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Abstract In this note we consider the system of equations determining the linear ther-
moelastic deformations of dielectrics within the recently called Moore-Gibson-Thompson
theory. First, we obtain the system of equations for such a case. Second, we consider
the case of a rigid solid and we show the existence and the exponential decay of solutions.
Third, we consider the thermoelastic case and we obtain the existence and the stability of
the solutions. Exponential decay of solutions in the one-dimensional case is also recalled.
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1 Introduction

The interaction of electromagnetic fields with thermoelastic dielectrics have investigated for a long
time ago. Several works has been devoted to this theory. During the last years a major interest arose to
understand the so-called Moore-Gibson-Thompson (MGT) thermoelasticity and several contributions
have been proposed for this recent theory. Our work is concerned with the linear theory of thermoelastic
dielectrics based on the MGT theory. That is, the equations for the heat conduction and electric field are
based on the MGT theory. To this end, our initial point is the work of Ieşan and Ciarletta [1] concerning
thermoviscoelastic dielectrics which is also based on the idea of the invariance of the entropy under
time reversal [2].

The invariance of the infinitesimal entropy production under time reversal was studied by Borghesani
and Morro [3,4], but we here start with the equations proposed by Ciarletta and Ieşan [1], also including
the elastic deformations. Taking them as the initial point, we obtain the system of equations for
the thermoelastic dielectrics of the Moore-Gibson-Thompson type. It is worth saying that recently
a significant interest has been developed to understand the Moore-Gibson-Thompson thermoelastic
theories [5–17]; however, we center our attention on materials with a center of symmetry and, therefore,
the tensors of odd order are not considered1. In our case, we will obtain that the electric displacement
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1It is clear that the general case could be also obtained; however, in this note we want to emphasize

the new consequences proposed by the MGT-structure in the case of dielectrics which is different from
the usual one.
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is present in the equations of the heat and electric field, but not of the displacement. Nevertheless, the
thermo-electric coupling leads to a nice problem to be understood. It is the coupling of a hyperbolic
partial differential equation with an ordinary differential equation. The contribution of this paper
is double. On one side, we extend to dielectric materials the problems of Moore-Gibson-Thompson
type [16] and, on the other side, we propose, from the mathematical point of view, an energy for the
coupling in such a way that it defines a norm which is equivalent to the classical one in the Sobolev
space W 1,2.

The plan of this note is the following. Section 2 is devoted to obtain the system of equations that
we are going to work in this paper. The rigid solid case is considered in Section 3. Existence and
exponential decay of solutions are obtained. The general system of MGT thermoelasticity of dielectric
materials is studied in Section 4. Existence of solutions and stability are also shown.

2 Basic equations

The system of equations for the thermoviscoelastic dielectrics for materials with a center of sym-
metry is determined by the evolution equations (see [1]):

ρüi = tij,j ,

T0η̇ = qi,i,

di,i = 0,

and the constitutive equations2:

tij =

∫ t

∞

[

Gijmn(t− s)u̇m,n(s)−Bij(t− s)θ̇(s)
]

ds,

η =

∫ t

∞

[

Bij(t− s)u̇i,j(s) + A(t− s)θ̇(s)
]

ds,

qi =

∫ t

∞

[

Qji(t− s)Ėj(s) +Kij(t− s)θ,j(s)
]

ds,

di =

∫ t

∞

[

γji(t− s)Ėj(s) +Qij(t− s)θ,j(s)
]

ds,

where ρ is the mass density, (ui) is the displacement vector, (tij) is the stress tensor, T0 is the reference
temperature that we will assume equal to one to simplify the calculations, η is the entropy, qi is the
heat flux vector, (di) is the electric displacement, Ei = −φ,i is the electric intensity, φ is the electric
potential, θ is the temperature shift and Gijmn(x, s), Bij(x, s), A(x, s), Qij(x, s),Kij(x, s) and γij(x, s)
are the constitutive functions. It is known that

Gijmn = Gmnij , Kij = Kji, γij = γji.

