4% (18,18,18) 1.3% (18,18,18) 2.4% (18,18,18) 0.9%
0.20 (18,18,32) 24.1% (18,18,32) 21.8% (18,18,34) 24.9% (18,18,32) 18.5%
0.25 (18,24,42) 54.2% (18,24,42) 53.7% (18,28,54) 54.3% (18,18,52) 49.5%
0.30 (18,42,42) 75.8% (18,42,42) 76.9% (18,44,74) 77.4% (18,42,72) 74.4%

0.30–0.55 N1 = 48 0.30 (48,48,52) 7.6% (48,48,48) 3.6% (48,48,72) 8.7% (48,48,48) 3.0%
0.35 (48,48,74) 28.2% (48,48,74) 22.8% (48,48,76) 28.1% (48,48,74) 20.4%
0.40 (48,48,98) 46.2% (48,48,98) 44.0% (48,48,102) 45.0% (48,48,98) 41.1%
0.45 (48,80,124) 61.3% (48,80,124) 60.5% (48,80,128) 58.9% (48,76,124) 56.6%
0.50 (48,104,150) 74.3% (48,104,152) 73.6% (48,100,142) 65.3% (48,98,140) 64.6%
0.55 (48,128,176) 85.2% (48,128,180) 84.3% (48,102,146) 55.5% (48,102,146) 57.7%

Note. 𝐶𝑉𝑊 LB–UB, lower and upper bound values of the within-subject coefficient of variation
Type 1 method: Modified Potvin B method withmax(N = N1+ N2) = 150, and N2 ≥ N1/2
Type 2 method: Modified Potvin B method withmax(N = N1+ N2) = 150, and N2 ≥ N1/2
Type 1 method is compared with Method E and type 2 with method F
Target power = 0.80 and planned and true GMR = 0.95.
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MOLINS et al. 9

TABLE 6 Power and mean sample size with constraint N ≤ 4,000 for HVD

Potvin et al.: Method B
Maurer, Jones, and Chen:
MCT (w, w*): (0.5, 0.25) Type 1 method

N1 𝑪𝑽𝑾 Power (%) Mean n Power (%) Mean n Power (%) Mean n
36 0.40 82 67 81 67 83 67
24 0.60 77 161 80 180 77 159
12 0.80 72 257 76 325 72 255

Note. Type 1 method: Modified Potvin B method withmax(N = N1+ N2) = 4,000, and N2 ≥ N1/2
MCT, maximum combination test; HVD, highly variable drugs.
Target power = 0.80 and planned and true GMR = 0.95.

80% and planned and true GMR 0.95 to calculate the power achieved and mean N. Results show a power and sample size
which are comparable across methods.

4 DISCUSSION

ABE studies using adaptive designs (TSD) offer several advantages over conventional crossover trials. They provide an
attractive solution to address some of the uncertainty that exists on the true variability value when the trial is originally
designed, although they are typically more complex and exhaustive and require more efforts and time for planning and
implementing (Thorlund et al., 2018). TSDs should be standardized and agreed between the pharmaceutical industries
and the agencies, in particular, about the specific pathways to control the T1E rate, usually at 5%.We adapted twomethod-
ology types proposed initially by Potvin et al. (2008) to adjust the significance levels at each stage which controls the T1E.
Adjusted significance levelswere higher than 0.0300 inmost caseswith a power of at least 80%.We also adapt and compare
our approach with Xu et al. (2016) and Maurer et al. (2018) to conclude that operating characteristics are comparable.
Our approach is implemented using our own function. In summary, given a grid of {N1, CVW} and an initial warm-up

α1 and α2 values, we found adjusted α1 and α2 and the (N1, CVW) pair with maximum empiric T1E (Tables 1 and 2). In the
grid, we should cover an important range of CVW values to ensure that the true/population CVW is included. In Molins
et al. (2017), we assessed a particular case assuming that the degree of uncertainty was encompassed by evaluating CVW at
0.1, 0.2, 0.25, 0.3, 0.4, 0.5, and 0.6.We have now improved this feature sweepingCVW range values at intervals of 0.01-units.
In addition, we have considered the case of an applicant/sponsor who assumes CVW values which unfortunately do not
contain the true unknown CVW value. So, the T1E is controlled, by default, at an overall significance level considering the
CVW assumed±0.05. We admit that though it is sometimes necessary to cover such a range of CVW values, there is always
a risk of losing some power.
We provide a methodology which usually adjusts significance levels above 0.0294 and strictly controls the T1E. The

significance levels of 0.0294 at both stages (Pocock, 1977; Potvin et al., 2008) are not some kind of a “natural constant,”
because they depend on the design, treatment effect, variability, target power, or sample size, and so they are entirely
empiric and must be estimated in simulations. In addition, they did not always control the overall T1E rate at a maximum
5% (Karalis & Macheras, 2014; Montague et al., 2012). For example, the original “Potvin D” method only grants the main-
tenance of the T1E rate below 5.2%. And, by using the modified “Potvin C” method, with GMR = 0.95, α1 = α2 = 0.0294,
N1 = 12, and a true CVW = 0.2, the T1E is assessed at 5.3% (5.5% in case of GMR = 0.90).
Other methods to adjust significance levels are discussed by some authors and regulatory instances (EMA, 2010b; FDA,

