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ABSTRACT. We introduce the notion of b-Lie group as a pair (G, H) where G is a Lie group and
H is a codimension-one Lie subgroup, and study the associated canonical b-symplectic structure on
the b-cotangent bundle "7T*G together with its reduction theory. Namely, we prove that the Pois-
son reduction under the cotangent lifted action of H by left translations is globally isomorphic to a
product of the minus Lie Poisson structure on h* (where b is the Lie algebra of H) and the canonical
b-symplectic structure on *T*(G/H), where G/ H is viewed as a one-dimensional b-manifold having
as critical hypersurface (in the sense of b-manifolds) the identity element.

RESUME. Nous introduisons la notion d'un b-groupe de Lie comme une paire (G, H) ot G est un
groupe de Lie et H est un sous-groupe de Lie de codimension un. Nous étudions la structure b-
symplectique canonique du fibré b-cotangent "7 G et sa réduction. Plus précisément, nous mon-
trons que la réduction Poisson de "T*G par rapport au relévement de I'action de H par translation a
gauche est isomorphe au produit de I'opposée de la structure Lie-Poisson sur h* (ot h est 1’algebre de
Lie de H) et la structure b-symplectique canonique de *T*(G/H), ot G/ H est considéré comme une
variété b-symplectique de dimension un ayant comme 1’hypersurface critique (dans la términologie
des b-variétés) 1’élément neutre.

1. INTRODUCTION AND PRELIMINARIES

The study of b-manifolds has its origins in the calculus on manifolds with boundary to give a
conceptual approach to the Atiyah-Patodi-Singer index theorem in terms of the classical Atiyah-
Singer theorem [Me]. The language of b-tangent bundles was also used in the extension of the
deformation quantization scheme to manifolds with boundary [NT]. b-Symplectic structures and
normal forms for group actions on them have been intensely studied by several authors (see for
instance, [GMP11], [GMP14], [GMPS14b], [GLPR]). However the notion of b-structures on Lie
groups has yet to be treated.

In this short article we examine b-structures on Lie groups and prove that they are very rigid,
with few examples, due to the restrictive nature of the symmetries. We study the reduction of
the structure of the b-cotangent bundle of the Lie group by the lift of the action of a subgroup H
identified as the critical set of the b-symplectic structure. These b-cotangent models generalize the
models for integrable systems treated in [KM] and will be a starting point to understand the b-
symplectic slice theorem as the b-analogue of the Marle-Guillemin-Sternberg normal form in [Ma]
and [GS84].

A b-manifold is a pair (M, Z), consisting of an oriented manifold M and an oriented hypersur-
face Z C M. A b-vector field on a b-manifold (M, Z) is a vector field which is tangent to Z at every
pointp € Z.
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If f is a local defining function for Z on some open set U C M and (f, 22, ..., 2y,) is a chart on
U, then the set of b-vector fields on U is a free C*°(U)-module with basis

o 0 0

(1) <f6f7822""7aZn>'
We call the vector bundle associated to this locally free C§;-module the b-tangent bundle and
denote it *T'M. We define the b-cotangent bundle *T*M of M to be the vector bundle dual to
bTM. The sheaf of sections of A¥(*T*M) is denoted *Q* and its elements are called b-forms of
degree k.

The classical exterior derivative d on the complex of (smooth) k-forms extends to the complex
of b-forms in a natural way. Indeed, any b-form w of degree % can locally be written in the form

w=aA % + 3 where a € Q1 3 € QF. Here f is a local defining function of Z and % is the
b-form of degree 1 dual to f 6% in a frame of the form (1). We then define the exterior derivative
dw := da A % + df (see [GMP14] for details). In order to have a Poincaré lemma for b-forms, we

enlarge the set of smooth functions and consider the set of b-functions *C (M), which consists of
functions with values in RU{oo} of the form clog| f|+g¢, where ¢ € R, f is a defining function for Z,
and g is a smooth function. The differential operator d on this space is defined as: d(clog|f|+g¢) :=

c% + dg, where dg is the standard de Rham derivative.
Definition 1. Let (M, Z) be a b-manifold, with Z the critical hypersurface. We say a a closed b-form of
degree 2, w € YO2(M), is b-symplectic if wy, is of maximal rank as an element of A*(*T M) forall p € M.