We consider the following constitutive functions

Gijmn(x, s) = G
∗

ijmn(x), Bij(x, s) = B
∗

ij(x), A(x, s) = A
∗(x),

Kij(x, s) = K
∗

ij(x) + (τ−1
Kij(x)−K

∗

ij(x)) exp(−τ
−1

s),

γij(x, s) = γ
∗

ij(x) + (τ−1
γij(x)− γ

∗

ij(x)) exp(−τ
−1

s),

Qij(x, s) = Q
∗

ij(x) + (τ−1
Qij(x)−Q

∗

ij(x)) exp(−τ
−1

s),

where τ is a positive and constant parameter.

We remark that G∗
ijmn is usually called the elasticity tensor, B∗

ij is related to the thermo-mechanical
expansion, A∗ is the thermal capacity, Kij is the thermal conductivity, K∗

ij is usually called rate

2We recall that in general the tensor multiplying the history of the electric displacement in the heat
flux vector and the tensor multiplying the history of the gradient of temperature in the last constitutive
equation are equal except for a constant tensor. However, as a first approximation to this problem we
assume that they agree.
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conductivity, γij and γ∗
ij are related to the electric permittivity, Q∗

ij and Qij determine the thermo-
electric coupling and τ is a relaxation parameter.

From the previous assumptions we see that

η̇ + τ η̈ = B∗
ij(u̇i,j + τ üi,j) + A∗(θ̇ + τ θ̈),

qi + τ q̇i = Q∗
jiEj +QjiĖj +K∗

ijα,j +Kijθ,j .

In a similar way, we also find that

di + τ ḋi = γ
∗

jiEj + γjiĖj +Q
∗

ijα,j +Qijθ,i.

If we substitute these expressions into the evolution equations we obtain the following system of
field equations:

ρüi =
(

G
∗

ijmnum,n −B
∗

ijθ
)

,j
,

A
∗(θ̇ + τ θ̈) = −B

∗

ij(u̇i,j + τ üi,j) +
(

Q
∗

jiEj +QjiĖj +K
∗

ijα,j +Kijθ,j

)

,i
,

(

γ
∗

jiEj + γjiĖj +Q
∗

ijα,j +Qijθ,j

)

,i
= 0,

where

α(x, t) = α0(x) +

∫ t

0

θ(x, s)ds

is the thermal displacement.
In the case that we assume that the electric potential vanishes on the boundary, the system is

written as follows:

ρüi =
(

G
∗

ijmnum,n −B
∗

ij(θ + τ θ̇)
)

,j
,

A
∗(θ̇ + τ θ̈) = −B

∗

iju̇i,j +
(

K
∗

ijα,j +Kijθ,j −Q
∗

jiφ,j −Qjiφ̇,j

)

,i
,

φ̇ = Φ−1
[(

Q
∗

ijα,j +Qijθ,j

)

,i
− γ

∗

jiφj

)

,i

]

,

where Φ is the isomorphism between W
1,2
0 ∩W 2,2 and L2 determined by Φ(f) = (γijf,j),i.

3

To work in this general case is a little bit cumbersome. Therefore, in order to make the analysis
clearest and transparent, we focus our attention on the isotropic and homogeneous case, but we want to
emphasize that the analysis could be done in a similar way. In this situation, our system of equations
can be written as:

ρüi = µ
∗
ui,jj + (λ∗ + µ

∗)uj,ji − β
∗(θ,i + τ θ̇,i), (1)

A
∗(θ̇ + τ θ̈) = −β

∗
u̇i,i + k

∗∆α+ k∆θ −Q
∗∆φ−Q∆F (α, θ, φ), (2)

φ̇ = F (α, θ, φ), (3)

where
F (α, θ, φ) = γ

−1(Q∗
α+Qθ − γ

∗
φ).

It is worth noting that the energy equation in this case is

E(t) +

∫ t

0

D(s)ds = E(0),

where

E(t) =
1

2

∫

B

(

ρu̇iu̇i + µ
∗
ui,jui,j + (λ∗ + µ

∗)ui,iuj,j

)

dv

+
1

2

∫

B

(

A
∗(θ + τ θ̇)2 + k

∗|∇(α+ τθ)|2 + τ k̄|∇θ|2 + γ
∗|∇(φ+ τF )|2 + τ γ̄|∇F |2

)

dv

−

∫

B

(

Q
∗∇(α+ τθ)∇(φ+ τF ) + τQ̄∇θ∇F

)

dv,

3The existence of this isomorphism is guaranteed whenever γij is positive definite and assuming
suitable boundary conditions.
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and

D(t) =

∫

B

(

k̄|∇θ|2 + γ̄|∇F |2 − 2Q̄∇θ∇F
)

dv.