2018; Fuglsang, 2011; Health Canada, 2018; Kieser & Rauch, 2015; Maurer et al., 2018; Xu et al., 2016). In order to see how
some operating characteristics compare to each other, we followed the frameworks (N1 and CVW range) used by Xu et al.
(2016) and Maurer et al. (2018) to calculate the significance levels. We saw comparable results on the overall sample size,
the percentage of studies jumping to stage 2, or the overall power (Tables 5 and 6). We highlight that our method is very
flexible because it is customizable in many different ways.
We also allow α1 and α2 being different from each other. O’Brien and Fleming (1979) proposed a group sequential

procedure with boundary values that decreased over the stages to make early stopping less likely. Xu et al. (2016) also
found significance levels where α1 < α2 with α1 at first stage close to .025. Adaptive strategies are persuasive because they
allow stopping the trial at first stage and declare ABE with a low number of N1 subjects. However, it will be difficult to
declare ABE at first stage if α1 is very conservative. Though α1 < α2 seems themost natural way of proceeding, an applicant
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10 MOLINS et al.

may be interested in beingmore permissive at stage 1, for example, Lan andDeMets α-spending function.We allowed both
α1 < α2: .0294, .0310, and α1 > α2 : .0320, .0279 (Table 2 and Figure 3).
Maurer et al. (2018) provided an attractive principled solution based on amaximum combination test to control the T1E

inflation. While simulation-based approaches are criticized because require the investigation of many scenarios (in our
case, CVW range values should be large enough) to ensure the control of this error, this principled method also relies on
specifying two weights w and w*which need to be predefined a priori, and an initial guess on the CVW. In addition, there
is no a simple formula of obtaining the power which is desirable to compare the different settings (N2, weights, futility
criteria). In analogy to the Potvin et al. (2008) methods, it is needed to undertake simulations to gain those values.
Some other differences betweenmethodologies lie on the specifics of futility rules to stop the trial at first stage. Xu et al.

(2016) andMaurer et al. (2018) specified futility rules based on 90%CI of the formulation effect completely outside of some
margins. Also, Xu et al. (2016) and Karalis and Macheras (2014), included a futility criterion to stop the study at first stage
based on a total study size upper limit. We included an upper limit for N of 150 subjects.
We considerHVDa special case under investigation (Endrenyi&Tothfalusi, 2009;Karalis, Symillides,&Macheras, 2012;

Knahl et al., 2018; Muñoz, Alcaide, & Ocaña, 2016; Tothfalusi & Endrenyi, 2011; Tothfalusi, Endrenyi, Midha, Rawson, &
Hubbard, 2001). We compared EMA Reference Scaled Average Bioequivalence (RSABE) based on replicate TRTR/RTRT
designs and TSD methods (Molins et al., 2017). In terms of power, we saw that both approaches perform similarly despite
adaptive methods usually requires a higher mean sample size to reach the same power, especially for clearly HVD. Never-
theless, we demonstrated suitable power at the first stage in some cases. But for true 𝐶𝑉𝑊 values above 0.29, the power at
first stage is low and the proportion of studies switching to stage 2 high. In addition, assertion ofABE becomes difficult for
𝐶𝑉𝑊 greater than 0.5 (data shown in Tables 5 and 6), as ABE seldom can be declared at stage 2. It is arguable launching
a drug into the market with such a within-subject variability, or even starting a study with such a low expected power
(Fuglsang, 2014).
We calculated 𝐶𝑉𝑊 by means of the coefficient of variation under homoskedasticity assumption 𝐶𝑉𝑊𝑅 = 𝐶𝑉𝑊𝑇 =

𝐶𝑉𝑊 . Kang and Vahl (2017) showed that ABE testing with heterogeneous residual variances gives similar performance
for 𝐶𝑉𝑊 lower than 0.4. In fact, power curves (Figure 3) show that the constraint that we are using of a maximum of 150
subjects provokes a power decrease for 𝐶𝑉𝑊 values above 0.4.
In conclusion, TSDs can be applied to bioequivalence studies more widely. We provide a function to adjust the signif-

icance levels at each stage which strictly grant the control of the type I error for different assumptions on the GMR, N1,
and 𝐶𝑉𝑊 . With this paper, we would like to contribute toward a global harmonization and convergence of generic drug
developments.
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