A b-symplectic form defines a symplectic form away from Z, implying in particular that M has
even dimension. The local structure of b-symplectic forms is well-understood thanks to a Darboux
theorem in this context:

Theorem 2 (b-Darboux theorem, [GMP14]). Let w be a b-symplectic form on (M?**,Z). Letp € Z.
Then we can find a local coordinate chart

($1,y1, ceey Ty yn)
centered at p such that the hypersurface Z is locally defined by y; = 0 and
w=dxr1 A @ Jerxi/\dyi.
oo

b-Cotangent lifts. Recall (see for instance, [GS]) that given any group action the cotangent lift of
this action is Hamiltonian with respect to the canonical symplectic structure on 7 M with moment

map
<,u(p), X> = </\P7 X#’P> = <p7 X#’ﬂ'(p)>7

where X# is the fundamental vector field of the action. In [GMP14] it was noted that, analogous to

the symplectic case, the b-cotangent bundle comes equipped with a canonical b-symplectic form.

Definition 3. Let (M, Z) be a b-manifold. Then we define a b-one-form X\ on *T*M, considered as a
b-manifold with critical hypersurface *T* M|z, in the following way:

Ap ) o= (p, (mp)u(0)), € "T"M,v € VT, ("T* M)
We call X the b-Liouville form. The negative differential
w = —dA\
is the canonical b-symplectic form on *T* M.

Using this form the canonical b-cotangent lift was defined as follows [KM]:
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Definition 4. Consider the b-cotangent bundle *T* M endowed with the canonical b-symplectic structure.
Assume that the action p of G on M preserves the hypersurface Z, i.e. pg is a b-map for all g € G. Then the
lift of p to an action on *T* M is well-defined:

p:GX"T*M — "T*M : (g,p) — -1 (p)-

Moreover, it is b-Hamiltonian with respect to the the canonical b-symplectic structure on *T* M. We call
this action together with the underlying canonical b-symplectic structure the canonical b-cotangent lift.

2. MAIN RESULTS

In the symplectic case, reducing 7*G by the action of G yields the Lie-Poisson structure on g*.
In this paper we study the analogue in the b-context: In order to lift an action to *T*G (Definition
4), we have to demand that the action leaves the critical hypersurface invariant. This motivates us
to consider the setting where the critical hypersurface of the b-structure is a codimension one Lie
subgroup H and we consider the action of H on G by translations.

This is the content of the next definition:

Definition 5. A b-manifold (G, H), where G is a Lie group and H C G is a closed codimension one
subgroup' is called a b-Lie group.

Example 6. The special Euclidean group of orientation-preserving isometries in the plane is the semidirect
product

SE(2) =2 SO(2) x T'(2)
where T'(2) are translations in the plane. Recall that we can identify SE(2) with matrices of the form

C4b>, A€S0(2),b € R?
0 1

Then T'(2) (identified with {1} xT(2) C SE(2)) is a closed codimension 1 subgroup and the pair (SE(2),T'(2))
is a b-Lie group.

Example 7. The Galilean group G is the group of transformations in space-time R3T! (the first three
dimensions are interpreted as spatial dimensions and the last one is time) whose elements are given by
composition of a spatial rotation A € SO(3), uniform motion with velocity v € R? and translations in
space and time by a vector (a, s) € R3VL. As a matrix group, the elements are given by

A v oa

0 1 s

0 01
The subgroup H given by s = 0 (which corresponds to fixing time) is a closed codimension one subgroup
and hence the pair (G, H) is a b-Lie group.