Here, we have used the notation

k̄ = k − τk
∗
> 0, γ̄ = γ − τγ

∗
> 0, Q̄ = Q− τQ

∗
.

From now on, we will assume that

ρ > 0, µ
∗
> 0, λ

∗ + µ
∗
> 0, k

∗
> 0, γ

∗
> 0, k̄ > 0, γ̄ > 0,

k
∗
γ
∗
> (Q∗)2, k̄γ̄ > (Q̄)2.

3 Rigid Solid

In this section we study the problem determined on a rigid solid. Our system of equations is

A
∗(θ̇ + τ θ̈) = (k∗ − γ

−1
QQ

∗)∆α+ (k − γ
−1

Q
2)∆θ − (Q∗ − γ

−1
Qγ)∆φ,

φ̇ = γ
−1(Q∗

α+Qθ − γ
∗
φ).

We assume that

α(x, t) = φ(x, t) = 0, x ∈ ∂B, t > 0, (4)

α(x, 0) = α0(x), θ(x, 0) = θ0(x), x ∈ B, (5)

θ̇(x, 0) = ξ0(x), φ(x, 0) = φ0(x), x ∈ B. (6)

We consider our problem on a suitable Hilbert space

H = W
1,2
0 (B)×W

1,2
0 (B)× L

2(B)×W
1,2
0 (B)

and, for every (α, θ, ξ, φ), (α∗, θ∗, ξ∗, φ∗) ∈ H, we define the inner product

〈(α, θ, ξ, φ), (α∗
, θ

∗
, ξ

∗
, φ

∗)〉 =
1

2

∫

B

(

A
∗(θ + τ θ̇)(θ∗ + τ θ̇∗) + k

∗∇(α+ τθ)∇(α∗ + τθ∗)

+τ k̄∇θ∇θ∗ + γ
∗∇(φ+ τG)∇(φ∗ + τG∗) + τ γ̄∇G∇G∗

−Q
∗[∇(α+ τθ)∇(φ∗ + τG∗) +∇(α∗ + τθ∗)∇(φ∗ + τG

∗)]− τQ̄[∇θ∇G∗ +∇θ∗∇G]
)

dv,

where the overline over the elements of the Hilbert space means the conjugated complex and

G(α, θ, φ) = γ
−1(Q∗

α+Qθ − γ
∗
φ).

We note that, under the assumptions proposed at the end of the previous section, the norm induced
by the above inner product is equivalent to the classical one defined in the Hilbert space H . We can
write our problem as

dU

dt
= AU, U(0) = U0, (7)

where U = (α, θ, ξ, φ), U0 = (α0, θ0, ξ0, φ0) and the matrix operator is

A =









0 I 0 0
0 0 I 0

(τA∗)−1(k∗ − γ−1QQ∗)∆ (τA∗)−1(k − γ−1Q2)∆ −τ−1 (τA∗)−1(γ−1Qγ∗ −Q∗)∆
γ−1Q∗ γ−1Q 0 −γ−1γ∗









.

We note that the domain of the operator is

{(α, θ, ξ, φ) ∈ H, ξ ∈ W
1,2
0 , (k∗ − γ

−1
QQ

∗)∆α+ (k − γ
−1

Q
2)∆θ − (Q∗ − γ

−1
Qγ

∗)∆φ ∈ L
2}.