, AeSO(3),v,aeR?seR

Example 8. We consider the (2n + 1)-dimensional Heisenberg group Ha,,1(R) given by matrices of the
form

1 a ¢
0 I, b, a e R>*" peR™! ceR
0 0 1
The subgroup T of matrices of the form
1 0 &
0 I, 0], keZ
0 0 1

IThis is equivalent to H being an embedded Lie subgroup.
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is central, hence normal, and so we can consider G := Hapy1(R)/I. This is a well-known example of
a non-matrix Lie group. Now fixing one component a; = 0 or b; = 0 yields a closed codimension one
subgroup of G.

Let us consider the action of H on G by left translations. This action is obviously free and since
H is closed, it is also proper. Therefore, the left coset space G/H can be given the structure of a
smooth manifold such that the projection 7 : G — G/H is a smooth submersion. Moreover, it is
well-known that 7 turns G into a principal H-bundle.

For future reference we summarize these facts in the following lemma:

Lemma 9. Let (G, H) be a b-Lie group. The projection 7 : G — G/H is a principal H-bundle; in
particular G is semilocally around H a product
T (V)=V x H

for some open neighborhood V' of [e]~. in G /H and under this diffeomorphism  corresponds to the projection
onto the first component.

Note that by taking a coordinate ¢ on V' centered at [e]., we obtain a global defining function
¢ o 7 for the critical hypersurface H. Also note that the local trivialization in the lemma gives rise
to a natural projection 7, : g — b from the Lie algebra g of G to the Lie algebra b of H.

2.1. The H-action on *T'G and *T*G. As in the previous section, let (G, H) be a b-Lie group and
consider the action of H by left translations.
We can lift this action to T'G in the obvious way:

HxTG— TG : (h,vg) — (Lp)svg.

This action is again proper and free; therefore the quotient space is a manifold, which we want to
describe below.

Let us introduce the subbundle H of T'G whose fibre H, at g € G is given by the corresponding
left-shift of the Lie algebra h of H, "y = (Lgy)«b. Let 73 : TG — H be the natural projection onto
H given by conjugating 7, with left-translations. Recall that 7 : G — G/H induces a surjective
bundle morphism =, : TG — T(G/H) and at each fibre T,G the kernel is #,. The content of the
next proposition is well-known, we include the proof for the sake of completeness:

Proposition 10. There is a diffeomorphism
(TG)/H =y x T(G/H)
[vg]~ = ((Lg=1)«(m2(vg)), ma(vg)) -

Proof. The map is well-defined as it does not depend on the representative of [vy]~ = {(Lp)«(vy) :
h € H}. It is obviously smooth and surjective. If [vg]. and [v}/]. have the same image, then
T4 (vg) = Ts(vy,) implies w(g) = m(¢') so by choosing a different representative in [v;,]. we can
assume g = ¢'. Then v, — vy € ker(m.), = H, and combining this with 73 (v,y) = mx(v;) we see
g

—
Vg = ’Ug.

The analogous result holds for the action of H on the b-tangent bundle,
H x TG = TG : (h,v,) — (Lp)«v,.

Note that this action is well-defined since the left translation by h € H preserves H i.e. itis a
b-map. Moreover we define the projection 7 : ®T'G — H in the analogous way.

Proposition 11. There is a diffeomorphism
*TG)/H = b x °T(G/H)
Vgl = ((Lg=1)x(m20(vg)), s (vg))
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where *T(G/ H) is the b-tangent bundle of the one-dimensional b-manifold G / H with critical hypersurface
[e]~. Note that v : (G, H) — (G/H, [e]~.) is a b-map and therefore 7. : TG — *T(G/H) is well-defined.

The right hand sides of the diffeomorphisms in Proposition 10 and 11 are vector bundles over
G/H. This makes TG/ H resp. TG/ H vector bundles over G/H as well with bundle map [v,].
m(g9) € G/H:

Corollary 12. (T'G)/H (resp. (*T'G)/H) is a vector bundle of rank n over G /H isomorphic to the direct
sum of the trivial vector bundle b x G/H with T(G/H) (resp. *T(G/H)):

(TG)/H = (h x G/H) & T(G/H), (*TG)/H = (h x G/H) & T(G/H).