Obviously, this is a dense subspace. On the other hand, for every U = (α, θ, ξ, φ) in the domain of the
operator we have

Re〈AU,U〉 = −
1

2

∫

B

(

k̄|∇θ|2 + γ̄|∇G|2 − Q̄(∇θ∇G+∇θ∇G)
)

dv. (8)
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In view of the assumptions we see that this is equal to or less than zero.
Our next step is to prove that zero belongs to the resolvent of the operator. To this end, let us

consider L = (l1, l2, l3, l4) ∈ H. We will prove that there exists U = (α, θ, ξ, φ) in the domain of the
operator such that AU = L. Writing this equation in coordinates we see that

θ = l1, ξ = l2, Q
∗
α+Qθ − γ

∗
φ = γl4,

and
(k∗ − γ

−1
QQ

∗)∆α+ (k − γ
−1

Q
2)∆θ − A

∗
ξ − (Q∗ − γ

−1
Qγ

∗)∆φ = τA
∗
l3.

We obtain the expression for θ and ξ. We also have that

φ = (γ∗)−1(Q∗
α+Ql1 − γl4).

It then follows that we obtain an equation for the variable α which can be easily solved because
k∗γ∗ > (Q∗)2. Moreover, we can obtain the regularity conditions and the following result is found.

Theorem 3.1. The operator A produces a contractive semigroup.

We note that, using the above result, we conclude the existence, uniqueness and continuous depen-
dence of the solutions to our problem.

In the rest of the note, we will prove the exponential decay of the energy under some additional
conditions. In order to show it, we recall the following characterization (see the book of Liu and
Zheng [18]).

Theorem 3.2. Let S(t) = {eAt}t>0 be a C0-semigroup of contractions defined in a Hilbert space.

Therefore, S(t) is exponentially stable if and only the imaginary axis is contained in the resolvent of A
and

lim
|λ|→∞

‖(iλI − A)−1‖L(H) < ∞. (9)

Now, we follow the arguments already used in the book of Liu and Zheng ( [18], page 25). First,
we assume the imaginary axis and the spectrum have a non-empty intersection. We conclude that
there exists a sequence of real numbers (of course converging to a real number) λn with λn → ̟ and
|λn| < |̟|, and a sequence of corresponding vectors Un = (αn, θn, ξn, φn), in the domain of A and with
unit norm, such that

‖(iλnI − A)Un‖ → 0.

It then follows that

iλnαn − θn → 0 in W
1
, (10)

iλnθn − ξn → 0 in W
1
, (11)

iτA
∗
λnξn − (k∗ − γ

−1
QQ

∗)∆αn − (k − γ
−1

Q
2)∆ + A

∗
ξn

−(τA∗)−1(γ−1
Qγ

∗ −Q
∗)∆φn → 0 in L

2
, (12)

iγλnφn −Q
∗
αn −Qθn + γ

∗
φn → 0 in W

1
. (13)

In view of the dissipation we see that θn, φn → 0 in W 1. Therefore, we also have that αn → 0 in W 1.
If we now consider convergence (12) multiplied by λ−1

n ξn, after the use of the integration by parts, we
obtain that ξn → 0 in L2. This contradicts the condition that the elements of the sequence have unit
norm. Therefore, we can conclude that iR ⊂ ρ(A).

Now, we want to prove that the asymptotic condition (9) also holds. In the case that this condition
does not hold, there exist a sequence of real numbers λn with |λn| → ∞ and another sequence of unit
norm vectors Un = (αn, θn, ξn, φn) in D(A) in such a way that (10)- (13) hold. Therefore, we can
proceed in an analogous way as we shown that the imaginary axis was contained in the resolvent of
the operator, because the key point was to note that the sequence λn does not tend to zero. Thus, it
leads to a contradiction and so, condition (9) is also true.

We have proved the following.

Theorem 3.3. Let us assume that the previous conditions hold. Then, operator A produces a

semigroup exponentially stable; that is, we can find two positive constants M,ω such that

||U(t)|| 6 M exp(−ωt)||U(0)||

for every U(0) ∈ D(A).
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4 Thermoelastic case

In this section, we prove the existence of solutions to the problem determined by the general system
(1)-(3). Apart from the initial and boundary conditions (4)-(5), we also impose in this section that

ui(x, 0) = ui0(x), u̇i(x, 0) = vi0(x),x ∈ B, (14)

and
ui(x, t) = 0, x ∈ ∂B, t > 0. (15)

In what follows, we will show an existence theorem for the solutions to the problem determined by
system (1)-(3) with conditions (4)-(5) and (14)-(15). The existence will be shown in a suitable Hilbert
space. In this section, we will work with the space:

H = W
1,2
0 (B)× L

2(B)×W
1,2
0 (B)×W

1,2
0 (B)× L

2(B)×W
1,2
0 (B),

and, for every (u,v, α, θ, ξ, φ), (u∗,v∗, α∗, θ∗, ξ∗, φ∗) ∈ H, we define the inner product

〈(u,v, α, θ, ξ, φ), (u∗
,v

∗
, α

∗
, θ

∗
, ξ

∗
, φ

∗)〉 =
1

2

∫

B

(

ρviv
∗

i + µ
∗
ui,ju

∗

i,j + (λ∗ + µ
∗)ui,iu

∗

j,j

+A
∗(θ + τ θ̇)(θ∗ + τ θ̇∗) + k

∗∇(α+ τθ)∇(α∗ + τθ∗)

+τ k̄∇θ∇θ∗ + γ
∗∇(φ+ τG)∇(φ∗ + τG∗) + τ γ̄∇G∇G∗

−Q
∗[∇(α+ τθ)∇(φ∗ + τG∗) +∇(α∗ + τθ∗)∇(φ∗ + τG

∗)]− τQ̄[∇θ∇G∗ +∇θ∗∇G]
)

dv.

Again, our problem can be written in the form of system (7), where U = (u,v, α, θ, ξ, φ) and U0 =
(u0,v0, α0, θ0, ξ0, φ0), whenever we define the operator

A

















ui

vi
α

θ

ξ

φ

















=

















vi
ρ−1(µ∗ui,jj + (λ∗ + µ∗)uj,ji − β∗(θ,i + τξ,i))

θ

ξ

(A∗)−1(−β∗vi,i + τ−1(M1∆α+M2∆θ +M3∆φ))− τ−1ξ

γ−1(Q∗α+Qβ − γ∗φ)

















,

where
M1 = k

∗ − γ
−1

QQ
∗
, M2 = k − γ

−1
Q

2
, M3 = −(Q∗ − γ

−1
Qγ

∗).

The domain of the operator is given by the elements in the Hilbert space H such that

u ∈ W
2,2

, v ∈ W
1,2
0 , ξ ∈ W

1,2
0 , M1∆α+M2∆θ +M3∆φ ∈ L

2
.

Therefore, it is a dense subspace. We have that relation (8) also holds in this case. That is, we find
that

Re〈AU,U〉 = −
1

2

∫

B

(

k̄|∇θ|2 + γ̄|∇G|2 − Q̄(∇θ∇G+∇θ∇G)
)

dv.

Thus, to prove the existence of a semigroup of linear operators it is sufficient to show that zero
belongs to the resolvent of the operator. We consider L = (n1,n2, l1, l2, l3, l4) in the Hilbert space, and
we need to show the existence of an element in the domain of the operator such that AU = L. It leads
to the following system:

v = n1, θ = l1, ξ = l2, Q
∗
α+Qθ − γφ = γl4,

−β
∗
vi,i +M1∆α+M2∆θ +M3∆φ− A

∗
ξ = τA

∗
l3,

µ
∗
ui,jj + (λ∗ + µ

∗)uj,ji − β
∗(θ,i + τξ,i) = ρn2i.

As in the case of the rigid solid, we can also obtain φ .
We can find the expressions of v, θ and ξ, and our system reduces to

(

k
∗ −

(Q∗)2

γ∗

)

∆α = F1, µ
∗
ui,jj + (λ∗ + µ

∗)uj,ji = F2i

This system admits a solution in the domain of the operator and we obtain the following.



Moore-Gibson-Thompson theory for thermoelastic dielectrics 7

Theorem 4.1. The operator A generates a contractive semigroup.

We may conclude the stability of solutions as well as the well-posedness in the three-dimensional
case.

The exponential decay of solutions in the general case cannot be expected. We should find that
the behavior is similar to the usual one for the MGT-thermoelasticity; however, it is obvious that the
combination of the arguments proposed in this section, with those used in the previous one, would
allow us to prove, in the one-dimensional setting, the exponential decay of solutions. Anyway, we do
not give the details in order to shorten the length of the paper.
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