2.2. The b-cotangent lift. In Definition 4 we introduced the b-cotangent lift; in the present setting
this is given by the following action on the b-cotangent bundle *7*G:

H x"T*G = T*G : (h,ag) > (Lp—1)* .

The quotient space (*7*G)/H can be viewed as a vector bundle over G/ H which is isomorphic to
((*TG)/H)" via the identification

CT*G)/H = (PTG)/H)" : [ag)~ = ([vgle = (ag,vg)), vy € "T,G.

Therefore we can dualize the result for "T'G/H of the previous section to obtain an isomorphism
of vector bundles
*T*G)/H = (h* x G/H) & T*(G/H).
As smooth manifolds,
CT*G)/H = p* x *T*(G/H),
where the isomorphism is given by identifying an element of the right hand side (a,j,.) €
h* x bT[“;}N (G/H) with the class of L. (@) + 7B € ng*G on the left hand side.

2.3. Reduction of the canonical b-symplectic structure. The cotangent bundle 7*G has a canon-
ical symplectic structure, which under the action of G on itself by left translations reduces to the
minus Lie-Poisson structure on 7*G /G = g*.

In Definition 3 we have seen how to endow the b-cotangent bundle *7*G with a canonical b-
symplectic structure (with critical hypersurface *T*G|y). What is the reduced Poisson structure
on (*T*G)/H?

Theorem 13. Let *T*G be endowed with the canonical b-Poisson structure. Then the Poisson reduction
under the cotangent lifted action of H by left translations is

("T*G)/H, Tyeq) = (6" x "T*(G/H), T_p + Mycan)
where 11, p, is the minus Lie-Poisson structure on b* and 1y, is the canonical b-symplectic structure on

"T*(G/H), where G/ H is viewed as a b-manifold with critical hypersurface the point [e] .

Proof. Let V. C G/H be open and such that G trivializes as a principal H-bundle over V' (cf.
Lemma 9), i.e.

GoU:=7nYV)S HxV
where the projection onto the second component corresponds to the quotient projection 7; in par-

ticular the critical hypersurface H gets mapped to H x [e]. C H x V and the b-cotangent bundle
over U splits in the following way:

b = T*H x bT*V.
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Then the canonical b-symplectic structure wo on *T*U is the product of the canonical symplectic
structure w; on T* H and the canonical b-symplectic structure wy on *T*V. Denoting the Poisson
tensor corresponding to w; by II;,

11y = II; + IIs.

The action of H on *T*U = T*H xT*V is given by the standard cotangent lift of left translations
by H on T* H times the identity on *T*V. For the corresponding quotient projections g : *T*U —
(*T*U)/H and 7}, : T*H — (T*H)/H we therefore have my = 7} x idsps1,. Hence the reduced
Poisson structure on (*T*U)/H is

Mreq = (m0)«ITo = (70)+ (11 4 Ila) = ()11 + Tl
Now note that (). (II1) is the minus Lie Poisson structure on h* if we identify (T*H)/H = h*. [

Example 14. We return to Example 7 of the special Euclidean group SE(2). Since T'(2) is abelian, the
Lie-Poisson structure on the dual of its Lie algebra is zero. Hence *T*(SE(2)) reduces under the action of
T(2) to

("T*(SE(2))/T(2), Wyea) 2 (R? x *T*(SO(2)), 0+ ycan),

where Ty cqy is the canonical b-Poisson structure on *T*(SO(2)), i.e. identifying SO(2) = S! in the
usual way and letting o be the angle, (p, p) a b-canonical chart in a neighborhood of {¢ = 0}, then in these
coordinates

o 0

ey = p— A —.
red Soagp 8}9
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